TWI518763B - Semiconductor process - Google Patents

Semiconductor process Download PDF

Info

Publication number
TWI518763B
TWI518763B TW100131677A TW100131677A TWI518763B TW I518763 B TWI518763 B TW I518763B TW 100131677 A TW100131677 A TW 100131677A TW 100131677 A TW100131677 A TW 100131677A TW I518763 B TWI518763 B TW I518763B
Authority
TW
Taiwan
Prior art keywords
gate structure
layer
dielectric layer
interlayer dielectric
semiconductor process
Prior art date
Application number
TW100131677A
Other languages
Chinese (zh)
Other versions
TW201312642A (en
Inventor
黃柏誠
蔡騰群
許嘉麟
徐俊偉
陳彥銘
林志勳
龔昌鴻
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW100131677A priority Critical patent/TWI518763B/en
Publication of TW201312642A publication Critical patent/TW201312642A/en
Application granted granted Critical
Publication of TWI518763B publication Critical patent/TWI518763B/en

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

半導體製程Semiconductor process

本發明係關於一種半導體製程,且特別係關於一種半導體製程,其藉由改變化學機械研磨製程之研磨選擇比或者加入一蝕刻製程,以同時研磨不等高之複數個閘極結構。The present invention relates to a semiconductor process, and more particularly to a semiconductor process that simultaneously grinds a plurality of gate structures of unequal height by varying the polishing selectivity of the CMP process or by adding an etch process.

在現今的互補式金氧半導體(CMOS)積體電路中,隨著量產製程的進步,元件的尺寸已縮減到深次微米(deep-submicron)階段,以增進積體電路(IC)的性能及運算速度,但隨著元件尺寸的縮減,卻出現一些可靠度上的問題。為了解決元件縮小所伴隨而來的問題,在半導體製程中則試圖結合其他各種製程。In today's complementary metal-oxide-semiconductor (CMOS) integrated circuits, as mass production processes progress, component sizes have been reduced to deep-submicron stages to enhance the performance of integrated circuits (ICs). And the speed of operation, but as the size of the component is reduced, there are some reliability problems. In order to solve the problems associated with component shrinkage, attempts have been made in the semiconductor process to incorporate various other processes.

舉例來說,為了降低CMOS元件之汲極(drain)與源極(source)的寄生電阻(sheet resistance)以及閘極的寄生電阻,而發展出所謂的自對準金屬矽化物(self-aligned silicide,Salicide)製程,其係在形成電晶體之閘極以及源/汲極區之後,再覆蓋一金屬層於所需的基底及閘極上,而後加熱使其反應形成金屬矽化物(silicide),最後再去除未反應的金屬層。For example, in order to reduce the sheet resistance of the drain and source of the CMOS device and the parasitic resistance of the gate, a so-called self-aligned silicide is developed. , Salicide) process, after forming the gate of the transistor and the source/drain region, covering a metal layer on the desired substrate and gate, and then heating to react to form a metal silicide. The unreacted metal layer is removed again.

詳細來說,由於自對準金屬矽化物(salicide)是選擇性地設置在部分所需的基底及閘極上,故在覆蓋一層金屬層之前,須先形成一金屬矽化物阻擋層(self-aligned silicide block,SAB)於不須覆蓋金屬矽化物的區域,以阻擋金屬矽化物覆蓋於其上。以常見的二閘極結構為例,當一閘極結構須要覆蓋金屬矽化物層而另一閘極結構不須覆蓋時,則先以一金屬矽化物阻擋層覆蓋於不須覆蓋金屬矽化物層之閘極結構上。但此作法在製程完成後,會導致二閘極結構的厚度不同,致使後續覆蓋於其上之層間介電層材料即便在進行研磨製程之後,仍會殘留於厚度較低之閘極結構上。如欲完全清除此閘極結構上所殘留之層間介電層,則可能對於厚度較高的閘極結構過度蝕刻或過度研磨等過渡加工,致使閘極結構的高度難以控制並影響其內部結構而降低電性品質。In detail, since a salicide is selectively disposed on a portion of the desired substrate and gate, a metal telluride barrier layer must be formed before covering a metal layer (self-aligned). The silicide block (SAB) covers the area of the metal halide to block the metal halide from covering it. Taking a common two-gate structure as an example, when a gate structure needs to cover a metal telluride layer and the other gate structure does not need to be covered, a metal telluride barrier layer is first covered with a metal halide layer. The gate structure. However, after the process is completed, the thickness of the two gate structures is different, so that the interlayer dielectric material subsequently covered thereon remains on the gate structure having a lower thickness even after the polishing process. If the interlayer dielectric layer remaining on the gate structure is completely removed, it may be excessively etched or over-polished such as a gate structure having a relatively high thickness, so that the height of the gate structure is difficult to control and affects its internal structure. Reduce electrical quality.

本發明係提出一種半導體製程,其可解決上述因二閘極結構具有不同之高度差,造成層間介電層材料殘留於閘極結構上,而導致閘極結構之電性品質劣化的問題。The present invention provides a semiconductor process that solves the above-mentioned problem that the two gate structures have different height differences, causing the interlayer dielectric layer material to remain on the gate structure, resulting in deterioration of the electrical quality of the gate structure.

