TWI511204B - 在應變薄膜上植入有冷及/或分子碳之昇起式源極/汲極的形成方法 - Google Patents

在應變薄膜上植入有冷及/或分子碳之昇起式源極/汲極的形成方法 Download PDF

Info

Publication number
TWI511204B
TWI511204B TW099113696A TW99113696A TWI511204B TW I511204 B TWI511204 B TW I511204B TW 099113696 A TW099113696 A TW 099113696A TW 99113696 A TW99113696 A TW 99113696A TW I511204 B TWI511204 B TW I511204B
Authority
TW
Taiwan
Prior art keywords
ion implantation
tempering
carbon
raised source
layer
Prior art date
Application number
TW099113696A
Other languages
English (en)
Other versions
TW201044469A (en
Inventor
Christopher R Hatem
Helen L Maynard
Deepak Ramappa
Original Assignee
Varian Semiconductor Equipment
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Varian Semiconductor Equipment filed Critical Varian Semiconductor Equipment
Publication of TW201044469A publication Critical patent/TW201044469A/zh
Application granted granted Critical
Publication of TWI511204B publication Critical patent/TWI511204B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66613Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
    • H01L29/66628Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation recessing the gate by forming single crystalline semiconductor material at the source or drain location
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/2658Bombardment with radiation with high-energy radiation producing ion implantation of a molecular ion, e.g. decaborane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26593Bombardment with radiation with high-energy radiation producing ion implantation at a temperature lower than room temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41775Source or drain electrodes for field effect devices characterised by the proximity or the relative position of the source or drain electrode and the gate electrode, e.g. the source or drain electrode separated from the gate electrode by side-walls or spreading around or above the gate electrode
    • H01L29/41783Raised source or drain electrodes self aligned with the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Description

