TWI512797B - Planarization method applied in process of manufacturing semiconductor component - Google Patents

Planarization method applied in process of manufacturing semiconductor component Download PDF

Info

Publication number
TWI512797B
TWI512797B TW100102528A TW100102528A TWI512797B TW I512797 B TWI512797 B TW I512797B TW 100102528 A TW100102528 A TW 100102528A TW 100102528 A TW100102528 A TW 100102528A TW I512797 B TWI512797 B TW I512797B
Authority
TW
Taiwan
Prior art keywords
gate
layer
chemical mechanical
metal layer
barrier layer
Prior art date
Application number
TW100102528A
Other languages
Chinese (zh)
Other versions
TW201232625A (en
Inventor
Ya Hsueh Hsieh
Teng Chun Tsai
Wen Chin Lin
Hsin Kuo Hsu
ren peng Huang
Chih Hsien Chen
Chih Chin Yang
Hung Yuan Lu
Jen Chieh Lin
Wei Che Tsao
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW100102528A priority Critical patent/TWI512797B/en
Publication of TW201232625A publication Critical patent/TW201232625A/en
Application granted granted Critical
Publication of TWI512797B publication Critical patent/TWI512797B/en

Links

Description

應用於半導體元件製程中之平坦化方法Flattening method applied to semiconductor device manufacturing

本發明提供一種平坦化方法,尤指可應用於半導體元件製程中之平坦化方法。The present invention provides a planarization method, and more particularly to a planarization method that can be applied to a semiconductor device process.

隨著半導體元件近年來的迅速發展,至今元件尺寸已進入奈米等級,因此金氧半電晶體元件中的閘極絕緣層(Gate Dielectric Layer)厚度勢必隨著通道尺寸的縮小而相對變薄,但是過薄的絕緣層厚度勢必誘發嚴重的閘極漏電流,而此漏電流將會影響到元件的特性,導致產品的耗能增加。因此,導入高介電常數(以下簡稱High-k)材料來完成閘極絕緣層,用以減少閘極漏電流的產生是必要的手段。此外,High-k製程常常會與金屬閘極(metal gate)製程搭配,用以降低閘極電極的阻值。而為能提高熱穩定性,防止金屬閘極和高介電常數閘極絕緣層發生反應,通常在金屬閘極和高介電常數閘極絕緣層之間皆增設一阻障層,此阻障層通常可用氮化鈦(TiN)來完成。但在上述閘極構造的製造過程中,常因元件表面的平坦化不佳而產生問題,如何改善此等缺失,係為發展本案之主要目的。With the rapid development of semiconductor devices in recent years, the size of the device has entered the nanometer level. Therefore, the thickness of the gate dielectric layer in the MOS semiconductor device is relatively thinner as the channel size is reduced. However, the thickness of the excessively thin insulating layer is bound to induce a serious gate leakage current, and this leakage current will affect the characteristics of the component, resulting in an increase in the energy consumption of the product. Therefore, it is necessary to introduce a high dielectric constant (hereinafter referred to as High-k) material to complete the gate insulating layer to reduce the gate leakage current. In addition, the High-k process is often combined with a metal gate process to reduce the resistance of the gate electrode. In order to improve the thermal stability and prevent the metal gate from reacting with the high dielectric constant gate insulating layer, a barrier layer is usually added between the metal gate and the high dielectric constant gate insulating layer. The layer can usually be done with titanium nitride (TiN). However, in the manufacturing process of the above-mentioned gate structure, problems often arise due to poor planarization of the surface of the device, and how to improve these defects is the main purpose of developing the present case.

本發明的目的就是在提供一種平坦化方法,可應用於積體電路製程上,用以改善習用手段平坦化不佳的缺失。SUMMARY OF THE INVENTION It is an object of the present invention to provide a planarization method that can be applied to an integrated circuit process to improve the lack of planarization of conventional devices.

本發明提出一種平坦化方法,應用於半導體元件製程中,該方法包含下列步驟:提供基板;於該基板上形成一介電層,其中介電層中具有一溝槽;於該溝槽中依序形成一阻障層與一金屬層;利用第一反應劑來對金屬層進行第一平坦化製程,用以除去部份之金屬層而露出阻障層,其中第一反應劑對金屬層之蝕刻速率大於對阻障層之蝕刻速率;以及利用第二反應劑來對阻障層與金屬層進行第二平坦化製程,用以除去部份之阻障層與金屬層而露出介電層,其中第二反應劑對阻障層之蝕刻速率大於對金屬層之蝕刻速率。The present invention provides a planarization method for use in a semiconductor device process, the method comprising the steps of: providing a substrate; forming a dielectric layer on the substrate, wherein the dielectric layer has a trench; Forming a barrier layer and a metal layer; using a first reactant to perform a first planarization process on the metal layer to remove a portion of the metal layer to expose the barrier layer, wherein the first reactant is opposite to the metal layer The etching rate is greater than the etching rate of the barrier layer; and the second planarizing process is performed on the barrier layer and the metal layer by using the second reactant to remove part of the barrier layer and the metal layer to expose the dielectric layer. The etching rate of the second reactant to the barrier layer is greater than the etching rate of the metal layer.

在本發明的較佳實施例中,上述之平坦化方法更包含形成一閘極介電層於該介電層下方。In a preferred embodiment of the invention, the planarization method further includes forming a gate dielectric layer under the dielectric layer.

本發明的較佳實施例中,上述之平坦化方法於形成阻障層之前更包含形成一閘極介電層於溝槽中。In a preferred embodiment of the present invention, the planarization method further includes forming a gate dielectric layer in the trench before forming the barrier layer.

在本發明的較佳實施例中,上述之閘極介電層為高介電常數介電層,阻障層係為閘極阻障層,金屬層係為閘極金屬層。In a preferred embodiment of the invention, the gate dielectric layer is a high-k dielectric layer, the barrier layer is a gate barrier layer, and the metal layer is a gate metal layer.

在本發明的較佳實施例中,上述之高介電常數介電層係可由氧化鉿(HfO2 )、氮氧化矽鉿(HfSiON)或氧化矽鉿(HfSiO)等材料來完成之單層或多層結構。In a preferred embodiment of the present invention, the high-k dielectric layer may be a single layer of a material such as hafnium oxide (HfO 2 ), hafnium oxynitride (HfSiON) or hafnium oxide (HfSiO) or Multi-layer structure.

在本發明的較佳實施例中,上述之阻障層係可由氮化鈦(TiN)、碳化鉭(TaC)、碳化鎢(WC)、碳化鈦(TiC)、氮化鉭(TaN)、氮化鈦鋁(TiAlN)等材質完成之單層或多層結構。In a preferred embodiment of the present invention, the barrier layer may be titanium nitride (TiN), tantalum carbide (TaC), tungsten carbide (WC), titanium carbide (TiC), tantalum nitride (TaN), nitrogen. A single or multi-layer structure made of a material such as titanium aluminum (TiAlN).