本發明提供一種半導體製程,包含有下述步驟。首先,形成一第一閘極結構以及一第二閘極結構於一基底上,其中第一閘極結構的頂部包含一蓋層,使得第一閘極結構的垂直高度高於第二閘極結構的垂直高度。接著,形成一層間介電層於基底上並覆蓋第一閘極結構以及第二閘極結構。接續,進行一第一化學機械研磨製程,研磨層間介電層,至暴露出蓋層的頂面。繼之,進行一第二化學機械研磨製程,至少研磨第一閘極結構以及層間介電層,而暴露出第二閘極結構的頂面。The present invention provides a semiconductor process comprising the steps described below. First, a first gate structure and a second gate structure are formed on a substrate, wherein a top portion of the first gate structure includes a cap layer such that a vertical height of the first gate structure is higher than a second gate structure The vertical height. Next, an interlevel dielectric layer is formed on the substrate and covers the first gate structure and the second gate structure. Next, a first chemical mechanical polishing process is performed to polish the interlayer dielectric layer to expose the top surface of the cap layer. Then, a second chemical mechanical polishing process is performed to polish at least the first gate structure and the interlayer dielectric layer to expose the top surface of the second gate structure.

本發明提供一種半導體製程,包含有下述步驟。首先,形成一第一閘極結構以及一第二閘極結構於一基底上,其中第一閘極結構的頂部包含一蓋層,使得第一閘極結構的垂直高度高於第二閘極結構的垂直高度。接著,形成一層間介電層於基底上並覆蓋第一閘極結構以及第二閘極結構。接續,進行一第一化學機械研磨製程,研磨層間介電層,至暴露出蓋層的頂面。而後,進行一蝕刻製程,以移除位於第二閘極結構上之層間介電層。之後,進行一第二化學機械研磨製程,至少研磨第一閘極結構及層間介電層,以移除蓋層。The present invention provides a semiconductor process comprising the steps described below. First, a first gate structure and a second gate structure are formed on a substrate, wherein a top portion of the first gate structure includes a cap layer such that a vertical height of the first gate structure is higher than a second gate structure The vertical height. Next, an interlevel dielectric layer is formed on the substrate and covers the first gate structure and the second gate structure. Next, a first chemical mechanical polishing process is performed to polish the interlayer dielectric layer to expose the top surface of the cap layer. An etch process is then performed to remove the interlayer dielectric layer on the second gate structure. Thereafter, a second CMP process is performed to polish at least the first gate structure and the interlayer dielectric layer to remove the cap layer.

基於上述,本發明提供一種半導體製程,其係以一化學機械研磨製程,其對於蓋層及層間介電層具有近似之研磨選擇比,或者一蝕刻製程,其先移除具有較低的垂直高度的閘極結構上所殘留之層間介電層,以俾使第一閘極結構與第二閘極結構平整地暴露出,且不會有習知之閘極結構過蝕刻或過度研磨之現象。Based on the above, the present invention provides a semiconductor process in which a chemical mechanical polishing process has an approximate polishing selectivity ratio for a cap layer and an interlayer dielectric layer, or an etching process, which first removes a lower vertical height. The interlayer dielectric layer remaining on the gate structure exposes the first gate structure and the second gate structure flatly without any conventional etching or over-grinding of the gate structure.

第1-8圖繪示本發明一實施例之半導體製程之剖面示意圖。如第1圖所示,在形成一第一閘極結構110、一第二閘極結構120及個別對應之二源/汲極區130a及130b之後,可選擇性地實施一應力記憶技術(Stress Memorization Technique,SMT)以分別對於第一閘極結構110、第二閘極結構120下方之閘極通道140a及140b施加應力,而改善其載子遷移率。應力記憶技術可包含形成應變矽材質(未繪示)於源/汲極區130a及130b中,例如形成矽鍺磊晶層於PMOS電晶體中或形成矽碳磊晶層於NMOS電晶體中,或者直接覆蓋相對應之應力層(未繪示)於第一閘極結構110及第二閘極結構120上,本發明不以此為限。詳細而言,第一閘極結構110及第二閘極結構120可分別包含一緩衝層112及122位於基底10上、一閘極介電層114及124位於緩衝層112及122上、一閘極層116及126位於閘極介電層114及124上、一蓋層118及128位於閘極層116及126上以及一間隙壁119及129位於緩衝層112及122、一閘極介電層114及124、一閘極層116及126及蓋層118及128的側邊。閘極結構的材質及形成方法為本領域所熟知故不再贅述。1-8 are schematic cross-sectional views showing a semiconductor process according to an embodiment of the present invention. As shown in FIG. 1, after forming a first gate structure 110, a second gate structure 120, and corresponding two source/drain regions 130a and 130b, a stress memory technique can be selectively implemented (Stress The Memorization Technique (SMT) improves the carrier mobility by applying stress to the gate channels 140a and 140b under the first gate structure 110 and the second gate structure 120, respectively. The stress memory technology may include forming a strained germanium material (not shown) in the source/drain regions 130a and 130b, for example, forming a germanium epitaxial layer in the PMOS transistor or forming a germanium carbon epitaxial layer in the NMOS transistor. Or directly covering the corresponding stress layer (not shown) on the first gate structure 110 and the second gate structure 120, the invention is not limited thereto. In detail, the first gate structure 110 and the second gate structure 120 may respectively include a buffer layer 112 and 122 on the substrate 10, a gate dielectric layer 114 and 124 on the buffer layers 112 and 122, and a gate. The pole layers 116 and 126 are located on the gate dielectric layers 114 and 124, a cap layer 118 and 128 are located on the gate layers 116 and 126, and a spacer 119 and 129 are located on the buffer layers 112 and 122 and a gate dielectric layer. 114 and 124, a gate layer 116 and 126 and side edges of the cap layers 118 and 128. The material and formation method of the gate structure are well known in the art and will not be described again.