在應變薄膜上植入有冷及/或分子碳之昇起式源極/汲極的形成方法
本發明之實施例是有關於電晶體之源極/汲極區中之應力增強的領域。更特定而言,本發明是有關於一種在已植入有碳之應變膜(strained film)上形成昇起式源極/汲極區(raised source/drain region)的方法。
流經場效電晶體(field effect transistor)之通道區(channel region)中之電場的電流與載流子(carrier)(例如,n型場效電晶體(n-type field effect transistor,n-FET)中之電子及p型場效電晶體(p-type field effect transistor,p-FET)中之電洞(hole))在通道區中之遷移率成比例。通道區上之不同應變可影響載流子遷移率,且因此影響電流。舉例而言,p-FET之通道區上之壓縮應力(compressive stress)可增強電洞遷移率。n-FET之通道區上之張應力(tensile stress)可增強電子遷移率。已知若干應力工程技術,用於在n-FET及p-FET通道區上施加所要之應力。舉例而言,可藉由以矽(Si)與鍺(Ge)之合金形成源極/汲極區而在p-FET之通道區中形成壓縮應力(亦即,與電流之方向平行的單軸壓縮應變)。可藉由以Si與碳(C)之合金形成源極/汲極區而在n-FET之通道區中形成張應力(亦即,與電流之方向平行的單軸張應力)。
然而,剩下的問題是在碳植入之後執行之源極/汲極植 入步驟所導致之應變損失。舉例而言,在NMOS製造期間,在形成應變層(strain layer)(SiC)之後進行源極/汲極區中之磷或砷摻雜劑植入,在此期間,被摻雜之SiC之區喪失其應變之顯著部分。另外,在形成應變層(SiC)期間,傳統的碳植入技術可能導致矽基板中之缺陷。若昇起式源極/汲極區隨後在應變之SiC區上生長,則此等缺陷可能擴大,其可能導致總良率降低。
因此,需要一種高效地施加及維持使用昇起式源極/汲極區之電晶體結構中之應變的方法。此方法應簡單、高效,且應使裝置良率增至最大。
揭露一種用於增強半導體裝置之通道區中之應力的方法,其包括:提供半導體結構(semiconductor structure),所述半導體結構包括具有通道區的矽基板;在半導體結構內形成應變層,所述應變層位於通道區之任一側,所述應變層藉由離子植入步驟形成,離子植入步驟包括冷碳離子植入或分子碳離子植入;藉由將矽層沈積在應變層中之每一者上,而在應變層上方形成昇起式源極/汲極區;摻雜昇起式源極/汲極區;以及使半導體結構回火,以活化昇起式源極/汲極區。
揭露一種用於增強半導體裝置之源極或汲極區中之應力的方法,其包括:提供半導體結構;使用多個離子植入步驟在半導體結構內形成多個應變層,所述離子植入步 驟包括冷碳離子植入或分子碳離子植入,應變層位於所述結構之通道區之任一側;在所述多個應變層中之每一者上沈積矽層,以在應變層上方形成多個昇起式源極/汲極區;摻雜所述多個昇起式源極/汲極區;以及使用毫秒回火技術使半導體結構回火,以活化昇起式源極/汲極區。
揭露一種用於防止前面所提及之應變損失問題的技術,所述技術是在Si-C層之上生長昇起式源極/汲極(Source/Drain,S/D)。碳之冷離子植入及/或分子碳離子植入使得能夠形成Si-C層,所述Si-C層隨後可用作昇起式S/D之基底。且由於S/D在Si-C層上方昇起,因此與含有C之區中之植入相比,隨後之摻雜離子(例如磷(P)、砷(As))在昇起式S/D區中之植入對應變層之影響較小(亦即,植入摻雜劑不會使應變層鬆弛)。另外,使用碳之冷植入使得基板表面與使用傳統碳植入技術所發現之情況相比具有較少的缺陷,因此隨後在其上的生長昇起式S/D區也具有較佳的表面。
所揭露之技術包含在降低之溫度下且/或使用分子碳之單次或一系列碳離子植入,其中基板處於或不處於降低之溫度。接著使基板回火,以形成應變膜。接著在應變膜之上形成昇起式S/D。所揭露之技術之新穎之處在於其使用以冷及/或碳植入形成之應變層與昇起式源極汲極之組合,以在向電晶體添加導電摻雜劑之同時保存通道中之應 變。所述技術使得離子植入技術能夠用於尺寸愈來愈小之NMOS電晶體。
如將瞭解,所揭露之技術可提供額外益處,因為應變層與摻雜劑層之分別形成可使得對每一層之處理最佳化,包含離子之側向置放以及熱處理(亦即,回火)。