在本發明的較佳實施例中,上述之金屬層係可由氮化鈦(TiN)、鎢(W)、鋁(Al),、鈦(Ti)、鉭(Ta)、氮化鉭(TaN)、鈷(Co)、銅(Cu)或是鎳(Ni)等材質完成之單層或多層結構。In a preferred embodiment of the present invention, the metal layer may be titanium nitride (TiN), tungsten (W), aluminum (Al), titanium (Ti), tantalum (Ta), tantalum nitride (TaN). A single layer or a multilayer structure made of a material such as cobalt (Co), copper (Cu) or nickel (Ni).

在本發明的較佳實施例中,上述之第一平坦化製程與該第二平坦化製程可分別為一第一化學機械研磨製程與一第二化學機械研磨製程,而該第一反應劑與該第二反應劑可分別為一第一化學機械研磨劑與一第二化學機械研磨劑。第一平坦化製程與第二平坦化製程可在單一機台上完成,或是分開在提供不同化學機械研磨劑之多個機台上完成,而第一化學機械研磨劑與第二化學機械研磨劑更可包含有二氧化矽、二氧化鈰或是氧化鋁粉末之黏著材料。In a preferred embodiment of the present invention, the first planarization process and the second planarization process may be a first chemical mechanical polishing process and a second chemical mechanical polishing process, respectively, and the first reactant is The second reactant may be a first chemical mechanical abrasive and a second chemical mechanical abrasive, respectively. The first planarization process and the second planarization process can be performed on a single machine or separately on a plurality of machines providing different chemical mechanical abrasives, and the first chemical mechanical abrasive and the second chemical mechanical polishing The agent may further comprise an adhesive material of cerium oxide, cerium oxide or aluminum oxide powder.

在本發明的較佳實施例中,上述之第一化學機械研磨劑與該第二化學機械研磨劑中皆可包含有氧化劑(oxidizer),第一化學機械研磨劑之氧化劑濃度可低於第二化學機械研磨劑中之氧化劑濃度。In a preferred embodiment of the present invention, the first chemical mechanical abrasive and the second chemical mechanical abrasive may both contain an oxidizer, and the first chemical mechanical abrasive may have an oxidant concentration lower than the second The concentration of oxidant in a chemical mechanical abrasive.

在本發明的較佳實施例中,上述之氧化劑係可為過氧化氫。In a preferred embodiment of the invention, the oxidant described above may be hydrogen peroxide.

在本發明的較佳實施例中,上述之第一化學機械研磨劑中之過氧化氫濃度範圍可為0%~1%,該第二化學機械研磨劑中之過氧化氫濃度範圍可大於1%。In a preferred embodiment of the present invention, the concentration of hydrogen peroxide in the first chemical mechanical abrasive may range from 0% to 1%, and the concentration of hydrogen peroxide in the second chemical mechanical abrasive may be greater than one. %.

本發明更提出另一種平坦化方法,應用於半導體元件製程中,該方法包含下列步驟:提供基板,基板上方具有包含多晶矽假閘極與介電層之閘極構造;去除多晶矽假閘極而於介電層中形成至少溝槽;形成閘極阻障層於該溝槽側壁與底部以及該介電層之表面上;形成閘極金屬層於該閘極阻障層之表面上並填滿該溝槽;利用第一反應劑來對該閘極金屬層進行第一平坦化製程,用以除去部份之該閘極金屬層而露出該閘極阻障層,其中該第一反應劑對該閘極金屬層之蝕刻速率大於對該閘極阻障層之蝕刻速率;以及利用第二反應劑來對該閘極阻障層與該閘極金屬層進行第二平坦化製程,用以除去部份之該閘極阻障層與該閘極金屬層而露出該介電層,其中該第二反應劑對該閘極阻障層之蝕刻速率大於對該閘極金屬層之蝕刻速率。The present invention further proposes another planarization method for use in a semiconductor device process, the method comprising the steps of: providing a substrate having a gate structure including a polysilicon dummy gate and a dielectric layer thereon; removing the polysilicon dummy gate Forming at least a trench in the dielectric layer; forming a gate barrier layer on the sidewall and the bottom of the trench and a surface of the dielectric layer; forming a gate metal layer on the surface of the gate barrier layer and filling the surface a first planarization process for removing the gate metal layer to expose the gate barrier layer by using a first reactant to expose the gate barrier layer, wherein the first reactant An etch rate of the gate metal layer is greater than an etch rate of the gate barrier layer; and a second planarization process is performed on the gate barrier layer and the gate metal layer by using a second reactant to remove the portion The gate barrier layer and the gate metal layer are exposed to expose the dielectric layer, wherein an etching rate of the second reactant to the gate barrier layer is greater than an etching rate of the gate metal layer.

在本發明的較佳實施例中,上述之平坦化方法更包含形成一閘極介電層於該介電層下方。In a preferred embodiment of the invention, the planarization method further includes forming a gate dielectric layer under the dielectric layer.

本發明的較佳實施例中,上述之平坦化方法於形成阻障層之前更包含形成一閘極介電層於溝槽中。In a preferred embodiment of the present invention, the planarization method further includes forming a gate dielectric layer in the trench before forming the barrier layer.

在本發明的較佳實施例中,上述於除去部份之該閘極金屬層而露出閘極阻障層之步驟前更可包含下列步驟:利用第三反應劑來對閘極金屬層進行第三平坦化製程,用以減少閘極金屬層之厚度至預設厚度,第三反應劑對該閘極金屬層之蝕刻速率大於該第一反應劑對閘極金屬層之蝕刻速率。In a preferred embodiment of the present invention, the step of removing the portion of the gate metal layer to expose the gate barrier layer may further include the following steps: using the third reactant to perform the gate metal layer The third planarization process is for reducing the thickness of the gate metal layer to a predetermined thickness, and the etching rate of the third reactant to the gate metal layer is greater than the etching rate of the first reactant to the gate metal layer.

在本發明的較佳實施例中,上述之預設厚度可大於100埃。In a preferred embodiment of the invention, the predetermined thickness may be greater than 100 angstroms.

在本發明的較佳實施例中,上述之閘極介電層係為高介電常數介電層,此高介電常數介電層係由氧化鉿(HfO2 )、氮氧化矽鉿(HfSiON)或氧化矽鉿(HfSiO)等材料來完成之單層或多層結構。In a preferred embodiment of the present invention, the gate dielectric layer is a high-k dielectric layer, and the high-k dielectric layer is made of hafnium oxide (HfO 2 ) or hafnium oxynitride (HfSiON). Or a material such as hafnium oxide (HfSiO) to complete a single layer or a multilayer structure.

