TWI508458B - Delay locked loop and related method - Google Patents

Delay locked loop and related method Download PDF

Info

Publication number
TWI508458B
TWI508458B TW098141135A TW98141135A TWI508458B TW I508458 B TWI508458 B TW I508458B TW 098141135 A TW098141135 A TW 098141135A TW 98141135 A TW98141135 A TW 98141135A TW I508458 B TWI508458 B TW I508458B
Authority
TW
Taiwan
Prior art keywords
signal
delay
phase
detection result
determination
Prior art date
Application number
TW098141135A
Other languages
Chinese (zh)
Other versions
TW201121247A (en
Inventor
陳俊嘉
史德立
Original Assignee
晨星半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晨星半導體股份有限公司 filed Critical 晨星半導體股份有限公司
Priority to TW098141135A priority Critical patent/TWI508458B/en
Priority to US12/956,138 priority patent/US8456209B2/en
Publication of TW201121247A publication Critical patent/TW201121247A/en
Application granted granted Critical
Publication of TWI508458B publication Critical patent/TWI508458B/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/081Details of the phase-locked loop provided with an additional controlled phase shifter
    • H03L7/0812Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used
    • H03L7/0814Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used the phase shifting device being digitally controlled
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/0805Details of the phase-locked loop the loop being adapted to provide an additional control signal for use outside the loop

Landscapes

  • Pulse Circuits (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Description

延遲鎖定迴路及相關方法Delay locked loop and related methods

本發明係關於一種延遲鎖定迴路,尤指一種應用於一儲存電路的延遲鎖定迴路。The present invention relates to a delay locked loop, and more particularly to a delay locked loop applied to a storage circuit.

目前先前技術使用同步通訊來實現動態隨機存取記憶體的高資料傳輸速率,然而,當動態隨機存取記憶體的技術發展至更先進、更高速的世代時,例如第3代雙倍資料率同步動態隨機存取記憶體(Double Data Rate Three Synchronous Dynamic Random Access Memory,DDR3 SDRAM),原先使用鎖相迴路及類比延遲訊號線來實現同步通訊的電路,將因為製程極限而無法達到高傳輸資料率動態隨機存取記憶體的需求。此外,鎖相迴路與類比延遲訊號線之間的訊號傳輸係以類比訊號的形式進行,而類比訊號的電壓容易受到雜訊的影響,致使記憶體的資料存取時點或訊號準位發生誤差,此一問題對於高傳輸資料率動態隨機存取記憶體來說尤為嚴重。At present, the prior art uses synchronous communication to achieve high data transmission rate of dynamic random access memory. However, when the technology of dynamic random access memory develops to a more advanced and higher speed generation, for example, the third generation double data rate Double Data Rate Three Synchronous Dynamic Random Access Memory (DDR3 SDRAM), a circuit that uses a phase-locked loop and an analog delay signal line to achieve synchronous communication, which cannot achieve high transmission data rate due to process limits. The need for dynamic random access memory. In addition, the signal transmission between the phase-locked loop and the analog-delay signal line is performed in the form of analog signals, and the voltage of the analog signal is susceptible to noise, resulting in errors in the data access time or signal level of the memory. This problem is particularly serious for high transmission data rate dynamic random access memory.

因此,本發明的目的之一在於提供一種數位式的延遲鎖定迴路,該數位式的延遲鎖定迴路係用以控制數位式的延遲線,可解決前述所提及的問題。Accordingly, it is an object of the present invention to provide a digital delay locked loop for controlling a digital delay line that solves the aforementioned problems.

根據本發明之實施例,其係揭露一種延遲鎖定迴路。延遲鎖定迴路包含有一脈波產生器、一延遲單元、一相位偵測器及一控制單元。脈波產生器係用以依據一輸入時脈訊號,產生一預定脈波訊號及一判斷訊號;延遲單元係耦接至脈波產生器,用以依據一數位控制訊號延遲該預定脈波訊號,從而產生一延遲後脈波訊號;相位偵測器係耦接至延遲單元與脈波產生器,並用以依據該判斷訊號偵測該延遲後脈波訊號的時間延遲,以產生一偵測結果訊號;控制單元係耦接至相位偵測器與延遲單元,並用以依據該偵測結果訊號產生該數位控制訊號,以控制延遲單元對該預定脈波訊號所造成的延遲量。In accordance with an embodiment of the present invention, a delay locked loop is disclosed. The delay locked loop includes a pulse generator, a delay unit, a phase detector and a control unit. The pulse generator is configured to generate a predetermined pulse signal and a determination signal according to an input clock signal; the delay unit is coupled to the pulse generator for delaying the predetermined pulse signal according to the digital control signal, a delay pulse signal is generated. The phase detector is coupled to the delay unit and the pulse generator, and is configured to detect a time delay of the delayed pulse signal according to the determination signal to generate a detection result signal. The control unit is coupled to the phase detector and the delay unit, and configured to generate the digital control signal according to the detection result signal to control the delay caused by the delay unit to the predetermined pulse signal.

根據本發明的實施例,其另揭露一種使用於一延遲鎖定迴路的方法。該方法包含:依據一輸入時脈訊號以產生一預定脈波訊號及一判斷訊號;依據一數位控制訊號延遲該預定脈波訊號,產生一延遲後脈波訊號;依據該判斷訊號偵測該延遲後脈波訊號之一時間延遲,以產生一偵測結果訊號;以及依據該偵測結果訊號產生該數位控制訊號,以控制依據該數位控制訊號延遲該預定脈波訊號之步驟對該預定脈波訊號所造成的延遲量。In accordance with an embodiment of the present invention, a method for use in a delay locked loop is further disclosed. The method includes: generating a predetermined pulse signal and a determination signal according to an input clock signal; delaying the predetermined pulse signal according to the digital control signal to generate a delayed pulse signal; detecting the delay according to the determination signal One time delay of the pulse wave signal to generate a detection result signal; and generating the digital control signal according to the detection result signal to control the step of delaying the predetermined pulse wave signal according to the digital control signal to the predetermined pulse wave The amount of delay caused by the signal.

此外,上述實施例的數位控制訊號可用於控制另一延遲單元對其所接收之輸入訊號(例如另一預定脈波訊號)所造成的延遲量,因此不需使用另一套控制機制,而可降低整體電路成本。In addition, the digital control signal of the above embodiment can be used to control the delay caused by another delay unit to receive an input signal (for example, another predetermined pulse signal), so that no other control mechanism is needed. Reduce overall circuit cost.

