TWI324779B - Delay locked loop circuit and method for generating a dll clock - Google Patents

Delay locked loop circuit and method for generating a dll clock Download PDF

Info

Publication number
TWI324779B
TWI324779B TW095124001A TW95124001A TWI324779B TW I324779 B TWI324779 B TW I324779B TW 095124001 A TW095124001 A TW 095124001A TW 95124001 A TW95124001 A TW 95124001A TW I324779 B TWI324779 B TW I324779B
Authority
TW
Taiwan
Prior art keywords
clock signal
clock
dll
signal
unit
Prior art date
Application number
TW095124001A
Other languages
Chinese (zh)
Other versions
TW200713322A (en
Inventor
Hoon Choi
Jae-Jin Lee
Original Assignee
Hynix Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hynix Semiconductor Inc filed Critical Hynix Semiconductor Inc
Publication of TW200713322A publication Critical patent/TW200713322A/en
Application granted granted Critical
Publication of TWI324779B publication Critical patent/TWI324779B/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4076Timing circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4072Circuits for initialization, powering up or down, clearing memory or presetting
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/22Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management 
    • G11C7/222Clock generating, synchronizing or distributing circuits within memory device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/081Details of the phase-locked loop provided with an additional controlled phase shifter
    • H03L7/0812Details of the phase-locked loop provided with an additional controlled phase shifter and where no voltage or current controlled oscillator is used

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Dram (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Description

1324779 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種同步DR AM之延遲鎖定迴路(DLL)電 路;且更特定言之,本發明係關於一種用於在半導體裝置 之低功率操作時在省電模式中執行穩定操作之DLL電路。 【先前技術】 諸如雙資料速率同步DRAM(DDR SDRAM)之同步半導體 5己憶體裝置使用與自諸如記憶體控制器之外部裝置輸入的 外部時脈訊號同步地鎖定之内部時脈訊號,來執行與外部 裝置的資料傳輸。參考時脈訊號與資料間之時間同步對於 在記憶體裝置與記憶體控制器之間穩定地傳輸資料來說是 重要的。為穩定地傳輸資料,應藉由補償由於每一元件之 資料傳輸與資料被載入匯流排之間的時間差而不可避免地 發生之延遲時間,將資料精確定位在時脈之邊緣或中心處。 用於補償延遲時間之時脈同步電路為鎖相迴路(pLL)或1324779 IX. DESCRIPTION OF THE INVENTION: FIELD OF THE INVENTION The present invention relates to a delay locked loop (DLL) circuit for synchronous DR AM; and more particularly, to a low power operation for a semiconductor device A DLL circuit that performs stable operation in the power saving mode. [Prior Art] A synchronous semiconductor 5 memory device such as a dual data rate synchronous DRAM (DDR SDRAM) is implemented using an internal clock signal that is locked in synchronization with an external clock signal input from an external device such as a memory controller. Data transfer with external devices. The time synchronization between the reference clock signal and the data is important for the stable transfer of data between the memory device and the memory controller. In order to transmit data steadily, the data should be accurately located at the edge or center of the clock by compensating for the delay time inevitably due to the time difference between the data transmission of each component and the data being loaded into the bus. The clock synchronization circuit for compensating for the delay time is a phase locked loop (pLL) or

延遲鎖定迴路(DLL)。若外部時脈訊號在頻率上與内部時脈 訊號不同’則必需採用倍頻功能。因此,ριχ主要用於此情 況。相反地,若外部時脈訊號在頻率上等於内部時脈訊號: 則使用DLI^DLL電路藉由補償在穿過每—元件之時脈訊號 被傳輸至半導體記憶體裝置内部之資料輪出端子時發生之 時脈延遲成分’來產生内部時脈訊號。因此,耻電路使 得用於最終輸入/輸出資料之時脈訊號與外部時脈訊號同 步。與PLL電路相比,DLL電路具有之優點在於雜訊低且盆 可在小面積t實施。因此,DLL電路通常用作半導體記憶 JI2670.doc 體裝置中之同步電路。在不同種類之DLL中,新近之技術 提供一種能夠減少在鎖定第一時脈申所花費之時間的受暫 存器控制之DLL電路。 又暫存器控制之DLL電路具有能夠儲存鎖定延遲值之暫 存器,該DLL電路在電源中斷時將鎖定延遲值儲存於暫存 器中,並在電源再次接通時載入儲存於暫存器中之鎖定延 遲值’以使鎖定延遲值立即用於鎖定時脈。 圖1為說明典型延遲鎖定迴路(DLL)電路之基本操作之時 序圆β DLL電路接收外部時脈訊號,並補償dram之内部時脈被 延遲之延遲[DLL電路確保DRAM之輸出訊號與外部時脈 訊號同相。當外部時脈與DRAM之輸出具有相同相位時, 可無誤差地將資料傳送至晶片組。 圖2為說明已知DLL電路之方塊圖。圖2係基於受暫存器 控制之DLL電路。DLL電路包括一時脈緩衝器1〇、一省電模 式控制器20、—時脈除頻器25、—相位比較器3〇、一延遲 控制器4G、-延遲線5〇、—虛設延遲線6〇,及—延遲複製 模型7〇。自DLL電路輸出之DLL時脈訊號Dll一CLK經由時 脈訊號線80傳送至輸出緩衝器9〇以控制資料之輸出時序。 時脈緩衝器1 〇藉由接D卜部時脈訊號CLK及外部時脈禁 止訊號CLKB並對立推备德你.士 '、 1耵八進订緩衝,來產生内部時脈訊 IDVD CLK。 j電模式控制器20在DRAM進人省電模式時關閉時脈緩 衝盗10。對於無讀取/寫人操作時之⑽舰之低功率操作而 112670.doc 1324779 言,DRAM在時脈啟用訊號CKE變為邏輯位準‘LOW’時進入 省電模式。此時,因為時脈緩衝器1 〇不產生内部時脈訊號 IDVD_CLK,所以時脈緩衝器10關閉以保存DLL電路之當前 狀態。 時脈除頻器25藉由對内部時脈訊號IDVD_CLK進行除頻 來產生DLL源時脈訊號DVD_CLK,並藉由使用内部時脈訊 號IDVD_CLK產生參考時脈訊號REF_CLK。通常,為減少 DLL電路之功率消耗,外部施加之時脈之頻率經由時脈除 頻器25而變得較低,以便產生DLL源時脈訊號DVD_CLK。 相位比較器30藉由將輸入與輸出時脈之相位彼此相比較 來偵測DLL電路之輸入時脈與輸出時脈間的相位差。因 此,在相位比較器30處將穿過時脈緩衝器10之參考時脈訊 號REF_CLK與穿過DLL電路之内部電路後反饋回之反饋時 脈訊號FB_CLK彼此相比較。相位比較器30基於比較結果控 制延遲控制器40。 延遲控制器40係以一邏輯電路(用於確定延遲線50之輸 入路徑)及一雙向移位暫存器(用於移位路徑之方向)組態。 接收四個輸入訊號並執行一移位操作之移位暫存器藉由達 到其最右邊之訊號或最左邊之訊號處於邏輯位準"HIGH"之 初始輸入條件而具有最大或最小延遲。輸入至移位暫存器 之訊號具有兩個右移位訊號及兩個左移位訊號。對於移位 操作而言,處於邏輯位準"HIGH”之訊號中之兩者不應彼此 重疊。 延遲線50延遲自時脈除頻器25輸出之DLL源時脈訊號 112670.doc K之相位。由相位比較器3〇確定延遲量。延遲線5〇 2遲控制器40控制之下確Ρ延遲路徑,該延遲路徑確 Γ相位延遲。延遲線5G包括許多彼此串軸接之單位延遲 W。4位延遲單元中之每—者包括兩個彼此串聯箱接之 反及」閘。單位延遲單元中之每一者之輸入係以一對一 映射方式連接至延遲控制器4〇中的移位暫存器。移位暫存 器之輸出變為邏輯位準"HIGH"所處之區域被確定為用於輸 入正在行進通料脈緩衝^ 1G的時脈之路彳^在臟 SDRAMf,延遲線5〇係以兩條延遲線來構造,—條延遲線 用於上升時脈,且另—條延料用於下降時脈,從而藉由 同-地處理上升邊緣與下降邊緣而#可能多地抑制工作比 失真(duty ratio distortion)。 虛叹延遲線60為用於產生施加至相位比較器3〇之反饋時 脈訊號FB_CLK之延遲線。虛設延遲線⑹相同於上文所說明 之延遲線50。 延遲複製模型70為用於模型化延遲因子之電路,用於模 型化在外部時脈輸入至晶片之後且輸入至延遲線5〇之前的 延遲因子,以及在自晶片輸出延遲線5〇之輸出時脈之前的 其他延遲因子。 精確之延遲因子確定DLL電路之功能中的劣化值。延遲 複製模型70照原樣模型化時脈緩衝器、DLL時脈驅動器、 R/F除頻器及輸出緩衝器。 時脈訊號線80為將DLL電路之DLL時脈訊號DLL_CLK耦 接至輸出緩衝器90之路徑。 112670.doc 1324779 輸出緩衝器90接收來自記憶體核心之資料,並與dll電 路之DLL時脈訊號DLL一CLK同步將資料輸出至資料輪出 塾0 圖3為說明圖2之DLL之操作的時序圖。Delay locked loop (DLL). If the external clock signal is different in frequency from the internal clock signal, then the multiplier function must be used. Therefore, ριχ is mainly used in this case. Conversely, if the external clock signal is equal in frequency to the internal clock signal: then the DLI^DLL circuit is used to compensate for the transmission of the clock signal through each element to the data wheel terminal inside the semiconductor memory device. The clock delay component that occurs is used to generate an internal clock signal. Therefore, the shame circuit synchronizes the clock signal used for the final input/output data with the external clock signal. Compared with the PLL circuit, the DLL circuit has the advantage that the noise is low and the basin can be implemented in a small area t. Therefore, the DLL circuit is usually used as a synchronization circuit in the semiconductor memory JI2670.doc device. Among the different types of DLLs, recent techniques provide a DLL circuit that can be controlled by the register to reduce the time it takes to lock the first clock. The DLL circuit of the register control has a register capable of storing a lock delay value, and the DLL circuit stores the lock delay value in the register when the power is interrupted, and loads and stores it in the temporary storage when the power is turned on again. The lock delay value ' in the device so that the lock delay value is immediately used to lock the clock. Figure 1 is a timing loop β DLL circuit for the basic operation of a typical delay locked loop (DLL) circuit to receive an external clock signal and compensate for the delay of the internal clock of the dram [DLL circuit ensures the output signal of the DRAM and the external clock The signals are in phase. When the external clock has the same phase as the output of the DRAM, the data can be transferred to the chip set without error. 2 is a block diagram showing a known DLL circuit. Figure 2 is based on a DLL circuit controlled by a scratchpad. The DLL circuit includes a clock buffer 1〇, a power saving mode controller 20, a clock divider 25, a phase comparator 3〇, a delay controller 4G, a delay line 5〇, and a dummy delay line 6 〇, and - delayed replication model 7〇. The DLL clock signal D11_CLK outputted from the DLL circuit is transmitted to the output buffer 9 via the pulse signal line 80 to control the output timing of the data. The clock buffer 1 产生 generates the internal clock IDVD CLK by connecting the D-be clock signal CLK and the external clock-inhibiting signal CLKB to the slave's '1' and 1''. The j mode switch 20 turns off the clock hacking 10 when the DRAM enters the power saving mode. For low-power operation of the ship (10) without read/write operation, 112670.doc 1324779, the DRAM enters the power-saving mode when the clock enable signal CKE becomes the logic level 'LOW'. At this time, since the clock buffer 1 does not generate the internal clock signal IDVD_CLK, the clock buffer 10 is turned off to save the current state of the DLL circuit. The clock divider 25 generates the DLL source clock signal DVD_CLK by dividing the internal clock signal IDVD_CLK, and generates the reference clock signal REF_CLK by using the internal clock signal IDVD_CLK. Generally, to reduce the power consumption of the DLL circuit, the frequency of the externally applied clock is lowered via the clock divider 25 to generate the DLL source clock signal DVD_CLK. The phase comparator 30 detects the phase difference between the input clock and the output clock of the DLL circuit by comparing the phases of the input and output clocks with each other. Therefore, the reference clock signal REF_CLK passing through the clock buffer 10 and the feedback clock signal FB_CLK fed back through the internal circuit of the DLL circuit are compared with each other at the phase comparator 30. The phase comparator 30 controls the delay controller 40 based on the comparison result. The delay controller 40 is configured with a logic circuit (for determining the input path of the delay line 50) and a bidirectional shift register (for the direction of the shift path). The shift register that receives the four input signals and performs a shift operation has the maximum or minimum delay by reaching the initial input condition of the rightmost signal or the leftmost signal at the logic level "HIGH". The signal input to the shift register has two right shift signals and two left shift signals. For the shift operation, the two signals in the logic level "HIGH" should not overlap each other. The delay line 50 delays the phase of the DLL source clock signal 112670.doc K output from the clock divider 25 The delay amount is determined by the phase comparator 3. The delay line 5〇2 determines the delay path under the control of the delay controller 40, and the delay path confirms the phase delay. The delay line 5G includes a plurality of unit delays W that are axially coupled to each other. Each of the 4-bit delay units includes two "gates" connected in series with each other. The inputs of each of the unit delay units are connected in a one-to-one mapping manner to the shift registers in the delay controller 4''. The output of the shift register becomes the logic level "HIGH" is located in the area for inputting the clock of the traveling flux buffer ^ 1G 在 ^ in the dirty SDRAMf, the delay line 5 Constructed with two delay lines, the -1 delay line is used to raise the clock, and the other strip is used to lower the clock, so that the rising edge and the falling edge are treated by the same -# Duty ratio distortion. The sinus delay line 60 is a delay line for generating a feedback clock signal FB_CLK applied to the phase comparator 3A. The dummy delay line (6) is identical to the delay line 50 described above. The delayed replica model 70 is a circuit for modeling the delay factor for modeling the delay factor after the external clock input to the wafer and before the input to the delay line 5〇, and when outputting the delay line 5〇 from the chip output Other delay factors before the pulse. The precise delay factor determines the degradation value in the function of the DLL circuit. The delayed copy model 70 models the clock buffer, DLL clock driver, R/F divider, and output buffer as they are. The clock signal line 80 is a path for coupling the DLL clock signal DLL_CLK of the DLL circuit to the output buffer 90. 112670.doc 1324779 The output buffer 90 receives the data from the memory core and outputs the data to the data wheel out of the DLL circuit DLL CLK_CLK. Figure 3 is a timing diagram illustrating the operation of the DLL of Figure 2. Figure.