在本發明的較佳實施例中,上述之阻障層係可由氮化鈦(TiN)、碳化鉭(TaC)、碳化鎢(WC)、碳化鈦(TiC)、氮化鉭(TaN)、氮化鈦鋁(TiAlN)等材質完成之單層或多層結構。In a preferred embodiment of the present invention, the barrier layer may be titanium nitride (TiN), tantalum carbide (TaC), tungsten carbide (WC), titanium carbide (TiC), tantalum nitride (TaN), nitrogen. A single or multi-layer structure made of a material such as titanium aluminum (TiAlN).

在本發明的較佳實施例中,上述之金屬層係可由氮化鈦(TiN)、鎢(W)、鋁(Al),、鈦(Ti)、鉭(Ta)、氮化鉭(TaN)、鈷(Co)、銅(Cu)或是鎳(Ni)等材質完成之單層或多層結構。In a preferred embodiment of the present invention, the metal layer may be titanium nitride (TiN), tungsten (W), aluminum (Al), titanium (Ti), tantalum (Ta), tantalum nitride (TaN). A single layer or a multilayer structure made of a material such as cobalt (Co), copper (Cu) or nickel (Ni).

在本發明的較佳實施例中,上述之第一平坦化製程與該第二平坦化製程分別可為一第一化學機械研磨製程與一第二化學機械研磨製程,而該第一反應劑與該第二反應劑分別可為一第一化學機械研磨劑與一第二化學機械研磨劑。第一平坦化製程與第二平坦化製程可在單一機台上完成,或是分開在提供不同化學機械研磨劑之多個機台上完成,而第一化學機械研磨劑與第二化學機械研磨劑更可包含有二氧化矽、二氧化鈰或是氧化鋁粉末之黏著材料。In a preferred embodiment of the present invention, the first planarization process and the second planarization process may be a first chemical mechanical polishing process and a second chemical mechanical polishing process, respectively, and the first reactant is The second reactants can be a first chemical mechanical abrasive and a second chemical mechanical abrasive, respectively. The first planarization process and the second planarization process can be performed on a single machine or separately on a plurality of machines providing different chemical mechanical abrasives, and the first chemical mechanical abrasive and the second chemical mechanical polishing The agent may further comprise an adhesive material of cerium oxide, cerium oxide or aluminum oxide powder.

在本發明的較佳實施例中,上述之第一化學機械研磨劑對於該閘極金屬層與該閘極阻障層之蝕刻選擇比大於20,該第二化學機械研磨劑對於該閘極金屬層與該閘極阻障層之蝕刻選擇比大於20。In a preferred embodiment of the present invention, the first chemical mechanical abrasive has an etching selectivity ratio of the gate metal layer to the gate barrier layer greater than 20, and the second chemical mechanical abrasive is for the gate metal The etch selectivity ratio of the layer to the gate barrier layer is greater than 20.

在本發明的較佳實施例中,上述之該第一化學機械研磨劑與該第二化學機械研磨劑中皆可包含有氧化劑(oxidizer),該第一化學機械研磨劑之氧化劑濃度低於該第二化學機械研磨劑中之氧化劑濃度。In a preferred embodiment of the present invention, the first chemical mechanical abrasive and the second chemical mechanical abrasive may include an oxidizer, and the first chemical mechanical abrasive has an oxidant concentration lower than the oxidant. The concentration of the oxidant in the second chemical mechanical abrasive.

在本發明的較佳實施例中,上述之氧化劑係可為過氧化氫。In a preferred embodiment of the invention, the oxidant described above may be hydrogen peroxide.

在本發明的較佳實施例中,上述之第一化學機械研磨劑中之過氧化氫濃度範圍可為0%~1%,該第二化學機械研磨劑中之過氧化氫濃度範圍可大於1%。In a preferred embodiment of the present invention, the concentration of hydrogen peroxide in the first chemical mechanical abrasive may range from 0% to 1%, and the concentration of hydrogen peroxide in the second chemical mechanical abrasive may be greater than one. %.

本發明更提出另一種閘極構造,此構造包含基板、介電層、閘極阻障層以及閘極金屬層。介電層位於基板上方並具有至少一溝槽。閘極阻障層位於溝槽中。閘極金屬層位於閘極阻障層之表面上並填滿溝槽。閘極金屬層頂面低於溝槽側壁,且兩者之高度差小於50埃。The present invention further proposes another gate structure comprising a substrate, a dielectric layer, a gate barrier layer, and a gate metal layer. The dielectric layer is over the substrate and has at least one trench. The gate barrier layer is located in the trench. The gate metal layer is on the surface of the gate barrier layer and fills the trench. The top surface of the gate metal layer is lower than the sidewall of the trench, and the height difference between the two is less than 50 angstroms.

請參見第一圖(a)、(b)、(c),其係本案為改善習用手段缺失所發展出來關於平坦化方法之製程步驟示意圖,可廣泛應用於半導體元件製程中。首先,先提供一基板10,例如常見的矽基板,然後於該基板10上進行一高介電常數/金屬閘極(HKMG)製程來完成金氧半電晶體元件,如第一圖(a)所示,於該基板10上方形成介電層101,該介電層101中形成有溝槽104,而該溝槽104中形成有閘極介電層(gate dielectirc layer) 1010、阻障層(barrier layer)102與金屬層103來完成一閘極結構(gate structure)。該溝槽104可為將一多晶矽假閘極(dummy poly,圖中未示出)去除後所形成。至於閘極結構中之閘極介電層1010可以在溝槽104形成後再形成,進而完成如第一圖(a)所示之構造,但是也可在溝槽104形成前便已形成閘極介電層1010,如第二圖(a)之所示。而該閘極介電層1010可由一高介電常數介電材料來完成。至於該阻障層可以是閘極構造中之閘極阻障層,而該金屬層則可以是閘極構造中之閘極金屬層。Please refer to the first figure (a), (b), (c), which is a schematic diagram of the process steps for the planarization method developed in order to improve the lack of conventional means, and can be widely applied in the process of semiconductor components. First, a substrate 10, such as a common germanium substrate, is first provided, and then a high dielectric constant/metal gate (HKMG) process is performed on the substrate 10 to complete the gold oxide semi-transistor element, as shown in the first figure (a). A dielectric layer 101 is formed over the substrate 10, and a trench 104 is formed in the dielectric layer 101, and a gate dielectric layer 1010 and a barrier layer are formed in the trench 104. The barrier layer 102 and the metal layer 103 complete a gate structure. The trench 104 can be formed by removing a polysilicon dummy (not shown). As for the gate dielectric layer 1010 in the gate structure, it may be formed after the trench 104 is formed, thereby completing the structure as shown in the first diagram (a), but the gate may be formed before the trench 104 is formed. The dielectric layer 1010 is as shown in the second diagram (a). The gate dielectric layer 1010 can be completed by a high-k dielectric material. The barrier layer may be a gate barrier layer in the gate structure, and the metal layer may be a gate metal layer in the gate structure.