請搭配參照第1圖及第2圖,第1圖是本發明第一實施例之延遲鎖定迴路100的示意圖,第2圖是第1圖之延遲鎖定迴路100所包含的訊號關係示意圖。如第1圖所示,延遲鎖定迴路100包含有一脈波產生器105、一延遲單元110、一相位偵測器115及一控制單元120。延遲單元110係以一數位控制延遲線(Digital Controlled Delay Line,DCDL)實現之,而相位偵測器115係以一D型正反器(Flip Flop)實現之,該D型正反器之一時脈輸入端係用以接收脈波產生器105所產生的一判斷訊號S_J,該D型正反器之一資料輸入端係用以接收延遲單元110所輸出的一延遲後脈波訊號S_P2,以及該D型正反器之一資料輸出端係用以依據判斷訊號S_J與延遲後脈波訊號S_P2,產生一偵測結果訊號S_D至控制單元120。需注意的是,前述以D型正反器實現相位偵測器115的操作與功能並非本發明的限制,在其他實施例中亦可使用不同元件來實現相位偵測器115的操作與功能。Referring to FIG. 1 and FIG. 2 together, FIG. 1 is a schematic diagram of the delay lock loop 100 according to the first embodiment of the present invention, and FIG. 2 is a schematic diagram of the signal relationship included in the delay lock loop 100 of FIG. 1. As shown in FIG. 1, the delay lock loop 100 includes a pulse generator 105, a delay unit 110, a phase detector 115, and a control unit 120. The delay unit 110 is implemented by a Digital Controlled Delay Line (DCDL), and the phase detector 115 is implemented by a D-type flip-flop, which is one of the D-type flip-flops. The pulse input end is configured to receive a determination signal S_J generated by the pulse wave generator 105, and one of the data input terminals of the D-type flip-flop is configured to receive a delayed pulse signal S_P2 output by the delay unit 110, and The data output end of the D-type flip-flop is used to generate a detection result signal S_D to the control unit 120 according to the determination signal S_J and the delayed pulse signal S_P2. It should be noted that the operation and function of the phase detector 115 implemented by the D-type flip-flop are not limited by the present invention. In other embodiments, different components may be used to implement the operation and function of the phase detector 115.

脈波產生器105係參考一外來的輸入時脈訊號S_CLK以產生一預定脈波訊號S_P1至延遲單元110,並產生判斷訊號S_J至相位偵測器115。延遲單元110係耦接於脈波產生器105,用以接收該預定脈波訊號S_P1,並依據控制單元120所產生的一數位控制訊號S_C1延遲該預定脈波訊號S_P1,從而產生該延遲後脈波訊號S_P2。相位偵測器115係耦接於延遲單元110與脈波產生器105,並用以接收該脈波產生器105所產生的判斷訊號S_J,並依據該判斷訊號S_J偵測延遲單元110對該預定脈波訊號S_P1所造成的時間延遲(亦即該延遲後脈波訊號S_P2的時間延遲),從而產生該偵測結果訊號S_D。控制單元120則耦接於相位偵測器115與延遲單元110,並用以依據該偵測結果訊號S_D產生該數位控制訊號S_C1,以調整延遲單元110對該預定脈波訊號S_P1所造成的延遲量,從而調整該延遲後脈波訊號S_P2的時間延遲。此外,脈波產生器105另產生一通知訊號S_J至控制單元120,以通知控制單元120進行判斷操作,亦即,脈波產生器105可控制控制單元120進行判斷的時間點。The pulse generator 105 refers to an external input clock signal S_CLK to generate a predetermined pulse signal S_P1 to the delay unit 110, and generates a determination signal S_J to the phase detector 115. The delay unit 110 is coupled to the pulse generator 105 for receiving the predetermined pulse signal S_P1, and delaying the predetermined pulse signal S_P1 according to a digital control signal S_C1 generated by the control unit 120, thereby generating the delayed pulse. Wave signal S_P2. The phase detector 115 is coupled to the delay unit 110 and the pulse generator 105, and is configured to receive the determination signal S_J generated by the pulse wave generator 105, and detect the delay unit 110 to the predetermined pulse according to the determination signal S_J. The time delay caused by the wave signal S_P1 (that is, the time delay of the pulse signal S_P2 after the delay) generates the detection result signal S_D. The control unit 120 is coupled to the phase detector 115 and the delay unit 110, and configured to generate the digital control signal S_C1 according to the detection result signal S_D to adjust the delay caused by the delay unit 110 to the predetermined pulse signal S_P1. , thereby adjusting the time delay of the delayed pulse signal S_P2. In addition, the pulse generator 105 further generates a notification signal S_J to the control unit 120 to notify the control unit 120 to perform the determination operation, that is, the pulse wave generator 105 can control the time point at which the control unit 120 makes the determination.

如第2圖所示,其係繪示訊號S_CLK、S_P1、S_P2與S_J的訊號關係。在本實施例中,脈波產生器105所產生之該預定脈波訊號S_P1係為方波訊號,該方波訊號的週期T1係設定為輸入時脈訊號S_CLK之週期T_CLK的四倍。隨著訊號電壓或溫度的變動,延遲單元110所輸出的延遲後脈波訊號S_P2實際亦具有不同的時間延遲,例如,第2圖係顯示出延遲後脈波訊號S_P2具有不同的時間延遲D_1與D_2。相位偵測器115可依據判斷訊號S_J來判斷該些不同的時間延遲(例如D_1與D_2)是否較長或較短,以決定是否需要縮短或延長,例如,在本實施例中,當脈波產生器105產生該預定脈波訊號S_P1時,亦同時產生該判斷訊號S_J,而判斷訊號S_J的脈波寬度T_J是所設計的理想時間延遲,若實際時間延遲較長於判斷訊號S_J的脈波寬度,表示需要縮短實際時間延遲,反之,則需要延長實際時間延遲。以第2圖的例子來說,當延遲後脈波訊號S_P2的時間延遲為D_1時,判斷訊號S_J係被反相後再經由時脈輸入端被相位偵測器115的D型正反器所接收(於D型正反器之時脈輸入端前設置一反相器),因此,在判斷訊號S_J發生下降邊緣(Falling Edge)時,該D型正反器才會將其資料輸入端所收到的延遲後脈波訊號S_P2之訊號準位輸出至其資料輸出端,以產生偵測結果訊號S_D,以實際時間延遲D_1為例,由於實際時間延遲較短,該D型正反器所取到的訊號準位為‘1’,因此偵測結果訊號S_D的訊號邏輯準位係為‘1’,而控制單元120此時依據偵測結果訊號S_D的訊號邏輯準位,適當地控制延遲單元110增加對預定脈波訊號S_P1造成的延遲量,以延長該延遲後脈波訊號S_P2的實際時間延遲;反之,以實際時間延遲D_2為例,由於實際時間延遲較長,該D型正反器所取到的訊號準位為‘0’,因此偵測結果訊號S_D的訊號邏輯準位係為‘0’,而控制單元120此時依據偵測結果訊號S_D的訊號邏輯準位,適當地控制延遲單元110減少對預定脈波訊號S_P1造成的延遲量,以縮短該延遲後脈波訊號S_P2的實際時間延遲。如此,藉由反覆操作複數次,控制單元120可調整該實際時間延遲使之近似或等同於判斷訊號S_J的脈波寬度T_J(亦即所設計的理想時間延遲)。As shown in FIG. 2, it shows the signal relationship between the signals S_CLK, S_P1, S_P2 and S_J. In this embodiment, the predetermined pulse signal S_P1 generated by the pulse wave generator 105 is a square wave signal, and the period T1 of the square wave signal is set to be four times the period T_CLK of the input clock signal S_CLK. As the signal voltage or temperature changes, the delayed pulse signal S_P2 output by the delay unit 110 actually has different time delays. For example, the second figure shows that the delayed pulse signal S_P2 has different time delays D_1 and D_2. The phase detector 115 can determine whether the different time delays (for example, D_1 and D_2) are longer or shorter according to the determination signal S_J to determine whether shortening or lengthening is needed, for example, in the embodiment, when the pulse wave When the generator 105 generates the predetermined pulse signal S_P1, the determination signal S_J is also generated, and the pulse width T_J of the determination signal S_J is a designed ideal time delay. If the actual time delay is longer than the pulse width of the determination signal S_J , indicating that the actual time delay needs to be shortened, and vice versa, the actual time delay needs to be extended. In the example of FIG. 2, when the time delay of the delayed pulse signal S_P2 is D_1, the determination signal S_J is inverted and then passed through the clock input end by the D-type flip-flop of the phase detector 115. Receive (set an inverter in front of the clock input of the D-type flip-flop), therefore, when the signal S_J is judged to have a falling edge, the D-type flip-flop will input its data input terminal. After receiving the delayed pulse signal S_P2, the signal level is output to the data output end to generate the detection result signal S_D, taking the actual time delay D_1 as an example. Since the actual time delay is short, the D-type flip-flop device The received signal level is '1', so the signal logic level of the detection result signal S_D is '1', and the control unit 120 controls the delay appropriately according to the signal logic level of the detection result signal S_D. The unit 110 increases the delay caused by the predetermined pulse signal S_P1 to extend the actual time delay of the delayed pulse signal S_P2; otherwise, taking the actual time delay D_2 as an example, since the actual time delay is long, the D-type is positive and negative. The signal level obtained by the device is '0', because The signal logic level of the detection result signal S_D is '0', and the control unit 120 appropriately controls the delay unit 110 to reduce the delay caused by the predetermined pulse signal S_P1 according to the signal logic level of the detection result signal S_D. The amount is used to shorten the actual time delay of the pulse signal S_P2 after the delay. Thus, by repeatedly operating the plurality of times, the control unit 120 can adjust the actual time delay to approximate or be equivalent to the pulse width T_J of the determination signal S_J (ie, the designed ideal time delay).