當進入省電模式時,時脈啟用訊號CKE自邏輯位準 "HIGH"轉變至邏輯位準"L0W、此時,DLL電路停止執行 相位更新操作以便保存當前狀態,並儲存先前鎖定之資訊 以進入凍結狀態。本文中,相位更新操作意謂將dll電路 之反饋時脈訊號FB—CLK之相位與待確定並連續追蹤之内 部時脈訊號REF—CLK之相位進行比較。;東結狀態意謂如下 一狀態,其中先前鎖定之資訊已被儲存且不再進一步更新 相位。 在預充電省電模式中,省電模式t之時間週期係在最小 三個時脈至最大7.8 μ3之範圍内。在此時間期間,由省電模 式控制器2G關閉時脈緩衝器1Q,使得不產生虹電路之肌 時脈訊號DLL_CLK^ 當維持省電模式-段長時間時,圖3中所示為約最小 3CLK至最大7.8fXS(在糾間段不更新相位),歸目於半導體 裝置之環境之改變,諸如外部溫度改變,肌電路之當前 鎖定之f訊可能與在省電模式前的先前較之資訊不同。 當在此條件下退出省電模式時,意即,#前鎖定之資訊 與先前鎖定之資訊彼此不匹配,飢電路之脱時脈訊號 DLL一CLK與待鎖定之目標時脈相比在相位上不同。因此, 由於外部時脈訊號之相位與DLL電路之脱時脈訊號 II2670.doc 1324779 DLL—CLK的相位不0,故難於準確地將資料傳輸至DRAM/ 自DRAM接收資料。 【發明内容】 因此,本發明之一目的為提供一種半導體記憶體裝置之 延遲鎖定迴路(DLL)電路,其用於在一省電模式中在相對較 長之時間内,防止由於該半導體裝置之環境(諸如外部溫度) 之改變而發生的鎖定失敗。 根據本發明之一態樣,提供一種具有一正常模式及一省 電模式之記憶體裝置之DLL,其包括:一時脈緩衝器,其 用於對外部時脈訊號進行緩衝以輸出一内部時脈訊號; 一痛電模式控制H ’其用於回應於—時脈啟用訊號而產生 一省電模式控制訊號,以界定該正常模式或該省電模式; 源時脈產生單元,其用於接收該内部時脈訊號以在該省 電模式控制訊號控制之下產生一 DLL源時脈訊號;及一相 位更新單几’其用於基於該DLL源時脈訊號執行一相位更 新操作以輸出一 dll時脈訊號。 根據本發明之另一態樣,提供一種產生具有一正常模式 及—省電模式延遲鎖定迴路之一記憶體裝置之一DLL時脈 4的方法,其包括:藉由對一外部時脈進行緩衝而產生一内 部時脈訊號;藉由對該内部時脈訊號進行除頻而產生一第 除頻時脈訊號;基於該第一除頻時脈訊號而產生一第二 除頻時脈訊號;在該正常模式中基於該第一除頻時脈訊號 執行一DLL相位更新操作;及在該省電模式中基於該第二 除頻時脈訊號執行一 DLL相位更新操作。 Π 2670.doc 1324779 【實施方式】 將參考隨附圖式詳細描述根據本發明之例示性實施例之 延遲鎖定迴路(DLL)電路。 圖4為根據本發明之DLL電路之方塊圖。 DLL電路600包括一時脈缓衝器100、一省電模式控制器 200、一源時脈產生單元300及一相位更新單元400。 時脈緩衝器100接收外部時脈訊號CLK及外部時脈禁止 訊號CLKB並對其進行緩衝,以將經緩衝之訊號作為内部時 脈訊號IDVD—CLK予以輸出。 省電模式控制器200回應於時脈啟用訊號CKE而產生省 電模式控制訊號CTRL,該訊號CTRL具有展示進入省電模 式還是正常模式之資訊。 源時脈產生單元300回應於指示省電模式或正常模式之 省電模式控制訊號CTRL,而基於内部時脈訊號IDVD_CLK 中之選定部分產生DLL源時脈訊號DVD_CLK,並接收源電 壓VDD以基於内部時脈訊號IDVD_CLK產生參考時脈訊號 REF_CLK。 相位更新單元400執行相位更新操作以基於源時脈訊號 DVD_CLK輸出DLL時脈訊號DLL_CLK。 相位更新單元400為一受暫存器控制之DLL,其包括一延 遲線410、一虛設延遲線420、一延遲控制器430、一延遲複 製模型440及一相位比較器450。 延遲線410接收源時脈產生單元300之DLL源時脈訊號 DVD_CLK,以使DLL源時脈訊號DVD_CLK之相位延遲一預 112670.doc 1324779 定時間。虛設延遲線420實質上與延遲線41 0 —致。延遲複 製模型440藉由用半導體記憶體裝置中之外部時脈訊號 CLK及外部時脈禁止訊號CLKB之延遲因子模型化虛設延 遲線420之輸出訊號’來輸出反饋時脈訊號FB__CLK。相位 比較器450彳貞測源時脈產生單元300之參考時脈訊號 REF_CLK與延遲複製模型440之反饋時脈訊號FB_CLK間的 相位差。延遲控制器430基於相位比較器450之輸出訊號來 控制延遲線410及虛設延遲線420之延遲量。 DLL電路600之DLL時脈訊號DLL—CLK經由一時脈訊號 線700傳送至一輸出緩衝器800以控制資料的輸出時序。 如上所述,在本發明中,時脈緩衝器1〇〇控制源時脈產生 單凡300 ’而不管省電模式控制訊號cTRL如何。即,時脈 緩衝器100連續供應内部時脈訊號11)¥〇一(:1^1<:以用於源時 脈產生單元300,而與半導體記憶體裝置之狀態(諸如省電 模式及正常模式)無關。 此外,在本發明中,源時脈產生單元300產生DLL源時脈 訊號DVD一CLK以用於在省電模式中執行至少一個相位更 新操作。下文中,詳細描述源時脈產生單元3〇〇之操作。 ^為圖4中所示之根據本發明實施例之源時脈產 生單元300的方塊圖;且圖6A及6B為圖5中所示之第二時脈 除頻器之詳細電路圖。 勺如所示’根據本發明第—實施例之源時脈產生單元3〇〇 匕括第一及第二時脈除頻器31〇及32〇、一選擇單元刊〇、一 運算邏輯單元340,及_參考時脈產生單元35〇。 n2670.d〇c 12 1324779 第一時脈除頻器310藉由對内部時脈訊號ID VD_CLK進 行除頻來產生第一除頻時脈訊號CLK_D1,以設定正常模式 中之相位更新操作之持續時間。 第二時脈除頻器32〇藉由對第一除頻時脈訊號CLK_D1進 行除頻來產生第二除頻時脈訊號CLK_D2,以設定省電模式 中之相位更新操作之持續時間。 選擇單元330基於省電模式控制訊號CTRL來選擇第一及 第二除頻時脈訊號CLK_D1及CLK_D2中之一者,藉此將所 選定訊號作為選擇時脈訊號DVD_OUT予以輸出。 運算邏輯單元340邏輯地組合選擇時脈訊號DVD_OUT及 内部時脈訊號IDVD_CLK,以輸出DLL源時脈訊號 DVD_CLK。 參考時脈產生單元350藉由執行内部時脈訊號 IDVD—CLK與源電壓VDD之「及」運算而產生參考時脈訊 號REF_CLK。 參看圖6A,第二時脈除頻器320可包括單一除2時脈除頻 器或單一除2n時脈除頻器。本文中,η為正整數。 另外,參看圖6Β,第二時脈除頻器320可包括複數個單元 時脈除頻器320_1至320_Ν及複數個熔絲單元325_1至 325一Ν »複數個單元時脈除頻器至32〇_Ν係串聯連 接’以用於產生具有不同單元時脈(例如CLK_D2_1至 CLK_D2__N)之複數個時脈;且複數個熔絲單元325_1至 325—N藉由熔斷選定之熔絲來選擇複數個單元除頻器之輸 出時脈中之一者。在本發明中,有可能藉由使用在處理期 112670.doc 1324779 間Hie·之複數個金屬選擇處理單元(削^ 〇pti〇n pr〇cessi、% 仙⑴代替熔絲單元325-1至325_N來建構第二時脈除頻器和y 320。 般而5 ’半導體記憶體裝置具有取決於其規格及外部 環境之省電模式週期。在本發明之第一實施例中,用於設 疋省電模式中之相位更新操作之部分的第二除頻時脈訊號When entering the power saving mode, the clock enable signal CKE changes from the logic level "HIGH" to the logic level "L0W, at this time, the DLL circuit stops performing the phase update operation to save the current state, and stores the previously locked information. To enter the frozen state. In this paper, the phase update operation means comparing the phase of the feedback clock signal FB_CLK of the dll circuit with the phase of the internal clock signal REF_CLK to be determined and continuously tracked. The east node state means a state in which the previously locked information has been stored and the phase is not further updated. In the precharge power saving mode, the time period of the power saving mode t is in the range of a minimum of three clocks to a maximum of 7.8 μ3. During this time, the clock buffer 1Q is turned off by the power saving mode controller 2G so that the muscle clock signal DLL_CLK of the rainbow circuit is not generated. When the power saving mode is maintained for a long period of time, the minimum is shown in FIG. 3CLK to a maximum of 7.8fXS (the phase is not updated in the inter-segment), depending on the changes in the environment of the semiconductor device, such as external temperature changes, the current lock of the muscle circuit may be compared with the previous information before the power saving mode different. When the power saving mode is exited under this condition, it means that the information of the #pre-locking and the information of the previous locking do not match each other, and the information of the CLK-CLK of the hunger circuit is compared with the target clock to be locked in phase. different. Therefore, since the phase of the external clock signal and the phase-break signal of the DLL circuit are not zero, it is difficult to accurately transfer data to the DRAM/receive data from the DRAM. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a delay locked loop (DLL) circuit for a semiconductor memory device for preventing a semiconductor device from being used in a power saving mode for a relatively long period of time. A lock failure that occurs due to a change in the environment (such as an external temperature). According to an aspect of the present invention, a DLL of a memory device having a normal mode and a power saving mode is provided, comprising: a clock buffer for buffering an external clock signal to output an internal clock a painful electrical mode control H' for generating a power save mode control signal in response to the -clock enable signal to define the normal mode or the power save mode; a source clock generation unit for receiving the The internal clock signal generates a DLL source clock signal under the power saving mode control signal control; and a phase update list is used to perform a phase update operation based on the DLL source clock signal to output a dll Pulse signal. According to another aspect of the present invention, there is provided a method of generating a DLL clock 4 of a memory device having a normal mode and a power saving mode delay locked loop, comprising: buffering an external clock Generating an internal clock signal; generating a second frequency division clock signal by dividing the internal clock signal; generating a second frequency division clock signal based on the first frequency division clock signal; In the normal mode, a DLL phase update operation is performed based on the first frequency-divided clock signal; and a DLL phase update operation is performed based on the second frequency-divided clock signal in the power-saving mode. 670 2670.doc 1324779 [Embodiment] A delay locked loop (DLL) circuit according to an exemplary embodiment of the present invention will be described in detail with reference to the accompanying drawings. 4 is a block diagram of a DLL circuit in accordance with the present invention. The DLL circuit 600 includes a clock buffer 100, a power saving mode controller 200, a source clock generating unit 300, and a phase updating unit 400. The clock buffer 100 receives and buffers the external clock signal CLK and the external clock disable signal CLKB to output the buffered signal as the internal clock signal IDVD_CLK. The power saving mode controller 200 generates a power saving mode control signal CTRL in response to the clock enable signal CKE, the signal CTRL having information showing whether to enter the power saving mode or the normal mode. The source clock generation unit 300 generates a DLL source clock signal DVD_CLK based on a selected portion of the internal clock signal IDVD_CLK in response to the power saving mode control signal CTRL indicating the power saving mode or the normal mode, and receives the source voltage VDD to be based on the internal The clock signal IDVD_CLK generates a reference clock signal REF_CLK. The phase update unit 400 performs a phase update operation to output a DLL clock signal DLL_CLK based on the source clock signal DVD_CLK. The phase update unit 400 is a DLL controlled by a register, and includes a delay line 410, a dummy delay line 420, a delay controller 430, a delay replica model 440, and a phase comparator 450. The delay line 410 receives the DLL source clock signal DVD_CLK of the source clock generation unit 300 to delay the phase of the DLL source clock signal DVD_CLK by a predetermined time of 112670.doc 1324779. The dummy delay line 420 is substantially coincident with the delay line 41 0 . The delay replica model 440 outputs the feedback clock signal FB__CLK by modeling the output signal ' of the dummy delay line 420 with the delay factor of the external clock signal CLK and the external clock disable signal CLKB in the semiconductor memory device. The phase comparator 450 detects the phase difference between the reference clock signal REF_CLK of the source clock generation unit 300 and the feedback clock signal FB_CLK of the delayed replica model 440. The delay controller 430 controls the delay amounts of the delay line 410 and the dummy delay line 420 based on the output signal of the phase comparator 450. The DLL clock signal DLL_CLK of the DLL circuit 600 is transmitted via a clock signal line 700 to an output buffer 800 to control the output timing of the data. As described above, in the present invention, the clock buffer 1 〇〇 controls the source clock generation to generate a single 300 ' regardless of the power saving mode control signal cTRL. That is, the clock buffer 100 continuously supplies the internal clock signal 11) to the source clock generation unit 300, and the state of the semiconductor memory device (such as the power saving mode and the normal state). In addition, in the present invention, the source clock generation unit 300 generates a DLL source clock signal DVD_CLK for performing at least one phase update operation in the power saving mode. Hereinafter, source clock generation is described in detail. The operation of the unit 3 is a block diagram of the source clock generation unit 300 according to the embodiment of the present invention shown in FIG. 4; and FIGS. 6A and 6B are the second clock divider shown in FIG. Detailed circuit diagram. The scoop is as shown in the following description. The source clock generation unit 3 according to the first embodiment of the present invention includes first and second clock demultiplexers 31A and 32A, a selection unit, and a The operation logic unit 340, and the _ reference clock generation unit 35. n2670.d〇c 12 1324779 The first clock divider 310 generates the first frequency division clock by dividing the internal clock signal ID VD_CLK. Signal CLK_D1 to set the duration of the phase update operation in normal mode The second clock frequency divider 32 产生 generates a second frequency-divided clock signal CLK_D2 by dividing the first frequency-divided clock signal CLK_D1 to set the duration of the phase update operation in the power-saving mode. The selecting unit 330 selects one of the first and second frequency-divided clock signals CLK_D1 and CLK_D2 based on the power-saving mode control signal CTRL, thereby outputting the selected signal as the selected clock signal DVD_OUT. The clock signal DVD_OUT and the internal clock signal IDVD_CLK are combined to output a DLL source clock signal DVD_CLK. The reference clock generation unit 350 generates by performing an AND operation of the internal clock signal IDVD_CLK and the source voltage VDD. Referring to FIG. 6A, the second clock divider 320 may include a single divide by 2 clock divider or a single divide by 2n clock divider. Here, η is a positive integer. 6Β, the second clock divider 320 may include a plurality of unit clock dividers 320_1 to 320_Ν and a plurality of fuse units 325_1 to 325. A plurality of unit clock dividers to 32〇_Ν series connection' For generating a plurality of clocks having different unit clocks (eg, CLK_D2_1 to CLK_D2__N); and the plurality of fuse units 325_1 to 325-N are selected by fusing the selected fuses to select the output of the plurality of unit dividers One of the veins. In the present invention, it is possible to replace the fuse by using a plurality of metal selection processing units (cutting 〇pti〇n pr〇cessi, % 仙(1)) in the processing period 112670.doc 1324779 Units 325-1 through 325_N construct a second clock divider and y 320. Typically, a 5' semiconductor memory device has a power saving mode period depending on its specifications and the external environment. In a first embodiment of the present invention, a second frequency-divided clock signal for setting a portion of a phase update operation in a power saving mode