接著利用第一反應劑來對該金屬層103進行第一平坦化製程,用以除去部份之該金屬層103而露出該阻障層102,其中透過控制第一反應劑的成份,將對該金屬層103之蝕刻速率調整大於對該阻障層102之蝕刻速率。如此一來,便可將蝕刻動作停在阻障層102之上,但也因金屬層103之蝕刻較快,便產生如第一圖(b)所示之結構,阻障層102外露而金屬層103產生些許的碟形凹陷(dishing)1030。Then, the first planarizing process is performed on the metal layer 103 by using the first reactant to remove a portion of the metal layer 103 to expose the barrier layer 102, wherein the composition of the first reactant is controlled to The etch rate adjustment of the metal layer 103 is greater than the etch rate of the barrier layer 102. In this way, the etching operation can be stopped on the barrier layer 102, but also because the metal layer 103 is etched faster, the structure as shown in the first figure (b) is generated, and the barrier layer 102 is exposed and the metal is exposed. Layer 103 produces a slight dishing 1030.

為能消除上述碟形凹陷1030,本案便再利用第二反應劑來對外露之阻障層102與金屬層103進行第二平坦化製程,用以除去部份的阻障層102與部份的該金屬層103而露出溝槽104開口外的介電層101,其中該第二反應劑對該阻障層102之蝕刻速率大於對金屬層103之蝕刻速率。如此一來,蝕刻動作可停在介電層101之上,但因阻障層102之蝕刻較快而金屬層103之蝕刻較慢,便產生如第一圖(c)所示之結構,金屬層103原本具有的碟形凹陷1030將被消除,進而達成一平坦的表面。金屬層103之頂面低於溝槽104側壁,也即低於兩側介電層101的頂面之高度差小於50埃。最後經過清洗後,便可送入下一道製程,例如內層介電層之製作。In order to eliminate the above-mentioned dish-shaped recess 1030, the second reactive agent is used in the present invention to perform a second planarization process for the exposed barrier layer 102 and the metal layer 103 to remove part of the barrier layer 102 and portions. The metal layer 103 exposes the dielectric layer 101 outside the opening of the trench 104, wherein the etching rate of the second reactant to the barrier layer 102 is greater than the etching rate of the metal layer 103. In this way, the etching operation can be stopped on the dielectric layer 101. However, since the etching of the barrier layer 102 is faster and the etching of the metal layer 103 is slower, the structure as shown in the first figure (c) is generated. The dished recess 1030 originally provided by layer 103 will be eliminated, thereby achieving a flat surface. The top surface of the metal layer 103 is lower than the sidewall of the trench 104, that is, the height difference from the top surface of the dielectric layer 101 on both sides is less than 50 angstroms. After cleaning, it can be sent to the next process, such as the fabrication of the inner dielectric layer.

而根據上述步驟之說明可知,本案透過兩次蝕刻選擇比不同的平坦化製程,將可有效提升製程完成後產品的平坦程度,進而改善習用手段之缺失,達成發展本案之主要目的。而上述第一平坦化製程與第二平坦化製程可分別為第一化學機械研磨製程與第二化學機械研磨製程,而第一反應劑與第二反應劑可分別為第一化學機械研磨劑與第二化學機械研磨劑。而該等平坦化製程可在單一機台(Single pad CMP)上完成,或是分開在提供不同化學機械研磨劑之多個機台上完成(multi-pad CMP),而該等化學機械研磨劑中更可包含有黏著材料(abrasive material),例如二氧化矽(SiO2)、二氧化鈰(CeO2)或是氧化鋁(Al2 O3 )粉末(powder)等。另外,該第一化學機械研磨劑與該第二化學機械研磨劑中皆包含有氧化劑(oxidizer),為調整出適當的蝕刻選擇比,該第一化學機械研磨劑之氧化劑濃度將低於該第二化學機械研磨劑中之氧化劑濃度,而該氧化劑係可為過氧化氫等,舉例來說,第一化學機械研磨劑中之過氧化氫濃度範圍可為0%~1%,該第二化學機械研磨劑中之過氧化氫濃度範圍則可大於1%,例如3%或5%,如此一來,第一化學機械研磨劑對於該閘極金屬層與該閘極阻障層之蝕刻選擇比可控制在大於20,第二化學機械研磨劑對於該閘極金屬層與該閘極阻障層之蝕刻選擇比則可控制在大於20。According to the description of the above steps, the present invention can effectively improve the flatness of the product after the completion of the process by selecting different planarization processes through two etchings, thereby improving the lack of conventional means and achieving the main purpose of developing the case. The first planarization process and the second planarization process may be a first chemical mechanical polishing process and a second chemical mechanical polishing process, respectively, and the first reactant and the second reactant may be the first chemical mechanical polishing agent and The second chemical mechanical abrasive. The planarization process can be performed on a single pad (CMP) or separately on a plurality of machines providing different chemical mechanical abrasives (multi-pad CMP), and the chemical mechanical abrasives Further, an abrasive material such as cerium oxide (SiO2), cerium oxide (CeO2) or aluminum oxide (Al 2 O 3 ) powder or the like may be contained. In addition, the first chemical mechanical polishing agent and the second chemical mechanical polishing agent all comprise an oxidizer, and the oxidant concentration of the first chemical mechanical polishing agent is lower than the first oxidizer. The concentration of the oxidant in the second chemical mechanical polishing agent, and the oxidizing agent may be hydrogen peroxide or the like. For example, the concentration of hydrogen peroxide in the first chemical mechanical polishing agent may range from 0% to 1%, the second chemical The concentration of hydrogen peroxide in the mechanical abrasive may be greater than 1%, such as 3% or 5%, such that the first chemical mechanical abrasive has an etching selectivity ratio for the gate metal layer and the gate barrier layer. Controllable at greater than 20, the etching selectivity of the second chemical mechanical abrasive to the gate metal layer and the gate barrier layer can be controlled to be greater than 20.