應注意的是,第1圖所示之延遲鎖定迴路100內含的訊號關係亦可設計為不同的樣式,並未限定於使用第2圖所示的訊號關係才得以執行。舉例來說,該預定脈波訊號S_P1的週期T1亦可以設定為輸入時脈訊號S_CLK之週期T_CLK的兩倍、三倍或其他倍數,而相位偵測器115亦可以使用其他電路來實現,使得產生偵測結果訊號S_D的時點可在除了判斷訊號S_J發生下降邊緣之外的其他時間點發生,例如,相位偵測器115可利用其他電路來實現以使判斷訊號S_J發生上升邊緣(Rising Edge)時產生偵測結果訊號S_D,換言之,本發明之實施例係利用判斷訊號S_J之一脈波的邏輯準位發生轉態(Transition)時對該延遲後脈波訊號S_P2的時間延遲進行前述的早/遲判斷;凡此變化設計皆屬於本發明的範疇。It should be noted that the signal relationship contained in the delay locked loop 100 shown in FIG. 1 can also be designed in different styles, and is not limited to the signal relationship shown in FIG. For example, the period T1 of the predetermined pulse signal S_P1 can also be set to be twice, three times or other multiples of the period T_CLK of the input clock signal S_CLK, and the phase detector 115 can also be implemented by using other circuits. The time at which the detection result signal S_D is generated may occur at other time points than the falling edge of the determination signal S_J. For example, the phase detector 115 may be implemented by other circuits to cause the rising edge (Rising Edge) of the determination signal S_J. When the detection result signal S_D is generated, in other words, the embodiment of the present invention performs the foregoing time delay of the delayed pulse signal S_P2 when the transition of the logic level of one of the pulse signals S_J is used. / Late judgment; all variations of the design are within the scope of the present invention.

此外,控制單元120可採用不同的演算法邏輯來控制延遲單元110使得最後所輸出的數位控制訊號S_C1對應於較佳的調整量。舉例來說,逐步搜尋演算法或二元搜尋(Binary Search)演算法等皆是可採用的搜尋方式。為求具有更好的效能表現,在本實施例中,控制單元120係採用二元搜尋演算法以求快速地得出較佳調整量所對應的數位控制訊號S_C1,舉例來說,若數位控制訊號S_C1具有10位元,則數位控制訊號S_C1的初始值係設定為‘1000000000’,當使用該初始值來調整該實際時間延遲而造成偵測結果訊號S_D的訊號邏輯準位為‘0’時(亦即表示該實際時間延遲較長),控制單元120係依據偵測結果訊號S_D的訊號準位‘0’,將數位控制訊號S_C1調整為‘0100000000’,並接著以此調整後的值來縮短該實際時間延遲。反之,當使用該初始值‘1000000000’來調整該實際時間延遲而造成偵測結果訊號S_D的訊號邏輯準位為‘1’時(亦即表示該實際時間延遲較短),控制單元120係依據偵測結果訊號S_D的訊號準位‘1’,將數位控制訊號S_C1調整為‘1100000000’,並接著以此調整後的值來延長該實際時間延遲。換言之,控制單元120每次係從最高有效位元(Most Significant Bit,MSB)往次高的有效位元進行調整,以得到數位控制訊號S_C1,而直到判定數位控制訊號S_C1的值可控制該實際時間延遲近似於理想的相位延遲時,控制單元120才會結束二元搜尋演算法的操作,並以最後所產生的數位控制訊號S_C1作為最佳的控制訊號。由於相位偵測器115係使用簡單的早遲判斷(Early/Late Judgment)來判斷先前該數位控制訊號S_C1所造成的該實際時間延遲之長短,再加上控制單元120係使用二元搜尋演算法來求出較佳的數位控制訊號S_C1,所以,本實施例的延遲鎖定迴路100可具有較高的效能表現。需注意的是,溫度和訊號電壓的變動隨時會改變目前實際時間延遲的值,因此,當控制單元120進行時間延遲控制時,其所輸出的數位控制訊號S_C1的值亦會隨之改變以修正目前實際的時間延遲,換言之,數位控制訊號S_C1的最低有效位元(Least Significant Bit,LSB)可能在‘0’與‘1’之間跳動,為解決此一問題,控制單元120可進行多次的二元搜尋並將多次的搜尋結果進行平均,以平均後的結果作為數位控制訊號S_C1所對應的數位碼。當然,若為加速效能表現並縮短演算法的運算時間,控制單元120亦可忽略最低有效位元在‘0’與‘1’之間跳動的情形,直接將第一次執行二元搜尋所得到的搜尋結果作為數位控制訊號S_C1所對應的數位碼。In addition, the control unit 120 may employ different algorithm logic to control the delay unit 110 such that the last output digital control signal S_C1 corresponds to a preferred adjustment amount. For example, a step-by-step search algorithm or a binary search algorithm can be used. In order to achieve better performance, in the embodiment, the control unit 120 uses a binary search algorithm to quickly obtain the digital control signal S_C1 corresponding to the preferred adjustment amount, for example, if the digital control The signal S_C1 has 10 bits, and the initial value of the digital control signal S_C1 is set to '1000000000'. When the initial value is used to adjust the actual time delay, the signal logic level of the detection result signal S_D is '0'. (that is, the actual time delay is long), the control unit 120 adjusts the digital control signal S_C1 to '0100000000' according to the signal level '0' of the detection result signal S_D, and then adjusts the value according to the value. Reduce the actual time delay. On the other hand, when the initial value '1000000000' is used to adjust the actual time delay and the signal logic level of the detection result signal S_D is '1' (that is, the actual time delay is short), the control unit 120 is based on The signal level '1' of the detection result signal S_D is adjusted to the digital control signal S_C1 to '1100000000', and then the adjusted value is used to extend the actual time delay. In other words, the control unit 120 adjusts the next highest effective bit from the Most Significant Bit (MSB) to obtain the digital control signal S_C1 until the value of the digital control signal S_C1 is determined to control the actual When the time delay is close to the ideal phase delay, the control unit 120 ends the operation of the binary search algorithm and uses the last generated digital control signal S_C1 as the optimal control signal. Since the phase detector 115 uses a simple Early/Late Judgment to determine the length of the actual time delay caused by the previous digital control signal S_C1, the control unit 120 uses a binary search algorithm. The preferred digital control signal S_C1 is obtained. Therefore, the delay locked loop 100 of the present embodiment can have higher performance. It should be noted that the temperature and signal voltage changes will change the current actual time delay value at any time. Therefore, when the control unit 120 performs time delay control, the value of the digital control signal S_C1 outputted will also change to correct. At present, the actual time delay, in other words, the Least Significant Bit (LSB) of the digital control signal S_C1 may jump between '0' and '1'. To solve this problem, the control unit 120 may perform multiple times. The binary search averages the search results multiple times, and the averaged result is used as the digital code corresponding to the digital control signal S_C1. Of course, if the performance of the algorithm is shortened and the operation time of the algorithm is shortened, the control unit 120 may also ignore the case where the least significant bit jumps between '0' and '1', and directly obtain the binary search for the first time. The search result is used as the digital code corresponding to the digital control signal S_C1.