離子植入大體上是指用受激離子直接轟擊基板而將化學物質沈積至基板中的處理。在半導體製造中,離子植入器通常用於更改目標材料之導電性之類型及位準的摻雜處理。積體電路基板及其薄膜結構中之精確的摻雜輪廓可用於達成所要之裝置效能。為了獲得所要之摻雜輪廓,可以不同劑量且以不同的能量位準來植入一或多種離子種類。低溫離子植入是指在植入處理期間將待植入之基板(晶圓)冷卻至約-100℃至15℃之溫度範圍的處理。用於在離子植入之前預冷卻晶圓的例示性技術描述於美國專利申請公開案第2008/0044938號、第2008/0121821號及第2008/0124903號中,所述公開案以全文引用之方式併入本文中。
圖1中說明例示性離子植入器系統100。首先將瞭解,系統100僅為可用於實施所揭露之方法之多種離子植入器系統中之一種,且所揭露之方法之應用決不限於所說明之系統之細節。因此,可使用任何類型之離子植入器或以電漿為基礎之植入器,只要其能夠植入大於1x1015 之劑量(離子/cm2 )以及在200eV與20,000eV之間的能量。另外,所述系統可包含或可不包含質量過濾。
所說明之離子植入器系統100容納於高真空環境中。離子植入器系統100可包括:離子源102,其由電源101加偏壓至一電位;以及一系列束線組件,離子束10穿過所述束線組件。所述系列之束線組件可包含(例如)提取電極(extraction electrode)104、90°磁體分析器(90º magnet analyzer)106、第一減速(first deceleration,D1)級108、70°磁體準直儀(70º magnet collimator)110以及第二減速(second deceleration,D2)級112。所述束線組件非常類似於一系列操縱光束之光學透鏡,可在使離子束10轉向目標晶圓之前過濾並聚焦離子束10。在離子植入期間,目標晶圓通常安裝於壓板114上,壓板114可借助於一設備(有時稱為「roplat」)在一或多個維度上移動(例如,平移、旋轉及傾斜)。
離子植入器系統100亦可包含系統控制器116,其經程式化以控制系統100之組件中之一或多者。系統控制器116可連接至前面所提及之系統組件中之一些或所有組件,並與之通信。舉例而言,系統控制器116可調整植入離子所借助之能量,以獲得所要之植入深度。系統控制器116可包含處理器118,其執行用於實施所揭露之方法之一或多個步驟的指令。
儘管未圖示,但系統100可更包含基板冷卻部分,用於在植入處理之前或處理期間使基板保持在所要之溫度。基板冷卻可結合分子碳之植入而使用。此做法在分子碳植入劑量相對較低之情況下尤其有利。
現參看圖2,說明例示性半導體結構120之剖面,半導體結構120包括基板122、應變(亦即,含碳)層128、覆於應變層128上之昇起式S/D區130、閘極區132及通道區134。依據技術「節點」(亦即,轉折點),可以多種厚度及面積提供應變層128(實際上為電晶體之S/D區)。舉例而言,在32奈米(nm)CMOS節點中,應變層128之厚度可自約40nm至約140nm。昇起式S/D層通常約為此值之25%至30%,但依據昇起式S/D可能服務之其他需要,所述層可較厚。32nm節點中之昇起式S/D方案將等於或小於約30nm至40nm。然而,若矽之矽化物消耗較高,則此值可較厚。
參看圖3,將描述用於形成圖2之結構的處理。在步驟200,提供半導體基板,且在指定之通道區134上方施加遮罩層(未圖示)。提供遮罩層是為了防止碳離子隨後植入至通道區中。
在步驟300,使用低溫離子植入技術及/或分子碳植入技術將碳離子植入基板122中。植入步驟可使用足以將碳離子置放於基板內之所要深度的植入能量。請注意,步驟300可包含多個離子植入步驟。在使用多個植入步驟之情況下,能量位準及/或植入時間可在不同步驟之間變化,以達成半導體結構中之所要的最終植入輪廓。
將瞭解,碳植入步驟應以產生緊密鄰近於通道區134以便使通道載流子上之應變增至最大的應變層128的方式執行。使通道上之應變增至最大,可使得通道區中之電子 遷移率增強,從而增強導電率。
一旦碳植入處理完成,便可在步驟400使所述結構回火,以致使所植入之碳離子佔據矽基板晶格上之位置,從而引起所要之應力。回火步驟亦確保碳離子將保留於晶格上,而不沈澱。步驟400可包括一或多個回火步驟。回火步驟可包括毫秒回火步驟,其可包含尖峰回火(spike annealing)、雷射回火(laser annealing)及/或閃蒸回火(flash annealing)。其他適當回火類型之實例包含固相磊晶回火(solid phase epitaxy anneal),其通常為相對較長的低溫回火。可接受的回火處理之標準為再結晶應快於原子擴散至另一所植入離子從而形成沈澱所花費之平均時間。此標準隨非晶及結晶材料中之離子之植入劑量、溫度、時間及擴散率而變。