至於該閘極介電層(gate dielectirc layer)1010,主要可由高介電常數介電層來完成,例如可以是氧化鉿(HfO2)、氮氧化矽鉿(HfSiON)或氧化矽鉿(HfSiO)等材料來完成之單層或多層結構,主要是形成於阻障層102之下方,閘極介電層1010若是形成於溝槽104完成前,即所謂HK first,閘極介電層1010就只會形成於溝槽104底部,而形成如第二圖(a)中所示之本案技術所完成之閘極構造示意圖,但若是除去多晶矽假閘極後再形成閘極介電層1010,即所謂HK last,閘極介電層1010則會形成於溝槽104底部與側壁而呈U型剖面,形成如第二圖(b)中所示之閘極構造。至於該阻障層102可由氮化鈦(TiN)、碳化鉭(TaC)、碳化鎢(WC)、碳化鈦(TiC)、氮化鉭(TaN)、氮化鈦鋁(TiAlN)等材質完成之單層或多層結構,該阻障層102可用以在閘極構造中扮演功函數金屬層(Work Function metal layer)、應力層(strained layer)、功函數微調金屬層(Work Function tuning metal layer)、內襯層(liner layer)或是封合層(sealant layer)等角色。至於金屬層103可以是由氮化鈦(TiN)、鎢(W)、鋁(Al),、鈦(Ti)、鉭(Ta)、氮化鉭(TaN)、鈷(Co)、銅(Cu)或是鎳(Ni)等材質完成之單層或多層結構。The gate dielectirc layer 1010 can be mainly formed by a high-k dielectric layer, such as hafnium oxide (HfO 2 ), hafnium oxynitride (HfSiON) or hafnium oxide (HfSiO). The single-layer or multi-layer structure of the material is mainly formed under the barrier layer 102. If the gate dielectric layer 1010 is formed before the trench 104 is completed, the so-called HK first, the gate dielectric layer 1010 will only Formed at the bottom of the trench 104 to form a schematic diagram of the gate structure completed by the technique of the present invention as shown in the second diagram (a), but if the polysilicon gate is removed, the gate dielectric layer 1010 is formed, that is, the so-called HK Last, the gate dielectric layer 1010 is formed in a U-shaped cross section at the bottom and sidewalls of the trench 104 to form a gate structure as shown in the second diagram (b). The barrier layer 102 may be made of titanium nitride (TiN), tantalum carbide (TaC), tungsten carbide (WC), titanium carbide (TiC), tantalum nitride (TaN), titanium aluminum nitride (TiAlN). The single or multi-layer structure, the barrier layer 102 can be used to function as a work function metal layer, a strained layer, a work function tuning metal layer, or a work function tuning metal layer in a gate structure. A role such as a liner layer or a sealant layer. As for the metal layer 103, it may be composed of titanium nitride (TiN), tungsten (W), aluminum (Al), titanium (Ti), tantalum (Ta), tantalum nitride (TaN), cobalt (Co), copper (Cu). ) A single layer or a multilayer structure made of a material such as nickel (Ni).

另外,為能增加產能,在利用第一反應劑來除去部份之該閘極金屬層而露出該閘極阻障層之步驟前,更可先利用一第三反應劑來對該金屬層103進行一第三平坦化製程,用以減少該閘極金屬層之厚度至一預設厚度後停下再轉換至該第一平坦化製程。預設厚度可設為接近100埃但大於100埃,而由於第三反應劑可調整成對該金屬層103具有之較快蝕刻速率,意即該第三反應劑對該金屬層103之蝕刻速率大於該第一反應劑對該金屬層103之蝕刻速率,因此金屬層103之厚度將可以很快被縮減而減少製程時間。In addition, in order to increase the capacity, before the step of removing a portion of the gate metal layer by using the first reactant to expose the gate barrier layer, the third layer may be first used to the metal layer 103. A third planarization process is performed to reduce the thickness of the gate metal layer to a predetermined thickness and then stop and switch to the first planarization process. The predetermined thickness can be set to be close to 100 angstroms but greater than 100 angstroms, and since the third reactant can be adjusted to have a faster etch rate for the metal layer 103, that is, the etch rate of the third reactant to the metal layer 103. It is larger than the etching rate of the first reactant to the metal layer 103, so the thickness of the metal layer 103 can be quickly reduced to reduce the processing time.

綜上所述,在本發明對技術進行改良後,已可有效消除習用手段中平坦化不佳的問題。雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。In summary, after the technology of the present invention is improved, the problem of poor flattening in the conventional means can be effectively eliminated. While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.

10...基板10. . . Substrate

101...介電層101. . . Dielectric layer

1010...閘極介電層1010. . . Gate dielectric layer

102...阻障層102. . . Barrier layer

103...金屬層103. . . Metal layer

104...溝槽104. . . Trench

1030...碟形凹陷1030. . . Dish

第一圖(a)、(b)、(c),其係本案為改善習用手段缺失所發展出來關於平坦化方法之製程步驟示意圖。The first figure (a), (b), (c), which is a schematic diagram of the process steps for the planarization method developed in order to improve the lack of conventional means.

第二圖(a)、(b),其係本案技術所完成之兩種閘極構造示意圖。The second figures (a) and (b) are schematic diagrams of the two gate structures completed by the technique of the present invention.

10...基板10. . . Substrate

101...介電層101. . . Dielectric layer

1010...閘極介電層1010. . . Gate dielectric layer

102...阻障層102. . . Barrier layer

103...金屬層103. . . Metal layer

Claims (26)

一種平坦化方法,應用於一半導體元件製程中,該方法包含下列步驟:提供一基板;於該基板上形成一介電層,其中該介電層中具有一溝槽;於該溝槽中依序形成一阻障層與一金屬層;利用一第一化學機械研磨劑來對該金屬層進行一第一化學機械研磨製程,用以除去部份之該金屬層而露出該阻障層,其中該第一化學機械研磨劑對該金屬層之蝕刻速率大於對該阻障層之蝕刻速率;以及利用一第二化學機械研磨劑來對該阻障層與該金屬層進行一第二化學機械研磨製程,用以除去部份之該阻障層與該金屬層而露出該介電層,其中該第二化學機械研磨劑對該阻障層之蝕刻速率大於對該金屬層之蝕刻速率,其中該第一化學機械研磨劑與該第二化學機械研磨劑中皆包含有氧化劑(oxidizer),該第一化學機械研磨劑之氧化劑濃度低於該第二化學機械研磨劑中之氧化劑濃度,並且該第一與第二化學機械研磨製程可在單一機台上完成,或是分開在提供不同化學機械研磨劑之多個機台上完成,而該等化學機械研磨劑中更可包含有二氧化矽、二氧化鈰或是氧化鋁粉末之黏著材料。 A planarization method for use in a semiconductor device process, the method comprising the steps of: providing a substrate; forming a dielectric layer on the substrate, wherein the dielectric layer has a trench; Forming a barrier layer and a metal layer; performing a first chemical mechanical polishing process on the metal layer by using a first chemical mechanical abrasive to remove a portion of the metal layer to expose the barrier layer, wherein The first chemical mechanical abrasive etch rate of the metal layer is greater than the etching rate of the barrier layer; and a second chemical mechanical polishing is performed on the barrier layer and the metal layer by a second chemical mechanical polishing a process for removing a portion of the barrier layer and the metal layer to expose the dielectric layer, wherein the second chemical mechanical abrasive etches the barrier layer at a rate greater than an etch rate of the metal layer, wherein The first chemical mechanical abrasive and the second chemical mechanical abrasive both comprise an oxidizer, and the first chemical mechanical abrasive has an oxidant concentration lower than the oxidant in the second chemical mechanical abrasive Concentration, and the first and second chemical mechanical polishing processes can be performed on a single machine or separately on a plurality of machines providing different chemical mechanical abrasives, and the chemical mechanical abrasives can be further included An adhesive material having cerium oxide, cerium oxide or aluminum oxide powder. 如申請專利範圍第1項所述之平坦化方法,其中更包含下列步驟:形成一閘極介電層於該介電層下方。 The planarization method of claim 1, further comprising the step of forming a gate dielectric layer under the dielectric layer. 如申請專利範圍第1項所述之平坦化方法,其中於形成該阻障層之前更包含下列步驟:形成一閘極介電層於該溝槽中。 The planarization method of claim 1, wherein the forming of the barrier layer further comprises the step of forming a gate dielectric layer in the trench. 如申請專利範圍第3項所述之平坦化方法,其中該閘極介電層係為一高介電常數介電層,該阻障層係為一閘極阻障層,該金屬層係為一閘極金屬層。 The planarization method of claim 3, wherein the gate dielectric layer is a high-k dielectric layer, and the barrier layer is a gate barrier layer, and the metal layer is A gate metal layer. 如申請專利範圍第4項所述之平坦化方法,其中該高介電常數介電層係由氧化鉿(HfO2 )、氮氧化矽鉿(HfSiON)或氧化矽鉿(HfSiO)等材料來完成之單層或多層結構。The planarization method according to claim 4, wherein the high-k dielectric layer is made of materials such as hafnium oxide (HfO 2 ), hafnium oxynitride (HfSiON) or hafnium oxide (HfSiO). Single or multi-layer structure. 如申請專利範圍第1項所述之平坦化方法,其中該阻障層係由氮化鈦(TiN)、碳化鉭(TaC)、碳化鎢(WC)、碳化鈦(TiC)、氮化鉭(TaN)、氮化鈦鋁(TiAlN)等材質完成之單層或多層結構。 The planarization method according to claim 1, wherein the barrier layer is made of titanium nitride (TiN), tantalum carbide (TaC), tungsten carbide (WC), titanium carbide (TiC), tantalum nitride ( TaN), titanium aluminide (TiAlN) and other materials to complete the single layer or multilayer structure. 如申請專利範圍第1項所述之平坦化方法,其中該金屬層係由氮化鈦(TiN)、鎢(W)、鋁(Al),、鈦(Ti)、鉭(Ta)、氮化鉭(TaN)、鈷(Co)、銅(Cu)或是鎳(Ni)等材質完成之單層或多層結構。 The planarization method according to claim 1, wherein the metal layer is made of titanium nitride (TiN), tungsten (W), aluminum (Al), titanium (Ti), tantalum (Ta), and nitride. A single layer or a multilayer structure made of a material such as tantalum (TaN), cobalt (Co), copper (Cu) or nickel (Ni). 如申請專利範圍第1項所述之平坦化方法,其中該氧化劑係為過氧化氫。 The method of planarizing according to claim 1, wherein the oxidizing agent is hydrogen peroxide. 如申請專利範圍第8項所述之平坦化方法,其中該第一化學機械研磨劑中之過氧化氫濃度範圍為0%~1%,該第二化學機械研磨劑中之過氧化氫濃度範圍為大於1%。 The planarization method of claim 8, wherein the concentration of hydrogen peroxide in the first chemical mechanical abrasive ranges from 0% to 1%, and the concentration range of hydrogen peroxide in the second chemical mechanical abrasive Is greater than 1%. 一種平坦化方法,應用於一半導體元件製程中,該方法包含下列步驟:提供一基板,該基板上方具有包含一多晶矽假閘極與一介電 層之一閘極構造;去除該多晶矽假閘極而於該介電層中形成至少一溝槽;形成一閘極阻障層於該溝槽側壁與底部以及該介電層之表面上;形成一閘極金屬層於該閘極阻障層之表面上並填滿該溝槽;利用一第一化學機械研磨劑來對該閘極金屬層進行一第一化學機械研磨製程,用以除去部份之該閘極金屬層而露出該閘極阻障層,其中該第一化學機械研磨劑對該閘極金屬層之蝕刻速率大於對該閘極阻障層之蝕刻速率;以及利用一第二化學機械研磨劑來對該閘極阻障層與該閘極金屬層進行一第二化學機械研磨製程,用以除去部份之該閘極阻障層與該閘極金屬層而露出該介電層,其中該第二化學機械研磨劑對該閘極阻障層之蝕刻速率大於對該閘極金屬層之蝕刻速率,其中該第一化學機械研磨劑與該第二化學機械研磨劑中皆包含有氧化劑(oxidizer),該第一化學機械研磨劑之氧化劑濃度低於該第二化學機械研磨劑中之氧化劑濃度,並且該第一與第二化學研磨製程可在單一機台上完成,或是分開在提供不同化學機械研磨劑之多個機台上完成,而該等化學機械研磨劑中更可包含有二氧化矽、二氧化鈰或是氧化鋁粉末之黏著材料。 A planarization method for use in a semiconductor device process, the method comprising the steps of: providing a substrate having a polysilicon gate and a dielectric thereon a gate structure of the layer; removing the polysilicon dummy gate to form at least one trench in the dielectric layer; forming a gate barrier layer on the sidewall and the bottom of the trench and the surface of the dielectric layer; forming a gate metal layer on the surface of the gate barrier layer and filling the trench; using a first chemical mechanical abrasive to perform a first chemical mechanical polishing process on the gate metal layer for removing the portion Dividing the gate metal layer to expose the gate barrier layer, wherein the first chemical mechanical abrasive etch rate to the gate metal layer is greater than an etch rate of the gate barrier layer; and utilizing a second a chemical mechanical polishing agent to perform a second chemical mechanical polishing process on the gate barrier layer and the gate metal layer to remove a portion of the gate barrier layer and the gate metal layer to expose the dielectric a layer, wherein the second CMP agent etches the gate barrier layer at an etch rate greater than the etch rate of the gate metal layer, wherein the first CMP agent and the second CMP agent are both included There is an oxidizer, the first chemical machine The oxidant concentration of the mechanical abrasive is lower than the oxidant concentration of the second chemical mechanical abrasive, and the first and second chemical polishing processes can be performed on a single machine or separately provided to provide different chemical mechanical abrasives The machine is completed on the machine, and the chemical mechanical abrasive may further comprise an adhesive material of cerium oxide, cerium oxide or aluminum oxide powder. 如申請專利範圍第10項所述之平坦化方法,其中更包含下列步驟:形成一閘極介電層於該介電層下方。 