CLK—D2係選自複數個單元時脈(意即,CLK—D2J至 CLK_D2一N)中。考慮到省電模式週期隨環境而不同,故在 測試後设定第二除頻時脈訊號CLK_D2 ^因此,熔絲單元 325 — 1至325—N之對應熔絲回應於第二除頻時脈訊號 CLK_D2而打開。 如上所述,根據本發明之第一實施例,祖源時脈訊號 dvd_clk基於第二除頻時脈訊號CLK—D2而選擇性地產生 以用於設定省電模式中之相位更新部分。本文中,第二除 頻時脈訊號CLK—D2係根據省電模式來選擇。CLK_D2 is selected from a plurality of unit clocks (ie, CLK_D2J to CLK_D2 - N). Considering that the power-saving mode period varies with the environment, the second frequency-divided clock signal CLK_D2 is set after the test. Therefore, the corresponding fuses of the fuse units 325-1 to 325-N respond to the second frequency-divided clock. The signal CLK_D2 is turned on. As described above, according to the first embodiment of the present invention, the source clock signal dvd_clk is selectively generated based on the second frequency-divided clock signal CLK_D2 for setting the phase update portion in the power saving mode. Herein, the second frequency-divided clock signal CLK_D2 is selected according to the power saving mode.

圖7為用於圖5中所示之根據本發明之第一實施例的源時 脈產生單元之操作之時序圖。 第時脈除頻器31〇接收内部時脈訊號IDVD_CLK並將 其除2,藉此將經除頻之時脈訊號作為第—除頻時脈訊號 CLKJD1予以輸出。第二時脈除頻器32()接收第一除頻時脈 訊號CLK_DL·並藉由使用複數個單元除頻器_ n 將其除頻。因此,複數個單元除頻器32G i至似n之輸出 作為具有不同單元時脈(意即,CLK_D2—UClk Μ n)之 第二除頻時脈訊號CLK—02予以輸出。不同單元時脈 H2670.doc 1324779 生單元350、一時脈轉換單元360及一時脈除頻器370。 時脈除頻器370藉由對内部時脈訊號IDVD_CLK進行除 頻來產生第一轉換時脈訊號CLK_T1,以設定正常模式中之 相位更新操作之持續時間。 時脈轉換單元360藉由轉換第一轉換時脈訊號CLK_T1來 產生第二轉換時脈訊號CLK_T2,以設定省電模式中之相位 更新操作之持續時間。 選擇單元330基於省電模式控制訊號CTRL選擇第一及第 二轉換時脈訊號CLK_T1及CLK_T2中之一者,藉此將選定 之訊號作為選擇時脈訊號DVD_OUT予以輸出。 運算邏輯單元340邏輯地組合選擇時脈訊號DVD_OUT與 内部時脈訊號IDVD_CLK,以輸出DLL源時脈訊號 DVD_CLK。 參考時脈產生單元350藉由執行内部時脈訊號 IDVD_CLK與源電壓VDD之「及」運算來產生參考時脈訊 號REF_CLK。 參看圖11A,時脈轉換單元360可包括單一時脈轉換器, 其週期性地選擇第一轉換時脈訊號CLK_T1之部分,以將經 選定之時脈訊號作為第二轉換時脈訊號CLK_T2予以輸出。 另外,參看圖11B,時脈轉換單元360可包括複數個單元 時脈轉換器360_1至360_N及複數個熔絲單元365_1至 3 65_N。複數個單元時脈轉換器360_1至360_N係串聯連接 以產生具有不同單元時脈(例如CLK_T2_1至CLK_T2_N)之 複數個時脈;且複數個熔絲單元365_1至365_N藉由熔斷選 112670.doc 1324779 複數個單元時脈轉換器之輸出時脈中之-者。在本發明中,有可能藉由使用複數個金屬選擇處理單 兀代㈣絲早% 365—u 365—Ν來建構時脈轉換單元剔。 半㈣㈣μ置由於其規格及外 具有不同省電模式週期。在本發明之第二實施例中,在複 =Γ中意V CL、T2-1至CLK'T2-N)中選擇用於 =Τ2 新操作wFig. 7 is a timing chart for the operation of the source clock generating unit according to the first embodiment of the present invention shown in Fig. 5. The first clock divider 31 receives the internal clock signal IDVD_CLK and divides it by 2, thereby outputting the frequency-divided clock signal as the first-divided clock signal CLKJD1. The second clock divider 32() receives the first divided clock signal CLK_DL· and divides it by using a plurality of unit frequency dividers _ n. Therefore, the output of the plurality of unit frequency dividers 32G i to n is output as the second frequency division clock signal CLK-02 having different unit clocks (that is, CLK_D2 - UClk Μ n). Different unit clocks H2670.doc 1324779 raw unit 350, a clock switching unit 360 and a clock demultiplexer 370. The clock divider 370 generates the first converted clock signal CLK_T1 by dividing the internal clock signal IDVD_CLK to set the duration of the phase update operation in the normal mode. The clock conversion unit 360 generates the second converted clock signal CLK_T2 by converting the first converted clock signal CLK_T1 to set the duration of the phase update operation in the power saving mode. The selecting unit 330 selects one of the first and second switching clock signals CLK_T1 and CLK_T2 based on the power saving mode control signal CTRL, thereby outputting the selected signal as the selection clock signal DVD_OUT. The operation logic unit 340 logically combines and selects the clock signal DVD_OUT and the internal clock signal IDVD_CLK to output the DLL source clock signal DVD_CLK. The reference clock generation unit 350 generates the reference clock signal REF_CLK by performing an AND operation of the internal clock signal IDVD_CLK and the source voltage VDD. Referring to FIG. 11A, the clock conversion unit 360 can include a single clock converter that periodically selects a portion of the first converted clock signal CLK_T1 to output the selected clock signal as the second converted clock signal CLK_T2. . In addition, referring to FIG. 11B, the clock conversion unit 360 may include a plurality of unit clock converters 360_1 to 360_N and a plurality of fuse units 365_1 to 3 65_N. A plurality of unit clock converters 360_1 to 360_N are connected in series to generate a plurality of clocks having different unit clocks (eg, CLK_T2_1 to CLK_T2_N); and a plurality of fuse units 365_1 to 365_N are selected by fuse selection 112670.doc 1324779 The one of the output clocks of the unit clock converters. In the present invention, it is possible to construct a clock switching unit by using a plurality of metal selection treatments for a single generation (four) silk early % 365 - u 365 - 。. The half (four) (four) μ set has different power saving mode cycles due to its specifications. In the second embodiment of the present invention, a new operation for =Τ2 is selected among the complex values V CL, T2-1 to CLK'T2-N)

條一 T2。考慮到省電模式週期隨環境而不同,故在測試 之後設定第二轉換時脈訊號CLK—Τ2。因此,料單元如i 至365-N之對㈣絲回應於第二轉換時脈訊號咖 ^ 開》 一 圖以用於圖1G中料之根據本發明第:實施例之源時 脈產生單元300的操作之時序圖。 如所示’時脈除頻器370接收内部時脈訊號idvd—clk並 對其進行:除頻,藉此將經除頻之時脈訊號作為第一轉換 時脈訊號CLK—T2予以輸出。時脈轉換單元36〇接收第一轉 換時脈訊號CLK_T1並藉由使用複數個單元時脈轉換器 36〇j至36〇-N來轉換第一轉換時脈訊號CLKJT1。因此,複 數個單元時脈轉換器之輸出係作為具有不同 單元時脈(意即,〇匕反_丁2_1至(:1^一72-\)之第二轉換時脈 訊號CLKJT2予以輸出。本文中,*同單元時脈CLK—Μ」 至CLK_T2_N具有不同時脈值’意即之、〗至n。 假定在具有不同單元時脈(意即CLK_T2_1至CLK_T2_N) 之第二轉換時脈訊號CLK一T2中’經轉換成第一轉換時脈訊 112670.doc 1324779 號CLK_T1之頻率的三分之一併經由如圖11B中所示之第二 單元時脈轉換器360_2輸出之第二單元時脈CLK_T2_2被選 擇用於設定省電模式中之相位更新操作之部分。 選擇單元330選擇第二單元時脈CLK_T2_2作為省電模式 期間之選擇時脈訊號DVD_OUT。運算邏輯單元340邏輯地 組合省電模式期間之選擇時脈訊號DVD_OUT(意即,第二 時脈值CLK_T2_2)與内部時脈訊號IDVD_CLK,以輸出適於 省電模式之不同部分之DLL源時脈訊號DVD_CLK。 此時,參看圖12,當啟用第二單元時脈CLK_T2_2時DLL 源時脈訊號DVD_CLK僅在一段短時間内連續具有有效 值。因此,有可能有效地執行相位更新操作。 此外,有可能藉由使用熔絲單元365_1至365_:^或金屬選 擇處理單元來選擇具有不同單元時脈(意即,CLK_T2_1至 CLK_T2_N)之第二轉換時脈訊號CLK_T2中之一者。 在本發明第二實施例中,源時脈產生單元300之運算邏輯 單元340及參考時脈產生單元350之結構與圖8及9中所示的 第一實施例之結構相同。 如上所述,根據本發明之第二實施例,DLL源時脈訊號 DVD_CLK藉由選擇第一轉換時脈訊號CLK_T1及具有不同 單元時脈(意即,CLK_T2_1至CLK_T2_N)之第二轉換時脈 訊號CLK_T2中之一者而產生。此時,第一及第二轉換時脈 訊號CLK—Tl及CLK_T2之每一者具有相同之有效部分及不 同週期。因此,有可能藉由提供適於正常模式或具有視半 導體記憶體裝置而定之時間週期之省電模式之DLL源時脈 112670.doc -19- 訊號dvd_CLk,來保證低功率操作τ之半導體記憶體裝置 之穩定操作。 圖13Α及13Β為描述應用根據本發明之第一及第二實施 例之源時脈產生單元的模擬結果之時序圖。 如圖13Α中所示,根據第一音 ..^ |爆弟貫鈿例’參考時脈訊號 REF_CLK與DLL源時脈訊號DVD一CLK間之β夺間滯後約為 !62fs。另外,如圖13Β中所示,根據第二實施例,參考時Article 1 T2. Considering that the power saving mode period varies with the environment, the second switching clock signal CLK_Τ2 is set after the test. Therefore, the pair of materials, such as i to 365-N, is in response to the second conversion clock signal, and is used in the source clock generation unit 300 according to the first embodiment of the present invention. Timing diagram of the operation. As shown, the clock divider 370 receives the internal clock signal idvd-clk and performs frequency division, thereby outputting the frequency-divided clock signal as the first conversion clock signal CLK_T2. The clock conversion unit 36 receives the first conversion clock signal CLK_T1 and converts the first conversion clock signal CLKJT1 by using a plurality of unit clock converters 36〇j to 36〇-N. Therefore, the output of the plurality of unit clock converters is output as the second converted clock signal CLKJT2 having different unit clocks (that is, 〇匕反_丁2_1 to (:1^72-\). Medium, *cell clock CLK_Μ" to CLK_T2_N have different clock values 'meaning, 〗 〖n. Assume that the second signal CLK is in the second transition clock with different unit clocks (meaning CLK_T2_1 to CLK_T2_N) In T2, 'the third unit clock CLK_T2_2 outputted by the second unit clock converter 360_2 as shown in FIG. 11B is converted into one third of the frequency of the first conversion clock signal 112670.doc No. 1324779 CLK_T1. The portion of the phase update operation selected in the power saving mode is selected. The selecting unit 330 selects the second cell clock CLK_T2_2 as the selected clock signal DVD_OUT during the power saving mode. The arithmetic logic unit 340 logically combines the periods of the power saving mode. The clock signal DVD_OUT (ie, the second clock value CLK_T2_2) and the internal clock signal IDVD_CLK are selected to output a DLL source clock signal DVD_CLK suitable for different parts of the power saving mode. At this time, referring to FIG. 12, when enabled First The DLL source clock signal DVD_CLK has a valid value continuously for a short period of time at the cell clock CLK_T2_2. Therefore, it is possible to perform the phase update operation efficiently. In addition, it is possible to use the fuse unit 365_1 to 365_:^ or metal. The processing unit is selected to select one of the second converted clock signals CLK_T2 having different unit clocks (ie, CLK_T2_1 to CLK_T2_N). In the second embodiment of the present invention, the arithmetic logic unit of the source clock generating unit 300 The structure of the 340 and reference clock generation unit 350 is the same as that of the first embodiment shown in FIGS. 8 and 9. As described above, according to the second embodiment of the present invention, the DLL source clock signal DVD_CLK is selected by the A conversion clock signal CLK_T1 and one of the second conversion clock signals CLK_T2 having different unit clocks (that is, CLK_T2_1 to CLK_T2_N) are generated. At this time, the first and second conversion clock signals CLK_Tl And each of CLK_T2 has the same effective portion and different periods. Therefore, it is possible to provide a time period suitable for the normal mode or with the semiconductor memory device. The DLL source clock of the electrical mode 112670.doc -19-signal dvd_CLk, to ensure stable operation of the semiconductor memory device with low power operation τ. Figures 13A and 13B are diagrams for describing the application according to the first and second embodiments of the present invention. The timing diagram of the simulation result of the source clock generation unit. As shown in Fig. 13A, according to the first sound, the 音 钿 ' ' ' reference clock signal REF_CLK and DLL source clock signal DVD - CLK β The intervening lag is about! 62fs. In addition, as shown in FIG. 13A, according to the second embodiment, when referring to

脈訊號REF_CLK與DLL源時脈訊號DVD CLK間之時間帶 後約為322 fs。因此,第一及第二實施例之每一時間滯後實 際為零。 下文中,參看圖4至9,將描述一種用於根據本發明之第 -實施例在具有正常模式或省電模式之同步記憶體裝置中 產生dll時脈訊號的方法。The time between the pulse signal REF_CLK and the DLL source clock signal DVD CLK is approximately 322 fs. Therefore, each time lag of the first and second embodiments is practically zero. Hereinafter, referring to Figures 4 through 9, a method for generating a dll clock signal in a synchronous memory device having a normal mode or a power saving mode according to the first embodiment of the present invention will be described.

首先,時脈緩衝器100藉由接收外部時脈訊號CLK及外部 時脈禁止訊號CLKB而產生内部時脈訊號IDVD—CLK ;源時 脈產生單元300之第一時脈除頻器31〇對内部時脈訊號 IDVD_CLK進行除頻以產生第一除頻時脈訊號CLK_D1,以 用於設定正常模式中之相位更新操作之部分。第二時脈除 頻器320對第一除頻時脈訊號CLK-D1進行除頻以產生第二 除頻時脈訊號CLK一D2,以用於設定省電模式中之相位更新 操作之部分。 選擇單元330基於省電模式控制訊號CTRL選擇並輸出用 於正常模式之第一除頻時脈訊號CLK_D1及用於省電模式 之第二除頻時脈訊號CLK—D2。運算邏輯單元34〇在正常模 112670.doc -20- 1324779 式情況下基於第一除頻時脈訊號CLK一D1及内部 時脈訊號 IDVD_CLK輸出DLL源時脈訊號DVD_CLK,且名少$ — 一 ,電模式 情況下基於第二除頻時脈訊號CLK_D2及内 IDVD_CLK輸出DLL源時脈訊號DVD_CLK。 部時脈 訊號 正常模式中之相位更新操作之步驟詳細描述如τ 首先,源時脈產生單元300之參考時脈產生單 内部時脈訊號IDVD—CLK與源電壓VDD之「及」運算 輸出參考時脈訊號REF CLK;運算邏輯單元340勃;^ &First, the clock buffer 100 generates the internal clock signal IDVD_CLK by receiving the external clock signal CLK and the external clock disable signal CLKB; the first clock divider 31 of the source clock generation unit 300 is internally The clock signal IDVD_CLK is divided to generate a first divided clock signal CLK_D1 for setting a portion of the phase update operation in the normal mode. The second clock divider 320 divides the first divided clock signal CLK-D1 to generate a second divided clock signal CLK_D2 for setting a portion of the phase update operation in the power saving mode. The selecting unit 330 selects and outputs the first divided clock signal CLK_D1 for the normal mode and the second divided clock signal CLK_D2 for the power saving mode based on the power saving mode control signal CTRL. The operation logic unit 34 outputs the DLL source clock signal DVD_CLK based on the first frequency-divided clock signal CLK_D1 and the internal clock signal IDVD_CLK in the normal mode 112670.doc -20-1324779, and the name is less than $-1. In the electrical mode, the DLL source clock signal DVD_CLK is output based on the second frequency division clock signal CLK_D2 and the inner IDVD_CLK. The steps of the phase update operation in the normal mode of the clock signal are described in detail as τ. First, the reference clock of the source clock generation unit 300 generates a "sum" operation output reference of the single internal clock signal IDVD_CLK and the source voltage VDD. Pulse signal REF CLK; operation logic unit 340; ^ &

- 列仃内部時 脈訊號IDVD_CLK與第一除頻時脈訊號CLK_Dl之「η — _ 〜及」運 常模式中之相 延遲線410接收DLL源時脈訊號DVD一CLK以輪出 脈訊號DLL_CLK。同樣,虛設延遲線420及延遲複製模型44〇 藉由模型化DLL源時脈訊號DVD—CLK來產生反饋時脈訊 號FB_CLK。- The phase delay signal 410 in the "n__~~" mode of the internal pulse signal IDVD_CLK and the first frequency-divided clock signal CLK_Dl receives the DLL source clock signal DVD-CLK to output the pulse signal DLL_CLK. Similarly, the dummy delay line 420 and the delayed replica model 44 产生 generate the feedback clock signal FB_CLK by modeling the DLL source clock signal DVD_CLK.

算,以輸出DLL源時脈訊號DVD_CLK用於正 位更新操作。 相位比較器450比較反饋時脈訊號FB—CLK與自源時脈訊 號產生單元300輸出之參考時脈訊號REF_CLK;延遲控制器 430控制延遲線410及虛設延遲線420之延遲量,以執行正常 模式中之相位更新操作》 同樣地,省電模式中之相位更新操作描述如下。 首先,源時脈產生單元300之參考時脈產生單元350執行 内部時脈訊號IDVD_CLK與源電壓VDD之「及」運算,以 輸出參考時脈訊號REF_CLK;運算邏輯單元340執行内部時 脈訊號IDVD_CLK與第二除頻時脈訊號CLK_D2之「及」運 112670.doc 21 1324779 算,以輸出DLL源時脈訊號DVD_CLK用於省電模式中之相 位更新操作。 延遲線410接收DLL源時脈訊號DVD_CLK以輸出DLL時 脈訊號DLL—CLK。同樣,虛設延遲線420及延遲複製模型440 藉由模型化DLL源時脈訊號DVD_CLK來產生反饋時脈訊 號FB CLK。 相位比較器45 0比較反饋時脈訊號fb_CLK與自源時脈訊 號產生單元300輸出之參考時脈訊號REF_CLK;且延遲控制 器430控制延遲線41〇之延遲量,以執行省電模式中之相位 更新操作。 如上所述,根據本發明,當諸如在正常模式中需要較快 之相位更新操作時,對内部時脈訊號進行較小數量的除 頻,藉此在高頻率下執行相位更新操作。當諸如在省電模 式中減少功率消耗時’對内部時脈訊號進行較大數量的除 頻,藉此在低頻率下執行相位更新操作一次以上。 因此,在本發明中,即使半導體記憶體裝置長時間地停 留在省電模式中,„脈產生單元亦有效地防止脱鎖定 失敗’藉此更加穩定地操作。 固定時脈頻率之時脈之時脈除頻 器建構。Count, to output the DLL source clock signal DVD_CLK for the positive update operation. The phase comparator 450 compares the feedback clock signal FB_CLK with the reference clock signal REF_CLK output from the source clock signal generating unit 300; the delay controller 430 controls the delay amount of the delay line 410 and the dummy delay line 420 to perform the normal mode. Phase update operation in the same manner. Similarly, the phase update operation in the power saving mode is described as follows. First, the reference clock generation unit 350 of the source clock generation unit 300 performs an AND operation of the internal clock signal IDVD_CLK and the source voltage VDD to output a reference clock signal REF_CLK; the operation logic unit 340 performs an internal clock signal IDVD_CLK and The second frequency-divided clock signal CLK_D2 is "and" 112670.doc 21 1324779, to output the DLL source clock signal DVD_CLK for the phase update operation in the power saving mode. Delay line 410 receives the DLL source clock signal DVD_CLK to output the DLL clock signal DLL_CLK. Similarly, the dummy delay line 420 and the delayed replica model 440 generate the feedback clock signal FB CLK by modeling the DLL source clock signal DVD_CLK. The phase comparator 45 0 compares the feedback clock signal fb_CLK with the reference clock signal REF_CLK output from the source clock signal generating unit 300; and the delay controller 430 controls the delay amount of the delay line 41〇 to perform the phase in the power saving mode. Update operation. As described above, according to the present invention, when a relatively fast phase update operation is required, such as in the normal mode, the internal clock signal is subjected to a smaller number of divisions, whereby the phase update operation is performed at a high frequency. The internal clock signal is subjected to a larger number of divisions when reducing power consumption, such as in power saving mode, whereby the phase update operation is performed more than once at low frequencies. Therefore, in the present invention, even if the semiconductor memory device stays in the power saving mode for a long time, the pulse generating unit effectively prevents the de-locking failure, thereby operating more stably. Fixing the clock of the clock frequency Pulse divider construction.

置之功率消耗。 如上所述,在已知組態中,源時脈產生單元以產生具有 。相反,在本發明 可變時脈頻率之 有可能降低半導體記憶體裝 29日及2005年12月19 本申請案含有與分別在2〇〇5年9月29曰 112670.doc •22· 1324779 曰於韓國專利局申請之韓國專利申請案第KR 2〇〇5 9i658 號及第KR 2005-125354號有關之發明,該等專利申請案之 全文以引用的方式併入本文中。 雖然已關於某些較佳實施例描述了本發明,但熟習此項 技術者將易於瞭解,在不偏離如以下申請專利範圍中所界 定之本發明之精神及㈣的情況下,可進行各種改變及修 改。 【圖式簡單說明】Set the power consumption. As mentioned above, in known configurations, the source clock generation unit is generated with . Conversely, in the variable clock frequency of the present invention, it is possible to reduce the semiconductor memory device for 29 days and December 19, 2005. The present application contains and is respectively at September 29曰112670.doc •22·1324779 〇〇 The inventions of the Korean Patent Application Nos. KR 2〇〇5 9i658 and KR 2005-125354, filed by the Korean Patent Office, the entire contents of each of which are hereby incorporated by reference. While the invention has been described with respect to the preferred embodiments of the present invention, those skilled in the art can readily appreciate that various changes can be made without departing from the spirit and scope of the invention as defined in the following claims. And modify. [Simple description of the map]

圖1為說明典型延遲鎖定迴路(DLL)電路之基本操作 序圖; 圖2為說明已知〇1^電路之方塊圖; 圖3為說明圖2之DLL之操作的時序圖; 圖4為說明根據本發明之肌電路之方塊圖; 圖5為圖4中所示之根據本發 ^ 佩不赞明第一實施例之源時脈產 生單元的方塊圖; 座BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a block diagram showing a basic operation of a typical delay locked loop (DLL) circuit; Fig. 2 is a block diagram showing a known circuit; Fig. 3 is a timing chart for explaining the operation of the DLL of Fig. 2; FIG. 5 is a block diagram of the source clock generating unit of the first embodiment according to the present invention; FIG.