在一實施例中,在碳離子植入步驟(步驟300)之後不立即執行回火步驟(步驟400)。而是,可在形成及摻雜昇起式S/D區之後執行單一回火步驟(見下文的步驟700)。此單一回火步驟可用於活化S/D區,且致使應變層中所植入之碳離子佔據矽基板晶格上之位置,以引起所要之應力。
在步驟500處,形成昇起式S/D區。用於形成昇起式S/D區之例示性處理可包括:(1)經摻雜/未經摻雜之矽在S/D區之上的化學氣相沈積(chemical vapor deposition,CVD),(2)矽之磊晶生長,(3)矽之原子層沈積(atomic layer deposition,ALD),或(4)矽之電漿氣相沈積(plasma vapor deposition,PVD)。
在步驟600,使用將一或多種摻雜劑材料植入在閘極區132之任一側以及應變層128上方之昇起式S/D區130中的離子植入步驟來摻雜昇起式S/D區。適當的摻雜劑之實例包含As、P及銻(Sb)。在此植入處理期間,再次遮蔽通道區134,以使摻雜劑離子在通道區134中之存在減至最少。
在步驟700處,可使用一或多個回火步驟來活化昇起式S/D區130。此等回火步驟中之一或多者可為毫秒回火步驟,包含雷射回火或閃蒸回火、固相磊晶及/或快速加熱尖峰(RTP spike)回火。
作為所指出之回火程序(亦即,其中使用單獨的回火步驟來使應變層及昇起式S/D區回火)之替代方案,可在昇起式S/D區形成並摻雜之後執行所有回火步驟。此技術可產生更高效的總體處理,同時仍在應變層128中施加所要之應變。
圖4為繪示針對多種不同的引起應變之植入離子及引起應變之植入離子之組合,作為應變層128中之深度的函數的%應變的例示性應變曲線圖。在所說明之曲線圖中,「Cs」為碳取代濃度(Y軸)。電晶體之通道區中之側向應變與此濃度成比例。X軸為進入電晶體中之深度。
圖4間接說明沿電晶體之橫剖面移動之通道區中之應變分佈的輪廓。所述曲線圖繪示對於各種植入候選物(例如,碳-800、冷碳-900、乙烷-1000、冷乙烷-1100、鍺-碳-1200、鍺-冷碳-1300、鍺-乙烷-1400、鍺-冷乙烷-1500),應變可如何累積至基板中達約60nm之深度。
如可看到,可藉由將各種離子及離子組合植入基板中,接著再結晶(亦即,回火)以在結構中達成高位準之應變,來形成應變層。然而,通常,必須對所述結構執行額外的處理步驟,以便建構完成之裝置。舉例而言,當S/D區隨後植入有摻雜劑且經尖峰回火時,應變層中之應變可顯著減少,其可能影響應變層之有效性。
圖5為說明在摻雜劑之植入之後應變層128中之應變損失的例示性應變曲線圖。與圖4相比,圖5繪示針對應變層植入與S/D區植入之特定組合,應變層128中之應變如何受影響。在圖5中,S/D區摻雜有磷(例如,Ge-C-P-1600、C-P-1700、GE-冷C-P-1800、GE-乙烷-P-1900、乙烷-P-2000、GE-冷乙烷-P-2100、冷乙烷-P-2200、GE-Hi C-P-2300、GE-冷Hi C-P-2400)。
如可看到,隨著磷之添加,Cs(且因此應變)顯著減少。舉例而言,將圖4中之第一資料集(標記為「C」-800)與圖5中之第二資料集(標記為「C-P」-1700)進行比較,可看出0nm至35nm深度之區中的取代碳濃度(類推至應變)自約1%降低至約0.3%。
所揭露之方法減少此摻雜劑離子對應變層128中之應變的影響。使用所揭露之方法,將摻雜劑離子(例如磷)置放於昇起式S/D區130中可在應變層128中導致較少摻雜劑離子,且因此,可在應變層中維持較高的應變位準。此又導致較大的通道載流子遷移率及電流。
圖6繪示高解析度XRD搖擺曲線,其繪示具有相對 較高位準之取代碳的較厚的Si:C層,所述Si:C層具有與下層矽基板之良好界面。此圖繪示使用所揭露之方法可產生高品質SiC層(亦即,與使用磊晶技術所建構之層一樣好或較之更好的層)。
所揭露之使用碳離子之冷植入接以昇起式S/D區之形成的方法使駐留於矽基板晶格上之碳原子的量增至最大,且減少植入處理對基板造成之總體損壞。當使用C形成應變層時,有利的是移去儘可能多的Si原子,以使可佔用Si晶格點之碳原子之數目增至最大。與其他植入技術相比,冷植入技術導致基板之更徹底非晶化(亦即,更多Si原子被移去且可由碳原子代替)。在回火之後,經冷植入之基板顯示較少的殘餘損壞,因為諸如空位、未佔用之點等缺陷有較大可能在再結晶(亦即,回火)期間被填充,因為較大濃度之碳原子因冷植入而存在。因此,不僅減少矽基板中之缺陷數目,而且基板表面亦在回火步驟期間更好地「癒合」,從而增強上面可形成隨後之昇起式S/D區的表面的光滑性。