The planarization method of claim 10, further comprising the step of forming a gate dielectric layer under the dielectric layer. 如申請專利範圍第10項所述之平坦化方法,其中於形成該阻障層之前更包含下列步驟:形成一閘極介電層於該溝槽中。 The planarization method of claim 10, further comprising the step of forming a gate dielectric layer in the trench before forming the barrier layer. 如申請專利範圍第10項所述之平坦化方法,其中於除去部份之該閘極金屬層而露出該閘極阻障層之步驟前更包含下列步驟:利用一第三反應劑來對該閘極金屬層進行一第三平坦化製程,用以減少該閘極金屬層之厚度至一預設厚度,該第三反應劑對該閘極金屬層之蝕刻速率大於該第一反應劑對該閘極金屬層之蝕刻速率。 The planarization method of claim 10, wherein the step of removing the portion of the gate metal layer to expose the gate barrier layer further comprises the step of: utilizing a third reactant to The gate metal layer performs a third planarization process for reducing the thickness of the gate metal layer to a predetermined thickness, and the etching rate of the third reactant to the gate metal layer is greater than the first reactant Etching rate of the gate metal layer. 如申請專利範圍第13項所述之平坦化方法,其中該預設厚度大於100埃。 The planarization method of claim 13, wherein the predetermined thickness is greater than 100 angstroms. 如申請專利範圍第10項所述之平坦化方法,其中該閘極介電層係為一高介電常數介電層,該高介電常數介電層係由氧化鉿(HfO2 )、氮氧化矽鉿(HfSiON)或氧化矽鉿(HfSiO)等材料來完成之單層或多層結構。The planarization method of claim 10, wherein the gate dielectric layer is a high-k dielectric layer, the high-k dielectric layer is made of hafnium oxide (HfO 2 ), nitrogen. A single layer or a multilayer structure completed by a material such as hafnium oxide (HfSiON) or hafnium oxide (HfSiO). 如申請專利範圍第10項所述之平坦化方法,其中該阻障層係由氮化鈦(TiN)、碳化鉭(TaC)、碳化鎢(WC)、碳化鈦(TiC)、氮化鉭(TaN)、氮化鈦鋁(TiAlN)等材質完成之單層或多層結構。 The planarization method according to claim 10, wherein the barrier layer is made of titanium nitride (TiN), tantalum carbide (TaC), tungsten carbide (WC), titanium carbide (TiC), tantalum nitride ( TaN), titanium aluminide (TiAlN) and other materials to complete the single layer or multilayer structure. 如申請專利範圍第10項所述之平坦化方法,其中該金屬層係由氮化鈦(TiN)、鎢(W)、鋁(Al),、鈦(Ti)、鉭(Ta)、氮化鉭(TaN)、鈷(Co)、銅(Cu)或是鎳(Ni)等材質完成之單層或多層結構。 The planarization method according to claim 10, wherein the metal layer is made of titanium nitride (TiN), tungsten (W), aluminum (Al), titanium (Ti), tantalum (Ta), and nitride. A single layer or a multilayer structure made of a material such as tantalum (TaN), cobalt (Co), copper (Cu) or nickel (Ni). 如申請專利範圍第10項所述之平坦化方法,其中該第一化學機械研磨劑對於該閘極金屬層與該閘極阻障層之蝕刻選擇比大於20,該第二化學機械研磨劑對於該閘極金屬層與該閘極阻障層之 蝕刻選擇比大於20。 The planarization method of claim 10, wherein the first chemical mechanical abrasive has an etching selectivity ratio of the gate metal layer to the gate barrier layer greater than 20, and the second chemical mechanical abrasive is The gate metal layer and the gate barrier layer The etching selectivity ratio is greater than 20. 如申請專利範圍第10項所述之平坦化方法,其中該氧化劑係為過氧化氫。 The method of planarizing according to claim 10, wherein the oxidizing agent is hydrogen peroxide. 如申請專利範圍第19項所述之平坦化方法,其中該第一化學機械研磨劑中之過氧化氫濃度範圍為0%~1%,該第二化學機械研磨劑中之過氧化氫濃度範圍為大於1%。 The method of planarizing according to claim 19, wherein the concentration of hydrogen peroxide in the first chemical mechanical abrasive ranges from 0% to 1%, and the concentration range of hydrogen peroxide in the second chemical mechanical abrasive Is greater than 1%. 一種閘極構造,該構造包含:一基板;一介電層,位於該基板上方並具有至少一溝槽;一閘極阻障層,位於該溝槽中;以及一閘極金屬層,位於該閘極阻障層之表面上並填滿該溝槽,該閘極金屬層頂面低於該溝槽側壁,且兩者之高度差小於50埃,其中該高度差係經由一第一化學機械研磨劑進行一第一化學機械研磨製程與一第二化學機械研磨劑進行一第二化學機械研磨製程而形成,並且該第一化學機械研磨劑對該閘極金屬層之蝕刻速率大於對該閘極阻障層之蝕刻速率,該第二化學機械研磨劑對該閘極阻障層之蝕刻速率大於對該閘極金屬層之蝕刻速率。 A gate structure comprising: a substrate; a dielectric layer over the substrate and having at least one trench; a gate barrier layer located in the trench; and a gate metal layer located at the gate The trench is filled on the surface of the gate barrier layer, the top surface of the gate metal layer is lower than the sidewall of the trench, and the height difference between the two is less than 50 angstroms, wherein the height difference is via a first chemical mechanism The abrasive is formed by performing a first chemical mechanical polishing process and a second chemical mechanical polishing agent to perform a second chemical mechanical polishing process, and the etching rate of the first chemical mechanical abrasive to the gate metal layer is greater than the gate The etching rate of the pole barrier layer, the etching rate of the second chemical mechanical abrasive to the gate barrier layer is greater than the etching rate of the gate metal layer. 如申請專利範圍第21項所述之閘極構造,其中更包含一閘極介電層,位於該介電層下方或位於該溝槽中之該阻障層下方。 The gate structure of claim 21, further comprising a gate dielectric layer under the dielectric layer or under the barrier layer in the trench. 如申請專利範圍第22項所述之閘極構造,其中該閘極介電層係為一高介電常數介電層。 The gate structure of claim 22, wherein the gate dielectric layer is a high-k dielectric layer. 如申請專利範圍第23項所述之閘極構造,其中該高介電常數介電層係由氧化鉿(HfO2 )、氮氧化矽鉿(HfSiON)或氧化矽鉿(HfSiO)等材料來完成之單層或多層結構。The gate structure according to claim 23, wherein the high-k dielectric layer is made of materials such as hafnium oxide (HfO 2 ), hafnium oxynitride (HfSiON) or hafnium oxide (HfSiO). Single or multi-layer structure. 如申請專利範圍第21項所述之閘極構造,其中該閘極阻障層係為由氮化鈦(TiN)、碳化鉭(TaC)、碳化鎢(WC)、碳化鈦(TiC)、氮化鉭(TaN)、氮化鈦鋁(TiAlN)等材質完成之單層或多層結構,該閘極阻障層可作為一功函數金屬層(Work Function metal layer)、一應力層(strained layer)、一功函數微調金屬層(Work Function tuning metal layer)、一內襯層(liner layer)或是一封合層(sealant layer)。 The gate structure according to claim 21, wherein the gate barrier layer is made of titanium nitride (TiN), tantalum carbide (TaC), tungsten carbide (WC), titanium carbide (TiC), nitrogen. A single layer or a multilayer structure made of a material such as TaN or TiAlN, the gate barrier layer can be used as a work function metal layer or a strained layer. , a work function tuning metal layer, a liner layer or a seamant layer. 如申請專利範圍第21項所述之閘極構造,其中該閘極金屬層係由氮化鈦(TiN)、鎢(W)、鋁(Al),、鈦(Ti)、鉭(Ta)、氮化鉭(TaN)、鈷(Co)、銅(Cu)或是鎳(Ni)等材質完成之單層或多層結構。 The gate structure according to claim 21, wherein the gate metal layer is made of titanium nitride (TiN), tungsten (W), aluminum (Al), titanium (Ti), tantalum (Ta), A single layer or a multilayer structure made of tantalum nitride (TaN), cobalt (Co), copper (Cu) or nickel (Ni).
TW100102528A 2011-01-24 2011-01-24 Planarization method applied in process of manufacturing semiconductor component TWI512797B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100102528A TWI512797B (en) 2011-01-24 2011-01-24 Planarization method applied in process of manufacturing semiconductor component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100102528A TWI512797B (en) 2011-01-24 2011-01-24 Planarization method applied in process of manufacturing semiconductor component

Publications (2)

Publication Number Publication Date
TW201232625A TW201232625A (en) 2012-08-01
TWI512797B true TWI512797B (en) 2015-12-11

Family

ID=47069669

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100102528A TWI512797B (en) 2011-01-24 2011-01-24 Planarization method applied in process of manufacturing semiconductor component

Country Status (1)

Country Link
TW (1) TWI512797B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI631438B (en) * 2016-02-02 2018-08-01 韓商樂金矽得榮股份有限公司 Method of controlling flatness of epitaxial wafer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210407819A1 (en) * 2020-06-30 2021-12-30 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing a semiconductor device and a semiconductor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6423619B1 (en) * 2001-11-30 2002-07-23 Motorola, Inc. Transistor metal gate structure that minimizes non-planarity effects and method of formation
US20020197863A1 (en) * 2001-06-20 2002-12-26 Mak Alfred W. System and method to form a composite film stack utilizing sequential deposition techniques
US20050009325A1 (en) * 2003-06-18 2005-01-13 Hua Chung Atomic layer deposition of barrier materials
TWI263304B (en) * 2004-09-13 2006-10-01 Taiwan Semiconductor Mfg Interconnection structure for IC metallization and method for fabricating the same
US20090087982A1 (en) * 2007-09-28 2009-04-02 Applied Materials, Inc. Selective ruthenium deposition on copper materials
US20090140330A1 (en) * 2007-12-04 2009-06-04 Rohm Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
US20100059823A1 (en) * 2008-09-10 2010-03-11 Taiwan Semiconductor Manufacturing Company, Ltd. Resistive device for high-k metal gate technology and method of making

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020197863A1 (en) * 2001-06-20 2002-12-26 Mak Alfred W. System and method to form a composite film stack utilizing sequential deposition techniques
US6423619B1 (en) * 2001-11-30 2002-07-23 Motorola, Inc. Transistor metal gate structure that minimizes non-planarity effects and method of formation
US20050009325A1 (en) * 2003-06-18 2005-01-13 Hua Chung Atomic layer deposition of barrier materials
TWI263304B (en) * 2004-09-13 2006-10-01 Taiwan Semiconductor Mfg Interconnection structure for IC metallization and method for fabricating the same
US20090087982A1 (en) * 2007-09-28 2009-04-02 Applied Materials, Inc. Selective ruthenium deposition on copper materials
US20090140330A1 (en) * 2007-12-04 2009-06-04 Rohm Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
US20100059823A1 (en) * 2008-09-10 2010-03-11 Taiwan Semiconductor Manufacturing Company, Ltd. Resistive device for high-k metal gate technology and method of making

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI631438B (en) * 2016-02-02 2018-08-01 韓商樂金矽得榮股份有限公司 Method of controlling flatness of epitaxial wafer

Also Published As

Publication number Publication date
TW201232625A (en) 2012-08-01

Similar Documents

Publication Publication Date Title
US9263540B1 (en) Metal gate structure
US9130029B2 (en) Recessing and capping of gate structures with varying metal compositions
TWI393220B (en) Method for tuning a work function of high-k metal gate devices
US8536040B1 (en) Techniques for using material substitution processes to form replacement metal gate electrodes of semiconductor devices with self-aligned contacts
CN110648919B (en) Gate structure fabrication with notches
US8390072B2 (en) Chemical mechanical polishing (CMP) method for gate last process
US20070210354A1 (en) Semiconductor device and semiconductor device manufacturing method
US8969930B2 (en) Gate stack structure, semiconductor device and method for manufacturing the same
US20150076624A1 (en) Integrated circuits having smooth metal gates and methods for fabricating same
US20120196432A1 (en) Method for Manufacturing Contact Holes in CMOS Device Using Gate-Last Process
JP2008205012A (en) Semiconductor device and method for manufacturing the same
US9728536B2 (en) Semiconductor devices
Steigerwald Chemical mechanical polish: The enabling technology
US7618855B2 (en) Manufacturing method of semiconductor device
US10707316B2 (en) Structure and formation method of semiconductor device structure with gate structure
US8759219B2 (en) Planarization method applied in process of manufacturing semiconductor component
TWI512797B (en) Planarization method applied in process of manufacturing semiconductor component
US20120142157A1 (en) Method of fabricating a semiconductor structure
US9337103B2 (en) Method for removing hard mask oxide and making gate structure of semiconductor devices
US20080093681A1 (en) Semiconductor device and method for fabricating the same
CN102646580B (en) It is applied to the flattening method in semiconductor element technique and gate configuration
CN107301948B (en) Method for metal CMP integration process
US9508590B2 (en) Methods and apparatus of metal gate transistors
US11267987B2 (en) Chemical mechanical polishing slurry composition and method of polishing metal layer
JP2013093438A (en) Semiconductor device manufacturing method