再者,延遲單元110可設計具有多相位選擇的功能,並藉由控制單元120輸出相位選擇訊號S_C2來選擇所想要之一特定相位。請參照第3圖,第3圖是第1圖所示之延遲單元110之一實施例的電路示意圖。如第3圖所示,延遲單元110包含有複數個相位延遲電路405A~405H及一相位選擇電路406,每一相位延遲電路中分別包括有一第一反相器與一第二反相器,且每一反相器皆搭配至少一可控制電阻器(本實施例中係利用兩電阻器實作之,然此並非本發明的限制),其中控制單元120所產生的數位控制訊號S_C1即用以控制每一反相器所搭配之可控制電阻器的阻值,以調整供應電壓對可控制電阻器與電容的充電時間,來達成反相器具有一啟動時間延遲的效果,該啟動時間延遲即是延遲單元110對預定脈波訊號S_P1所造成的延遲量。另外,關於第一、第二反相器的操作與功能,舉例來說,相位延遲電路405A之第一反相器係接收輸入至相位延遲電路405A的預定脈波訊號S_P1,並將預定脈波訊號S_P1反相,產生一反相後的訊號,而其第二反相器係接著將第一反相器所產生之反相後的訊號再次反相,此時產生的訊號係作為該相位延遲電路405A的輸出訊號,而輸出至下一個相位延遲電路405B,換言之,對於該相位延遲電路405A的輸入訊號與輸出訊號來說,其彼此的訊號關係並未相反而僅具有一相位延遲而已,相位延遲電路405A的相位延遲則係由第一、第二反相器從接收到訊號至產生反相訊號的各自時間延遲所組成;其他相位延遲電路405B~405H及其各自的第一、第二反相器亦具有如上相同或類似的操作與功能,在此不另贅述。Moreover, the delay unit 110 can design a function with multi-phase selection, and select one of the desired specific phases by the control unit 120 outputting the phase selection signal S_C2. Please refer to FIG. 3, which is a circuit diagram of an embodiment of the delay unit 110 shown in FIG. 1. As shown in FIG. 3, the delay unit 110 includes a plurality of phase delay circuits 405A-405H and a phase selection circuit 406. Each phase delay circuit includes a first inverter and a second inverter, respectively. Each of the inverters is provided with at least one controllable resistor (which is implemented by using two resistors in this embodiment, which is not a limitation of the present invention), wherein the digital control signal S_C1 generated by the control unit 120 is used. Controlling the resistance of the controllable resistors associated with each inverter to adjust the charging time of the supply voltage to the controllable resistors and capacitors to achieve an activation time delay of the inverter, the startup time delay is The amount of delay caused by the delay unit 110 for the predetermined pulse signal S_P1. In addition, regarding the operation and function of the first and second inverters, for example, the first inverter of the phase delay circuit 405A receives the predetermined pulse signal S_P1 input to the phase delay circuit 405A, and the predetermined pulse wave The signal S_P1 is inverted to generate an inverted signal, and the second inverter is inverted again by the inverted signal generated by the first inverter, and the signal generated at this time is used as the phase delay. The output signal of the circuit 405A is output to the next phase delay circuit 405B. In other words, for the input signal and the output signal of the phase delay circuit 405A, the signal relationship between them is not reversed and only has a phase delay. The phase delay of the delay circuit 405A is composed of the respective time delays of the first and second inverters from receiving the signal to generating the inverted signal; the other phase delay circuits 405B-405H and their respective first and second inverses The phase device also has the same or similar operations and functions as above, and will not be further described herein.