請繼續參閱第1圖,覆蓋一金屬矽化物阻擋層20於基底10、第一閘極結構110及第二閘極結構120上。金屬矽化物阻擋層20可例如為一氮化矽層。此外,金屬矽化物阻擋層20可更包含一氧化層(未繪示),位於基底10與氮化層之間,以作為緩衝之用。Please continue to refer to FIG. 1 to cover a metal halide barrier layer 20 on the substrate 10, the first gate structure 110 and the second gate structure 120. The metal telluride barrier layer 20 can be, for example, a tantalum nitride layer. In addition, the metal telluride blocking layer 20 may further comprise an oxide layer (not shown) between the substrate 10 and the nitride layer for buffering.

如第2-3圖所示,定義金屬矽化物阻擋層20,使其僅位於不須形成金屬矽化物的區域A。首先,如第2圖所示,先形成一圖案化之光阻層P,覆蓋位於不須形成金屬矽化物的區域A的金屬矽化物阻擋層20a上,並暴露出金屬矽化物阻擋層20b,其位於須形成金屬矽化物的區域B。接著,如第3圖所示,進行一蝕刻製程,以移除金屬矽化物阻擋層20b。而後,移除圖案化之光阻層P,而留下圖案化之金屬矽化物阻擋層20a。As shown in Figures 2-3, the metal telluride barrier layer 20 is defined such that it is only located in the region A where metal halides are not required to be formed. First, as shown in FIG. 2, a patterned photoresist layer P is formed to cover the metal telluride barrier layer 20a of the region A where metal halide does not need to be formed, and the metal telluride barrier layer 20b is exposed. It is located in the region B where metal halides are to be formed. Next, as shown in FIG. 3, an etching process is performed to remove the metal halide barrier layer 20b. Thereafter, the patterned photoresist layer P is removed leaving the patterned metal halide barrier layer 20a.

如第4圖所示,全面性沉積一金屬層60於基底10上,並覆蓋區域A的金屬矽化物阻擋層20a以及區域B的第二閘極結構120與源/汲極區130b,接著進行一快速加熱退火(rapid thermal anneal,RTA),使金屬層60與直接接觸之矽質的基底反應形成一自對準金屬矽化物(salicide),亦即於源/汲極區130b上分別形成一金屬矽化物150,最後再去除未反應的金屬層60。其中金屬層60之材質可包含鎳、鈷、鈦等,則其與矽基底反應所形成之金屬矽化物150可為鎳矽化合物或鈦矽化合物等,但本發明不以此為限。此外,在去除金屬層60之後,本實施例亦可再選擇性進行另一快速加熱退火(RTA),以降低金屬矽化物150的電阻值。As shown in FIG. 4, a metal layer 60 is deposited on the substrate 10 in a comprehensive manner, and covers the metal telluride barrier layer 20a of the region A and the second gate structure 120 and the source/drain region 130b of the region B, and then proceeds. A rapid thermal anneal (RTA) is used to react the metal layer 60 with the substrate in direct contact with the enamel to form a self-aligned metal salicide, that is, a source/drain region 130b is formed. The metal halide 150 is finally removed from the unreacted metal layer 60. The material of the metal layer 60 may include nickel, cobalt, titanium, etc., and the metal halide 150 formed by reacting with the ruthenium substrate may be a nickel ruthenium compound or a titanium ruthenium compound, but the invention is not limited thereto. In addition, after the metal layer 60 is removed, the present embodiment can also selectively perform another rapid heating annealing (RTA) to lower the resistance value of the metal germanide 150.

如第5圖所示,在形成金屬矽化物150之後,移除金屬矽化物阻擋層20a。由於金屬矽化物阻擋層20a通常為一氮化層,因此在移除金屬矽化物阻擋層20a的同時,於第二閘極結構120中的蓋層128及間隙壁129,其材質同樣為氮化物,亦會一併移除。值得注意的是,因為第二閘極結構120中的蓋層128及間隙壁129已被移除,因此,位於基底10上之第一閘極結構110的垂直高度就會高於第二閘極結構120的垂直高度。換言之,由於第一閘極結構110較第二閘極結構120多出一蓋層118,因而第一閘極結構110的厚度t1大於第二閘極結構120的厚度t2,故第一閘極結構110的頂面S1的水平面高於第二閘極結構120的頂面S2的水平面約數百埃的厚度t3。在本實施例中係以上述方法形成具有不同高度之第一閘極結構110及第二閘極結構120,但在其他實施例中亦可以其他方式形成具有不同高度之第一閘極結構110及第二閘極結構120。並且,所形成之具有不同高度之閘極結構並非僅限於二個,其可能包含更多個數,本發明不以此為限。As shown in FIG. 5, after the metal halide 150 is formed, the metal halide barrier layer 20a is removed. Since the metal telluride blocking layer 20a is usually a nitride layer, the cap layer 128 and the spacer 129 in the second gate structure 120 are also nitrided while removing the metal telluride blocking layer 20a. It will also be removed. It should be noted that since the cap layer 128 and the spacer 129 in the second gate structure 120 have been removed, the vertical height of the first gate structure 110 on the substrate 10 is higher than the second gate. The vertical height of the structure 120. In other words, since the first gate structure 110 has a cap layer 118 more than the second gate structure 120, the thickness t1 of the first gate structure 110 is greater than the thickness t2 of the second gate structure 120, so the first gate structure The horizontal plane of the top surface S1 of 110 is higher than the thickness t3 of the surface plane S2 of the second gate structure 120 by about several hundred angstroms. In the present embodiment, the first gate structure 110 and the second gate structure 120 having different heights are formed by the above method. However, in other embodiments, the first gate structure 110 having different heights may be formed in other manners. The second gate structure 120. Moreover, the formed gate structures having different heights are not limited to two, and may include more numbers, and the invention is not limited thereto.