圖6 A及6B為圖5中所·; . 不之第二時脈除頻器之詳細電路 圖0 圖7為用於圖5中你· 一七& &, w '、根據本發明第一實施例之源時脈 產生單7L的操作之時序圖; 圖8為圖5中所示之運宜, 算邏輯單7L之詳細電路圖; 圖9為圖5中所示之參考 〒呀脈產生單兀之詳細電路圖; 圖10為圖4中所示之被秘丄w 吓不之根據本發明—筮一 吝斗留-从士 弟一實細例之源時脈 產生早7L的方塊圖; 圖11A及11B為圖1〇所+ 士 # λ 所不之時脈轉換單元之詳細電路圖; 112670.doc -23- 圖12為圖u)中所示之根據本發明第二實施例之源時脈產 生單元的操作之時序圖;及 圖13A及13B分別為描述應用根據本發明第—及第二 施例之源時脈產生單元之模擬結果的時序圖。 一6A and 6B are detailed diagrams of the second clock demultiplexer in FIG. 5; FIG. 7 is used in FIG. 5 for you, a seven &&, w ', according to the present invention The timing diagram of the operation of the source clock of an embodiment generates a single 7L; FIG. 8 is a detailed circuit diagram of the logic diagram 7L shown in FIG. 5; FIG. 9 is the reference diagram generated in FIG. Detailed circuit diagram of a single cymbal; FIG. 10 is a block diagram of the present invention according to the present invention, which is shown in FIG. 4, which is scared by the secrets of the present invention. 11A and 11B are detailed circuit diagrams of the clock switching unit of FIG. 1 士 + 士# λ; 112670.doc -23- FIG. 12 is a source according to the second embodiment of the present invention shown in FIG. A timing diagram of the operation of the pulse generating unit; and FIGS. 13A and 13B are timing diagrams respectively describing simulation results of applying the source clock generating unit according to the first and second embodiments of the present invention. One

【主要元件符號說明】 10 時脈緩衝器 20 省電模式控制器 25 時脈除頻器 30 相位比較器 40 延遲控制器 50 延遲線 60 虛設延遲線 70 延遲複製模型 80 時脈訊號線 90 輸出緩衝器 100 時脈緩衝器 200 省電模式控制器 300 源時脈產生單元 310 第一時脈除頻器 320 第二時脈除頻器 330 選擇單元 340 運异邏輯單元 350 參考時脈產生單元 360 時脈轉換單元 I12670.doc •24· 1324779[Main component symbol description] 10 clock buffer 20 power saving mode controller 25 clock frequency divider 30 phase comparator 40 delay controller 50 delay line 60 dummy delay line 70 delay replica model 80 clock signal line 90 output buffer 100 clock buffer 200 power saving mode controller 300 source clock generation unit 310 first clock frequency divider 320 second clock frequency divider 330 selection unit 340 operation logic unit 350 reference clock generation unit 360 Pulse conversion unit I12670.doc •24· 1324779

370 400 410 420 430 440 450 600 8000 時脈除頻器 相位更新單元 延遲線 虛設延遲線 延遲控制器 延遲複製模型 相位比較器 DLL電路 時脈訊號線 輸出緩衝器 112670.doc •25-370 400 410 420 430 440 450 600 8000 Clock Demultiplexer Phase Update Unit Delay Line Dummy Delay Line Delay Controller Delay Copy Model Phase Comparator DLL Circuit Clock Signal Line Output Buffer 112670.doc •25-

Claims (1)

丄 3:Z4/7y丄 3: Z4/7y 模式之一記憶體裝置之延 第095124001號專利申請案 中文申請專利範圍替換本(98年9月) 十、申請專利範圍: 1. 一種具有一正常模式及一省電 遲鎖定迴路(DLL),其包含: 時脈緩衝器,其用於對一外部時脈訊號進行緩衝以 輸出一内部時脈訊號; 省電棋式控制器,其用於回應於一時脈啟用訊號而 產生-省電模式控制訊號’以界定該正常模式或該省電 模式; 一源時脈產生單元,其用於接收該内部時脈訊號,以 在°玄省電&amp;式控制訊號控制之下產生-DLL源時脈訊 號;及 相位更新單凡’其用於基於該DLL源時脈訊號執行-相位更新操作’以輸出一 DLL時脈訊號, ,、中。亥源時脈產生|元產生該源時脈訊號,以用於 在該省電模式期間至少一次地執行該相位更新操作。 2.如凊求項1之DLL,其中該源時脈產生單元包括: 第時脈除頻器’其用於藉由對該内部時脈訊號進 行除頻而產$帛一除頻時脈訊號,以設定該正常模式 中之該相位更新操作之一持續時間; 。第一時脈除頻器,其用於藉由對該第一除頻時脈訊 號進行除頻而產生_第二除頻時脈訊號,以設定該省電 模式中之該相位更新操作之一持續時間; :k擇ItG ’ |帛於基於該省電模式控制訊號來選擇 該等第-及第二除頻時脈㈣巾之—者藉此將該經選 I12670-980918.doc 1324779 定之訊號作為一選擇時脈訊號予以輸出;及 一運算邏輯單兀,其用於邏輯地組合該選擇時脈訊號 與該内部時脈訊號,以輪出該DLL源時脈訊號。 3.如請求項2之DLL ’其中該選擇單元為該正f模式選擇該 第-除頻時脈訊號,且為該省電模式選擇該第二除頻時 脈訊號。 4. 如請求項2之DLL’其中該第_ 除頻器。 時脈除頻器包括一除2時脈 時脈除頻器包括一除2n時 5. 如清求項2之DLL,其十該第 脈除頻器,η為一正整數。 6. 如清求項2之DLL,其中贫笛_ π士〆 丹甲°亥第—時脈除頻器包括: 串聯連接之複數個單元降 頻益,其用於產生複數個時 脈,該複數個時脈中之每一本 單元時脈;及 者具有-與其他時脈不同之 複數個熔絲單元,其用於 遭…々 於%由使該複數個熔絲中之一 k疋熔絲熔斷,來選擇自該 脈中之-者。 复數個早讀頻器輪出之時 7·如請求項2之DLL,中哕笛_ + ㈣、查接# 、&quot;第—時脈除頻器包括: _聯連接之複數個單元除頻 脈,該複數個時脈中之每一 ^於產生複數個時 之 單元時脈,·及 ’、有—與其他時脈不同 用於藉由使用 元除頻器輸出 一金屬選擇處 之時脈中之_ 複數個選擇處理單元,其 理單元來選擇自該複數個單 者。 I12670-980918.doc 1324779 8.如請求項2之DLL,其中該運算邏輯單元包括: 一「反及」閘,其用於執行該内部時脈訊號與該選擇 時脈訊號之一「反及」運算;及 一反相器,其用於使該「反及」閘之一輸出訊號反相, 以輸出該DLL源時脈訊號。 9·如請求項2之DLL,其中該源時脈產生單元包括一參考時 脈產生單元,其用於藉由執行該内部時脈訊號與一源電 壓之一「及」運算’而產生一參考時脈訊號。 10. 如請求項9之DLL,其中該相位更新單元包括: 一延遲線’其用於延遲該DLL源時脈訊號之一相位,以 輸出該DLL時脈訊號; 一虛設延遲線,其具有實質上與該延遲線之組成相同 之組成; 一延遲複製模型,其用於按照該記憶體裝置中之一時 脈訊號之延遲因子來模型化該虛設延遲線之一輸出訊 號,藉此將該經模型化之訊號作為一反饋時脈訊號予以 輸出; 一相位比較器,其用於比較該參考時脈訊號與該反饋 時脈訊號’以偵測其間之一相位差;及 一延遲控制器,其用於接收該比較器之一輸出訊號, 以控制該延遲線及該虛設延遲線之延遲量。 11. 如請求項12DLL,其中該源時脈產生單元包括: 一時脈除頻器,其用於藉由對該内部時脈訊號進行除 頻而產生一第一轉換時脈訊號,以設定該正常模式中之 112670-9809l8.doc 該更新操作之一持續時間; 一時脈轉換單元,其用於藉由轉換該第一轉換時脈訊 號而產生一第二轉換時脈訊號,以設定該省電模式中之 該相位更新操作之一持續時間; 一選擇單元,其基於該省電模式控制訊號來選擇該等 第一及第二轉換時脈訊號中之一者,藉此將該選定之訊 號作為一選擇時脈訊號予以輸出;及 運真邏輯單元,其用於邏輯地組合該選擇時脈訊號 與該内部時脈訊號,以輸出該DLL源時脈訊號。 12. 如請求項U之DLL’其中該選擇單元為該正常模式選擇該 第一轉換時脈訊號,且為該省電模式選擇該第二轉換時 脈訊號。 13. 如明求項11之DLL,其中該時脈除頻器包括一除2時脈除 頻器。 〃 14. 如請求項丨丨之D L L ’其中該時脈轉換單元包括一時脈轉換 益,该時脈轉換器週期性地選擇該第一轉換時脈訊號之 一部分,以將該選定之時脈訊號作為該第二轉換時脈訊 遠予以輸出。 15. 如凊求項11之DLL·,其中該時脈轉換單元包括: 串聯連接之複數個單元時脈轉換器,其用於產生複數 個時脈’該複數個時脈中之每—者具有—與其他時脈不 同之單元時脈;及 複數個熔絲單元,其用於藉由使該複數個熔絲中之一 選定溶絲輯㈣擇自該複數個單元時脈㈣器輸出之 112670-9809l8.doc 時脈中之一者。 16·如請求項丨丨之DLL,其中 ,、甲这時脈轉換單元包括: 串聯連接之複數個單 時脈轉換’其用於產生複數 调時脈,該複數個時脈中 〒之母一者具有一與其他時脈不 丨J之早兀時脈;及 其用於藉由使用一金屬選擇處 單元時脈轉換器輸出之時脈中 複數個選擇處理單元, 理單元來選擇自該複數個 之一者。 17.如請求則之DLL,其中該源時脈產生單元包括一參考時 產生單元’其用於藉由執行該内部時脈訊號與一源電 壓之及」運算,而產生_參考時脈訊號。 18·如請求項丨7之DLL,其中該相位更新單元包括: 一延遲線,其用於延遲該DLL源時脈訊號之一相位,以 輸出該DLL時脈訊號; 一虛设延遲線,其具有實質上與該延遲線之組成相同 之組成; 一延遲複製模型,其用於按照該記憶體裝置中之一時 脈訊號之延遲因子來模型化該虛設延遲線之一輸出訊 號,藉此將該經模型化之訊號作為一反饋時脈訊號予以 輸出; 一相位比較器’其用於比較該參考時脈訊號與該反饋 時脈訊號’以偵測其間之一相位差;及 一延遲控制器,其用於接收該相位比較器之一輸出訊 號,以控制該延遲線及該虛設延遲線之延遲量。 112670-980918.doc U24779 19.如請求項iijDLL,且中 八r通源Bf脈產生單元包括: —第一時脈轉換單元; 一第二時脈轉換單元; 一選擇單元,其用於基於該省電模式控制訊號來選擇 該等第-及第二時脈轉換單元之輸出訊號中之—者,藉 此:該選定訊號作為一選擇時脈訊號予以輸出;及 運算邏輯單兀’其用於邏輯地組合該選擇時脈訊號 與該内部時脈訊號,以輸出該DLL源時脈訊號。 2〇.如請求項19之肌,其中該第—時脈轉換單元藉由轉換該 ㈣時脈til號而產生-第—轉換時脈訊號’以設定該正 *杈式中之該相位更新操作之一持續時間;且該第二時 脈轉換單元藉由轉換該第一轉換時脈訊號而產生—第二 轉換時脈訊號,以設定該省電模式中之該相位更新操作 之一持續時間。 21. 如請求項20之DLL’其中該選擇單元為該正常模式選擇該 第一轉換時脈訊號,且為該省電模式選擇該第二轉換時 脈訊號。 22. 如請求項20之DLL,其中該第一時脈轉換單元包括一除2 時脈除頻器。 23. 如請求項20之DLL,其中該第二時脈轉換單元包括—時脈 轉換器,該時脈轉換器週期性地選擇該第一轉換時脈訊 號之一部分’以將該選定時脈訊號作為該第二轉換時脈 訊號予以輸出。 24. 如請求項20之DLL,其中該第二時脈轉換單元包括: 112670-980918.doc -6- 個=連接之複數個單元時脈轉換ϋ,其用於產生複數 =:::複數個時脈中之每-者具有-與其他時脈不 间之早兀時脈;及 複數個㈣早π ’其用於藉由使該複數個溶絲中之一 2定炼絲料,來選擇自該複數個單元時脈輸出之時脈 干之一者。 如π求項20之DLL ’其中該第二時脈轉換單元包括: 事聯連接之複數個單元時脈轉換器,其㈣產生複數 個時脈’該複數個時脈中之每一者具有一與其他時脈不 同之單元時脈;及 f數個選擇處理單元’其用於藉由使用—金屬選擇處 理單兀來廷擇自該複數個單元時脈轉換器輸出之時脈中 之一者。 &amp;如請求項20之DLL,其中該源時脈產生單&amp;包括一參考時 脈產生單兀,其用於藉由執行該内部時脈訊號與一源電 壓之一「及」運算,而產生一參考時脈訊號。 27.如請求項26之DLL,其中該相位更新單元包括: 一延遲線,其用於延遲該DLX源時脈訊號之一相位,以 輪出該DLL時脈訊號; 一虛設延遲線,其具有與該延遲線之組成相同之組成; 一延遲複製模型’其用於按照該記憶體裝置中之一時 脈訊號之延遲因子來模型化該虛設延遲線之一輸出訊 號’藉此將該經模型化之訊號作為一反饋時脈訊號予以 輸出; 112670-980918.doc 1324779 一相位比較器,其用於比較該參考時脈訊號與該反饋 時脈訊號,以偵測其間之一相位差;及 一延遲控制器’其用於接收該相位比較器之一輸出訊 號’以控制該延遲線及該虛設延遲線之延遲量。 28. —種用於產生具有一正常模式及一省電模式之一記憶體 裝置之一 DLL時脈的方法,其包含: 藉由對一外部時脈進行緩衝而產生一内部時脈訊號; 藉由對該内部時脈訊號進行除頻而產生一第一除頻時 脈訊號; 基於該第一除頻時脈訊號而產生一第二除頻時脈訊 號; 在該正常模式中,基於該第—除頻時脈訊號執行-DLL 相位更新操作;及 在該省電模式中,基於該第二除頻時脈訊號執行一 DLL 相位更新操作’其令在該省電模式中的該町相位更新操 作在該省電模式期間中至少執行一次。 29. 30. 如π求項28之方法,其中產生該第二除頻時脈訊號包括 對該第一除頻時脈訊號進行除頻。 如請求項28之方法’其中產生該第二除頻時脈訊號包括 轉換該第一除頻時脈訊號。 3 1 ·如明求項28之方法’其中該第_除頻時脈訊號係用於設 定該正常模式中之該相位更新操作之—持續時間。 32.如請求項28之方法’其中該第二除頻時脈訊號係用於設 定該省電模式中之該相位更新操作之-持續時間。 112670-980918.doc 月求項28之方法,其中基於該第一除頻時脈訊號執行 該DLL相位更新操作包括: 藉由執行該内部時脈訊號與一源電壓之一「及」運算, 而產生一參考時脈訊號; 藉由執行該内部時脈訊號與該第一除頻時脈訊號之一 「及」運算,而產生一DLL源時脈訊號; 藉由用該記憶體裝置之延遲因子模型化該DLL源時脈 訊號,而產生一反饋時脈訊號;及 藉由比較該反饋時脈訊號與該參考時脈訊號,來控制 §亥DLL源時脈訊號之一延遲量。 34.如咕求項28之方法,其中該基於該第二除頻時脈訊號執 行遠DLL相位更新操作之步驟包括: 藉由執行該内部時脈訊號與一源電壓之一「及」運算, 而產生一參考時脈訊號; 藉由執行該内部時脈訊號與該第二除頻時脈訊號之一 「及」運算’而產生一 DLL源時脈訊號; 藉由用該記憶體裝置之延遲因子模型化該dll源時脈 訊號’而產生一反饋時脈訊號;及 藉由比較該反饋時脈訊號與該參考時脈訊號,來控制 該DLL源時脈訊號之一延遲量。 I12670-980918.doc •9-One of the modes of the memory device, the extension of the patent application No. 095124001, the Chinese patent application scope replacement (September 1998) X. The scope of the patent application: 1. A normal mode and a power-saving late lock loop (DLL), The method includes: a clock buffer for buffering an external clock signal to output an internal clock signal; a power saving chess controller for generating in response to a clock enable signal - power saving mode control a signal 'to define the normal mode or the power saving mode; a source clock generating unit for receiving the internal clock signal to generate a -DLL source clock under the control of the power saving control The signal and the phase update are used to output a DLL clock signal, , and medium based on the DLL source clock signal execution-phase update operation. The source clock generates a source clock signal for performing the phase update operation at least once during the power save mode. 2. The DLL of claim 1, wherein the source clock generation unit comprises: a first clock divider that is configured to generate a divide-by-frequency clock signal by dividing the internal clock signal by frequency division. To set one of the phase update operations in the normal mode for a duration; a first clock frequency divider, configured to generate a second frequency-divided clock signal by dividing the first frequency-divided clock signal to set one of the phase update operations in the power-saving mode Duration: : k select ItG ' | 帛 based on the power saving mode control signal to select the first and second frequency division clock (four) towel - thereby the selected I12670-980918.doc 1324779 signal And outputting a clock signal as a selection; and an arithmetic logic unit for logically combining the selected clock signal and the internal clock signal to rotate the DLL source clock signal. 3. The DLL of claim 2, wherein the selection unit selects the first-division clock signal for the positive f-mode, and selects the second frequency-divided pulse signal for the power-saving mode. 4. As requested in item 2 of the DLL' where the _th divider. The clock divider includes a divide-by-two clock pulse divider including a divide by 2n. 5. For the DLL of the second item, the tenth pulse divider is η, which is a positive integer. 6. The DLL of claim 2, wherein the poor _ _ 士 〆 甲 ° ° — 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时 时Each of the plurality of clocks has a plurality of fuse units; and has a plurality of fuse units different from the other clocks, which are used to cause 々 to cause one of the plurality of fuses to melt The wire is blown to select the one from the vein. When a plurality of early frequency readers are turned out 7·If the DLL of the request item 2, the middle whistle _ + (four), the check connection # , &quot; the first - clock demultiplexer includes: _ connected multiple units of the frequency division Pulse, each of the plurality of clocks generates a plurality of unit clocks, and 'and has a different clock from the other clocks for outputting a metal selection by using a frequency divider In the _ a plurality of selection processing units, the unit is selected from the plurality of single units. I12670-980918.doc 1324779 8. The DLL of claim 2, wherein the arithmetic logic unit comprises: a "reverse" gate for performing the "reverse" of the internal clock signal and the selected clock signal And an inverter for inverting an output signal of the "reverse" gate to output the DLL source clock signal. 9. The DLL of claim 2, wherein the source clock generation unit comprises a reference clock generation unit for generating a reference by performing an AND operation of the internal clock signal and a source voltage Clock signal. 10. The DLL of claim 9, wherein the phase update unit comprises: a delay line 'for delaying one phase of the DLL source clock signal to output the DLL clock signal; a dummy delay line having substantial a composition having the same composition as the delay line; a delayed replica model for modeling one of the output signals of the dummy delay line according to a delay factor of a clock signal in the memory device, thereby using the model The signal is output as a feedback clock signal; a phase comparator for comparing the reference clock signal with the feedback clock signal 'to detect a phase difference therebetween; and a delay controller for using Receiving an output signal of the comparator to control the delay amount of the delay line and the dummy delay line. 11. The request item 12DLL, wherein the source clock generation unit comprises: a clock demultiplexer configured to generate a first converted clock signal by dividing the internal clock signal to set the normal 112670-9809l8.doc one of the update operations; a clock conversion unit for generating a second converted clock signal by converting the first converted clock signal to set the power saving mode One of the phase update operations of the duration; a selection unit that selects one of the first and second converted clock signals based on the power save mode control signal, thereby using the selected signal as a Selecting a clock signal to output; and a sounding logic unit for logically combining the selected clock signal and the internal clock signal to output the DLL source clock signal. 12. The DLL of claim U, wherein the selection unit selects the first transition clock signal for the normal mode, and selects the second transition pulse signal for the power save mode. 13. The DLL of claim 11, wherein the clock divider comprises a divide-by-two clock multiplexer. 〃 14. If the request 丨丨 DLL 'where the clock conversion unit includes a clock conversion benefit, the clock converter periodically selects a portion of the first converted clock signal to select the selected clock signal As the second conversion, the pulse is far away. 15. The DLL of claim 11, wherein the clock conversion unit comprises: a plurality of unit clock converters connected in series for generating a plurality of clocks each of the plurality of clocks a unit clock different from the other clocks; and a plurality of fuse units for selecting a dissolved filament (4) from one of the plurality of fuses from the plurality of unit clocks (four) output 112670 -9809l8.doc One of the clocks. 16) The DLL of the request item, wherein, the clock conversion unit comprises: a plurality of single clock transitions connected in series, which are used to generate a complex clock, the mother of the plurality of clocks Having an early clock with other clocks; and a plurality of selection processing units in the clock by using a metal selection unit clock converter output, the unit selects from the complex number One of them. 17. A DLL as claimed, wherein the source clock generation unit includes a reference generation unit </ RTI> for generating an _ reference clock signal by performing an operation of the internal clock signal and a source voltage. 18. The DLL of claim 7, wherein the phase update unit comprises: a delay line for delaying a phase of the DLL source clock signal to output the DLL clock signal; a dummy delay line Having a composition substantially the same as the composition of the delay line; a delayed replica model for modeling one of the output signals of the dummy delay line according to a delay factor of a clock signal in the memory device, thereby The modeled signal is output as a feedback clock signal; a phase comparator 'used to compare the reference clock signal with the feedback clock signal' to detect a phase difference therebetween; and a delay controller, The method is configured to receive an output signal of the phase comparator to control a delay amount of the delay line and the dummy delay line. 112670-980918.doc U24779 19. The request item iijDLL, and the medium-eight-source source Bf pulse generating unit comprises: a first clock conversion unit; a second clock conversion unit; a selection unit for The power saving mode control signal selects one of the output signals of the first and second clock conversion units, whereby the selected signal is output as a selection clock signal; and the operation logic unit 其The selected clock signal and the internal clock signal are logically combined to output the DLL source clock signal. 2. The muscle of claim 19, wherein the first-clock conversion unit generates a -first-conversion clock signal by converting the (four) clock til number to set the phase update operation in the positive mode One of the durations; and the second clock conversion unit generates a second conversion clock signal by converting the first conversion clock signal to set a duration of the phase update operation in the power saving mode. 21. The DLL of claim 20, wherein the selection unit selects the first conversion clock signal for the normal mode, and selects the second conversion clock signal for the power saving mode. 22. The DLL of claim 20, wherein the first clock conversion unit comprises a divide-by-two clock divider. 23. The DLL of claim 20, wherein the second clock conversion unit comprises a clock converter, the clock converter periodically selecting a portion of the first transition clock signal to select the selected clock signal The second converted clock signal is output. 24. The DLL of claim 20, wherein the second clock conversion unit comprises: 112670-980918.doc -6-s = a plurality of connected unit clock transitions 用于, which are used to generate a complex number =::: plural Each of the clocks has an early clock that is different from the other clocks; and a plurality of (four) early π's are used to select the filaments by one of the plurality of filaments. One of the clocks from the plurality of unit clock outputs. For example, the DLL of the π-term 20 includes: the second clock conversion unit includes: a plurality of unit clock converters connected by the event, wherein (4) generating a plurality of clocks, each of the plurality of clocks having one a unit clock different from the other clocks; and f number of selection processing units 'which are used to select one of the clocks of the clock converter output from the plurality of unit by using the metal selection processing unit . &amp; DLL of claim 20, wherein the source clock generation unit &amp; includes a reference clock generation unit for performing an AND operation on the internal clock signal and a source voltage Generate a reference clock signal. 27. The DLL of claim 26, wherein the phase update unit comprises: a delay line for delaying a phase of the DLX source clock signal to rotate the DLL clock signal; a dummy delay line having a composition identical to the composition of the delay line; a delayed replica model 'for modeling one of the dummy delay lines to output a signal according to a delay factor of one of the clock signals in the memory device' The signal is output as a feedback clock signal; 112670-980918.doc 1324779 A phase comparator for comparing the reference clock signal with the feedback clock signal to detect a phase difference therebetween; and a delay The controller 'is configured to receive one of the phase comparator output signals' to control the delay amount of the delay line and the dummy delay line. 28. A method for generating a DLL clock of a memory device having a normal mode and a power saving mode, comprising: generating an internal clock signal by buffering an external clock; Generating a first frequency division clock signal by dividing the internal clock signal; generating a second frequency division clock signal based on the first frequency division clock signal; in the normal mode, based on the - a frequency division signal execution-DLL phase update operation; and in the power save mode, performing a DLL phase update operation based on the second frequency division clock signal, which causes the phase update in the power saving mode The operation is performed at least once during the power saving mode. 29. The method of π, wherein the generating the second divided clock signal comprises dividing the first divided clock signal. The method of claim 28, wherein generating the second frequency-divided clock signal comprises converting the first frequency-divided clock signal. 3 1 - The method of claim 28 wherein the _dividing clock signal is used to set the duration of the phase update operation in the normal mode. 32. The method of claim 28, wherein the second frequency-divided clock signal is used to set a duration of the phase update operation in the power save mode. The method of claim 28, wherein performing the DLL phase update operation based on the first frequency-divided clock signal comprises: performing an AND operation of the internal clock signal and a source voltage Generating a reference clock signal; generating a DLL source clock signal by performing an AND operation of the internal clock signal and the first frequency division clock signal; using a delay factor of the memory device Modeling the DLL source clock signal to generate a feedback clock signal; and controlling the delay amount of one of the VDD source clock signals by comparing the feedback clock signal with the reference clock signal. The method of claim 28, wherein the step of performing a far DLL phase update operation based on the second frequency-divided clock signal comprises: performing an AND operation of the internal clock signal and a source voltage, Generating a reference clock signal; generating a DLL source clock signal by performing an AND operation of the internal clock signal and the second frequency division clock signal; delaying by using the memory device The factor modeling the dll source clock signal generates a feedback clock signal; and controlling the delay amount of the DLL source clock signal by comparing the feedback clock signal with the reference clock signal. I12670-980918.doc •9-
TW095124001A 2005-09-29 2006-06-30 Delay locked loop circuit and method for generating a dll clock TWI324779B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20050091658 2005-09-29
KR1020050125354A KR100753137B1 (en) 2005-09-29 2005-12-19 Dll and method for generating dll clock

Publications (2)

Publication Number Publication Date
TW200713322A TW200713322A (en) 2007-04-01
TWI324779B true TWI324779B (en) 2010-05-11

Family

ID=37959236

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095124001A TWI324779B (en) 2005-09-29 2006-06-30 Delay locked loop circuit and method for generating a dll clock

Country Status (3)

Country Link
KR (1) KR100753137B1 (en)
CN (1) CN1941170B (en)
TW (1) TWI324779B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI732558B (en) * 2020-05-18 2021-07-01 華邦電子股份有限公司 Delay-locked loop device and operation method thereof

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100856062B1 (en) * 2007-03-29 2008-09-02 주식회사 하이닉스반도체 Semiconductor memory device and the method for operating the same
KR100902058B1 (en) 2008-01-07 2009-06-09 주식회사 하이닉스반도체 Semiconductor integrated circuit and method of controlling the same
KR100945793B1 (en) * 2008-04-11 2010-03-08 주식회사 하이닉스반도체 DLL Circuit and Semiconductor Integrated Circuit with the Same
KR100935602B1 (en) * 2008-06-24 2010-01-07 주식회사 하이닉스반도체 Clock Driver and Semiconductor Memory Apparatus having the Same
KR100940849B1 (en) 2008-08-08 2010-02-09 주식회사 하이닉스반도체 Semiconductor integrated circuit and method of controlling the same
KR20100044625A (en) 2008-10-22 2010-04-30 삼성전자주식회사 Semiconductor device comprising delay locked loop having periodically activated replica path
CN101714874B (en) * 2009-11-11 2012-03-28 钰创科技股份有限公司 Delay phase-locked loop with power-saving function
KR101076889B1 (en) 2010-04-06 2011-10-25 주식회사 하이닉스반도체 data output control circuit
KR101131893B1 (en) * 2010-07-06 2012-04-03 주식회사 하이닉스반도체 Delayed locked loop
KR101923023B1 (en) 2011-08-10 2018-11-28 에스케이하이닉스 주식회사 Delay locked loop
KR101965397B1 (en) * 2012-05-25 2019-04-03 에스케이하이닉스 주식회사 Semiconductor Apparatus
KR101418045B1 (en) 2013-01-18 2014-07-14 연세대학교 산학협력단 Temperature sensor and temperature sensing method
US10002651B2 (en) * 2016-10-06 2018-06-19 SK Hynix Inc. Semiconductor devices
KR20190053717A (en) * 2017-11-10 2019-05-20 삼성전자주식회사 Memory device and method of operating the same for latency control
US11004499B1 (en) * 2020-05-08 2021-05-11 Winbond Electronics Corp. Latency control circuit and method
CN117409828A (en) * 2022-07-08 2024-01-16 长鑫存储技术有限公司 Memory, control device, clock processing method and electronic equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3973308B2 (en) * 1998-11-27 2007-09-12 富士通株式会社 Integrated circuit device incorporating a self-timing control circuit
KR100340863B1 (en) * 1999-06-29 2002-06-15 박종섭 Delay locked loop circuit
US6456130B1 (en) * 2001-01-11 2002-09-24 Infineon Technologies Ag Delay lock loop and update method with limited drift and improved power savings
KR100518226B1 (en) * 2003-04-23 2005-10-04 주식회사 하이닉스반도체 Clock divider in Delay Lock Loop device and the method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI732558B (en) * 2020-05-18 2021-07-01 華邦電子股份有限公司 Delay-locked loop device and operation method thereof

Also Published As

Publication number Publication date
KR20070036561A (en) 2007-04-03
CN1941170A (en) 2007-04-04
TW200713322A (en) 2007-04-01
CN1941170B (en) 2011-06-29
KR100753137B1 (en) 2007-08-30

Similar Documents

Publication Publication Date Title
TWI324779B (en) Delay locked loop circuit and method for generating a dll clock
JP4192273B2 (en) Delay locked loop and its synchronization method in semiconductor memory device
KR100543910B1 (en) Digital delay locked loop and method for controlling thereof
JP4040953B2 (en) Data input circuit and data input method for synchronous semiconductor memory device
US7605622B2 (en) Delay locked loop circuit
US7501866B2 (en) Delay locked loop circuit
TWI308346B (en) Synchronous memory device, delayed locked loop and method for generating a delay locked loop clock of a synchronous memory device
KR101046227B1 (en) DLD circuit
US7414446B2 (en) DLL circuit of semiconductor memory apparatus and method of delaying and locking clock in semiconductor memory apparatus
TWI363496B (en) Delayed locked loop circuit
JP2003069424A (en) Ring-register controlled delay locked loop and its control method
KR101004665B1 (en) Semiconductor memory device and output enable signal generating method
US20030090307A1 (en) Circuit and method for generating output control signal in synchronous semiconductor memory device
JP2002025258A (en) Delay fixed loop used in semiconductor memory device
JP2011054150A (en) Semiconductor device and operation method thereof
TW201019605A (en) Semiconductor memory device and method for generating output enable signal
WO2008024659A2 (en) Circuits to delay a signal from a memory device
TW201042923A (en) Delay locked loop circuit and semiconductor memory device using the same
KR100560644B1 (en) Clock synchronizing circuit for use in an integrated circuit device
US8446785B2 (en) Latency control circuit, latency control method thereof, and semiconductor memory device including the same
TWI380321B (en) Semiconductor memory device and method for operating the same
US6973155B2 (en) Highly scalable glitch-free frequency divider
TW201218638A (en) Delay locked loop and integrated circuit including the same
TWI508458B (en) Delay locked loop and related method
KR100507854B1 (en) Register controlled delay locked loop having acceleration mode