使用先前技術,矽基板中由植入步驟引起之較大數目之缺陷可在隨後之上覆昇起式S/D區之磊晶形成期間複合。此又可導致不合意地降低之總體良率。參看圖7A,繪示使用先前技術植入之例示性基板136具有不均勻之上表面138,其形成基板136與例示性昇起式S/D區140之間的界面。現參看圖7B,繪示使用所揭露之方法處理之例示性基板142。所述基板之上表面144大體上較光滑,具有 較少缺陷,從而形成基板142與昇起式S/D區146之間的較佳界面。由於經植入之矽基板具有較光滑之表面,因此基板142與昇起式S/D區146之間形成較佳界面,其因此產生較佳之昇起式S/D品質及裝置良率。
將瞭解,除引起應變層128中之應變之外,碳離子可提供額外益處,因為其可在將P用作昇起式S/D區130中之摻雜劑時充當磷(P)之擴散障壁。P具有作為摻雜劑之合意特性(例如,較低的薄層電阻Rs ),但P亦具有擴散穿過P植入之材料的傾向。合意的是使摻雜劑擴散減至最少,以便使諸如短通道效應(short-channel effect)及洩漏等負面效應減至最少。因此,通常將砷(As)用作摻雜劑以代替P,因為As不具有相同的擴散趨勢。然而,在應變層128中使用C使得能夠在摻雜劑層中使用P,而無前面所提及之擴散。由於用P比用As可達成較低之薄層電阻,因此對於用於昇起式S/D區130中而言,P更合意。
可藉由(例如)在能夠被能執行指令之機器讀取的電腦可讀儲存媒體上有形地實施指令程式,而使本文所描述之方法自動化。通用電腦(general purpose computer)為此機器之一實例。此項技術中熟知的適當儲存媒體之非限制性例示性清單將包含諸如可讀或可寫CD、快閃記憶體晶片(flash memory chip)(例如隨身碟(thumb drive))、各種磁性儲存媒體等裝置。
雖然已參考某些實施例而揭露了本發明,但在不脫離如附加之申請專利範圍中所界定之本發明之領域及範疇之 情況下,對所描述之實施例的大量修改、更改及改變是可能的。因此,本發明不欲限於所描述之實施例,相反,本發明具有由附加之申請專利範圍及其均等物之語言界定之完整範疇。
可自動或者完全或部分地回應於使用者命令而執行此處之功能及處理步驟。回應於可執行指令或裝置操作而執行自動執行之活動(包含步驟),而無需使用者直接起始所述活動。
圖1至圖3之系統及處理並非排他性的。可根據本發明之原理得出其他系統、處理及選單,以實現相同目標。儘管已參考特定實施例描述了本發明,但將理解,本文所繪示並描述之實施例及變化形式僅用於說明目的。在不脫離本發明之範疇的情況下,熟習此項技術者可實施對當前設計之修改。在替代實施例中,處理及應用程式可位於存取鏈接圖1之元件之網路的一或多個(例如分佈式)處理裝置上。另外,圖中所提供之任何功能及步驟可在硬體、軟體或上述兩者之組合中實施,且可駐存於位於鏈接圖1之元件之網路或另一鏈接網路(包含網際網路)之任何位置的一或多個處理裝置上。
10‧‧‧離子束
100‧‧‧離子植入器系統
101‧‧‧電源
102‧‧‧離子源
104‧‧‧提取電極
106‧‧‧90°磁體分析器
108‧‧‧第一減速級
110‧‧‧70°磁體準直儀
112‧‧‧第二減速級
114‧‧‧壓板
120‧‧‧半導體結構
128‧‧‧應變層
130‧‧‧昇起式S/D區
132‧‧‧閘極區
134‧‧‧通道區
136‧‧‧基板
138‧‧‧上表面
140‧‧‧昇起式S/D區
142‧‧‧基板
144‧‧‧上表面
146‧‧‧昇起式S/D區
1600‧‧‧Ge-C-P
1700‧‧‧C-P
1800‧‧‧GE-冷C-P
1900‧‧‧GE-乙烷-P
2000‧‧‧乙烷-P
2100‧‧‧GE-冷乙烷-P
2200‧‧‧冷乙烷-P
2300‧‧‧GE-Hi C-P
2400‧‧‧GE-冷Hi C-P
隨附圖式說明所揭露之方法之較佳實施例,所揭露之方法至此是為其原理之實際應用而設計,且在隨附圖式中:圖1為例示性離子植入器系統之示意圖。
圖2為昇起式源極/汲極區覆於Si-C應變層上之例示性電晶體結構的剖視圖。
圖3為描述所揭露之方法之例示性處理流程的流程圖。
圖4為因離子植入而得之應變以及離子植入之後之應變損失的圖形表示。
圖5為繪示作為半導體結構中之深度之函數的應變的圖形表示。
圖6為繪示作為半導體結構中之深度之函數的應變的圖形表示。
圖7A及圖7B為繪示基板材料與例示性昇起式源極/汲極區之間的界面的剖面。