如第6圖所示,可選擇性地以一接觸洞蝕刻停止層(Contact Etching Stop Layer,CESL)160覆蓋基底10、第一閘極結構110及第二閘極結構120,其中接觸洞蝕刻停止層160可例如為一氮化層,且其可再摻入其他雜質,以使其具有應力層之功能而對於其下方之閘極通道140a及140b施壓。而後,形成一層間介電層170於基底10上並覆蓋第一閘極結構110以及第二閘極結構120。在本實施例中,層間介電層170為一氧化層,但本發明不以此為限。As shown in FIG. 6, the substrate 10, the first gate structure 110, and the second gate structure 120 may be selectively covered by a contact Etching Stop Layer (CESL) 160, wherein the contact hole is etched. Layer 160 can be, for example, a nitride layer, and it can be re-incorporated with other impurities to have the function of a stress layer to apply pressure to the underlying gate channels 140a and 140b. Then, an interlayer dielectric layer 170 is formed on the substrate 10 and covers the first gate structure 110 and the second gate structure 120. In the present embodiment, the interlayer dielectric layer 170 is an oxide layer, but the invention is not limited thereto.

如第7圖所示,進行一第一化學機械研磨製程C1,來研磨層間介電層170,至暴露出區域A的接觸洞蝕刻停止層160。在一實施例中,如未覆蓋接觸洞蝕刻停止層160,則會直接暴露出蓋層118的頂面S1。由圖中可知,由於第一閘極結構110及第二閘極結構120具有不同高度之緣故(更詳細而言,第一閘極結構110的頂部更包含了蓋層118),因此在第一化學機械研磨製程C1之後,會在第二閘極結構120上留下一部份的層間介電層170。As shown in FIG. 7, a first chemical mechanical polishing process C1 is performed to polish the interlayer dielectric layer 170 to expose the contact hole etch stop layer 160 of the region A. In one embodiment, if the contact hole etch stop layer 160 is not covered, the top surface S1 of the cap layer 118 is directly exposed. As can be seen from the figure, since the first gate structure 110 and the second gate structure 120 have different heights (more specifically, the top of the first gate structure 110 further includes the cap layer 118), After the chemical mechanical polishing process C1, a portion of the interlayer dielectric layer 170 is left on the second gate structure 120.

如第8圖所示,進行一第二化學機械研磨製程C2,至少研磨第一閘極結構110以及層間介電層170,而暴露出第二閘極結構120的頂面S2。承第7圖所示,由於第二閘極結構120上留下了一部份的層間介電層170,且蓋層118與層間介電層170具有不同之材質,是以本發明特別於第二化學機械研磨製程C2中選用一研磨漿料,其研磨蓋層118以及層間介電層170的研磨選擇比介於1.2與0.8之間,較佳約為1,因此可平整地同時移除蓋層118以及層間介電層170,而不會有習知因為蓋層118移除過快,而導致第一閘極結構110被過度研磨的現象。在一較佳的實施例中,第二化學機械研磨製程C2包含一等研磨選擇比的化學機械研磨製程,亦即研磨漿料對氧化物的研磨速率等於對氮化物的研磨速率,使其對於蓋層118以及層間介電層170的研磨速率實質上相等。在本實施例中,蓋層118為一氮化層,而層間介電層170為一氧化層,是以第二化學機械研磨製程的研磨漿體可包含一氧抑制劑,其濃度較一般現今產業中所使用之研磨漿體具有較少之氧抑制劑,而可加快層間介電層170相對於蓋層118的研磨速率,俾使蓋層128及層間介電層170可同時被平整地移除,而停止在第一閘極結構110及第二閘極結構120之閘極層116及126上。As shown in FIG. 8, a second chemical mechanical polishing process C2 is performed to at least polish the first gate structure 110 and the interlayer dielectric layer 170 to expose the top surface S2 of the second gate structure 120. As shown in FIG. 7, since a portion of the interlayer dielectric layer 170 is left on the second gate structure 120, and the cap layer 118 and the interlayer dielectric layer 170 have different materials, the present invention is particularly In the second chemical mechanical polishing process C2, a polishing slurry is selected, and the polishing cover layer 118 and the interlayer dielectric layer 170 have a polishing selection ratio of between 1.2 and 0.8, preferably about 1, so that the cover can be removed at the same time. The layer 118 and the interlayer dielectric layer 170 are not conventionally known because the cap layer 118 is removed too quickly, resulting in the phenomenon that the first gate structure 110 is excessively ground. In a preferred embodiment, the second CMP process C2 comprises a CMP process in which the polishing ratio is selected, that is, the polishing rate of the slurry to the oxide is equal to the polishing rate of the nitride, so that The polishing rates of the cap layer 118 and the interlayer dielectric layer 170 are substantially equal. In this embodiment, the cap layer 118 is a nitride layer, and the interlayer dielectric layer 170 is an oxide layer. The slurry of the second chemical mechanical polishing process may include an oxygen inhibitor, and the concentration thereof is more general. The abrasive slurry used in the industry has fewer oxygen inhibitors, and the polishing rate of the interlayer dielectric layer 170 relative to the cap layer 118 can be accelerated, so that the cap layer 128 and the interlayer dielectric layer 170 can be simultaneously planarly moved. In addition, the gate layers 116 and 126 of the first gate structure 110 and the second gate structure 120 are stopped.

更進一步而言,由於第二化學機械研磨製程C2對氧化物與氮化物的研磨速率相等,因此第二化學機械研磨製程C2會先移除位於區域A中第一閘極結構110上之接觸洞蝕刻停止層160以及區域B之層間介電層170,而後由於第一閘極結構110高出於第二閘極結構120之部分為蓋層118,是以當第二化學機械研磨製程C2研磨區域B之接觸洞蝕刻停止層160至暴露出第二閘極結構120的頂面S2的同時,區域A之蓋層118將完全被移除。此時,在移除蓋層118時,位於第二閘極結構120上之接觸洞蝕刻停止層160亦同時被移除。並且,當蓋層118被完全移除之後,及同時露出第一閘極結構110以及第二閘極結構120中的閘極層116及126。在其他實施例中,依據製程之需要及製程方法之不同,第一閘極結構與第二閘極結構之高度及內部結構之相對位置有可能不同,本發明不以本實施例所繪示之第一閘極結構110及第二閘極結構120為限。Further, since the second chemical mechanical polishing process C2 has the same polishing rate of oxide and nitride, the second chemical mechanical polishing process C2 first removes the contact hole located in the first gate structure 110 in the region A. Etching the stop layer 160 and the interlayer dielectric layer 170 of the region B, and then the first gate structure 110 is higher than the portion of the second gate structure 120 as the cap layer 118, and is the second chemical mechanical polishing process C2 polishing region. While the contact hole of B etches the stop layer 160 to expose the top surface S2 of the second gate structure 120, the cap layer 118 of the region A will be completely removed. At this time, when the cap layer 118 is removed, the contact hole etch stop layer 160 on the second gate structure 120 is also removed at the same time. Moreover, after the cap layer 118 is completely removed, and simultaneously exposing the gate layers 116 and 126 in the first gate structure 110 and the second gate structure 120. In other embodiments, depending on the needs of the process and the method of the process, the heights of the first gate structure and the second gate structure and the relative positions of the internal structures may be different, and the present invention is not illustrated by the embodiment. The first gate structure 110 and the second gate structure 120 are limited.

此外,本發明亦提出另一類似的製程方法以達到本發明之功能。第9-10圖繪示本發明另一實施例之半導體製程之剖面示意圖。首先,同樣如第1-7圖所示,形成第一閘極結構110以及第二閘極結構120於基底10上,其中第一閘極結構110的頂部包含一蓋層118,使得第一閘極結構110的垂直高度(在本實施例中同厚度t1)高於第二閘極結構120的垂直高度(在本實施例中同厚度t2)。形成一層間介電層170於基底10上並覆蓋第一閘極結構110以及第二閘極結構120。進行第一化學機械研磨製程C1,研磨層間介電層170,至暴露出蓋層118的頂面S1。詳細之形成方法已在前一實施例中描述過,故不再贅述。In addition, the present invention also proposes another similar process method to achieve the functionality of the present invention. 9-10 are schematic cross-sectional views showing a semiconductor process according to another embodiment of the present invention. First, as shown in FIGS. 1-7, the first gate structure 110 and the second gate structure 120 are formed on the substrate 10. The top of the first gate structure 110 includes a cap layer 118, so that the first gate The vertical height of the pole structure 110 (the same thickness t1 in this embodiment) is higher than the vertical height of the second gate structure 120 (the same thickness t2 in this embodiment). An interlayer dielectric layer 170 is formed on the substrate 10 and covers the first gate structure 110 and the second gate structure 120. A first chemical mechanical polishing process C1 is performed to polish the interlayer dielectric layer 170 to expose the top surface S1 of the cap layer 118. The detailed formation method has been described in the previous embodiment, and therefore will not be described again.

接著,如第9圖所示,進行一蝕刻製程E,以移除位於第二閘極結構120上之層間介電層170。蝕刻製程E可包含一乾蝕刻製程或一濕蝕刻製程,而濕蝕刻製程可例如為一含氫氟酸之蝕刻液之蝕刻製程,但本發明不以此為限。在本實施例中,如蓋層118為一氮化層,而層間介電層170為一氧化層,則蝕刻製程E可包含一氧化物蝕刻製程。在一較佳實施例中,蝕刻製程E的蝕刻液只能蝕刻層間介電層170,因而不會損害到第一閘極結構110之蓋層118(如另有一接觸洞蝕刻停止層160覆蓋第一閘極結構110上則不會損害到接觸洞蝕刻停止層160)。換言之,本發明所進行之蝕刻製程E,僅為了單獨移除層間介電層170,以暴露出第一閘極結構110及第二閘極結構120(或者暴露出接觸洞蝕刻停止層160)。Next, as shown in FIG. 9, an etching process E is performed to remove the interlayer dielectric layer 170 on the second gate structure 120. The etching process E may include a dry etching process or a wet etching process, and the wet etching process may be, for example, an etching process of a hydrofluoric acid-containing etching solution, but the invention is not limited thereto. In this embodiment, if the cap layer 118 is a nitride layer and the interlayer dielectric layer 170 is an oxide layer, the etching process E may include an oxide etching process. In a preferred embodiment, the etching solution of the etching process E can only etch the interlayer dielectric layer 170, thereby not damaging the cap layer 118 of the first gate structure 110 (if another contact hole etch stop layer 160 is covered) A contact structure etch stop layer 160 is not damaged on a gate structure 110. In other words, the etching process E performed by the present invention merely removes the interlayer dielectric layer 170 separately to expose the first gate structure 110 and the second gate structure 120 (or expose the contact hole etch stop layer 160).