由於每一反相器皆施加一相位延遲量於預定脈波訊號S_P1,不同反相器的輸出訊號實可視為具有不同相位的延遲後預定脈波訊號S_P2,因此,欲得到具有一特定相位的延遲後預定脈波訊號S_P2,必需適當地選擇出該特定相位以得到訊號S_P2,而本實施例中的相位選擇電路406即用以依據相位選擇訊號S_C2從複數相位延遲量中選擇出該特定相位。實作上,相位選擇電路406包括複數多工器410A~410G及一反相器415,每一第一反相器的輸出訊號先耦接至第一組多工器410A與410B的輸入端,而第一組多工器410A與410B的輸出端再耦接至多工器410C的輸入端,接著多工器410C的輸出端再經由反相器415的連接而耦接至多工器410G的輸入端,反相器415的功用在於消除第一反相器所造成的訊號反相。另外,每一第二反相器的輸出訊號先耦接至第二組多工器410D與410E的輸入端,而第一組多工器410D與410E的輸出端再耦接至多工器410F的輸入端,接著多工器410F的輸出端再耦接至多工器410G的輸入端。經過相位選擇訊號S_C2適當地控制多工器410A~410G,最後多工器410G的輸出端訊號即是具有特定相位的延遲後預定脈波訊號S_P2。舉例來說,延遲鎖定迴路100係先依據判斷訊號S_J及延遲單元110之相位延遲電路405H之輸出訊號來進行相位延遲鎖定,當延遲鎖定迴路100鎖定之後,延遲單元110之相位延遲電路405H之輸出訊號所產生之相位延遲量即相等於判斷訊號S_J的脈波寬度T_J,此時,延遲單元110內之每一相位延遲電路之一反相器係造成16分之一的脈波寬度T_J大小的相位延遲量,因此,若多工器410G的輸出訊號係為相位延遲電路405B之第一反相器的輸出訊號,則其特定相位的大小係為16分之三的脈波寬度T_J大小;而若多工器410G的輸出訊號係為相位延遲電路405C之第一反相器的輸出訊號,則其特定相位的大小係為16分之5的脈波寬度T_J大小;其他則依此類推。在另一實施例中,延遲鎖定迴路100亦可先以相位選擇訊號S_C2控制相位選擇電路406而自相位延遲電路405A~405H所產生的輸出訊號中選擇一輸出訊號,再依據所選擇的該輸出訊號及判斷訊號S_J來進行相位延遲鎖定,因此,當延遲鎖定迴路100相位鎖定後,所選擇的該輸出訊號的相位延遲量即等於判斷訊號S_J的脈波寬度T_J大小。Since each inverter applies a phase delay amount to the predetermined pulse signal S_P1, the output signals of the different inverters can be regarded as the delayed predetermined pulse signal S_P2 having different phases, so that a specific phase is obtained. After the delay, the predetermined pulse signal S_P2 is selected, and the specific phase must be appropriately selected to obtain the signal S_P2. The phase selection circuit 406 in this embodiment is used to select the specific phase from the complex phase delay amount according to the phase selection signal S_C2. . In practice, the phase selection circuit 406 includes a plurality of multiplexers 410A-410G and an inverter 415. The output signals of each of the first inverters are first coupled to the input ends of the first group of multiplexers 410A and 410B. The output ends of the first group of multiplexers 410A and 410B are coupled to the input end of the multiplexer 410C, and then the output end of the multiplexer 410C is coupled to the input end of the multiplexer 410G via the connection of the inverter 415. The function of the inverter 415 is to eliminate the signal inversion caused by the first inverter. In addition, the output signal of each of the second inverters is first coupled to the input ends of the second group of multiplexers 410D and 410E, and the outputs of the first group of multiplexers 410D and 410E are coupled to the multiplexer 410F. The input, and then the output of the multiplexer 410F is coupled to the input of the multiplexer 410G. The multiplexers 410A-410G are appropriately controlled by the phase selection signal S_C2, and the output signal of the final multiplexer 410G is the delayed predetermined pulse signal S_P2 having a specific phase. For example, the delay locked loop 100 performs phase delay locking according to the output signal of the phase delay circuit 405H of the determining signal S_J and the delay unit 110. After the delay locked loop 100 is locked, the output of the phase delay circuit 405H of the delay unit 110 is output. The phase delay amount generated by the signal is equal to the pulse width T_J of the determination signal S_J. At this time, one of the inverters of each phase delay circuit in the delay unit 110 causes a pulse width T_J of one-sixteenth. The amount of phase delay, therefore, if the output signal of the multiplexer 410G is the output signal of the first inverter of the phase delay circuit 405B, the magnitude of the specific phase is the pulse width T_J of 16/3; If the output signal of the multiplexer 410G is the output signal of the first inverter of the phase delay circuit 405C, the magnitude of the specific phase is the pulse width T_J of 5/16; the others are the same. In another embodiment, the delay locked loop 100 may first control the phase selection circuit 406 with the phase selection signal S_C2 and select an output signal from the output signals generated by the phase delay circuits 405A-405H, and then select the output according to the selected output. The signal and the judgment signal S_J are used for phase delay locking. Therefore, when the delay lock loop 100 is phase-locked, the phase delay amount of the selected output signal is equal to the pulse width T_J of the determination signal S_J.

此外,本實施例的控制單元120係可依據其偵測結果訊號產生數位控制訊號S_C1來控制另一延遲單元對另一預定脈波訊號所造成的另一延遲量。請參照第4圖,第4圖是本發明第1圖所示之延遲鎖定迴路100應用於一高傳輸資料率動態隨機存取記憶體中的示意圖。該高傳輸資料率動態隨機存取記憶體例如可以是一雙通道的隨機存取記憶體或是其他資料存取速率較高的記憶體。其中,該高傳輸資料率動態隨機存取記憶體具有複數個數位控制延遲線,為方便說明,第4圖僅顯示出四個數位控制延遲線,而本發明的應用是將第1圖之控制單元120所產生之數位控制訊號S_C1、S_C2輸出至其他數位控制延遲線,以適當地控制其他數位控制延遲線所造成的時間延遲及選擇適當的相位。由於在該高傳輸資料率動態隨機存取記憶體的電路架構中,控制訊號S_C1與S_C2係以數位訊號的形式於控制端(亦即延遲鎖定迴路100)與受控端(亦即其他的延遲線)之間傳輸,所以,與習知技術利用類比訊號的形式進行傳輸相較,本實施例第3圖所示的電路架構可減少或避免因雜訊所造成的誤差。此外,因為實現於該高傳輸資料率動態隨機存取記憶體中的所有數位控制延遲線理想上應具有相同或相類似的特性,亦即,面對溫度變化或訊號電壓變化時,其所造成的實際時間延遲量理想上應具有相同的趨勢變化,因此,本實施例可藉由利用單一數位控制延遲線的時間延遲控制結果,來控制其他的數位控制延遲線,以減少整體控制電路的數目。In addition, the control unit 120 of the present embodiment can generate a digital control signal S_C1 according to the detection result signal to control another delay amount caused by another delay unit to another predetermined pulse signal. Referring to FIG. 4, FIG. 4 is a schematic diagram of the delay locked loop 100 shown in FIG. 1 of the present invention applied to a high transmission data rate dynamic random access memory. The high transmission data rate dynamic random access memory can be, for example, a dual channel random access memory or other memory with a higher data access rate. Wherein, the high transmission data rate dynamic random access memory has a plurality of digital control delay lines. For convenience of description, FIG. 4 only shows four digital control delay lines, and the application of the present invention is the control of FIG. The digital control signals S_C1, S_C2 generated by unit 120 are output to other digital control delay lines to appropriately control the time delay caused by other digital control delay lines and to select an appropriate phase. In the circuit architecture of the high transmission data rate dynamic random access memory, the control signals S_C1 and S_C2 are in the form of digital signals on the control end (ie, the delay locked loop 100) and the controlled end (ie, other delays). The transmission between the lines is such that the circuit structure shown in Fig. 3 of the present embodiment can reduce or avoid errors caused by noise as compared with the conventional techniques for transmitting signals in the form of analog signals. In addition, since all digitally controlled delay lines implemented in the high transmission data rate DRAM should ideally have the same or similar characteristics, that is, when faced with temperature changes or signal voltage changes, The actual time delay amount should ideally have the same trend change. Therefore, this embodiment can control other digital control delay lines by using a single digital control delay line time delay control result to reduce the number of overall control circuits. .

再者,因為延遲單元110可設計具有多相位選擇的功能,所以,在其他實施例中亦可搭配一相位補償的單元來使相位偵測器115進行判斷時更加精準。請參照第5圖,其所繪示為本發明第二實施例之延遲鎖定迴路500的示意圖。延遲鎖定迴路500除了脈波產生器105、延遲單元110、相位偵測器115與控制單元120之外,另包有一補償單元125,補償單元125係設置於脈波產生器105與相位偵測器115之間,並用以對脈波產生器105所產生的判斷訊號S_J進行相位補償。舉例來說,延遲單元110可施加一特定相位於預定脈波訊號S_P1以產生具有該特定相位的延遲後脈波訊號S_P2,而補償單元125係用以對判斷訊號S_J施加一相位量,其中補償單元125所施加的相位量係正比於延遲單元110所施加的特定相位,由於該相位量係正比於該特定相位,當該特定相位較大時,補償單元125所施加的相位量將變得較多,因此,可有效地進行相位補償,達到減少判斷訊號S_J與延遲後脈波訊號S_P2之間存在相位偏差的效果,增進後續相位偵測器115的判斷準確率。此外,若實質上可使補償單元125所施加的相位量係相同於延遲單元110所施加之特定相位,則將採用該相位量來進行相位補償,以消除上述兩訊號之間的相位偏差。另外,補償單元125的操作可藉由控制單元120進行控制以調整其施加的相位量。Moreover, since the delay unit 110 can be designed to have a multi-phase selection function, in other embodiments, a phase compensation unit can also be used to make the phase detector 115 more accurate. Please refer to FIG. 5, which is a schematic diagram of a delay locked loop 500 according to a second embodiment of the present invention. The delay lock loop 500 includes a compensation unit 125 in addition to the pulse generator 105, the delay unit 110, the phase detector 115 and the control unit 120. The compensation unit 125 is disposed on the pulse generator 105 and the phase detector. Between 115, and used to phase compensate the judgment signal S_J generated by the pulse wave generator 105. For example, the delay unit 110 can apply a specific phase to the predetermined pulse signal S_P1 to generate the delayed pulse signal S_P2 having the specific phase, and the compensation unit 125 is configured to apply a phase amount to the determination signal S_J, wherein the compensation is performed. The amount of phase applied by unit 125 is proportional to the particular phase applied by delay unit 110. Since the phase amount is proportional to the particular phase, the amount of phase applied by compensation unit 125 will become greater when the particular phase is larger. Therefore, the phase compensation can be effectively performed, and the effect of reducing the phase deviation between the determination signal S_J and the delayed pulse signal S_P2 is achieved, and the judgment accuracy of the subsequent phase detector 115 is improved. In addition, if the phase amount applied by the compensation unit 125 is substantially the same as the specific phase applied by the delay unit 110, the phase amount will be used for phase compensation to eliminate the phase deviation between the two signals. In addition, the operation of the compensation unit 125 can be controlled by the control unit 120 to adjust the amount of phase applied thereto.

請參照第6圖,第6圖是第1圖所示之延遲鎖定迴路的操作流程圖。倘若大體上可達到相同的結果,並不需要一定照第6圖所示之流程中的步驟順序來進行,且第6圖所示之步驟不一定要連續進行,亦即其他步驟亦可插入其中;細部的步驟說明係敘述於下:步驟600:開始;步驟605:脈波產生器105接收輸入時脈訊號S_CLK以產生預定脈波訊號S_P1至延遲單元110,並產生判斷訊號S_J;步驟610:延遲單元110依據控制單元120所產生的數位控制訊號S_C1延遲預定脈波訊號S_P1,從而產生延遲後脈波訊號S_P2;步驟615:相位偵測器115依據判斷訊號S_J偵測延遲單元110對該延遲後脈波訊號S_P2所造成的時間延遲,從而產生該偵測結果訊號S_D;步驟620:控制單元120依據該偵測結果訊號S_D產生該數位控制訊號S_C1,以調整延遲單元110對該預定脈波訊號S_P1所造成的延遲量,從而調整該延遲後脈波訊號S_P2的時間延遲;步驟625:控制單元120依據通知訊號S_I進行早/遲判斷;步驟630:判斷是否完成一次二元搜尋;步驟635:判斷是否求出最佳/較佳的數位控制訊號S_C1;以及步驟640:結束。Please refer to FIG. 6. FIG. 6 is a flow chart showing the operation of the delay lock loop shown in FIG. 1. If the same result is generally achieved, it is not necessary to perform the sequence of steps in the process shown in FIG. 6, and the steps shown in FIG. 6 do not have to be performed continuously, that is, other steps may be inserted therein. The detailed step description is described below: Step 600: Start; Step 605: The pulse generator 105 receives the input clock signal S_CLK to generate a predetermined pulse signal S_P1 to the delay unit 110, and generates a determination signal S_J; Step 610: The delay unit 110 delays the predetermined pulse signal S_P1 according to the digital control signal S_C1 generated by the control unit 120, thereby generating the delayed pulse signal S_P2. Step 615: The phase detector 115 detects the delay of the delay unit 110 according to the determination signal S_J. The time delay caused by the pulse signal S_P2 is generated, thereby generating the detection result signal S_D; Step 620: The control unit 120 generates the digital control signal S_C1 according to the detection result signal S_D to adjust the delay pulse unit 110 to the predetermined pulse wave. The delay caused by the signal S_P1, thereby adjusting the time delay of the delayed pulse signal S_P2; Step 625: The control unit 120 according to the notification signal S_I Line B / late determination; Step 630: determining whether a binary search is completed; Step 635: determining whether obtaining the optimum / better S_C1 digital control signal; and Step 640: End.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

100、500...延遲鎖定迴路100, 500. . . Delay locked loop

105...脈波產生器105. . . Pulse generator

110、130A~130D...延遲單元110, 130A~130D. . . Delay unit

115...相位偵測器115. . . Phase detector

120...控制單元120. . . control unit

125...補償單元125. . . Compensation unit

405A~405H...相位延遲電路405A~405H. . . Phase delay circuit

406...相位選擇電路406. . . Phase selection circuit

410A~410G...多工器410A~410G. . . Multiplexer

415...反相器415. . . inverter

第1圖為本發明第一實施例之延遲鎖定迴路的示意圖。Fig. 1 is a schematic view showing a delay lock loop of the first embodiment of the present invention.

第2圖為第1圖之延遲鎖定迴路所包含的訊號關係示意圖。Figure 2 is a schematic diagram of the signal relationship contained in the delay locked loop of Figure 1.