Claims (17)

  1. 一種用於形成具有昇起式源極/汲極區之半導體裝置的方法,包括:提供半導體結構,其包括具有通道區之矽基板;在所述半導體結構內形成應變層,所述應變層位於所述通道區之任一側,所述應變層是藉由離子植入步驟而形成,所述離子植入步驟包括冷碳離子植入或分子碳離子植入;在執行應變層回火之前,藉由在所述應變層中之每一者上沈積矽層,而在所述應變層上方形成昇起式源極/汲極區;摻雜所述昇起式源極/汲極區;使所述半導體結構回火,以活化所述昇起式源極/汲極區;以及使所述應變層回火以使經由冷碳離子植入或分子碳離子植入的碳離子佔據所述矽基板的晶格上之位置。
  2. 如申請專利範圍第1項所述之方法,其中所述形成應變層之步驟包括多個離子植入步驟。
  3. 如申請專利範圍第2項所述之方法,其中在範圍介於-100℃至15℃之溫度下執行所述冷碳離子植入。
  4. 如申請專利範圍第2項所述之方法,其中所述離子植入步驟包括使用分子碳之離子植入技術。
  5. 如申請專利範圍第1項所述之方法,其中所述摻雜步驟包括將包括磷、砷及銻中之至少一者的離子植入所述 昇起式源極/汲極區中。
  6. 如申請專利範圍第1項所述之方法,其中回火所述應變層包括毫秒回火技術。
  7. 如申請專利範圍第1項所述之方法,其中回火所述應變層包括多個回火步驟。
  8. 如申請專利範圍第1項所述之方法,其中所述使所述半導體結構回火以活化所述昇起式源極/汲極區的步驟包括毫秒回火技術。
  9. 如申請專利範圍第1項所述之方法,其中所述形成應變層之步驟包括在所述矽基板內之不同深度植入碳離子的多個離子植入步驟。
  10. 一種用於形成具有昇起式源極/汲極區之半導體裝置的方法,包括:提供半導體結構,所述半導體結構包括矽基板;使用多個離子植入步驟在所述半導體結構內形成多個應變層,所述多個離子植入步驟包括冷碳離子植入或分子碳離子植入,所述應變層位於所述半導體結構之通道區之任一側;在使應變層回火之前,在所述多個應變層中之每一者上沈積矽層,以在所述應變層上方形成多個昇起式源極/汲極區;摻雜所述多個昇起式源極/汲極區;使用毫秒回火技術使所述半導體結構回火,以活化所述昇起式源極/汲極區;以及 使所述應變層回火以使經由冷碳離子植入或分子碳離子植入的碳離子佔據所述矽基板的晶格上之位置。
  11. 如申請專利範圍第10項所述之方法,其中在範圍介於-100℃至15℃之溫度下執行所述冷碳離子植入。
  12. 如申請專利範圍第10項所述之方法,其中所述多個離子植入步驟包括使用分子碳之離子植入技術。
  13. 如申請專利範圍第10項所述之方法,其中所述摻雜步驟包括將包括磷、砷及銻中之至少一者的離子植入所述昇起式源極/汲極區中。
  14. 如申請專利範圍第10項所述之方法,其中回火所述應變層包括毫秒回火技術。
  15. 如申請專利範圍第10項所述之方法,其中回火所述應變層包括多個回火步驟。
  16. 如申請專利範圍第10項所述之方法,其中所述使所述半導體結構回火以活化所述昇起式源極/汲極區的步驟包括毫秒回火技術。
  17. 如申請專利範圍第10項所述之方法,其中所述形成多個應變層的步驟包括在所述半導體結構內之不同深度處植入碳離子的多個離子植入步驟。
TW099113696A 2009-05-01 2010-04-29 在應變薄膜上植入有冷及/或分子碳之昇起式源極/汲極的形成方法 TWI511204B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/434,364 US20100279479A1 (en) 2009-05-01 2009-05-01 Formation Of Raised Source/Drain On A Strained Thin Film Implanted With Cold And/Or Molecular Carbon