最後,如第10圖所示,進行一第二化學機械研磨製程C3,至少研磨第一閘極結構110及層間介電層170,以移除蓋層118。如另有接觸洞蝕刻停止層160則會一併移除位於第一閘極結構110及第二閘極結構120的頂面S1及S2上之接觸洞蝕刻停止層160。在一實施態樣下,因為蝕刻製程E已移除位於第二閘極結構120上之層間介電層170,故第二化學機械研磨製程C3對於蓋層118的研磨率較佳為高於對於層間介電層170的研磨率,亦即選用氮化物對氧化物的研磨率高之研磨漿料。如此一來,才不會使位於第一閘極結構110及第二閘極結構120之間的層間介電層170因過度研磨而產生凹陷。Finally, as shown in FIG. 10, a second CMP process C3 is performed to at least polish the first gate structure 110 and the interlayer dielectric layer 170 to remove the cap layer 118. If the contact hole etch stop layer 160 is further removed, the contact hole etch stop layer 160 on the top surfaces S1 and S2 of the first gate structure 110 and the second gate structure 120 is removed. In one embodiment, since the etching process E has removed the interlayer dielectric layer 170 on the second gate structure 120, the second CMP process C3 preferably has a higher polishing rate for the cap layer 118 than The polishing rate of the interlayer dielectric layer 170, that is, the polishing slurry having a high nitride to oxide polishing rate. In this way, the interlayer dielectric layer 170 located between the first gate structure 110 and the second gate structure 120 is not dented by excessive grinding.

更進一步而言,在本實施例中,如有接觸洞蝕刻停止層160覆蓋第一閘極結構110、第二閘極結構120以及基底10,則第二化學機械研磨製程C3會先移除位於第一閘極結構110上之接觸洞蝕刻停止層160,而後由於第一閘極結構110高出於第二閘極結構120之部分為蓋層118,是以當第二化學機械研磨製程C3研磨至暴露出第二閘極結構120的頂面S2的同時,蓋層118將完全被移除。此時,在移除蓋層118的同時,位於第二閘極結構120上之接觸洞蝕刻停止層160亦被移除。並且,當蓋層118被完全移除之後,即同時露出第一閘極結構110以及第二閘極結構120中的閘極層116及126。在其他實施例中,依據製程之需要及製程方式之不同,第一閘極結構與第二閘極結構之高度及內部結構之相對位置有可能不同,本發明不以本實施例所繪示之第一閘極結構110及第二閘極結構120為限。Further, in this embodiment, if the contact hole etch stop layer 160 covers the first gate structure 110, the second gate structure 120, and the substrate 10, the second CMP process C3 is first removed. The contact hole on the first gate structure 110 etches the stop layer 160, and then the portion of the first gate structure 110 that is higher than the second gate structure 120 is the cap layer 118, which is grounded by the second chemical mechanical polishing process C3. The cover layer 118 will be completely removed while exposing the top surface S2 of the second gate structure 120. At this time, while the cap layer 118 is removed, the contact hole etch stop layer 160 on the second gate structure 120 is also removed. Moreover, after the cap layer 118 is completely removed, the gate layers 116 and 126 in the first gate structure 110 and the second gate structure 120 are simultaneously exposed. In other embodiments, the heights of the first gate structure and the second gate structure and the relative positions of the internal structures may be different according to the needs of the process and the process. The present invention is not illustrated by the embodiment. The first gate structure 110 and the second gate structure 120 are limited.

此外,在暴露出第一閘極結構110以及第二閘極結構120中的閘極層116及126之後,本發明可接續其他半導體製程,例如進行金屬閘極等製程。In addition, after exposing the gate structures 116 and 126 in the first gate structure 110 and the second gate structure 120, the present invention can continue with other semiconductor processes, such as metal gates.

綜上所述,本發明提供一種半導體製程,其係以一化學機械研磨製程,其對於蓋層及層間介電層具有近似之研磨選擇比,或者一蝕刻製程,其先移除具有較低的垂直高度的閘極結構上所殘留之層間介電層,以俾使第一閘極結構與第二閘極結構平整地暴露出(更詳細而言,可平整地暴露出第一閘極結構與第二閘極結構中之閘極層),而不會有習知之閘極結構過蝕刻或過度研磨之現象。因此,本發明之半導體製程可改善閘極結構的電性品質。In summary, the present invention provides a semiconductor process in which a chemical mechanical polishing process has an approximate polishing selectivity ratio for a cap layer and an interlayer dielectric layer, or an etching process, which has a lower removal first. An interlayer dielectric layer remaining on the gate structure of the vertical height to expose the first gate structure and the second gate structure in a flat manner (in more detail, the first gate structure and the first gate structure may be exposed uniformly The gate layer in the second gate structure) does not have the phenomenon of over-etching or over-grinding of the conventional gate structure. Therefore, the semiconductor process of the present invention can improve the electrical quality of the gate structure.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

10...基底10. . . Base

20、20a、20b...金屬矽化物阻擋層20, 20a, 20b. . . Metal telluride barrier

60...金屬層60. . . Metal layer

110...第一閘極結構110. . . First gate structure

112、122...緩衝層112, 122. . . The buffer layer

114、124...閘極介電層114, 124. . . Gate dielectric layer

116、126...閘極層116, 126. . . Gate layer

118、128...蓋層118, 128. . . Cover

119、129...間隙壁119, 129. . . Clearance wall

120...第二閘極結構120. . . Second gate structure

130a、130b...源/汲極區130a, 130b. . . Source/bungee area

140a、140b...閘極通道140a, 140b. . . Gate channel

150...金屬矽化物150. . . Metal telluride

160...接觸洞蝕刻停止層160. . . Contact hole etch stop layer

170...層間介電層170. . . Interlayer dielectric layer

A、B...區域A, B. . . region

C1...第一化學機械研磨製程C1. . . First chemical mechanical polishing process

C2、C3...第二化學機械研磨製程C2, C3. . . Second chemical mechanical polishing process

E...蝕刻製程E. . . Etching process

P...光阻層P. . . Photoresist layer

S1、S2...頂面S1, S2. . . Top surface

t1、t2、t3...厚度T1, t2, t3. . . thickness

第1-8圖繪示本發明一實施例之半導體製程之剖面示意圖。1-8 are schematic cross-sectional views showing a semiconductor process according to an embodiment of the present invention.

第9-10圖繪示本發明一實施例之半導體製程之剖面示意圖。9-10 are schematic cross-sectional views showing a semiconductor process according to an embodiment of the present invention.

10...基底10. . . Base

110...第一閘極結構110. . . First gate structure

112、122...緩衝層112, 122. . . The buffer layer

114、124...閘極介電層114, 124. . . Gate dielectric layer

116、126...閘極層116, 126. . . Gate layer

119...間隙壁119. . . Clearance wall

120...第二閘極結構120. . . Second gate structure

130a、130b...源/汲極區130a, 130b. . . Source/bungee area

140a、140b...閘極通道140a, 140b. . . Gate channel

150...金屬矽化物150. . . Metal telluride

160...接觸洞蝕刻停止層160. . . Contact hole etch stop layer

170...層間介電層170. . . Interlayer dielectric layer

A、B...區域A, B. . . region

C2...第二化學機械研磨製程C2. . . Second chemical mechanical polishing process

S2...頂面S2. . . Top surface

Claims (20)

一種半導體製程,包含有:形成一第一閘極結構以及一第二閘極結構於一基底上,其中該第一閘極結構的頂部包含一蓋層,使得該第一閘極結構的垂直高度高於該第二閘極結構的垂直高度;形成一層間介電層於該基底上並覆蓋該第一閘極結構以及該第二閘極結構;進行一第一化學機械研磨製程,研磨該層間介電層,至暴露出該蓋層的頂面;以及進行一第二化學機械研磨製程,至少研磨部分該第一閘極結構以及該層間介電層,而暴露出該第二閘極結構的頂面。A semiconductor process includes: forming a first gate structure and a second gate structure on a substrate, wherein a top portion of the first gate structure includes a cap layer such that a vertical height of the first gate structure Higher than the vertical height of the second gate structure; forming an interlayer dielectric layer on the substrate and covering the first gate structure and the second gate structure; performing a first chemical mechanical polishing process to polish the interlayer a dielectric layer to expose a top surface of the cap layer; and performing a second CMP process to at least partially polish the first gate structure and the interlayer dielectric layer to expose the second gate structure Top surface. 如申請專利範圍第1項所述之半導體製程,其中該蓋層與該層間介電層包含不同材質。The semiconductor process of claim 1, wherein the cap layer and the interlayer dielectric layer comprise different materials. 如申請專利範圍第2項所述之半導體製程,其中該蓋層包含一氮化層,該層間介電層包含一氧化層。The semiconductor process of claim 2, wherein the cap layer comprises a nitride layer, the interlayer dielectric layer comprising an oxide layer. 如申請專利範圍第3項所述之半導體製程,其中該第二化學機械研磨製程的研磨漿體包含一氧抑制劑。The semiconductor process of claim 3, wherein the slurry of the second CMP process comprises an oxygen inhibitor. 如申請專利範圍第1項所述之半導體製程,其中該第二化學機械研磨製程研磨該蓋層以及該層間介電層的研磨選擇比介於1.2與0.8之間。The semiconductor process of claim 1, wherein the second CMP process polishes the cap layer and the interlayer dielectric layer has a polishing selectivity ratio between 1.2 and 0.8. 如申請專利範圍第5項所述之半導體製程,其中該第二化學機械研磨製程包含一等研磨選擇比的化學機械研磨製程,其對於該蓋層以及該層間介電層的研磨速率實質上相等。The semiconductor process of claim 5, wherein the second chemical mechanical polishing process comprises a chemical mechanical polishing process of a first polishing selectivity, wherein the polishing rate of the cap layer and the interlayer dielectric layer is substantially equal . 如申請專利範圍第1項所述之半導體製程,其中該第二化學機械研磨製程暴露出該第二閘極結構的頂面的同時,完全移除該蓋層。The semiconductor process of claim 1, wherein the second CMP process completely removes the cap layer while exposing the top surface of the second gate structure. 如申請專利範圍第1項所述之半導體製程,其中該第二化學機械研磨製程暴露出該第一閘極結構以及該第二閘極結構中的一閘極層。The semiconductor process of claim 1, wherein the second CMP process exposes the first gate structure and a gate layer of the second gate structure. 如申請專利範圍第1項所述之半導體製程,更包含形成一接觸洞蝕刻停止層覆蓋該第一閘極結構、該第二閘極結構以及該基底。The semiconductor process of claim 1, further comprising forming a contact etch stop layer covering the first gate structure, the second gate structure, and the substrate. 如申請專利範圍第8項所述之半導體製程,其中該第二化學機械研磨製程,移除該蓋層及部分該接觸洞蝕刻停止層。The semiconductor process of claim 8, wherein the second CMP process removes the cap layer and a portion of the contact hole etch stop layer. 一種半導體製程,包含有:形成一第一閘極結構以及一第二閘極結構於一基底上,其中該第一閘極結構的頂部包含一蓋層,使得該第一閘極結構的垂直高度高於該第二閘極結構的垂直高度;形成一層間介電層於該基底上並覆蓋該第一閘極結構以及該第二閘極結構;進行一第一化學機械研磨製程,研磨該層間介電層,至暴露出該蓋層的頂面;進行一蝕刻製程,以移除位於該第二閘極結構上之該層間介電層;以及進行一第二化學機械研磨製程,至少研磨部分該第一閘極結構及該層間介電層,以移除該蓋層。A semiconductor process includes: forming a first gate structure and a second gate structure on a substrate, wherein a top portion of the first gate structure includes a cap layer such that a vertical height of the first gate structure Higher than the vertical height of the second gate structure; forming an interlayer dielectric layer on the substrate and covering the first gate structure and the second gate structure; performing a first chemical mechanical polishing process to polish the interlayer a dielectric layer to expose a top surface of the cap layer; performing an etching process to remove the interlayer dielectric layer on the second gate structure; and performing a second chemical mechanical polishing process, at least a grinding portion The first gate structure and the interlayer dielectric layer are used to remove the cap layer. 如申請專利範圍第11項所述之半導體製程,其中該蓋層與該層間介電層包含不同材質。The semiconductor process of claim 11, wherein the cap layer and the interlayer dielectric layer comprise different materials. 如申請專利範圍第12項所述之半導體製程,其中該蓋層包含一氮化層,該層間介電層包含一氧化層。The semiconductor process of claim 12, wherein the cap layer comprises a nitride layer, the interlayer dielectric layer comprising an oxide layer. 如申請專利範圍第13項所述之半導體製程,其中該蝕刻製程包含一氧蝕刻製程。The semiconductor process of claim 13, wherein the etching process comprises an oxygen etching process. 如申請專利範圍第11項所述之半導體製程,其中該蝕刻製程的蝕刻液只蝕刻該層間介電層。The semiconductor process of claim 11, wherein the etching process of the etching process etches only the interlayer dielectric layer. 如申請專利範圍第11項所述之半導體製程,其中該蝕刻製程包含一乾蝕刻製程或一濕蝕刻製程。The semiconductor process of claim 11, wherein the etching process comprises a dry etching process or a wet etching process. 如申請專利範圍第16項所述之半導體製程,其中該濕蝕刻製程包含一含氫氟酸之蝕刻液之蝕刻製程。The semiconductor process of claim 16, wherein the wet etching process comprises an etching process of a hydrofluoric acid-containing etching solution. 如申請專利範圍第11項所述之半導體製程,其中該第二化學機械研磨製程對於該蓋層的研磨率高於對於該層間介電層的蝕刻率。The semiconductor process of claim 11, wherein the second CMP process has a higher polishing rate for the cap layer than for the interlayer dielectric layer. 如申請專利範圍第11項所述之半導體製程,更包含形成一接觸洞蝕刻停止層覆蓋該第一閘極結構、該第二閘極結構以及該基底,且該第二化學機械研磨製程,移除該蓋層及部分該接觸洞蝕刻停止層。The semiconductor process of claim 11, further comprising forming a contact hole etch stop layer covering the first gate structure, the second gate structure and the substrate, and the second CMP process, shifting In addition to the cap layer and a portion of the contact hole etch stop layer. 如申請專利範圍第11項所述之半導體製程,其中該第二化學機械研磨製程,暴露出該第一閘極結構與該第二閘極結構中之一閘極層。The semiconductor process of claim 11, wherein the second CMP process exposes one of the first gate structure and the second gate structure.
TW100131677A 2011-09-02 2011-09-02 Semiconductor process TWI518763B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100131677A TWI518763B (en) 2011-09-02 2011-09-02 Semiconductor process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100131677A TWI518763B (en) 2011-09-02 2011-09-02 Semiconductor process

Publications (2)

Publication Number Publication Date
TW201312642A TW201312642A (en) 2013-03-16
TWI518763B true TWI518763B (en) 2016-01-21

Family

ID=48482613

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100131677A TWI518763B (en) 2011-09-02 2011-09-02 Semiconductor process

Country Status (1)

Country Link
TW (1) TWI518763B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI811425B (en) * 2019-08-13 2023-08-11 聯華電子股份有限公司 Method for manufacturing semiconductor structure

Also Published As

Publication number Publication date
TW201312642A (en) 2013-03-16

Similar Documents

Publication Publication Date Title
US11682697B2 (en) Fin recess last process for FinFET fabrication
US20140151763A1 (en) Semiconductor structure having contact plug and method of making the same
US9673053B2 (en) Method for fabricating semiconductor device
US8647986B2 (en) Semiconductor process
US20160064528A1 (en) Semiconductor device and method for fabricating the same
US20200258787A1 (en) Semiconductor device
CN103855077A (en) Semiconductor structure with contact plugs and forming method thereof
TWI518763B (en) Semiconductor process
TWI518789B (en) Metal oxide semiconductor transistor and method of manufacturing the same
US9455135B2 (en) Method for fabricating semiconductor device
CN111613537B (en) Fin type semiconductor device and manufacturing method thereof
TWI512797B (en) Planarization method applied in process of manufacturing semiconductor component
US9735015B1 (en) Fabricating method of semiconductor structure
KR101695902B1 (en) Method of manufacturing a semiconductor device
CN106601684B (en) Semiconductor device, preparation method thereof and electronic device
CN108807514B (en) Semiconductor device and method of forming the same
US9330920B1 (en) Method for fabricating semiconductor device
US20170162402A1 (en) Method of manufacturing a semiconductor structure
CN113764348B (en) Method for manufacturing fin type semiconductor device
CN106910686B (en) Semiconductor device, preparation method thereof and electronic device
CN105097691B (en) The forming method of semiconductor devices
TWI675414B (en) Planarizing method
CN107785259B (en) Semiconductor device, preparation method and electronic device
KR100455730B1 (en) Method for forming dual gate insulator in semiconductor device
US9111862B2 (en) Semiconductor apparatus and manufacturing method thereof