第3圖為第1圖所示之延遲單元之一實施例的電路示意圖。Fig. 3 is a circuit diagram showing an embodiment of the delay unit shown in Fig. 1.

第4圖為本發明第1圖所示之延遲鎖定迴路應用於一高傳輸資料率動態隨機存取記憶體中的示意圖。Figure 4 is a schematic diagram of the delay locked loop shown in Figure 1 of the present invention applied to a high transmission data rate dynamic random access memory.

第5圖為本發明第二實施例之延遲鎖定迴路的示意圖。Figure 5 is a schematic diagram of a delay lock loop in accordance with a second embodiment of the present invention.

第6圖為第1圖所示之延遲鎖定迴路的操作流程圖。Figure 6 is a flow chart showing the operation of the delay lock loop shown in Figure 1.

100...延遲鎖定迴路100. . . Delay locked loop

105...脈波產生器105. . . Pulse generator

110...延遲單元110. . . Delay unit

115...相位偵測器115. . . Phase detector

120...控制單元120. . . control unit

Claims (14)

一種延遲鎖定迴路,包含有:一脈波產生器,用以依據一輸入時脈訊號,產生一預定脈波訊號及一判斷訊號;一延遲單元,用以依據一數位控制訊號延遲該預定脈波訊號,產生一延遲後脈波訊號;一相位偵測器,用以依據該判斷訊號偵測該延遲後脈波訊號之一時間延遲,以產生一偵測結果訊號;以及一控制單元,用以依據該偵測結果訊號產生該數位控制訊號,以控制該延遲單元對該預定脈波訊號所造成之一延遲量;其中該相位偵測器係依據該判斷訊號之一脈波的寬度所指示的一上升邊緣及一相對應的下降邊緣,對該延遲後脈波訊號之該時間延遲進行一早/遲判斷(Early/Late Judgment),以產生該偵測結果訊號。 A delay lock loop includes: a pulse generator for generating a predetermined pulse signal and a determination signal according to an input clock signal; and a delay unit for delaying the predetermined pulse according to a digital control signal The signal generates a delayed pulse signal; a phase detector is configured to detect a time delay of the delayed pulse signal according to the determination signal to generate a detection result signal; and a control unit for Generating the digital control signal according to the detection result signal to control a delay amount caused by the delay unit to the predetermined pulse wave signal; wherein the phase detector is indicated by the width of the pulse wave of one of the determination signals A rising edge and a corresponding falling edge perform an Early/Late Judgment on the time delay of the delayed pulse signal to generate the detection result signal. 如申請專利範圍第1項所述之延遲鎖定迴路,其中,該脈波產生器更用以產生一通知訊號,而該控制單元於接收到該通知訊號時,依據該偵測結果訊號產生該數位控制訊號。 The delay locked loop of claim 1, wherein the pulse generator is further configured to generate a notification signal, and the control unit generates the digital signal according to the detection result signal when receiving the notification signal. Control signal. 如申請專利範圍第1項所述之延遲鎖定迴路,其中該相位偵測器係於該判斷訊號之該脈波之邏輯準位發生轉態時,對該延遲後脈波訊號之該時間延遲進行該早/遲判斷。 The delay locked loop according to claim 1, wherein the phase detector performs the time delay of the delayed pulse signal when the logic level of the pulse wave of the determination signal is changed. The early/late judgment. 如申請專利範圍第1項所述之延遲鎖定迴路,其中該控制單元係依據該偵測結果訊號與一二元搜尋法,產生該數位控制訊號。 The delay locked loop according to claim 1, wherein the control unit generates the digital control signal according to the detection result signal and a binary search method. 如申請專利範圍第1項所述之延遲鎖定迴路,其中該控制單元所產生之該數位控制訊號更用以控制另一延遲單元。 The delay locked loop as described in claim 1, wherein the digital control signal generated by the control unit is used to control another delay unit. 如申請專利範圍第1項所述之延遲鎖定迴路,其中該延遲單元係另施加一特定相位於該預定脈波訊號,以及該延遲鎖定迴路另包含有:一補償單元,耦接於該脈波產生器與該相位偵測器之間,用以對該判斷訊號施加一相位量以進行相位補償,其中該補償單元所施加之該相位量係正比於該延遲單元所施加之該特定相位。 The delay lock loop of claim 1, wherein the delay unit is further configured to apply a specific phase to the predetermined pulse signal, and the delay lock loop further comprises: a compensation unit coupled to the pulse wave Between the generator and the phase detector, a phase quantity is applied to the determination signal for phase compensation, wherein the phase quantity applied by the compensation unit is proportional to the specific phase applied by the delay unit. 如申請專利範圍第6項所述之延遲鎖定迴路,其中該補償單元所施加之該相位量係實質相同於該延遲單元所施加之該特定相位。 The delay locked loop of claim 6, wherein the phase amount applied by the compensation unit is substantially the same as the specific phase applied by the delay unit. 如申請專利範圍第1項所述之延遲鎖定迴路,其中該延遲單元包含有:複數相位延遲電路,該些相位延遲電路中之每一相位延遲電路係依據該數位控制訊號施加一相位延遲量於該預定脈波訊號;以及 一相位選擇電路,用以從該些相位延遲電路所產生之複數相位延遲量中選擇出該特定相位,以輸出具有該特定相位之該延遲後脈波訊號。 The delay locked loop according to claim 1, wherein the delay unit comprises: a complex phase delay circuit, wherein each of the phase delay circuits applies a phase delay amount according to the digital control signal The predetermined pulse wave signal; A phase selection circuit is configured to select the specific phase from the plurality of phase delay quantities generated by the phase delay circuits to output the delayed pulse signal having the specific phase. 一種使用於一延遲鎖定迴路之方法,包含有:依據一輸入時脈訊號產生一預定脈波訊號及一判斷訊號;依據一數位控制訊號延遲該預定脈波訊號,以產生一延遲後脈波訊號;依據該判斷訊號偵測該延遲後脈波訊號之一時間延遲,以產生一偵測結果訊號,產生該偵測結果訊號之步驟包含有:依據該判斷訊號之一脈波的寬度所指示的一上升邊緣及一相對應的下降邊緣,對該延遲後脈波訊號之該時間延遲進行一早/遲判斷,以產生該偵測結果訊號;以及依據該偵測結果訊號產生該數位控制訊號,以控制該延遲後脈波訊號的延遲量。 A method for using a delay locked loop includes: generating a predetermined pulse signal and a determination signal according to an input clock signal; delaying the predetermined pulse signal according to a digital control signal to generate a delayed pulse signal And detecting, according to the determining signal, a time delay of the delayed pulse signal to generate a detection result signal, the step of generating the detection result signal includes: indicating, according to a width of a pulse wave of the determination signal a rising edge and a corresponding falling edge, performing an early/late determination on the time delay of the delayed pulse signal to generate the detection result signal; and generating the digital control signal according to the detection result signal, The amount of delay of the pulse signal after the delay is controlled. 如申請專利範圍第9項所述之方法,其中依據該偵測結果訊號產生該數位控制訊號之步驟係於接收到一通知訊號時才執行。 The method of claim 9, wherein the step of generating the digital control signal according to the detection result signal is performed when a notification signal is received. 如申請專利範圍第9項所述之方法,其中對該延遲後脈波訊號之該時間延遲進行該早/遲判斷的步驟係於該判斷訊號之該脈波的邏輯準位發生轉態時才執行。 The method of claim 9, wherein the step of performing the early/late determination of the time delay of the delayed pulse wave signal is when the logic level of the pulse wave of the determination signal is changed. carried out. 如申請專利範圍第9項所述之方法,其中產生該數位控制訊號之步驟包含有:依據該偵測結果訊號與一二元搜尋法,產生該數位控制訊號。 The method of claim 9, wherein the step of generating the digital control signal comprises: generating the digital control signal according to the detection result signal and a binary search method. 如申請專利範圍第9項所述之方法,更包含有:施加一特定相位於該預定脈波訊號;以及在依據該判斷訊號偵測該延遲後脈波訊號之該時間延遲的步驟執行前,對該判斷訊號施加一相位量以進行相位補償;其中對該判斷訊號施加之該相位量係正比於該特定相位。 The method of claim 9, further comprising: applying a specific phase to the predetermined pulse wave signal; and before performing the step of detecting the time delay of the pulse signal after the delay according to the determining signal, A phase amount is applied to the determination signal for phase compensation; wherein the phase amount applied to the determination signal is proportional to the specific phase. 如申請專利範圍第13項所述之方法,其中對該判斷訊號施加之該相位量係實質相同於該特定相位。The method of claim 13, wherein the phase amount applied to the determination signal is substantially the same as the specific phase.
TW098141135A 2009-12-02 2009-12-02 Delay locked loop and related method TWI508458B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW098141135A TWI508458B (en) 2009-12-02 2009-12-02 Delay locked loop and related method
US12/956,138 US8456209B2 (en) 2009-12-02 2010-11-30 Delay locked loop and associated method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098141135A TWI508458B (en) 2009-12-02 2009-12-02 Delay locked loop and related method