Publications (2)

Publication Number Publication Date
TW201044469A TW201044469A (en) 2010-12-16
TWI511204B true TWI511204B (zh) 2015-12-01

Family

ID=43030702

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099113696A TWI511204B (zh) 2009-05-01 2010-04-29 在應變薄膜上植入有冷及/或分子碳之昇起式源極/汲極的形成方法

Country Status (6)

Country Link
US (1) US20100279479A1 (zh)
JP (1) JP2012525709A (zh)
KR (1) KR20120003494A (zh)
CN (1) CN102439703A (zh)
TW (1) TWI511204B (zh)
WO (1) WO2010126793A2 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8999798B2 (en) * 2009-12-17 2015-04-07 Applied Materials, Inc. Methods for forming NMOS EPI layers
US8586460B2 (en) * 2010-09-23 2013-11-19 Varian Semiconductor Equipment Associates, Inc. Controlling laser annealed junction depth by implant modification
US10068802B2 (en) * 2011-10-17 2018-09-04 Texas Instruments Incorporated Threshold mismatch and IDDQ reduction using split carbon co-implantation
US8536072B2 (en) * 2012-02-07 2013-09-17 United Microelectronics Corp. Semiconductor process
US9876110B2 (en) 2014-01-31 2018-01-23 Stmicroelectronics, Inc. High dose implantation for ultrathin semiconductor-on-insulator substrates
US9824889B2 (en) * 2014-04-21 2017-11-21 Applied Materials, Inc. CVD silicon monolayer formation method and gate oxide ALD formation on III-V materials
FR3121276B1 (fr) * 2021-03-26 2023-11-24 Commissariat Energie Atomique Procédé de réalisation d’un dispositif microélectronique
US20220415656A1 (en) * 2021-06-25 2022-12-29 Applied Materials, Inc. Backside wafer dopant activation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060134872A1 (en) * 2004-12-17 2006-06-22 Hattendorf Michael L Strained NMOS transistor featuring deep carbon doped regions and raised donor doped source and drain
US20080299750A1 (en) * 2007-05-31 2008-12-04 Spencer Gregory S Multiple millisecond anneals for semiconductor device fabrication

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8908509D0 (en) * 1989-04-14 1989-06-01 Secr Defence Substitutional carbon in silicon
US5244820A (en) * 1990-03-09 1993-09-14 Tadashi Kamata Semiconductor integrated circuit device, method for producing the same, and ion implanter for use in the method
JPH04162618A (ja) * 1990-10-26 1992-06-08 Hitachi Ltd 半導体装置の製造方法およびイオン打込み装置ならびに半導体装置
JP2000077658A (ja) * 1998-08-28 2000-03-14 Toshiba Corp 半導体装置の製造方法
JP2000243958A (ja) * 1999-02-24 2000-09-08 Toshiba Corp 半導体装置およびその製造方法
KR101027485B1 (ko) * 2001-02-12 2011-04-06 에이에스엠 아메리카, 인코포레이티드 반도체 박막 증착을 위한 개선된 공정
US6921913B2 (en) * 2003-03-04 2005-07-26 Taiwan Semiconductor Manufacturing Co., Ltd. Strained-channel transistor structure with lattice-mismatched zone
US7115955B2 (en) * 2004-07-30 2006-10-03 International Business Machines Corporation Semiconductor device having a strained raised source/drain
JP2006059843A (ja) * 2004-08-17 2006-03-02 Toshiba Corp 半導体装置とその製造方法
US7067868B2 (en) * 2004-09-29 2006-06-27 Freescale Semiconductor, Inc. Double gate device having a heterojunction source/drain and strained channel
EP2469584A1 (en) * 2005-12-09 2012-06-27 Semequip, Inc. Method of implanting ions
US7422950B2 (en) * 2005-12-14 2008-09-09 Intel Corporation Strained silicon MOS device with box layer between the source and drain regions
US7935942B2 (en) * 2006-08-15 2011-05-03 Varian Semiconductor Equipment Associates, Inc. Technique for low-temperature ion implantation
US7696000B2 (en) * 2006-12-01 2010-04-13 International Business Machines Corporation Low defect Si:C layer with retrograde carbon profile
US8217423B2 (en) * 2007-01-04 2012-07-10 International Business Machines Corporation Structure and method for mobility enhanced MOSFETs with unalloyed silicide
JP5010352B2 (ja) * 2007-06-04 2012-08-29 シャープ株式会社 半導体装置の製造方法
JP2009152391A (ja) * 2007-12-20 2009-07-09 Fujitsu Microelectronics Ltd 半導体装置の製造方法及び半導体装置
US20090200494A1 (en) * 2008-02-11 2009-08-13 Varian Semiconductor Equipment Associates, Inc. Techniques for cold implantation of carbon-containing species
JP2010062529A (ja) * 2008-08-04 2010-03-18 Toshiba Corp 半導体装置の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060134872A1 (en) * 2004-12-17 2006-06-22 Hattendorf Michael L Strained NMOS transistor featuring deep carbon doped regions and raised donor doped source and drain
US20080299750A1 (en) * 2007-05-31 2008-12-04 Spencer Gregory S Multiple millisecond anneals for semiconductor device fabrication