Publications (2)

Publication Number Publication Date
TW201121247A TW201121247A (en) 2011-06-16
TWI508458B true TWI508458B (en) 2015-11-11

Family

ID=44068405

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098141135A TWI508458B (en) 2009-12-02 2009-12-02 Delay locked loop and related method

Country Status (2)

Country Link
US (1) US8456209B2 (en)
TW (1) TWI508458B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI742926B (en) * 2020-09-09 2021-10-11 智原科技股份有限公司 Duty-cycle correction circuit for ddr devices

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102594307B (en) * 2011-01-17 2015-09-30 智原科技股份有限公司 Signal delay device and method and use the storage arrangement of this signal delay device
US10630275B2 (en) * 2018-02-26 2020-04-21 Nxp B.V. Constant-on-time pulse generator circuit for a DC-DC converter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6327318B1 (en) * 1998-06-30 2001-12-04 Mosaid Technologies Incorporated Process, voltage, temperature independent switched delay compensation scheme
US6727739B2 (en) * 2000-07-14 2004-04-27 Micron Technology, Inc. Compensation for a delay locked loop
TW200838138A (en) * 2007-02-16 2008-09-16 Samsung Electronics Co Ltd Delay locked loop for controlling delay time using shifter and adder and clock delaying method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3644827B2 (en) 1998-08-14 2005-05-11 富士通株式会社 DLL circuit considering external load
US6809555B1 (en) * 2003-05-02 2004-10-26 Xilinx, Inc. Glitch-free digital phase detector circuits and methods with optional offset and lock window extension
KR100605588B1 (en) 2004-03-05 2006-07-28 주식회사 하이닉스반도체 Delay locked loop in semicinductor memory device and its clock locking method
US7119589B2 (en) 2004-09-10 2006-10-10 Mediatek Incorporation Jitter-resistive delay lock loop circuit for locking delayed clock and method thereof
CN100571039C (en) 2005-07-06 2009-12-16 络达科技股份有限公司 Phase-locked loop and phase-locked loop operation method
US7746134B1 (en) * 2007-04-18 2010-06-29 Altera Corporation Digitally controlled delay-locked loops
JP2009021706A (en) 2007-07-10 2009-01-29 Elpida Memory Inc Dll circuit and semiconductor memory device employing the same, and data processing system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6327318B1 (en) * 1998-06-30 2001-12-04 Mosaid Technologies Incorporated Process, voltage, temperature independent switched delay compensation scheme
US6727739B2 (en) * 2000-07-14 2004-04-27 Micron Technology, Inc. Compensation for a delay locked loop
TW200838138A (en) * 2007-02-16 2008-09-16 Samsung Electronics Co Ltd Delay locked loop for controlling delay time using shifter and adder and clock delaying method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI742926B (en) * 2020-09-09 2021-10-11 智原科技股份有限公司 Duty-cycle correction circuit for ddr devices

Also Published As

Publication number Publication date
US8456209B2 (en) 2013-06-04
US20110128057A1 (en) 2011-06-02
TW201121247A (en) 2011-06-16

Similar Documents

Publication Publication Date Title
TWI324779B (en) Delay locked loop circuit and method for generating a dll clock
US7990194B2 (en) Apparatus and method for correcting duty cycle of clock signal
KR101027679B1 (en) DLL Circuit
KR101051944B1 (en) Duty detecting circuit and duty cycle correcter including the same
US10033392B2 (en) Clock generation circuit and semiconductor apparatus and electronic system using the same
KR100971428B1 (en) Duty correction circuit
US20140002156A1 (en) Duty cycle correction within an integrated circuit
KR101062741B1 (en) DLL circuit and its control method
KR102534241B1 (en) Phase detection circuit, clock generation circuit and semiconductor apparatus including the phase detection circuit
US20180048319A1 (en) Delay locked loop circuit and integrated circuit including the same
CN111418015A (en) Techniques for command synchronization in memory devices
JP2009278528A (en) Dll circuit, and semiconductor device
JP2003188720A (en) Pll circuit
TWI508458B (en) Delay locked loop and related method
KR100845804B1 (en) Circuit and method for controlling clock in semiconductor memory apparatus
KR20060134981A (en) Dll circuit
US7902899B2 (en) Apparatus and method of generating reference clock for DLL circuit
KR20140082356A (en) Delay locked loop and semiconductor apparatus
US20070170969A1 (en) Electronic system having a clock signal correcting device
US7764096B2 (en) DLL circuit and method of controlling the same
JP2008172574A (en) Clock phase shift circuit
JP4266906B2 (en) DDR memory write control apparatus and method
JP4371113B2 (en) Digital DLL circuit
US7573312B2 (en) Apparatus and method of controlling operation frequency in DLL circuit
KR100892636B1 (en) Apparatus and Method for Controlling Clock in Semiconductor Memory Apparatus