Also Published As

Publication number Publication date
CN102439703A (zh) 2012-05-02
WO2010126793A2 (en) 2010-11-04
TW201044469A (en) 2010-12-16
KR20120003494A (ko) 2012-01-10
WO2010126793A3 (en) 2011-02-03
JP2012525709A (ja) 2012-10-22
US20100279479A1 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
TWI511204B (zh) 在應變薄膜上植入有冷及/或分子碳之昇起式源極/汲極的形成方法
TWI479604B (zh) 基於矽/碳材料之pmos與nmos電晶體的性能提升
KR100954874B1 (ko) 채널 영역에서 레트로그레이드 도펀트 프로필을 구비한반도체 디바이스 및 그 제조 방법
TWI475600B (zh) 鰭型場效電晶體裝置及多重閘極電晶體裝置的形成方法
US7118980B2 (en) Solid phase epitaxy recrystallization by laser annealing
US9246006B2 (en) Recrystallization of source and drain blocks from above
WO1999050900A1 (en) Reduced channel length lightly doped drain transistor using a sub-amorphous large tilt angle implant to provide enhanced lateral diffusion
JP2013514673A5 (zh)
KR20110046501A (ko) 향상된 보론 구속을 갖는, 임베드된 si/ge 물질을 구비한 트랜지스터
US7214592B2 (en) Method and apparatus for forming a semiconductor substrate with a layer structure of activated dopants
US7737012B2 (en) Manufacturing method of a semiconductor device
US20060270202A1 (en) Technique for reducing silicide non-uniformities by adapting a vertical dopant profile
TWI531005B (zh) 根據非晶化製程及熱處理於孔洞中形成有嵌入式應變誘導材料之電晶體
US8124487B2 (en) Method for enhancing tensile stress and source/drain activation using Si:C
US9406567B1 (en) Method for fabricating multiple transistor devices on a substrate with varying threshold voltages
CN108630535B (zh) 半导体结构及其形成方法
Borland High Electron and Hole Mobility by Localized Tensile & Compressive Strain Formation Using Ion Implantation and Advanced Annealing of Group IV Materials (Si+ C, Si+ Ge & Ge+ Sn)
US9455196B2 (en) Method for improving fin isolation
US11424125B2 (en) Angled ion implant to reduce MOSFET trench sidewall roughness
US11695060B2 (en) Ion implantation to form trench-bottom oxide of MOSFET
US11881405B2 (en) Methods for forming N-type buried layer in a substrate by performing non-doping implant through oxide layer formed over the substrate
WO2013085536A1 (en) Method for forming superactive deactivation-resistant junctions with laser anneal and multiple implants
WO2006130375A2 (en) Technique for reducing silicide non-uniformities by adapting avertical dopant profile
US6955980B2 (en) Reducing the migration of grain boundaries
KR20220056164A (ko) 반도체 소자의 콘택 및 반도체 소자의 콘택 형성 방법

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees