TWI506272B - Method and system of image reconstruction and method and system of image construction - Google Patents

Method and system of image reconstruction and method and system of image construction Download PDF

Info

Publication number
TWI506272B
TWI506272B TW102105746A TW102105746A TWI506272B TW I506272 B TWI506272 B TW I506272B TW 102105746 A TW102105746 A TW 102105746A TW 102105746 A TW102105746 A TW 102105746A TW I506272 B TWI506272 B TW I506272B
Authority
TW
Taiwan
Prior art keywords
electromagnetic
tested
electromagnetic wave
photon energy
intensity
Prior art date
Application number
TW102105746A
Other languages
Chinese (zh)
Other versions
TW201415012A (en
Inventor
Meng Han Tsai
Jheng You Lin
Hsin Han Shen
Guo Zua Wu
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to CN201310160725.2A priority Critical patent/CN103720482B/en
Priority to US13/914,648 priority patent/US9101326B2/en
Publication of TW201415012A publication Critical patent/TW201415012A/en
Application granted granted Critical
Publication of TWI506272B publication Critical patent/TWI506272B/en

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

影像重建方法與系統及影像建構方法與系統Image reconstruction method and system and image construction method and system

本發明是有關於一種影像重建方法與系統及影像建構方法與系統The invention relates to an image reconstruction method and system and image construction method and system

根據醫學界對於癌症風險因子的研究發現,例如根據醫學界對於乳癌風險因子的研究發現,風險最高的乳癌風險因子為乳房緻密度。乳房緻密度可分為六個等級分別是0、<10%、10~25%、25~50%、50~75%、>75%。隨著乳房緻密度增加,罹患乳癌的機率越高。According to medical research on cancer risk factors, for example, according to medical research on breast cancer risk factors, the most risky breast cancer risk factor is breast density. Breast density can be divided into six levels of 0, <10%, 10~25%, 25~50%, 50~75%, and >75%. As the density of the breast increases, the risk of developing breast cancer is higher.

對患者(包括人類或動物)進行患部(指有可能發生病變處,不侷限於特定部位)的攝影可幫助醫師判斷患者是否罹患癌症。舉例而言,對婦女進行乳房攝影可幫助醫師判斷婦女是否罹患乳癌。根據統計結果發現,經由乳房攝影所檢測出乳房原位癌佔所有種類乳癌的比例約為20%,其中又有90%的零期乳房原位癌是細小鈣化點來表現。鈣化點通常出現在乳房的腺體內。然 而,在高緻密度的乳房中,鈣化點與腺體均屬高吸收度的物質,且二者也常重疊在一起。因此,利用現行乳房攝影術所拍攝到二維X影像不易分辨出鈣化點與腺體的差異,從而降低醫師診斷的正確率。Photography of patients (including humans or animals) on the affected area (where the lesion is likely to occur, not limited to a specific site) can help the physician determine if the patient is suffering from cancer. For example, mammography for women can help doctors determine whether a woman has breast cancer. According to the statistical results, the proportion of breast cancer in situ detected by mammography is about 20% of all types of breast cancer, and 90% of the zero-stage breast carcinoma in situ is a small calcification point. Calcification points usually appear in the glands of the breast. Of course However, in high-density breasts, calcifications and glands are highly absorbent substances, and the two often overlap. Therefore, it is difficult to distinguish the difference between the calcification point and the gland by using the current mammography to capture the two-dimensional X-ray image, thereby reducing the correct rate of the physician's diagnosis.

一般而言,若要更準確地得知患部內部的結構可使用電腦斷層掃描術。舉例而言,若要更準確地得知乳房內部的結構可使用電腦斷層掃描術。然而,電腦斷層掃描術是從多個方向拍攝乳房,而獲得多張乳房的二維影像。之後,再將這些二維影像透過電腦模擬的方式,重建出乳房的三維影像。雖然利用電腦斷層掃描術可更準確地獲得乳房內部結構的資訊,但由於電腦斷層掃描術需對婦女拍攝多張X光影像,而使得婦女接收高輻射劑量,進而增加婦女罹癌的機率。In general, computer tomography can be used to more accurately know the structure inside the affected part. For example, computer tomography can be used to more accurately understand the internal structure of the breast. However, computed tomography scans a breast from multiple directions to obtain a two-dimensional image of multiple breasts. Then, these two-dimensional images are reconstructed into a three-dimensional image of the breast through computer simulation. Although the use of computed tomography provides more accurate information on the internal structure of the breast, computer tomography requires multiple X-ray images of women, which allows women to receive high doses of radiation, thereby increasing the risk of cancer in women.

本發明的一個實施例的影像重建方法用以重建待測物的影像。影像重建方法包括下列步驟。在量測空間沒有配置待測物時,量測通過量測空間的電磁波分別在多個不同光子能量下的多個第一強度影像。在待測物設置於量測空間時,量測通過待測物的電磁波分別在這些光子能量下的多個第二強度影像。提供資料庫的資料,資料庫的資料包括分別具有多個成分的多個物質中的每一個物質在每一光子能量所對應的電磁波照射下的衰減係數及每一物質在所述光子能量所對應的電磁波傳遞方向上的厚度。根 據資料庫的資料、多個第一強度影像以及多個第二強度影像計算出待測物分別對應於這些成分的多個衰減量影像。An image reconstruction method according to an embodiment of the present invention is used to reconstruct an image of a sample to be tested. The image reconstruction method includes the following steps. When the object to be tested is not disposed in the measurement space, the plurality of first intensity images of the electromagnetic waves passing through the measurement space at a plurality of different photon energies are respectively measured. When the object to be tested is disposed in the measurement space, a plurality of second intensity images of the electromagnetic waves passing through the object to be tested are respectively measured at the energy of the photons. Providing data of a database, wherein the data of the database includes an attenuation coefficient of each of the plurality of substances having a plurality of components under the electromagnetic wave corresponding to each photon energy, and each substance corresponding to the photon energy The electromagnetic wave transmits the thickness in the direction. root The plurality of attenuation images corresponding to the components are respectively calculated according to the data of the database, the plurality of first intensity images, and the plurality of second intensity images.

本發明的一個實施例的影像重建系統用以重建待測物的影像。影像重建系統包括電磁波提供單元、電磁波偵測器以及處理單元。電磁波提供單元提供電磁波。電磁波偵測器在量測空間沒有配置待測物時量測通過量測空間的電磁波分別在多個不同光子能量下的多個第一強度影像。在待測物設置於量測空間時量測通過待測物的電磁波分別在這些光子能量下的多個第二強度影像。資料庫的資料包括分別具有多個成分的多個物質中的每一個物質在每一光子能量所對應的電磁波照射下的衰減係數以及每一物質在所述光子能量所對應的電磁波傳遞方向上的厚度。處理單元根據資料庫的資料、多個第一強度影像以及多個第二強度影像計算出待測物的分別對應於這些成分的多個衰減量影像。An image reconstruction system according to an embodiment of the present invention is used to reconstruct an image of a sample to be tested. The image reconstruction system includes an electromagnetic wave providing unit, an electromagnetic wave detector, and a processing unit. The electromagnetic wave providing unit supplies electromagnetic waves. The electromagnetic wave detector measures a plurality of first intensity images of the electromagnetic waves passing through the measurement space under a plurality of different photon energies when the measurement object is not configured with the object to be tested. A plurality of second intensity images of the electromagnetic waves passing through the object under test at the photon energy are measured when the object to be tested is disposed in the measurement space. The data of the database includes an attenuation coefficient of each of the plurality of substances having a plurality of components under the electromagnetic wave irradiation corresponding to each photon energy, and each substance in the electromagnetic wave transmission direction corresponding to the photon energy thickness. The processing unit calculates a plurality of attenuation image corresponding to the components of the object to be tested according to the data of the database, the plurality of first intensity images, and the plurality of second intensity images.

本發明的一個實施例的影像建構方法用以建構待測物的影像。影像建構方法包括下列步驟。提供脈衝式電磁波束。利用脈衝式電磁波束掃描待測物的多個待測區塊,其中當脈衝式電磁波束的強度實質上為零時,使脈衝式電磁波束的對準位置從這些待測區塊其中之一相對移動到這些待測區塊的另一,且當脈衝式電磁波束的強度實質上不為零時,使脈衝式電磁波束的對準位置相對於待測物維持實質上靜止。當脈衝式電磁波束的對準位置分別停留於待測區塊時,分別量測電磁波束通過這些待測區塊後的多個強度。紀錄這些強度與這些待測區塊間的對應關係。利用這 些強度以及對應關係建構待測物的影像。An image construction method according to an embodiment of the present invention is used to construct an image of a sample to be tested. The image construction method includes the following steps. A pulsed electromagnetic beam is provided. Using a pulsed electromagnetic beam to scan a plurality of blocks to be tested, wherein when the intensity of the pulsed electromagnetic beam is substantially zero, the aligned position of the pulsed electromagnetic beam is relative to one of the blocks to be tested. Moving to the other of the blocks to be tested, and when the intensity of the pulsed electromagnetic beam is substantially non-zero, the aligned position of the pulsed electromagnetic beam is maintained substantially stationary relative to the object under test. When the aligned positions of the pulsed electromagnetic beams respectively stay in the block to be tested, the plurality of intensities of the electromagnetic beams passing through the blocks to be tested are respectively measured. Record the correspondence between these intensities and the blocks to be tested. Use this These intensities and corresponding relationships construct an image of the object to be tested.

本發明的一個實施例的影像建構系統用以建構待測物的影像。影像建構系統包括脈衝式電磁波束提供單元、控制單元、電磁波偵測器以及處理單元。脈衝式電磁波束提供單元包括脈衝式電磁波源以及準直器。脈衝式電磁波源提供脈衝式電磁波。準直器配置於脈衝式電磁波的傳遞路徑上。準直器具有孔洞。部分的脈衝式電磁波通過準直器的孔洞而形成脈衝式電磁波束。控制單元透過移動準直器而使脈衝式電磁波束掃描待測物的多個待測區塊。當脈衝式電磁波束的強度實質上為零時,控制單元使脈衝式電磁波束的對準位置從這些待測區塊其中之一相對移動到這些待測區塊的另一。當脈衝式電磁波束的強度實質上不為零時,控制單元使脈衝式電磁波束的對準位置相對於待測物維持實質上靜止。當脈衝式電磁波束的對準位置分別停留於這些待測區塊時,電磁波偵測器分別量測電磁波束通過這些待測區塊後的多個強度。處理單元紀錄這些強度與這些待測區塊的對應關係,並利用這些強度以及此對應關係建構待測物的影像。An image construction system according to an embodiment of the present invention is used to construct an image of a sample to be tested. The image construction system includes a pulsed electromagnetic beam providing unit, a control unit, an electromagnetic wave detector, and a processing unit. The pulsed electromagnetic beam providing unit includes a pulsed electromagnetic wave source and a collimator. The pulsed electromagnetic wave source provides pulsed electromagnetic waves. The collimator is disposed on the transmission path of the pulsed electromagnetic wave. The collimator has holes. Part of the pulsed electromagnetic wave passes through the hole of the collimator to form a pulsed electromagnetic beam. The control unit causes the pulsed electromagnetic beam to scan a plurality of blocks to be tested of the object to be tested by moving the collimator. When the intensity of the pulsed electromagnetic beam is substantially zero, the control unit moves the aligned position of the pulsed electromagnetic beam from one of the blocks to be tested to the other of the blocks to be tested. When the intensity of the pulsed electromagnetic beam is substantially non-zero, the control unit maintains the aligned position of the pulsed electromagnetic beam substantially stationary relative to the object under test. When the aligned positions of the pulsed electromagnetic beams respectively stay in the blocks to be tested, the electromagnetic wave detector respectively measures the plurality of intensities of the electromagnetic beams passing through the blocks to be tested. The processing unit records the correspondence between these intensities and the blocks to be tested, and uses these intensities and the corresponding relationships to construct an image of the object to be tested.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

100、100A‧‧‧影像重建系統100, 100A‧‧ image reconstruction system

100B‧‧‧影像建構系統100B‧‧‧Image Construction System

110、110A‧‧‧電磁波提供單元110, 110A‧‧‧Electromagnetic wave supply unit

110a‧‧‧脈衝式電磁波源110a‧‧‧pulse electromagnetic wave source

112‧‧‧X光光管112‧‧‧X-ray tube

114‧‧‧電源供應器114‧‧‧Power supply

116‧‧‧準直器116‧‧‧ collimator

120、120A‧‧‧電磁波偵測器120, 120A‧‧‧ electromagnetic wave detector

130‧‧‧控制單元130‧‧‧Control unit

140、140A‧‧‧處理單元140, 140A‧‧‧ processing unit

150‧‧‧資料提供單元150‧‧‧Information Providing Unit

160‧‧‧濾光單元160‧‧‧ Filter unit

170‧‧‧第一機構170‧‧‧First institution

172、182‧‧‧軌道172, 182‧‧ Track

174、184‧‧‧帶動馬達174, 184‧‧‧ drive motor

180‧‧‧第二機構180‧‧‧Second institution

210、220‧‧‧傳輸管道210, 220‧‧‧ transmission pipeline

A、A0 、A1 、Ar ‧‧‧感測像素A, A 0 , A 1 , A r ‧‧‧ sensing pixels

E1 、E2 …EM ‧‧‧光子能量E 1 , E 2 ... E M ‧‧‧ photon energy

H1‧‧‧孔洞H1‧‧‧ hole

H2‧‧‧感測區H2‧‧‧ Sensing Area

I1 ‧‧‧固定電流I 1 ‧‧‧fixed current

Ir (E1 )、Ir (E2 )…Ir (EM )‧‧‧強度I r (E 1 ), I r (E 2 )...I r (E M )‧‧‧ intensity

M‧‧‧螢幕M‧‧‧ screen

O‧‧‧待測物O‧‧‧Test object

O0 、O1 …Or ‧‧‧待測區塊O 0 , O 1 ... O r ‧‧‧ blocks to be tested

S1、S2、S10、S11、S12、S13、S14、S15、S16、S20、S30、S40、S50、S60、S70、S1O0、S110、S120、S2O0、S210、S220、S300、S310、S320、S321、S322、S323、S324、S510、S520、S530、S540、S550‧‧‧步驟S1, S2, S10, S11, S12, S13, S14, S15, S16, S20, S30, S40, S50, S60, S70, S1O0, S110, S120, S2O0, S210, S220, S300, S310, S320, S321, Steps S322, S323, S324, S510, S520, S530, S540, S550‧‧

S‧‧‧量測空間S‧‧‧Measurement space

S0 、S1 …Sr ‧‧‧量測子空間S 0 , S 1 ... S r ‧‧‧ measurement subspace

t‧‧‧量測期間T‧‧‧measurement period

X‧‧‧電磁波X‧‧‧Electromagnetic waves

X0 、X1 …Xr ‧‧‧電磁波束X 0 , X 1 ... X r ‧‧‧ electromagnetic beam

xr ‧‧‧脈衝式電磁波束x r ‧‧‧pulse electromagnetic beam

x‧‧‧脈衝式電磁波X‧‧‧pulse electromagnetic waves

圖1示出本發明第一實施例的影像重建方法流程圖。FIG. 1 is a flow chart showing an image reconstruction method according to a first embodiment of the present invention.

圖2示出本發明第一實施例的影像重建系統。Fig. 2 shows an image reconstruction system of the first embodiment of the present invention.

圖3示出本發明一個實施例的一個感測像素所量測出的電磁波束在多個光子能量下的多個強度。3 illustrates a plurality of intensities of an electromagnetic beam measured by a sensing pixel at a plurality of photon energies, in accordance with an embodiment of the present invention.

圖4示出本發明一個實施例X光光管的管電流與時間的關係。Figure 4 is a graph showing the relationship between tube current and time of an X-ray tube in accordance with one embodiment of the present invention.

圖5示出本發明第二實施例的影像重建方法流程圖。FIG. 5 is a flow chart showing an image reconstruction method according to a second embodiment of the present invention.

圖6示出本發明第二實施例的影像重建系統。Fig. 6 shows an image reconstruction system of a second embodiment of the present invention.

圖7為本發明一個實施例的影像建構方法流程圖。FIG. 7 is a flowchart of an image construction method according to an embodiment of the present invention.

圖8為本發明一個實施例的影像建構系統的示意圖。FIG. 8 is a schematic diagram of an image construction system according to an embodiment of the present invention.

第一實施例First embodiment

圖1示出本發明第一實施例的影像重建方法流程圖。本實施例的影像重建方法用以重建待測物的影像。在本實施例中,待測物例如為人類的乳房。但本發明不限於此,在其他實施例中,待測物亦可為各種生物(包括人類、動物、植物)及非生物的特定部位或整體。FIG. 1 is a flow chart showing an image reconstruction method according to a first embodiment of the present invention. The image reconstruction method of this embodiment is used to reconstruct an image of the object to be tested. In the present embodiment, the object to be tested is, for example, a human breast. However, the present invention is not limited thereto. In other embodiments, the analyte may be a specific part or whole of various organisms (including humans, animals, plants) and abiotics.

請參照圖1,本實施例的影像重建方法包括步驟S100、S200、S300。需說明的是,步驟S100、S200、S300的順序可作適當的更動。舉例而言,可依序進行步驟S200、S100、S300。以下搭配圖1及圖2,詳細明本實施例的影像重建方法及影像重建系統。Referring to FIG. 1, the image reconstruction method of this embodiment includes steps S100, S200, and S300. It should be noted that the order of steps S100, S200, and S300 can be appropriately changed. For example, steps S200, S100, and S300 may be sequentially performed. The image reconstruction method and image reconstruction system of the present embodiment will be described in detail below with reference to FIG. 1 and FIG.

請同時參照圖1及圖2,首先,提供資料庫的資料。資料 庫的資料包括分別具有多個成分的多個物質中的每一個物質在多個不同光子能量所對應的電磁波照射下的衰減係數及每一物質在此光子能量所對應的電磁波傳遞方向上的厚度(步驟S200)。詳細而言,提供資料庫資料的方法包括下列步驟。首先,可根據欲取得的待測物O的多個衰減量影像是分別對應於哪N個成分,而選定分別具有此N個成分的多個物質(步驟210),其中N為大於0的正整數。然後,再由資料庫中取出分別具有此N種成分的多個物質中的每一個物質在多個不同光子能量所對應的電磁波照射下的衰減係數及每一個物質在此光子能量所對應的電磁波傳遞方向上的厚度(步驟220)。舉例而言,當待測物為乳房,而欲分別取得乳房分別對應於脂肪、乳腺、鈣化點(即病灶)的三個衰減量影像時,可自資料庫選取提供分別具有脂肪、乳腺、鈣化點的三種物質在至少三個不同光子能量所對應的電磁波照射下的衰減係數及每一物質在此光子能量所對應的電磁波傳遞方向上的厚度。Please refer to FIG. 1 and FIG. 2 at the same time. First, provide the data of the database. data The data of the library includes the attenuation coefficient of each of the plurality of substances having a plurality of components under the electromagnetic wave corresponding to the plurality of different photon energies, and the thickness of each substance in the electromagnetic wave transmission direction corresponding to the photon energy. (Step S200). In detail, the method of providing database data includes the following steps. First, according to which N components of the plurality of attenuation images of the object to be detected O are to be selected, a plurality of substances respectively having the N components are selected (step 210), wherein N is greater than 0. Integer. Then, the attenuation coefficient of each of the plurality of substances having the N components respectively under the electromagnetic wave corresponding to the plurality of different photon energies and the electromagnetic wave corresponding to the photon energy of each substance are extracted from the database. The thickness in the transfer direction (step 220). For example, when the object to be tested is a breast, and the three attenuation images corresponding to the fat, the breast, and the calcification point (ie, the lesion) are respectively obtained, the data may be selected from the database to provide fat, breast, and calcification, respectively. The attenuation coefficient of the three substances of the point under the electromagnetic wave corresponding to at least three different photon energies and the thickness of each substance in the electromagnetic wave transmission direction corresponding to the photon energy.

具體而言,本實施例的影像重建系統100可選擇性地包括資料提供單元150。資料提供單元150可提供上段所述資料庫的資料。影像重建系統100可視欲取得的待測物O的多個衰減量影像是分別對應於哪N個成分而透過資料提供單元150取得分別具有此N種成分的多個物質中的每一個物質在多個不同光子能量所對應的電磁波照射下的衰減係數及每一物質在此光子能量所對應的電磁波傳遞方向上的厚度。在本實施例中,資料提供單元150可為網路單元,此網路單元可自網路上下載所需的分別具有多種 成分的多個物質中的每一個物質在每一光子能量所對應的電磁波照射下的衰減係數及每一物質在此光子能量所對應的電磁波傳遞方向上的厚度。然而,本發明不限於此,在本發明另一實施例中,資料提供單元150亦可為儲存單元,此儲存單元可儲存具有多個成分的多個物質中的每一個物質在多個不同光子能量所對應的電磁波照射下的衰減係數及每一物質在此光子能量所對應的電磁波傳遞方向上的厚度。在本發明又一實施例中,資料提供單元150亦可為輸入介面,此輸入介面可供使用者輸入具有多個成分的多個物質中的每一個物質在多個不同光子能量所對應的電磁波照射下的衰減係數及每一物質在此光子能量所對應的電磁波傳遞方向上的厚度。Specifically, the image reconstruction system 100 of the present embodiment may optionally include a material providing unit 150. The data providing unit 150 can provide the data of the database described in the above paragraph. The image reconstruction system 100 can determine which of the plurality of substances having the N kinds of components respectively are obtained by the data providing unit 150 by the plurality of attenuation amount images of the object to be detected O to be obtained. The attenuation coefficient of electromagnetic waves corresponding to different photon energies and the thickness of each substance in the direction of electromagnetic wave transmission corresponding to the photon energy. In this embodiment, the data providing unit 150 can be a network unit, and the network unit can be downloaded from the network and has various types. The attenuation coefficient of each of the plurality of substances of the component under the electromagnetic wave irradiation corresponding to each photon energy and the thickness of each substance in the electromagnetic wave transmission direction corresponding to the photon energy. However, the present invention is not limited thereto. In another embodiment of the present invention, the data providing unit 150 may also be a storage unit that can store each of a plurality of substances having a plurality of components in a plurality of different photons. The attenuation coefficient of the electromagnetic wave corresponding to the energy and the thickness of each substance in the electromagnetic wave transmission direction corresponding to the photon energy. In another embodiment of the present invention, the data providing unit 150 may also be an input interface, and the input interface is configured for the user to input electromagnetic waves corresponding to each of the plurality of substances having multiple components in a plurality of different photon energies. The attenuation coefficient under illumination and the thickness of each substance in the direction of electromagnetic wave transmission corresponding to the energy of the photon.

接著,在量測空間S沒有配置待測物O時,量測通過此量測空間S的電磁波分別在多個不同光子能量下的多個第一強度影像;以及在待測物O設置於此量測空間S時,量測通過待測物O的此電磁波X分別在上述多個光子能量下的多個第二強度影像(步驟S100)。具體而言,本實施例的影像重建系統100包括電磁波偵測器120。在量測多個第一強度影像及多個第二強度影像之前,可先將電磁波偵測器120設定為M個感測區間(步驟S110)。M為大於或等於N的正整數,換言之,電磁波偵測器120被設定的感測區間數目可大於或等於欲取得的待測物O對應於多種成分的衰減量影像數目。然後,再於量測空間S沒有配置待測物O時,量測通過此量測空間S的電磁波X分別在M個不同光子能量下的 多個第一強度影像,並且在待測物O設置於量測空間S時,量測通過待測物O的電磁波X分別在上述M個光子能量下的多個第二強度影像(步驟S120)。Next, when the measurement object O is not configured with the object to be tested O, a plurality of first intensity images of the electromagnetic waves passing through the measurement space S at a plurality of different photon energies are respectively measured; and the object to be tested O is disposed at When the space S is measured, a plurality of second intensity images of the electromagnetic waves X passing through the object O to be measured at the plurality of photon energies are measured (step S100). Specifically, the image reconstruction system 100 of the present embodiment includes an electromagnetic wave detector 120. Before measuring the plurality of first intensity images and the plurality of second intensity images, the electromagnetic wave detector 120 may be first set to M sensing intervals (step S110). M is a positive integer greater than or equal to N. In other words, the number of sensing intervals set by the electromagnetic wave detector 120 may be greater than or equal to the number of attenuation images corresponding to the plurality of components to be obtained. Then, when the measurement object O is not disposed in the measurement space S, the electromagnetic wave X passing through the measurement space S is measured under M different photon energies respectively. a plurality of first intensity images, and when the object to be tested O is disposed in the measurement space S, measuring a plurality of second intensity images of the electromagnetic wave X passing through the object to be tested O at the M photon energies respectively (step S120) .

詳言之,如圖2所示,待測物O可劃分為多個待測區塊O0 、O1 …Or 。量測空間S可劃分為多個量測子空間S0 、S1 …Sr 。待測區塊O0 、O1 …Or 分別預定設置於量測子空間S0 、S1 …Sr 。本實施例的影像重建系統100包括電磁波提供單元110。電磁波提供單元110用以提供電磁波X。電磁波X包括多個電磁波束X0 、X1 …Xr ,其中電磁波束X0 、X1 …Xr 分別通過對應的量測子空間S0 、S1 …Sr 。上段述的量測通過量測空間S的電磁波X分別在多個不同光子能量下的多個第一強度影像的步驟即為:在量測子空間S0 、S1 …Sr 沒有配置待測區塊O0 、O1 …Or 時,量測通過每一量測子空間S0 、S1 …Sr 的電磁波束X0 、X1 …Xr 在多個光子能量下的多個第一強度。其中,通過每一量測子空間的電磁波束X0 、X1 …Xr 在多個光子能量下的多個第一強度分別構成上段所述的多個第一強度影像。上段述的在待測物O設置於量測空間S時,量測通過待測物O的電磁波X分別在多個不同光子能量下的多個第二強度影像的步驟即為:在待測區塊O0 、O1 …Or 分別設置於多個量測子空間S0 、S1 …Sr 時,量測通過每一待測區塊O0 、O1 …Or 的電磁波束X0 、X1 …Xr 在多個光子能量下的多個第二強度。其中,通過每一待測區塊O0 、O1 …Or 的電磁波束X0 、X1 …Xr 在多個光子能量下的多個第二強度分別構成上述的多個第二強度影像。In detail, as shown in FIG. 2, the object to be tested O can be divided into a plurality of blocks to be tested O 0 , O 1 ... O r . The measurement space S can be divided into a plurality of measurement subspaces S 0 , S 1 ... S r . The blocks O 0 , O 1 ... O r to be tested are respectively set in the measurement subspaces S 0 , S 1 ... S r . The image reconstruction system 100 of the present embodiment includes an electromagnetic wave providing unit 110. The electromagnetic wave providing unit 110 is for supplying an electromagnetic wave X. The electromagnetic wave X comprises a plurality of electromagnetic beams X 0 , X 1 ... X r , wherein the electromagnetic beams X 0 , X 1 ... X r respectively pass through the corresponding measurement subspaces S 0 , S 1 ... S r . The steps of measuring the plurality of first intensity images of the electromagnetic waves X in the measurement space S under a plurality of different photon energies are as follows: the measurement subspaces S 0 , S 1 ... S r are not configured to be tested When the blocks O 0 , O 1 ... O r , the electromagnetic beams X 0 , X 1 ... X r passing through the respective measurement subspaces S 0 , S 1 ... S r are measured in a plurality of photon energies An intensity. The plurality of first intensities of the electromagnetic beams X 0 , X 1 . . . , X r in each of the plurality of photon energies respectively form a plurality of first intensity images in the upper segment. In the above section, when the object to be tested O is disposed in the measurement space S, the step of measuring the plurality of second intensity images of the electromagnetic wave X passing through the object to be tested O at a plurality of different photon energies is: in the area to be tested When the blocks O 0 , O 1 ... O r are respectively set in the plurality of measurement subspaces S 0 , S 1 ... S r , the electromagnetic beam X 0 passing through each of the blocks O 0 , O 1 ... O r to be measured is measured. And a plurality of second intensities of X 1 ... X r at a plurality of photon energies. Wherein, the plurality of second intensities of the electromagnetic beams X 0 , X 1 ... X r of each of the blocks O 0 , O 1 ... O r to be subjected to the plurality of photon energies respectively constitute the plurality of second intensity images described above .

在本實施例中,可令多個電磁波束X0 、X1 …Xr 同時分別通過量測子空間S0 、S1 …Sr ,並同時量測通過這些量測子空間S0 、S1 …Sr 的電磁波束X0 、X1 …Xr 在多個光子能量下的多個第一強度。可令多個電磁波束X0 、X1 …Xr 同時分別通過待測區塊O0 、O1 …Or ,並同時量測每一電磁波束X0 、X1 …Xr 通過待測區塊O0 、O1 …Or 後在多個光子能量下的多個第二強度。In this embodiment, the plurality of electromagnetic beams X 0 , X 1 ... X r can be simultaneously passed through the measurement subspaces S 0 , S 1 ... S r , and simultaneously measured through the measurement subspaces S 0 , S 1 ... S r electromagnetic beams X 0 , X 1 ... X r a plurality of first intensities at a plurality of photon energies. The plurality of electromagnetic beams X 0 , X 1 ... X r can be simultaneously passed through the blocks O 0 , O 1 ... O r , respectively , and simultaneously measure each electromagnetic beam X 0 , X 1 ... X r through the area to be tested block O 0, O 1 ... at a plurality of second intensity of the plurality of photon energy O r.

具體而言,如圖2所示,本實施例的電磁波提供單元110提供電磁波X。電磁波X包括多個電磁波束X0 、X1 …Xr 。本實施例的電磁波偵測器120具有與多個量測子空間S0 、S1 …Sr 對應的多個感測像素A。本實施例的電磁波提供單元110可同時發出多個電磁波束X0 、X1 …Xr 。電磁波偵測器120的多個感測像素A可同時分別量測通過量測子空間S0 、S1 …Sr 的多個電磁波束X0 、X1 …Xr 在多個光子能量下的多個第一強度。電磁波偵測器120的多個感測像素A可同時分別量測通過待測區塊O0 、O1 …Or 的多個電磁波束X0 、X1 …Xr 在多個光子能量下的多個第二強度。Specifically, as shown in FIG. 2, the electromagnetic wave providing unit 110 of the present embodiment supplies an electromagnetic wave X. The electromagnetic wave X includes a plurality of electromagnetic beams X 0 , X 1 ... X r . The electromagnetic wave detector 120 of the present embodiment has a plurality of sensing pixels A corresponding to the plurality of measurement subspaces S 0 , S 1 . . . S r . The electromagnetic wave providing unit 110 of the present embodiment can simultaneously emit a plurality of electromagnetic beams X 0 , X 1 . . . , X r . The plurality of sensing pixels A of the electromagnetic wave detector 120 can simultaneously measure the plurality of electromagnetic beams X 0 , X 1 ... X r passing through the measuring subspaces S 0 , S 1 ... S r under a plurality of photon energies respectively. Multiple first intensities. The plurality of sensing pixels A of the electromagnetic wave detector 120 can simultaneously measure the plurality of electromagnetic beams X 0 , X 1 ... X r passing through the blocks O 0 , O 1 ... O r under the plurality of photon energies respectively. Multiple second intensities.

在本實施例中,電磁波偵測器120例如為光子計數器(Photon-counting detector)。電磁波偵測器120的每一感測像素A可單獨地量測出傳遞至此感測像素A的電磁波束X0 、X1 …Xr 在多個光子能量下的多個強度。圖3示出本發明一個實施例的一個感測像素所量測出的電磁波束在多個光子能量下的多個強度。請參照圖3,詳言之,每一感測像素A可感測出傳遞至此感測像素A的電磁波束Xr 在多個光子能量E1 、E2 …EM 下的多個光子數目,由 這些光子數目可知傳遞至此感測像素A的電磁波束Xr 在多個光子能量E1 、E2 …EM 下的強度Ir (E1 )、Ir (E2 )…Ir (EM )。In the present embodiment, the electromagnetic wave detector 120 is, for example, a photon-counting detector. Each of the sensing pixels A of the electromagnetic wave detector 120 can separately measure a plurality of intensities of the electromagnetic beams X 0 , X 1 . . . , X r transmitted to the sensing pixel A at a plurality of photon energies. 3 illustrates a plurality of intensities of an electromagnetic beam measured by a sensing pixel at a plurality of photon energies, in accordance with an embodiment of the present invention. Referring to FIG. 3 , in detail, each sensing pixel A can sense the number of photons of the electromagnetic beam X r transmitted to the sensing pixel A under the plurality of photon energies E 1 , E 2 . . . E M , From these numbers of photons, the intensity I r (E 1 ), I r (E 2 )...I r (E) of the electromagnetic beam X r transmitted to the sensing pixel A under the plurality of photon energies E 1 , E 2 ... E M can be known. M ).

本實施例的電磁波提供單元110可操作在連續模式(continuous mode)。換言之,電磁波提供單元110所發出的電磁波束X0 、X1 …Xr 的強度在電磁波偵測器120進行量測期間(即量測多個第一強度與多個第二強度的期間)內可為定值。詳言之,如圖2所示,本實施例的影像重建系統100可進一步包括與電磁波提供單元110及電磁波偵測器120電性連接的控制單元130。控制單元130可使電磁波提供單元110所發出的電磁波束X0 、X1 …Xr 的強度在電磁波偵測器120進行量測期間內為定值。舉例而言,電磁波提供單元110例如為用以提供X光的X光提供單元。此X光提供單元可包括X光光管112以及與X光光管112電性連接的電源供應器114。控制單元130分別可透過傳輸管道210、220控制電源供應器114輸入至X光光管112的電壓及電流,進而使X光光管112操作在連續模式。The electromagnetic wave providing unit 110 of the present embodiment is operable in a continuous mode. In other words, the intensity of the electromagnetic beams X 0 , X 1 . . . X r emitted by the electromagnetic wave providing unit 110 is within the period during which the electromagnetic wave detector 120 performs the measurement (ie, the period during which the plurality of first intensities and the plurality of second intensities are measured) Can be fixed. In detail, as shown in FIG. 2, the image reconstruction system 100 of the present embodiment may further include a control unit 130 electrically connected to the electromagnetic wave providing unit 110 and the electromagnetic wave detector 120. The control unit 130 can make the intensity of the electromagnetic beams X 0 , X 1 ... X r emitted by the electromagnetic wave providing unit 110 constant during the measurement by the electromagnetic wave detector 120. For example, the electromagnetic wave providing unit 110 is, for example, an X-ray providing unit for providing X-rays. The X-ray providing unit may include an X-ray tube 112 and a power supply 114 electrically connected to the X-ray tube 112. The control unit 130 can control the voltage and current input from the power supply 114 to the X-ray tube 112 through the transmission pipes 210 and 220, respectively, thereby operating the X-ray tube 112 in the continuous mode.

圖4示出本發明一個實施例X光光管的管電流(tube current)與時間的關係。請參照圖4,當X光光管112操作在連續模式時,X光光管112的管電流在電磁波偵測器120進行量測期間t內維持在固定電流I1 ,而使X光光管112所輸出的電磁波束(即X光射束)的強度在量測期間t內維持定值。Fig. 4 is a view showing the relationship between tube current and time of an X-ray tube according to an embodiment of the present invention. Referring to FIG 4, when the period t X bare tube 112 operates in a continuous mode, a tube current X bare pipe 112 is measured in the wave detector 120 is maintained at a fixed current I 1, the bare tube X The intensity of the electromagnetic beam (i.e., the X-ray beam) output by 112 is maintained at a constant value during the measurement period t.

請再參照圖1及圖2,在取得多個第一強度影像、多個第二強度影像及所需的多個衰減係數與多個厚度後,可根據多個第 一強度影像、多個第二強度影像以及具有多種成分的多個物質中的每一個物質在多個不同光子能量所對應的電磁波照射下的衰減係數及每一物質在此光子能量所對應的電磁波傳遞方向上的厚度計算出待測物分別對應於多個成分的多個衰減量影像(步驟300)。換言之,可根據通過每一量測子空間S0 、S1 …Sr 的電磁波束X0 、X1 …Xr 的在多個光子能量下的多個第一強度、通過每一待測區塊O0 、O1 …Or 的電磁波束X0 、X1 …Xr 在多個光子能量下的多個第二強度、分別具有多種成分的多個物質的每一物質在多個光子能量下的多個衰減係數以及多個物質的多個厚度計算出每一待測區塊對應於每一成份在多個光子能量所對應的電磁波束照射下的多個第一衰減係數。每一待測區塊的多個第一衰減係數可構成上述多個衰減量影像。Referring to FIG. 1 and FIG. 2, after obtaining a plurality of first intensity images, a plurality of second intensity images, and a plurality of required attenuation coefficients and a plurality of thicknesses, the plurality of first intensity images and the plurality of The attenuation coefficient of the two-intensity image and each of the plurality of substances having a plurality of components under the electromagnetic wave irradiation corresponding to the plurality of different photon energies and the thickness of each substance in the electromagnetic wave transmission direction corresponding to the photon energy are calculated. The objects to be tested correspond to a plurality of attenuation image images of the plurality of components, respectively (step 300). In other words, a plurality of first intensities at a plurality of photon energies, passing through each of the regions to be tested, according to the electromagnetic beams X 0 , X 1 ... X r passing through each of the measured subspaces S 0 , S 1 ... S r The electromagnetic beams X 0 , X 1 ... X r of the blocks O 0 , O 1 ... O r are a plurality of second intensities at a plurality of photon energies, each of a plurality of substances having a plurality of components, respectively, in a plurality of photon energies The plurality of attenuation coefficients and the plurality of thicknesses of the plurality of substances calculate a plurality of first attenuation coefficients corresponding to the electromagnetic beam irradiation corresponding to each of the plurality of photon energies for each of the blocks to be tested. The plurality of first attenuation coefficients of each of the blocks to be tested may constitute the plurality of attenuation image.

以下舉例說明如何計算出某一個待測區塊對應於多個成份在某一個光子能量(例如第一光子能量E1 )所對應的電磁波照射下的多個第一衰減係數。The following example illustrates how to calculate a plurality of first attenuation coefficients of a certain block to be tested corresponding to electromagnetic radiation of a plurality of components under a certain photon energy (for example, the first photon energy E 1 ).

請參照圖1,首先,利用多個物質的多個衰減係數計算出每一成分在每一光子能量所對應的電磁波束照射下的衰減係數與此成分在其他光子能量對應的電磁波束照射下的衰減係數之間的轉換關係,並且利用這些轉換關係建立轉換矩陣W的反矩陣W-1 (步驟S310)。以建立其中一個轉換矩陣W為示例,上述多種成分包括第一成分、第二成分至第N成分,N為大於或等於2的正整數。上述多個光子能量包括第一光子能量E1 、第二光子能量E2 至第M光子能量EM ,M為大於或等於N的正整數。利用每一物質在與多個光子能量對應的電磁波照射下的多個衰減係數計算出第一成分在第一光子能量E1 所對應的電磁波束Xr 照射下的衰減係數μr1 (E1 )與第一成分在第二光子能量E2 至第M光子能量EM 所對應的電磁波束Xr 照射下的衰減係數μr1 (E2 )~μr1 (EM )之間的轉換關係w(μr1 ,E2 )~w(μr1 ,EM )。舉例而言,轉換關係w(μr1 ,E2 )~w(μr1 ,EM )分別如下,w(μr1 ,E2 )=[μr1 (E2 )/μr1 (E1 )],w(μr1 ,E3 )=[μr1 (E3 )/μr1 (E1 )],…,w(μr1 ,EM )=[μr1 (EM )/μr1 (E1 )]。類似地,利用這些衰減係數計算出第二成分在第一光子能量E1 所對應的電磁波束Xr 照射下的衰減係數μr2 (E1 )與第二成分在第二光子能量E2 至第M光子能量EM 所對應的電磁波Xr 照射下的衰減係數μr2 (E2 )~μr2 (EM )之間的轉換關係w(μr2 ,E2 )~w(μr2 ,EM )、到第N成分在第一光子能量E1 所對應的電磁波Xr 照射下的衰減係數μrN (E1 )與第N成分在第二光子能量E2 至第M光子能量EM 所對應的電磁波束Xr照射下的衰減係數μrN (E2 )~μrN (EM )之間的轉換關係w(μrN ,E2 )~w(μrN ,EM )。利用這些轉換關係可建立轉換矩陣W。轉換矩陣W可表示為下式(1)。利用轉換矩陣W可計算出轉換矩陣W的反矩陣W-1Referring to FIG. 1 , firstly, using a plurality of attenuation coefficients of a plurality of substances, an attenuation coefficient of each component under the electromagnetic beam irradiation corresponding to each photon energy is calculated, and the component is irradiated by an electromagnetic beam corresponding to other photon energies. The conversion relationship between the attenuation coefficients is used, and the inverse matrix W -1 of the conversion matrix W is established using these conversion relationships (step S310). Taking one of the conversion matrices W as an example, the above various components include a first component, a second component to an Nth component, and N is a positive integer greater than or equal to 2. The plurality of photon energies include a first photon energy E 1 , a second photon energy E 2 to an Mth photon energy E M , and M is a positive integer greater than or equal to N. The attenuation coefficient μ r1 (E 1 ) of the first component under the irradiation of the electromagnetic beam X r corresponding to the first photon energy E 1 is calculated by using a plurality of attenuation coefficients of each substance under electromagnetic wave illumination corresponding to the plurality of photon energies. a conversion relationship w between the attenuation coefficients μ r1 (E 2 ) to μ r1 (E M ) of the first component from the electromagnetic beam X r corresponding to the second photon energy E 2 to the Mth photon energy E M ( μ r1 , E 2 )~w(μ r1 , E M ). For example, the conversion relations w(μ r1 , E 2 )~w(μ r1 , E M ) are as follows, w(μ r1 , E 2 )=[μ r1 (E 2 )/μ r1 (E 1 )] , w(μ r1 , E 3 )=[μ r1 (E 3 )/μ r1 (E 1 )],...,w(μ r1 ,E M )=[μ r1 (E M )/μ r1 (E 1 )]. Similarly, using these attenuation coefficients, the attenuation coefficient μ r2 (E 1 ) of the second component under the irradiation of the electromagnetic beam X r corresponding to the first photon energy E 1 and the second component at the second photon energy E 2 are calculated. The conversion relationship between the attenuation coefficient μ r2 (E 2 )~μ r2 (E M ) of the electromagnetic wave X r corresponding to the M photon energy E M is w(μ r2 , E 2 )~w(μ r2 , E M And the attenuation coefficient μ rN (E 1 ) of the Nth component under the electromagnetic wave X r corresponding to the first photon energy E 1 and the Nth component corresponding to the second photon energy E 2 to the Mth photon energy E M The conversion relationship w(μ rN , E 2 )~w(μ rN , E M ) between the attenuation coefficients μ rN (E 2 ) to μ rN (E M ) under the irradiation of the electromagnetic beam Xr. The conversion matrix W can be established by using these conversion relationships. The conversion matrix W can be expressed as the following formula (1). The inverse matrix W -1 of the transformation matrix W can be calculated using the transformation matrix W.

請參照圖1,接著,利用通過每一量測子空間的電磁波束在多個光子能量下的多個第一強度以及通過每一待測區塊的電磁波束在多個光子能量下的多個第二強度建立比例矩陣,並利用此比例矩陣、轉換矩陣W以及多個物質的多個厚度計算出每一待測區塊對應於多個成分在每一光子能量所對應的電磁波照射下的多個第一衰減係數(步驟S320)。Referring to FIG. 1, next, multiple first intensities at multiple photon energies and multiple electromagnetic photobeams passing through each of the photon energies of each of the detected sub-blocks are utilized. The second intensity establishes a proportional matrix, and uses the proportional matrix, the conversion matrix W, and the plurality of thicknesses of the plurality of substances to calculate that each of the blocks to be tested corresponds to a plurality of components under the electromagnetic wave corresponding to each photon energy. The first attenuation coefficient (step S320).

以下以計算出某一個待測區塊Or 對應於多個成分在第一光子能量E1 所對應的電磁波照射下的多個第一衰減係數為例(步驟S322)。利用通過此量測子空間Sr 的電磁波束Xr 在M個光子能量下的多個第一強度以及通過此待測區塊Or 的電磁波束Xr 在M個光子能量下的多個第二強度度建立比例矩陣Tr 。詳言之,在第一光子能量E1 、第二光子能量E2 至第M光子能量EM 下的多個第一強度分別表示為Ir1 (E1 )、Ir1 (E2 )~Ir1 (EM ),在第一光子能量E1 、第二光子能量E2 至第M光子能量EM 下的多個第二強度分別表示為Ir2 (E1 )、Ir2 (E2 )~Ir2 (EM ),而比例矩陣Tr 可表示為下式(2), The following one block to calculate a measured O r corresponding to the plurality of component E at a plurality of electromagnetic wave radiation corresponding to a first attenuation coefficient at a first photon energy as an example (step S322). Using a beam of electromagnetic waves through this measuring X r S r subspace plurality of M first intensity at a photon energy of an electromagnetic beam and by this block X r O r measured at a plurality of photon energy of the M The second intensity establishes a proportional matrix T r . In detail, the plurality of first intensities under the first photon energy E 1 , the second photon energy E 2 to the Mth photon energy E M are represented as I r1 (E 1 ), I r1 (E 2 )~I, respectively. R1 (E M ), the plurality of second intensities under the first photon energy E 1 , the second photon energy E 2 to the Mth photon energy E M are represented as I r2 (E 1 ), I r2 (E 2 ), respectively ~I r2 (E M ), and the proportional matrix T r can be expressed as the following formula (2),

利用比例矩陣Tr 以及轉換矩陣W計算出此待測區塊Or 對應於第一成分、第二成分至第N成分在第一光子能量E1 所對應的電磁波照射下的多個第一衰減係數。詳言之,可利用下式(3)計算出每一待測區塊Or 對應於第一成分、第二成分至第N成分在第一光子能量E1 下的多個第一衰減係數μr1 (E1 )、μr2 (E1 )~至μrN (E1 )。Use ratio and the conversion matrix T r matrix W calculated block this test O r corresponding to a first component, a second component to the first plurality of N component at a first electromagnetic irradiation photon energy E 1 corresponding to the first attenuation coefficient. In detail, can be calculated using the following equation (3) O r each block corresponding to the first test component, the second component to the first component μ N 1 in the first plurality of photon energy E of the first attenuation coefficient R1 (E 1 ), μ r2 (E 1 )~ to μ rN (E 1 ).

其中t1 、t2 ~tN 分別代表具有第一成份的物體在此光子能量所對應的電磁波傳遞方向上的厚度、具有第二成份的物體在此光子能量所對應的電磁波傳遞方向上的厚度~具有第N成份的物體在此光子能量所對應的電磁波傳遞方向上的厚度。在本實施例中,這些厚度t1 、t2 ~tN 可皆為夾住待測物O(例如乳房)的二板件(未繪示)之間的距離△x。但本發明不限於此,在其他實施例中,這些厚度t1 、t2 ~tN 亦可來自於統計資料。當這些厚度t1 、t2 ~tN 皆為△x時,上式(3)可簡化為下式(4)。式(4)即圖1中所列出的 Wherein t 1 and t 2 to t N respectively represent the thickness of the object having the first component in the direction of electromagnetic wave transmission corresponding to the photon energy, and the thickness of the object having the second component in the direction of electromagnetic wave transmission corresponding to the photon energy. The thickness of the object having the Nth component in the direction of electromagnetic wave transmission corresponding to the photon energy. In the present embodiment, the thicknesses t 1 and t 2 to t N may both be the distance Δx between the two plates (not shown) sandwiching the object O (for example, the breast). However, the invention is not limited thereto, and in other embodiments, these thicknesses t 1 , t 2 ~ t N may also be derived from statistical data. When these thicknesses t 1 , t 2 ~ t N are both Δx, the above formula (3) can be simplified to the following formula (4) . Equation (4) is the one listed in Figure 1.

以上舉例說明了如何計算出某一個待測區塊Or 對應於多 個成份在第一光子能量E1 所對應的電磁波照射下的多個第一衰減係數μr1 (E1 )、μr2 (E1 )~μrN (E1 )。可依類似的方式計算出此待測區塊Or 對應於多個成份在其他光子能量所對應的電磁波照射下的多個第一衰減係數μr1 (E2 )~μrN (E2 )至μr1 (EM )~μrN (EM )。此外,分別儲存多個第一衰減係數μr1 (E1 )~μrN (E1 )、μr1 (E2 )~μrN (E2 )至μr1 (EM )~μrN (EM )後,使用者可單獨挑出某個能量下的第一衰減係數,進而觀看待測區塊對應於每一成分的衰減量。類似地,可依相似的方法重建其他待測區塊對應於每一成分的衰減量。當全部能量下所有待測區塊對應於每一成分的衰減量皆被計算出時,可個別取出單一能量下所有待測區塊對應於每一成分的衰減量便可構成待測物對應於每一成分的衰減量影像。以下透過圖1及圖2說明之。Above illustrates how a block of a calculated measured O r corresponding to a first plurality of the plurality of components R1 attenuation coefficient [mu] (E 1) at a first electromagnetic irradiation photon energy corresponding to E 1, μ r2 ( E 1 )~μ rN (E 1 ). In a similar manner, the block to be tested O r corresponds to a plurality of first attenuation coefficients μ r1 (E 2 ) to μ rN (E 2 ) of the plurality of components under electromagnetic wave illumination corresponding to other photon energies to μ r1 (E M )~μ rN (E M ). In addition, a plurality of first attenuation coefficients μ r1 (E 1 ) to μ rN (E 1 ), μ r1 (E 2 ) to μ rN (E 2 ), and μ r1 (E M ) to μ rN (E M are respectively stored. After that, the user can individually pick out the first attenuation coefficient under a certain energy, and then view the attenuation amount of each component corresponding to the block to be tested. Similarly, the amount of attenuation of each of the other blocks to be tested corresponding to each component can be reconstructed in a similar manner. When the attenuation amount corresponding to each component of all the blocks to be tested is calculated under all energies, the attenuation amount corresponding to each component of all the blocks to be tested under a single energy can be individually taken out to constitute the object to be tested corresponding to Attenuation image of each component. This will be described below with reference to FIGS. 1 and 2.

請同時參照圖1及圖2,本實施例的電磁波偵測器120包括多個感測像素A,其中每一感測像素A與一個量測子空間(及此量測子空間中的待測區塊)對應。這些感測像素A排成(GH .GW )的陣列。換言之,本實施例的電磁波偵測器120包括(GH .GW )個感測像素A。在本實施例中,可先擷取與第一個量測子空間(Sr ,r=0)及第一個待測區塊(Or ,r=0)對應的第一個感測像素A0 所感測到的多個第一強度及多個第二強度(步驟321)。然後,透過這些第一強度及第二強度計算出第一個待測區塊對應於多個成分在第一光子能量E1 所對應的電磁波照射下的多個第一衰減係數(步驟322)。接著,判斷所擷取的感測像素A是否為第(GH . GW )個感測像素A,即最後一個感測像素A。意即,判斷r是否等於(GH .GW )(步驟323)。若r不等於(GH .GW ),則此時將r的值加1(步驟324),以取出與下一量測子空間(Sr ,r=1)及下一個待測區塊(Or ,r=1)對應的下一感測像素A1 所感測到的多個第一強度及多個第二強度。然後,再透過這些第一強度及第二強度計算出下一個待測區塊(Or ,r=1)對應於多個成分在第一光子能量E1 所對應的電磁波照射下的多個第一衰減係數(步驟322)。然後,循環地進行步驟S323、S324、S322,直到r等於(GH .GW ),即所有待測區塊對應於多個成分在第一光子能量E1 所對應的電磁波照射下的多個第一衰減係皆被計算出,方結束運算。Referring to FIG. 1 and FIG. 2 simultaneously, the electromagnetic wave detector 120 of the embodiment includes a plurality of sensing pixels A, wherein each sensing pixel A and a measuring subspace (and the measured subspace are to be tested) Block) corresponds. These sensing pixels A are arranged in an array of (G H .G W ). In other words, the electromagnetic wave detector 120 of the present embodiment comprises (G H .G W) sensing pixels A. In this embodiment, the first sensing pixel corresponding to the first measurement subspace (S r , r=0) and the first block to be tested (O r , r=0) may be first captured. A plurality of first intensities and a plurality of second intensities sensed by A 0 (step 321). Then, through the first intensity and the second intensity, a plurality of first attenuation coefficients corresponding to the plurality of components under the electromagnetic wave illumination corresponding to the first photon energy E 1 are calculated (step 322). Next, it is determined whether the captured sensing pixel A is the (G H . G W ) sensing pixel A, that is, the last sensing pixel A. That is, it is judged whether or not r is equal to (G H .G W ) (step 323). If r is not equal to (G H .G W ), then the value of r is incremented by 1 (step 324) to extract the next measured subspace (S r , r=1) and the next block to be tested. (O r , r=1) corresponding to the plurality of first intensities and the plurality of second intensities sensed by the next sensing pixel A 1 . Then, through the first intensity and the second intensity, the next block to be tested (O r , r=1) corresponds to multiple components of the plurality of components under the electromagnetic wave corresponding to the first photon energy E 1 . An attenuation coefficient (step 322). Then, steps S323, S324, and S322 are performed cyclically until r is equal to (G H .G W ), that is, all the blocks to be tested correspond to a plurality of components under the electromagnetic wave irradiation corresponding to the first photon energy E 1 . The first attenuation system is calculated and the end operation is completed.

以上舉例說明了如何計算出待測物對應於多個成份在某一個光子能量(例如第一光子能量E1 )所對應的電磁波照射下的多個第一衰減係數。吾人可依類似的方式計算出待測物對應於多個成份在其它光子能量所對應的電磁波照射下的多個第一衰減係數。此待測物的每一待測區塊對應於某一成份的衰減量便可構成此待測物在某一能量下對應於某一成份的衰減量影像。The above exemplifies how to calculate a plurality of first attenuation coefficients of the object to be tested corresponding to electromagnetic radiation corresponding to a plurality of components at a certain photon energy (for example, the first photon energy E 1 ). In a similar manner, we can calculate a plurality of first attenuation coefficients of the object to be tested corresponding to electromagnetic radiation corresponding to the plurality of components under other photon energies. Each of the blocks to be tested corresponds to the attenuation amount of a certain component to constitute an attenuation image corresponding to a certain component of the object under a certain energy.

請參照圖2,本實施例的影像重建系統100包括處理單元140。處理單元140可進行上述的步驟S200、S300。於此便不再對處理單元140可進行的處理做說明,吾人可參照上述與步驟S200、S300對應的說明即可清楚地得知處理單元140所進行的處理為何。此外,本實施例的影像重建系統100更可將處理單元140所計算出的分別對應於多個成分的多個衰減量影像顯示於螢幕M 上。Referring to FIG. 2, the image reconstruction system 100 of the present embodiment includes a processing unit 140. The processing unit 140 can perform the above steps S200 and S300. The processing that can be performed by the processing unit 140 will not be described here. We can clearly see the processing performed by the processing unit 140 by referring to the description corresponding to the above steps S200 and S300. In addition, the image reconstruction system 100 of the embodiment further displays a plurality of attenuation image images respectively corresponding to the plurality of components calculated by the processing unit 140 on the screen M. on.

在本實施例中,於令多個電磁波束X0 、X1 …Xr 同時分別通過多個量測子空間S0 、S1 …Sr 以及多個待測區塊O0 、O1 …Or 之前,更可先濾除這些電磁波束X0 、X1 …Xr 中光子能量低於多個光子能量中最小一個光子能量的部份。具體而言,如圖2所示,本實施例的影像重建系統100可進一步包括濾光單元160。濾光單元160配置於電磁波束X0 、X1 …Xr 的傳遞路徑上且位於電磁波提供單元110與所有量測子空間S0 、S1 …Sr 之間。濾光單元160用以濾除這些電磁波束X0 、X1 …Xr 中光子能量低於這些光子能量E1 、E2 ~EM 最小的一個光子能量E1 的部份。換言之,濾光單元160可濾除電磁波X中不需使用的部份,而使待測物O所吸收的能量較小。若待測物O為人體的乳房且電磁波X為X光時,濾光單元160可降低人體所接收的輻射劑量,而減少人體在接受檢查時所受到的傷害。In this embodiment, the plurality of electromagnetic beams X 0 , X 1 ... X r are simultaneously passed through the plurality of measurement subspaces S 0 , S 1 ... S r and the plurality of blocks to be tested O 0 , O 1 ... Before O r , the portion of the electromagnetic beams X 0 , X 1 ... X r whose photon energy is lower than the smallest one of the plurality of photon energies can be filtered out. Specifically, as shown in FIG. 2, the image reconstruction system 100 of the present embodiment may further include a filter unit 160. Filter unit arranged in the electromagnetic beam 160 X 0, and located in the electromagnetic wave providing unit 110 with all measurements subspace S 0, S 1 on X 1 ... X r of the transmission path between ... S r. The filter unit 160 for filtering electromagnetic beam X 0, X 1 ... X r photon energy below the photon energy E 1, E 2 ~ E M is the smallest part of a photon energy E 1. In other words, the filter unit 160 can filter out the unnecessary portion of the electromagnetic wave X, and the energy absorbed by the object to be tested O is small. If the object to be tested O is the breast of the human body and the electromagnetic wave X is X-ray, the filter unit 160 can reduce the radiation dose received by the human body and reduce the damage that the human body receives when undergoing the examination.

基於上述,本實施例的影像重建方法及影像重建系統可透過上述資料處理方法計算出待測物分別對應於多種成分的多個衰減量影像,而使待測物的多種組成可各自形成一個衰減量影像。如此一來,待測物的各組成便可清楚被觀察到,而改善習知技術中由於待測物的多個組成的位置過近或重疊所造成的不易分辨的問題。此外,在本實施例的影像重建方法及影像重建系統中,透過對待測物取像一次(即一次取得多個第二強度影像)便可獲得待測物的多種組成的多個衰減量影像,而避免待測物接收過高 的輻射劑量,進而降低待測物在接受檢查時所受到的傷害。Based on the above, the image reconstruction method and the image reconstruction system of the present embodiment can calculate a plurality of attenuation image corresponding to the plurality of components by the data processing method, and the plurality of components of the object to be tested can each form a decline. Reduce the image. As a result, the composition of the object to be tested can be clearly observed, and the problem of the indistinguishable problem caused by the too close or overlapping of the plurality of components of the object to be tested is improved in the prior art. In addition, in the image reconstruction method and the image reconstruction system of the present embodiment, a plurality of attenuation image images of various components of the object to be tested can be obtained by taking the image to be measured once (that is, acquiring a plurality of second intensity images at a time). And avoid receiving the object to be tested too high The radiation dose, which in turn reduces the damage to the test object when it is examined.

第二實施例Second embodiment

本實施例的影像重建方法及影像重建系統與第一實施例相似,因此相同的步驟及元件以相同的標號表示。兩者主要的差異在於:本實施例的影像重建方法及影像重建系統取得多個第一強度影像及多個第二強度影像的方法與第一實施例不同。以下主要針對此差異處做詳細的說明。本實施例的影像重建方法及影像重建系統與第一實施例相同處請參照第一實例中對應的說明,於此不再詳述。The image reconstruction method and the image reconstruction system of the present embodiment are similar to those of the first embodiment, and therefore the same steps and elements are denoted by the same reference numerals. The main difference between the two is that the image reconstruction method and the image reconstruction system of the present embodiment are different from the first embodiment in that the plurality of first intensity images and the plurality of second intensity images are obtained. The following is a detailed description of this difference. For the same manner as the first embodiment, the image reconstruction method and the image reconstruction system of the present embodiment are referred to the corresponding descriptions in the first example, and will not be described in detail herein.

圖5示出本發明第二實施例的影像重建方法流程圖。圖6示出本發明第二實施例的影像重建系統。特別是,圖5的影像重建方法適用於圖6的影像重建系統。請參照圖5,首先,提供資料庫的資料。資料庫的資料包括分別具有多個成分的多個物質中的每一個物質在多個不同光子能量所對應的電磁波照射下的衰減係數以及每一物質在此光子能量所對應的電磁波傳遞方向上的厚度(步驟S200)。詳細而言,提供資料庫資料的方法包括下列步驟。首先,可根據欲取得的待測物的多個衰減量影像是分別對應於哪N個成分,而選定分別具有此N個成分的多個物質(步驟210)。然後,再由資料庫中取出分別具有此N種成分的多個物質中的每一個物質在多個不同光子能量所對應的電磁波照射下的衰減係數及每一個物質在此光子能量所對應的電磁波傳遞方向上的厚度(步 驟220)。FIG. 5 is a flow chart showing an image reconstruction method according to a second embodiment of the present invention. Fig. 6 shows an image reconstruction system of a second embodiment of the present invention. In particular, the image reconstruction method of FIG. 5 is applicable to the image reconstruction system of FIG. Please refer to Figure 5. First, provide the data of the database. The data of the database includes an attenuation coefficient of each of the plurality of substances having a plurality of components under the electromagnetic wave irradiation corresponding to the plurality of different photon energies, and each of the substances in the electromagnetic wave transmission direction corresponding to the photon energy. Thickness (step S200). In detail, the method of providing database data includes the following steps. First, a plurality of substances each having the N components may be selected according to which of the plurality of attenuation images of the object to be detected are to be selected (step 210). Then, the attenuation coefficient of each of the plurality of substances having the N components respectively under the electromagnetic wave corresponding to the plurality of different photon energies and the electromagnetic wave corresponding to the photon energy of each substance are extracted from the database. Thickness in the direction of transfer (step Step 220).

請參照圖6,具體而言,本實施例的影像重建系統100A可選擇性地包括資料提供單元150。本實施例的影像重建系統100A更包括處理單元140。影像重建系統100A之處理單元140可視欲取得的待測物O的多個衰減量影像是分別對應於哪N個成分而透過資料提供單元150取得分別具有此N種成分的多個物質中的每一個物質在多個不同光子能量所對應的電磁波照射下的衰減係數及每一物質在此光子能量所對應的電磁波傳遞方向上的厚度。Referring to FIG. 6 , in particular, the image reconstruction system 100A of the present embodiment may optionally include a data providing unit 150 . The image reconstruction system 100A of the present embodiment further includes a processing unit 140. The processing unit 140 of the image reconstruction system 100A can obtain, by the data providing unit 150, a plurality of substances having the N kinds of components, respectively, depending on which N components are respectively used for the plurality of attenuation image images of the object to be detected O to be acquired. The attenuation coefficient of a substance under the irradiation of electromagnetic waves corresponding to a plurality of different photon energies and the thickness of each substance in the direction of electromagnetic wave transmission corresponding to the photon energy.

請參照圖5,接著,利用多個物質的多個衰減係數計算出每一成分在每一光子能量所對應的電磁波束照射下的衰減係數與此成分在其他光子能量對應的電磁波束照射下的衰減係數之間的轉換關係,並且利用這些轉換關係建立轉換矩陣W的反矩陣W-1 (步驟S310)。請參照圖6,具體而言,本實施例的處理單元140可利用多個物質的多個衰減係數計算出每一成分在每一光子能量所對應的電磁波束照射下的衰減係數與所述成分在其他光子能量對應的電磁波束照射下的衰減係數之間的轉換關係,並且利用這些轉換關係建立轉換矩陣W的反矩陣W-1 。計算轉換關係及建立反矩陣W-1 的詳細方法可參照第一實施例中的說明。Referring to FIG. 5, the attenuation coefficient of each component under the electromagnetic beam irradiation corresponding to each photon energy is calculated by using a plurality of attenuation coefficients of the plurality of substances, and the electromagnetic beam irradiation of the component corresponding to other photon energies. The conversion relationship between the attenuation coefficients is used, and the inverse matrix W -1 of the conversion matrix W is established using these conversion relationships (step S310). Referring to FIG. 6 , in particular, the processing unit 140 of the embodiment may calculate the attenuation coefficient of each component under the electromagnetic beam illumination corresponding to each photon energy and the component by using a plurality of attenuation coefficients of the plurality of substances. The conversion relationship between the attenuation coefficients under the irradiation of the electromagnetic beams corresponding to the other photon energies, and the inverse matrix W -1 of the transformation matrix W is established using these conversion relationships. For a detailed method of calculating the conversion relationship and establishing the inverse matrix W -1 , reference may be made to the description in the first embodiment.

請參照圖5及圖6,接著,在量測空間S沒有配置待測物O時,量測通過此量測空間S的電磁波分別在多個不同光子能量E1 、E2 …EM 下的多個第一強度影像(步驟S1)。意即,在量測子 空間S0 、S1 …Sr 沒有配置待測區塊O0 、O1 …Or 時,量測通過每一量測子空間S0 、S1 …Sr 的電磁波束Xr 在多個光子能量E1 、E2 …EM 下的多個第一強度Ir1 (E1 )、Ir1 (E2 )~Ir1 (EM )。Referring to FIG. 5 and FIG. 6 , when the measurement object O is not disposed in the measurement space S, the electromagnetic waves passing through the measurement space S are respectively measured under a plurality of different photon energies E 1 , E 2 ... E M . A plurality of first intensity images (step S1). That is, when the measurement subspaces S 0 , S 1 ... S r are not configured with the blocks O 0 , O 1 ... O r to be measured, the measurement passes through each measurement subspace S 0 , S 1 ... S r The electromagnetic beam X r has a plurality of first intensities I r1 (E 1 ), I r1 (E 2 )~I r1 (E M ) at a plurality of photon energies E 1 , E 2 ... E M .

與第一實施例不同的是,在本實施例中,電磁波束Xr 可為脈衝式(pulse mode)電磁波束xr 。量測通過每一量測子空間Sr 的電磁波束Xr 在多個光子能量E1 、E2 …EM 下的多個第一強度Ir1 (E1 )、Ir1 (E2 )~Ir1 (EM )的方法可為:令脈衝式電磁波束xr 掃描所有量測子空間S0 、S1 …Sr ,其中當脈衝式電磁波束xr 的強度實質上為零時,使脈衝式電磁波束xr 的對準位置從這些量測子空間其中之一相對移動到這些量測子空間的另一。當脈衝式電磁波束xr 的強度實質上不為零時,使脈衝式電磁波束xr 的對準位置相對於一個量測子空間維持實質上靜止。當脈衝式電磁波束xr 的對準位置分別停留於這些量測子空間S0 、S1 …Sr 時,分別量測通過每一量測子空間Sr 的脈衝式電磁波束xr 在多個光子能量E1 、E2 …EM 下的多個第一強度Ir1 (E1 )、Ir1 (E2 )~Ir1 (EM )。Different from the first embodiment, in the present embodiment, the electromagnetic beam X r may be a pulse mode electromagnetic beam x r . Measuring a plurality of first intensities I r1 (E 1 ), I r1 (E 2 ) of the electromagnetic beam X r passing through each measurement subspace S r under a plurality of photon energies E 1 , E 2 ... E M The method of I r1 (E M ) may be such that the pulsed electromagnetic beam x r scans all the measured subspaces S 0 , S 1 ... S r , wherein when the intensity of the pulsed electromagnetic beam x r is substantially zero, The alignment position of the pulsed electromagnetic beam x r is relatively moved from one of the measurement subspaces to the other of the measurement subspaces. When the intensity of the pulsed electromagnetic beam x r is substantially non-zero, the aligned position of the pulsed electromagnetic beam x r is maintained substantially stationary relative to a measurement subspace. When the alignment positions of the pulsed electromagnetic beams x r respectively stay in the measurement subspaces S 0 , S 1 ... S r , respectively, the pulsed electromagnetic beams x r passing through each measurement subspace S r are respectively measured. A plurality of first intensities I r1 (E 1 ) and I r1 (E 2 ) to I r1 (E M ) under photon energies E 1 , E 2 ... E M .

請參照圖6,具體而言,本實施例的影像重建系統100A包括用以提供脈衝式電磁波束的電磁波提供單元110A。在本實施中,電磁波提供單元110A為脈衝式電磁波束提供單元。脈衝式電磁波束提供單元包括提供脈衝式電磁波x的脈衝式電磁波源110a以及準直器116。脈衝式電磁波源110a包括X光光管112及電源供應器114。本實施例的影像重建系統100A可進一步包括與電磁波提供單元110A電性連接的控制單元130。控制單元130可透過 傳輸管道210、220控制電源供應器114輸入至X光光管112的電壓及電流,進而使X光光管112發出脈衝式電磁波x。Referring to FIG. 6, in particular, the image reconstruction system 100A of the present embodiment includes an electromagnetic wave providing unit 110A for providing a pulsed electromagnetic beam. In the present embodiment, the electromagnetic wave providing unit 110A is a pulsed electromagnetic beam providing unit. The pulsed electromagnetic beam providing unit includes a pulsed electromagnetic wave source 110a that supplies a pulsed electromagnetic wave x and a collimator 116. The pulsed electromagnetic wave source 110a includes an X-ray tube 112 and a power supply 114. The image reconstruction system 100A of the present embodiment may further include a control unit 130 electrically connected to the electromagnetic wave providing unit 110A. Control unit 130 is permeable The transmission ducts 210, 220 control the voltage and current input from the power supply 114 to the X-ray tube 112, thereby causing the X-ray tube 112 to emit a pulsed electromagnetic wave x.

本實施例的準直器116配置於脈衝式電磁波x的傳遞路徑上。準直器116具有孔洞H1。部分的脈衝式電磁波x通過準直器116的孔洞H1而形成脈衝式電磁波束xr 。控制單元130透過移動準直器116而使脈衝式電磁波束xr 掃描量測子空間S0 、S1 …Sr 。當脈衝式電磁波束xr 的強度實質上為零時,控制單元130使脈衝式電磁波束xr 的對準位置從這些量測子空間S0 、S1 …Sr 的其中之一相對移動到這些量測子空間S0 、S1 …Sr 的另一。並且,當脈衝式電磁波束xr 的強度實質上不為零時(例如為一個定值時),控制單元130使脈衝式電磁波束xr 的對準位置相對於一個量測子空間維持實質上靜止,而影像重建系統100A的電磁波偵測器120A在脈衝式電磁波束xr 的對準位置分別停留於這些量測子空間S0 、S1 …Sr 時分別量測電磁波束xr 通過多個量測子空間S0 、S1 …Sr 後的多個第一強度。The collimator 116 of the present embodiment is disposed on the transmission path of the pulsed electromagnetic wave x. The collimator 116 has a hole H1. A portion of the pulsed electromagnetic wave x passes through the hole H1 of the collimator 116 to form a pulsed electromagnetic beam x r . The control unit 130 causes the pulsed electromagnetic beam x r to scan the subspaces S 0 , S 1 ... S r by moving the collimator 116. When the intensity of the pulsed electromagnetic beam x r is substantially zero, the control unit 130 relatively moves the aligned position of the pulsed electromagnetic beam x r from one of the measurement subspaces S 0 , S 1 ... S r to These measure the other of the subspaces S 0 , S 1 ... S r . Moreover, when the intensity of the pulsed electromagnetic beam x r is substantially not zero (for example, at a constant value), the control unit 130 maintains the aligned position of the pulsed electromagnetic beam x r substantially relative to a measurement subspace. still, the image reconstruction system is an electromagnetic wave in detector 120A 100A pulsed electromagnetic beam alignment position x r respectively stay in these measurements subspaces S 0, S 1 ... electromagnetic beam are measured by a multi-time x r S r A plurality of first intensities after the subspaces S 0 , S 1 ... S r are measured.

請參照圖5及圖6,詳言之,在量測空間S沒有配置待測物O時,量測通過此量測空間S的電磁波分別在多個不同光子能量E1 、E2 …EM 下的多個第一強度影像的方法包括下列步驟S110、S10、S20、S30、S40、S50、S60、S70,以下將詳細說明之。首先,可將電磁波偵測器120設定為M個感測區間(步驟S110),以準備量測分別在M個不同光子能量下的多個第一強度影像(及多個第二強度影像),其中M為大於或等於N的正整數。在本實 施例中,電磁波偵測器120可為光子計數光譜儀(photon-counting spectrometer),但本發明不以此為限。Referring to FIG. 5 and FIG. 6 , in detail, when the object to be tested O is not disposed in the measurement space S, the electromagnetic waves passing through the measurement space S are respectively measured in a plurality of different photon energies E 1 , E 2 ... E M The method of the plurality of first intensity images includes the following steps S110, S10, S20, S30, S40, S50, S60, S70, which will be described in detail below. First, the electromagnetic wave detector 120 can be set as M sensing intervals (step S110) to prepare to measure a plurality of first intensity images (and a plurality of second intensity images) respectively under M different photon energies. Where M is a positive integer greater than or equal to N. In this embodiment, the electromagnetic wave detector 120 may be a photon-counting spectrometer, but the invention is not limited thereto.

在本實施例中,量測空間S可劃分為多個量測子空間S0 、S1 …Sr 。多個量測子空間S0 、S1 …Sr 的數量可為(GH .GW )個。如圖5所示,首先,可從第一個量測子空間(Sr ,r=0)開始(步驟S10)。然後,使脈衝式電磁波束xr 的對準位置分別停留在第一個量測子空間(Sr ,r=0)並同時使脈衝式電磁波束xr 的強度為大於零的一個定值。具體而言,本實施例之影像重建系統100A包括電磁波偵測器120A,電磁波偵測器120A具有一個感測區H2。可使準直器116之孔洞H1、電磁波偵測器120A的感測區H2、第一個量測子空間(Sr ,r=0)實質上對準,並於此時令脈衝式電磁波束xr 的強度為大於零的定值(步驟S20)。In this embodiment, the measurement space S can be divided into a plurality of measurement subspaces S 0 , S 1 ... S r . The number of the plurality of measurement subspaces S 0 , S 1 . . . S r may be (G H .G W ). As shown in Fig. 5, first, it is possible to start from the first measurement subspace (S r , r = 0) (step S10). Then, the aligned positions of the pulsed electromagnetic beams x r are respectively held in the first measurement subspace (S r , r = 0) and at the same time the intensity of the pulsed electromagnetic beam x r is a fixed value greater than zero. Specifically, the image reconstruction system 100A of the present embodiment includes an electromagnetic wave detector 120A, and the electromagnetic wave detector 120A has a sensing area H2. The hole H1 of the collimator 116, the sensing region H2 of the electromagnetic wave detector 120A, and the first measuring subspace (S r , r=0) can be substantially aligned, and the pulsed electromagnetic beam can be made at this time. The intensity of x r is a fixed value greater than zero (step S20).

然後,使電磁波偵測器120A量測通過第一個量測子空間(Sr ,r=0)的電磁波束xr 在多個光子能量E1 、E2 …EM 下的多個第一強度I01 (E1 )、I01 (E2 )~I01 (EM ),並紀錄這些第一強度I01 (E1 )、I01 (E2 )~I01 (EM )與此量測子空間(Sr ,r=0)的第一對應關係(步驟S30),例如紀錄此時孔洞H1的座標(或感測區H2的座標)與這些第一強度的第一對應關係。具體而言,本實施例的處理單元140可與電磁波偵測器120A電性連接,而取得通過每一量測子空間Sr 的電磁波束xr 在多個光子能量E1 、E2 …EM 下的多個第一強度Ir1 (E1 )、Ir1 (E2 )~Ir1 (EM ),並紀錄與每一量測子空間Sr 對應的第一強度Ir1 (E1 )、Ir1 (E2 )~Ir1 (EM )與此量測子空間Sr 的第一對應關係。Then, the electromagnetic wave detector 120A is caused to measure the plurality of first rays of the electromagnetic beam x r passing through the first measurement subspace (S r , r=0) under the plurality of photon energies E 1 , E 2 ... E M Intensity I 01 (E 1 ), I 01 (E 2 )~I 01 (E M ), and record these first intensities I 01 (E 1 ), I 01 (E 2 )~I 01 (E M ) and The first correspondence relationship of the subspaces (S r , r=0) is measured (step S30), for example, the first correspondence between the coordinates of the hole H1 (or the coordinates of the sensing region H2) and the first intensities is recorded. Specifically, the processing unit 140 of this embodiment may be electrically connected to the electromagnetic wave detectors 120A, each measurement acquired by the subspace S r x r of the beam of electromagnetic waves in a plurality of photon energy E 1, E 2 ... E the plurality of M first intensity I r1 (E 1), I r1 (E 2) ~ I r1 (E M), with each measurement and record a first sub-space S r corresponding to the intensity I r1 (E 1 ), the first correspondence between I r1 (E 2 )~I r1 (E M ) and the measurement subspace S r .

接著,令脈衝式電磁波束xr 的強度為零(步驟S40)。然後,判斷所量測的量測子空間是否為第(GH .GW )個量測子空間,即最後一個量測子空間。意即,判斷r是否等於(GH .GW )(步驟S50)。若r不等於(GH .GW ),則此時將r的值加1(步驟S60),以使脈衝式電磁波束xr 的對準位置分別停留在下一個量測子空間(Sr ,r=1)並同時使脈衝式電磁波束xr 的強度為大於零的一個定值。意即,使準直器116之孔洞H1、電磁波偵測器120A的感測區H2實質上對準下一個量測子空間(Sr ,r=1),並於此時使脈衝式電磁波束xr 的強度為上述的大於零的定值(步驟S20)。Next, the intensity of the pulsed electromagnetic beam x r is made zero (step S40). Then, it is judged whether the measured measurement subspace is the (G H .G W ) measurement subspace, that is, the last measurement subspace. That is, it is judged whether or not r is equal to (G H .G W ) (step S50). If r is not equal to (G H .G W ), then the value of r is incremented by 1 (step S60), so that the aligned positions of the pulsed electromagnetic beam x r respectively stay in the next measurement subspace (S r , r=1) and at the same time the intensity of the pulsed electromagnetic beam x r is a fixed value greater than zero. That is, the hole H1 of the collimator 116 and the sensing region H2 of the electromagnetic wave detector 120A are substantially aligned with the next measurement subspace (S r , r=1), and the pulsed electromagnetic beam is made at this time. The intensity of x r is a constant value greater than zero as described above (step S20).

需說明的是,在令脈衝式電磁波束xr 的強度為零(步驟S40)的期間,控制單元130可使準直器116之孔洞H1、電磁波偵測器120A的感測區H2移動而去對準下一量測子空間。在本實施例中,控制單元130可令準直器116的孔洞H1與用以量測電磁波偵測器120A(之感測區)可同步地移動,而同時對準下一量測子空間。當電磁波偵測器120A量測與每一量測子空間對應的多個第一強度時,準直器116的孔洞H1、每一量測子空間、電磁波偵測器120的感測區H2實質上對準。It should be noted that, during the period in which the intensity of the pulsed electromagnetic beam x r is zero (step S40), the control unit 130 can move the hole H1 of the collimator 116 and the sensing region H2 of the electromagnetic wave detector 120A. Align the next measurement subspace. In this embodiment, the control unit 130 can move the hole H1 of the collimator 116 synchronously with the sensing area of the electromagnetic wave detector 120A while simultaneously aligning with the next measuring subspace. When the electromagnetic wave detector 120A measures a plurality of first intensities corresponding to each measurement subspace, the hole H1 of the collimator 116, each measurement subspace, and the sensing region H2 of the electromagnetic wave detector 120 are substantially Aligned on.

具體而言,本實施例的影像重建系統100A更包括第一機構170及第二機構180。準直器116架設於第一機構170上。電磁波偵測器120A架設於第二機構180上。控制單元130透過第一機構170與第二機構180令準直器116的孔洞H1與電磁波偵測器120A的感應區H2同步地移動,進而使準直器116的孔洞H1、電 磁波偵測器120A的感應區H2與欲量測的量測子空間Sr 同時對準。然而,本發明不限於此,在其他實施例中,準直器116的孔洞H1與電磁波偵測器120A的感應區H2亦可分別在不同的時間點與欲量測的量測子空間Sr 對準。Specifically, the image reconstruction system 100A of the present embodiment further includes a first mechanism 170 and a second mechanism 180. The collimator 116 is mounted on the first mechanism 170. The electromagnetic wave detector 120A is mounted on the second mechanism 180. The control unit 130 moves the hole H1 of the collimator 116 and the sensing area H2 of the electromagnetic wave detector 120A synchronously through the first mechanism 170 and the second mechanism 180, thereby causing the hole H1 of the collimator 116 and the electromagnetic wave detector 120A. The sensing area H2 is simultaneously aligned with the measuring subspace S r to be measured. However, the present invention is not limited thereto. In other embodiments, the hole H1 of the collimator 116 and the sensing area H2 of the electromagnetic wave detector 120A may also be measured at different time points and the measured subspace S r alignment.

詳言之,在本實施例中,第一機構170包括具有二不同延伸方向的軌道172及與軌道172連接之帶動馬達174。第二機構180包括具有二不同延伸方向的軌道182及與軌道182連接之馬達184。馬達174、184與控制單元130電性連接。準直器116與電磁波偵測器120A分別架設於軌道172、182上。控制單元130透過馬達174、184分別帶動架設於軌道172、182上的準直器116與電磁波偵測器120A,進而使準直器116之孔洞H1與電磁波偵測器120A的感測區H2對準所欲量測的量測子空間SrIn detail, in the present embodiment, the first mechanism 170 includes a track 172 having two different extending directions and a driving motor 174 connected to the track 172. The second mechanism 180 includes a track 182 having two different directions of extension and a motor 184 coupled to the track 182. The motors 174, 184 are electrically connected to the control unit 130. The collimator 116 and the electromagnetic wave detector 120A are respectively mounted on the rails 172, 182. The control unit 130 drives the collimator 116 and the electromagnetic wave detector 120A mounted on the rails 172 and 182 through the motors 174 and 184, respectively, so that the hole H1 of the collimator 116 and the sensing region H2 of the electromagnetic wave detector 120A are paired. The measured subspace S r is measured as desired.

請再參照圖5,然後,再使電磁波偵測器120A量測到通過下一個量測子空間(Sr ,r=1)在多個光子能量下的多個第一強度,並紀錄這些第一強度與此量測子空間(Sr ,r=1)的第一對應關係(步驟S30)。之後,然後,循環地進行步驟S40、S50、S60、S20、S30,直到於步驟S50時,判斷r等於(GH .GW ),即與所有量測子空間對應的多個第一強度以及與所有量測子空間對應的多個第一強度與所述量測子空間的多個第一對應關係皆分別被量測及紀錄。當與所有量測子空間對應的多個第一強度以及與所有量測子空間對應的多個第一強度與所述量測子空間的多個第一對應關係皆分別被量測及紀錄後,便可利用與所有量測子空間對應 的多個第一強度以及與所有量測子空間對應的多個第一強度與所述量測子空間的多個第一對應關係建立多個第一強度影像(步驟S70)。Referring again to FIG. 5, the electromagnetic wave detector 120A is then measured to measure a plurality of first intensities at a plurality of photon energies through the next measurement subspace (S r , r=1), and record the first A first correspondence relationship between the intensity and the measured subspace (S r , r = 1) (step S30). Thereafter, then, steps S40, S50, S60, S20, and S30 are performed cyclically, and until step S50, it is determined that r is equal to (G H . G W ), that is, a plurality of first intensities corresponding to all the measured subspaces and A plurality of first intensities corresponding to all the measurement subspaces and a plurality of first correspondences of the measurement subspaces are respectively measured and recorded. When a plurality of first intensities corresponding to all the measured subspaces and a plurality of first intensities corresponding to all the measured subspaces and the plurality of first correspondences of the measured subspaces are respectively measured and recorded And establishing, by using a plurality of first intensities corresponding to all the measurement subspaces and a plurality of first intensities corresponding to all the measurement subspaces and the plurality of first correspondences of the measurement subspaces, establishing a plurality of first The intensity image (step S70).

請參照圖6,具體而言,處理單元140可利用通過每一量測子空間Sr 的電磁波束xr 在這些光子能量E1 、E2 …EM 下的多個第一強度以及與這些第一強度和此每一量測子空間Sr 間的第一對應關係獲得所述多個第一強度影像。Referring to FIG 6, specifically, the processing unit 140 may use an electromagnetic beam through each of the measured x r S r subspace in these photon energy E 1, a first plurality of the strength and E 2 ... E M and the The first correspondence between the first intensity and the each measurement subspace S r obtains the plurality of first intensity images.

請再參照圖5及圖6,接著,在待測物O設置於量測空間S時,量測通過待測物O的電磁波在多個光子能量E1 、E2 …EM 下的多個第二強度影像(步驟S2)。意即,在待測區塊O0 、O1 …Or 分別配置於量測子空間S0 、S1 …Sr 時,量測通過每一待測區塊Or 的電磁波束Xr 在多個光子能量E1 、E2 …EM 下的多個第二強度Ir2 (E1 )、Ir2 (E2 )~Ir2 (EM )。Referring to FIG. 5 and FIG. 6 again, next, when the object to be tested O is disposed in the measurement space S, the plurality of electromagnetic waves passing through the object to be tested O are measured under a plurality of photon energies E 1 , E 2 ... E M The second intensity image (step S2). That is, when the blocks O 0 , O 1 ... O r to be tested are respectively arranged in the measurement subspaces S 0 , S 1 ... S r , the electromagnetic beam X r passing through each block O r to be measured is measured. A plurality of second intensities I r2 (E 1 ) and I r2 (E 2 ) to I r2 (E M ) of the plurality of photon energies E 1 , E 2 ... E M .

在本實施例中,量測通過每一待測區塊Or 的電磁波束Xr 在多個光子能量E1 、E2 …EM 下的多個第二強度Ir2 (E1 )、Ir2 (E2 )~Ir2 (EM )的方法可為:令脈衝式電磁波束xr 掃描所有待測區塊O0 、O1 …Or ,其中當脈衝式電磁波束xr 的強度實質上為零時,使脈衝式電磁波束xr 的對準位置從這些待測區塊O0 、O1 …Or 其中之一相對移動到這些待測區塊O0 、O1 …Or 的另一。當脈衝式電磁波束xr 的強度實質上不為零時,使脈衝式電磁波束xr 的對準位置相對於一個待測區塊維持實質上靜止。當脈衝式電磁波束xr 的對準位置分別停留於這些待測區塊O0 、O1 …Or 時,分別量測通過每 一待測區塊O0 、O1 …Or 的脈衝式電磁波束xr 在多個光子能量E1 、E2 …EM 下的多個第二強度Ir2 (E1 )、Ir2 (E2 )~Ir2 (EM )。In this embodiment, the plurality of second intensities I r2 (E 1 ), I under the plurality of photon energies E 1 , E 2 ... E M of the electromagnetic beam X r passing through each of the blocks O r to be measured are measured. The method of r2 (E 2 )~I r2 (E M ) may be such that the pulsed electromagnetic beam x r scans all the blocks O 0 , O 1 ... O r to be tested, wherein the intensity of the pulsed electromagnetic beam x r is substantial when a is zero, so that the pulsed electromagnetic beam alignment position x r of the blocks to be measured O 0, O 1 ... O r wherein relative movement of one of these blocks from the measured O 0, O 1 ... O r of another. When the intensity of the pulsed electromagnetic beam x r is substantially non-zero, the aligned position of the pulsed electromagnetic beam x r is maintained substantially stationary relative to a block to be tested. When the aligned positions of the pulsed electromagnetic beam x r respectively stay in the blocks O 0 , O 1 ... O r to be tested, the pulse patterns passing through each of the blocks O 0 , O 1 ... O r are respectively measured. The electromagnetic beam x r is a plurality of second intensities I r2 (E 1 ), I r2 (E 2 ) to I r2 (E M ) at a plurality of photon energies E 1 , E 2 ... E M .

請參照圖6,具體而言,控制單元130透過移動準直器116而使脈衝式電磁波束xr 掃描待測物O的多個待測區塊Or 。當脈衝式電磁波束xr 的強度實質上為零時,控制單元130使脈衝式電磁波束xr 的對準位置從這些待測區塊O0 、O1 …Or 的其中之一相對移動到這些待測區塊O0 、O1 …Or 的另一。並且,當脈衝式電磁波束xr 的強度實質上不為零時(例如為一個定值時),控制單元130使脈衝式電磁波束xr 的對準位置相對於待測物O維持實質上靜止,而影像重建系統100A的電磁波偵測器120A在脈衝式電磁波束xr 的對準位置分別停留於這些待測區塊O0 、O1 …Or 時分別量測電磁波束xr 通過多個待測區塊O0 、O1 …Or 後的多個第二強度Ir2 (E1 )、Ir2 (E2 )~Ir2 (EM )。Referring to FIG. 6 , specifically, the control unit 130 causes the pulsed electromagnetic beam x r to scan the plurality of blocks to be tested O r of the object to be tested O by moving the collimator 116 . When the intensity of the pulsed electromagnetic beam x r is substantially zero, the control unit 130 relatively moves the aligned position of the pulsed electromagnetic beam x r from one of the blocks O 0 , O 1 ... O r to The other of the blocks O 0 , O 1 ... O r to be tested. And, when the intensity of the pulsed electromagnetic beam x r is substantially not zero (for example, at a constant value), the control unit 130 maintains the aligned position of the pulsed electromagnetic beam x r substantially stationary relative to the object to be tested O The electromagnetic wave detector 120A of the image reconstruction system 100A measures the electromagnetic beam x r through multiple positions when the aligned positions of the pulsed electromagnetic beam x r respectively stay in the blocks O 0 , O 1 ... O r to be tested. A plurality of second intensities I r2 (E 1 ), I r2 (E 2 )~I r2 (E M ) after the blocks O 0 and O 1 ... O r to be tested.

請參照圖5及圖6,詳言之,量測通過待測物O的電磁波束分別在多個不同光子能量E1 、E2 …EM 下的多個第二強度影像的方法包括下列步驟S11、S12、S13、S14、S15、S16,以下將詳細說明之。Referring to FIG. 5 and FIG. 6, in detail, the method for measuring a plurality of second intensity images of the electromagnetic beams passing through the object O to be detected under a plurality of different photon energies E 1 , E 2 ... E M includes the following steps. S11, S12, S13, S14, S15, and S16 will be described in detail below.

在本實施例中,待測物O可劃分為多個待測區塊O0 、O1 …Or 。多個待測區塊O0 、O1 …Or 的數量可為(GH .GW )個。如圖5所示,首先,可從第一個待測區塊(Or ,r=0)開始(步驟S11)。然後,使脈衝式電磁波束xr 的對準位置分別停留在第一個待測區塊(Or ,r=0)並同時使脈衝式電磁波束xr 的強度為大於零的一個 定值。具體而言,可使準直器116之孔洞H1、電磁波偵測器120A的感測區H2、第一個待測區塊(Or ,r=0)實質上對準,並於此時令脈衝式電磁波束xr 的強度為大於零的定值(步驟S12)。In this embodiment, the object to be tested O can be divided into a plurality of blocks to be tested O 0 , O 1 . . . O r . The number of the plurality of blocks to be tested O 0 , O 1 . . . O r may be (G H .G W ). As shown in FIG. 5, first, it is possible to start from the first block to be tested (O r , r = 0) (step S11). Then, the aligned positions of the pulsed electromagnetic beam x r are respectively stopped in the first block to be tested (O r , r = 0) and the intensity of the pulsed electromagnetic beam x r is made a constant value greater than zero. Specifically, the hole H1 of the collimator 116, the sensing area H2 of the electromagnetic wave detector 120A, and the first block to be tested (O r , r=0) can be substantially aligned, and at this time The intensity of the pulsed electromagnetic beam x r is a fixed value greater than zero (step S12).

然後,使電磁波偵測器120A量測到通過第一個待測區塊(Or ,r=0)在多個光子能量E1 、E2 …EM 下的多個第二強度I02 (E1 )、I02 (E2 )~I02 (EM ),並紀錄這些第二強度I02 (E1 )、I02 (E2 )~I02 (EM )與此待測區塊(Sr ,r=0)的第二對應關係(步驟S13),例如紀錄此時孔洞H1的座標(或感測區H2的座標)與這些第二強度I02 (E1 )、I02 (E2 )~I02 (EM )的第二對應關係。具體而言,本實施例的處理單元140可與電磁波偵測器120A電性連接,而取得通過每一待測區塊Or 的電磁波束Xr 在多個光子能量E1 、E2 …EM 下的多個第二強度Ir2 (E1 )、Ir2 (E2 )~Ir2 (EM ),並紀錄與每一待測區塊Or 對應的第二強度Ir2 (E1 )、Ir2 (E2 )~Ir2 (EM )與此待測區塊Or 的第二對應關係。Then, the electromagnetic wave detector 120A is measured to measure a plurality of second intensities I 02 under the plurality of photon energies E 1 , E 2 ... E M through the first block to be tested (O r , r=0). E 1 ), I 02 (E 2 )~I 02 (E M ), and record these second intensities I 02 (E 1 ), I 02 (E 2 )~I 02 (E M ) and the block to be tested a second correspondence relationship of (S r , r = 0) (step S13), for example, recording the coordinates of the hole H1 (or the coordinates of the sensing region H2) and the second intensities I 02 (E 1 ), I 02 ( The second correspondence of E 2 )~I 02 (E M ). Specifically, the processing unit 140 of the embodiment can be electrically connected to the electromagnetic wave detector 120A to obtain the electromagnetic beam X r passing through each of the blocks O r to be in the plurality of photon energies E 1 , E 2 ... E a second plurality of M in the intensity I r2 (E 1), I r2 (E 2) ~ I r2 (E M), and recorded with each block corresponding to a second O r measured intensity I r2 (E 1 ), a second correspondence I r2 (E 2) ~ I r2 (E M) to be measured O r of this block.

接著,令脈衝式電磁波束xr 的強度為零(步驟S14)。然後,利用通過第一個待測區塊(Or ,r=0)的電磁波束xr 在多個光子能量E1 、E2 …EM 下的多個第二強度I02 (E1 )、I02 (E2 )~I02 (EM )、與通過第一個量測子空間(Sr ,r=0)的電磁波束xr 在多個光子能量E1 、E2 …EM 下的多個第一強度I01 (E1 )、I01 (E2 )~I01 (EM )、反矩陣W-1 以及上式(3)計算出第一個待測區塊(Or ,r=0)對應於第一成分、第二成分至第N成分在第一光子能量E1 下的多個第一衰減係數μr1 (E1 )、μr2 (E1 )~至μrN (E1 )(r=0)(步驟S323)。上述計算出第一衰減係數詳細的方法可參照第一實施例中的說明。具體 而言,本實施例的處理單元140(繪於圖6)可執行上述計算出多個第一衰減量影像的動作。Next, the intensity of the pulsed electromagnetic beam x r is made zero (step S14). Then, using the electromagnetic beam x r passing through the first block to be tested (O r , r = 0), a plurality of second intensities I 02 (E 1 ) under the plurality of photon energies E 1 , E 2 ... E M , I 02 (E 2 )~I 02 (E M ), and the electromagnetic beam x r passing through the first measurement subspace (S r , r=0) in the plurality of photon energies E 1 , E 2 ... E M The first plurality of first intensities I 01 (E 1 ), I 01 (E 2 )~I 01 (E M ), the inverse matrix W −1 , and the above equation (3) calculate the first block to be tested (O) r , r = 0) a plurality of first attenuation coefficients μ r1 (E 1 ), μ r2 (E 1 )~ to μ corresponding to the first component, the second component to the Nth component at the first photon energy E 1 rN (E 1 ) (r = 0) (step S323). For the method of calculating the first attenuation coefficient in detail, reference may be made to the description in the first embodiment. Specifically, the processing unit 140 (shown in FIG. 6) of the embodiment may perform the above-described operation of calculating a plurality of first attenuation amount images.

接著,判斷所量測的待測區塊是否為第(GH .GW )個待測區塊,即最後一個待測區塊。意即,判斷r是否等於(GH .GW )(步驟S15)。若r不等於(GH .GW ),則此時將r的值加1(步驟16),以使脈衝式電磁波束xr 的對準位置分別停留在下一個待測區塊(Or ,r=1)並同時使脈衝式電磁波束xr 的強度為大於零的一個定值。意即,使準直器116之孔洞H1、電磁波偵測器120A的感測區H2實質上對準下一個待測區塊(Or ,r=1),並於此時使脈衝式電磁波束xr 的強度為上述的大於零的定值(步驟12)。Next, it is determined whether the measured block to be tested is the (G H .G W ) block to be tested, that is, the last block to be tested. That is, it is judged whether or not r is equal to (G H .G W ) (step S15). If r is not equal to (G H .G W ), then the value of r is incremented by 1 (step 16), so that the aligned positions of the pulsed electromagnetic beam x r respectively stay in the next block to be tested (O r , r=1) and at the same time the intensity of the pulsed electromagnetic beam x r is a fixed value greater than zero. That is, the hole H1 of the collimator 116 and the sensing region H2 of the electromagnetic wave detector 120A are substantially aligned with the next block to be tested (O r , r=1), and the pulsed electromagnetic beam is made at this time. The intensity of x r is a fixed value greater than zero as described above (step 12).

需說明的是,在令脈衝式電磁波束xr 的強度為零(步驟14)的期間,控制單元130可使準直器116之孔洞H1、電磁波偵測器120A的感測區H2移動而去對準下一待測區塊。在本實施例中,控制單元130可令準直器116的孔洞H1與用以量測電磁波偵測器120A(之感測區)可同步地移動,而同時對準下一待測區塊。當電磁波偵測器120A量測與每一待測區塊對應的多個第二強度時,準直器116的孔洞H1、每一待測區塊、電磁波偵測器120的感測區H2實質上對準。It should be noted that, during the period in which the intensity of the pulsed electromagnetic beam x r is zero (step 14), the control unit 130 can move the hole H1 of the collimator 116 and the sensing region H2 of the electromagnetic wave detector 120A. Align to the next block to be tested. In this embodiment, the control unit 130 can move the hole H1 of the collimator 116 synchronously with the sensing area of the electromagnetic wave detector 120A while simultaneously aligning with the next block to be tested. When the electromagnetic wave detector 120A measures a plurality of second intensities corresponding to each of the blocks to be tested, the holes H1 of the collimator 116, each of the blocks to be tested, and the sensing region H2 of the electromagnetic wave detector 120 are substantially Aligned on.

具體而言,控制單元130透過第一機構170與第二機構180令準直器116的孔洞H1與電磁波偵測器120A的感應區H2同步地移動,進而使準直器116的孔洞H1、電磁波偵測器120A的感應區H2與欲量測的待測區塊Sr 同時對準。然而,本發明不 限於此,在其他實施例中,準直器116的孔洞H1與電磁波偵測器120A的感應區H2亦可分別在不同的時間點與欲量測的待測區塊Sr 對準。Specifically, the control unit 130 moves the hole H1 of the collimator 116 and the sensing area H2 of the electromagnetic wave detector 120A synchronously through the first mechanism 170 and the second mechanism 180, thereby causing the hole H1 of the collimator 116 and the electromagnetic wave. The sensing area H2 of the detector 120A is simultaneously aligned with the to-be-tested block S r to be measured. However, the present invention is not limited thereto. In other embodiments, the hole H1 of the collimator 116 and the sensing area H2 of the electromagnetic wave detector 120A may also be respectively measured at different time points and the block to be measured S r to be measured. alignment.

請再參照圖5,然後,再使電磁波偵測器120A量測電磁波束xr 通過下一個待測區塊(Or ,r=1)在多個光子能量E1 、E2 ~EM 下的多個第二強度,並紀錄這些第二強度與此待測區塊(Or ,r=1)的第二對應關係(步驟S13)。之後,然後,循環地進行步驟S14、S323、S15、S16、S12,直到於步驟S15時,判斷r等於(GH .GW ),即與所有待測區塊對應的多個第二強度及與所有待測區塊對應的多個第二強度與所述待測區塊的對應關係皆分別被量測及紀錄,且與所有待測區塊對應的第一衰減係數皆被計算出。如此一來,便可獲得待測物分別對應於多個成分的多個衰減量影像。透過所有待測區塊的第一衰減係數獲得待測物分別對應於多個成分的多個衰減量影像的方法可參照第一實施例中的說明。Please refer to FIG. 5 again, and then, the electromagnetic wave detector 120A measures the electromagnetic beam x r through the next block to be tested (O r , r=1) under multiple photon energies E 1 , E 2 ~E M a plurality of second intensities, and recording a second correspondence relationship between the second intensities and the block to be tested (O r , r=1) (step S13). Thereafter, then, steps S14, S323, S15, S16, and S12 are performed cyclically until step S15, and it is determined that r is equal to (G H . G W ), that is, a plurality of second intensities corresponding to all the blocks to be tested and Corresponding relationships between the plurality of second intensities corresponding to the blocks to be tested and the blocks to be tested are respectively measured and recorded, and the first attenuation coefficients corresponding to all the blocks to be tested are calculated. In this way, a plurality of attenuation image corresponding to the plurality of components of the object to be tested can be obtained. For the method of obtaining the plurality of attenuation image corresponding to the plurality of components by the first attenuation coefficient of all the blocks to be tested, refer to the description in the first embodiment.

另外,需說明的是,在本實施例中,是在量測出通過某一個待測區塊Or 的電磁波束Xr 在多個光子能量E1 、E2 …EM 下的多個第二強度Ir2 (E1 )、Ir2 (E2 )~Ir2 (EM )以及紀錄此待測區塊Or與多個第二強度Ir2 (E1 )、Ir2 (E2 )~Ir2 (EM )的第二對應關係後,便根據通過此某一個待測區塊Or 的電磁波束Xr 在多個光子能量E1 、E2 …EM 下的多個第二強度Ir2 (E1 )、Ir2 (E2 )~Ir2 (EM )、與通過某一量測子空間Sr 的電磁波束xr 在多個光子能量E1 、E2 …EM 下的多個第一強度Ir1 (E1 )、Ir1 (E2 )~Ir1 (EM )、反矩陣W-1 以及上式(3)計算出此某 一個待測區塊Or 對應於多個成分在某一光子能量下的多個第一衰減係數,進而得到待測物O分別對應於多個成分的多個衰減量影像。Further, it should be noted that, in the present embodiment, the amount is measured by an electromagnetic beam a certain block X r O r measured at a plurality of photon energy E 1, at a plurality of E 2 ... E M The two intensities I r2 (E 1 ), I r2 (E 2 )~I r2 (E M ) and record the block to be tested Or and the plurality of second intensities I r2 (E 1 ), I r2 (E 2 )~ after the second correspondence I r2 (E M), and then a beam of electromagnetic waves through this certain block X r O r measured at a plurality of a plurality of photon energy E 1, E 2 ... E M according to the second intensity I r2 (E 1), I r2 (E 2) ~ I r2 (E M), and by measuring a subspace S r x r E of the electromagnetic beam 1, E 2 ... E M at a plurality of photon energy The plurality of first intensities I r1 (E 1 ), I r1 (E 2 )~I r1 (E M ), the inverse matrix W −1, and the above formula (3) calculate the corresponding block O r corresponding to the block to be tested. A plurality of first attenuation coefficients of the plurality of components at a certain photon energy, thereby obtaining a plurality of attenuation image corresponding to the plurality of components of the object O.

然而,本發明不限於此,在其他實施例中,亦可將與所有待測區塊對應的多個第二強度以及與所有待測區塊對應的多個第二強度與所述待測區塊的多個第二對應關係皆分別量測及紀錄完成後,再利用與所有待測區塊對應的多個第二強度以及與所有待測區塊對應的多個第二強度和所述待測區塊的多個第二對應關係建立多個第二強度影像。然後,再利用分別具有多個成分的多個物質中的每一個物質在每一光子能量所對應的電磁波照射下的衰減係數及每一物質在所述光子能量所對應的電磁波傳遞方向上的厚度、多個第一強度影像以及多個第二強度影像計算出待測物分別對應於多個成分的多個衰減量影像。However, the present invention is not limited thereto. In other embodiments, a plurality of second intensities corresponding to all the blocks to be tested and a plurality of second intensities corresponding to all the blocks to be tested may be used. After the plurality of second correspondences of the blocks are respectively measured and recorded, the second strength corresponding to all the blocks to be tested and the plurality of second strengths corresponding to all the blocks to be tested are used. A plurality of second correspondences of the measurement blocks establish a plurality of second intensity images. Then, the attenuation coefficient of each of the plurality of substances respectively having the plurality of components under the electromagnetic wave irradiation corresponding to each photon energy and the thickness of each substance in the electromagnetic wave transmission direction corresponding to the photon energy are utilized. And the plurality of first intensity images and the plurality of second intensity images calculate a plurality of attenuation image corresponding to the plurality of components.

在本實施例的影像重建方法及影像重建系統中,由於脈衝式電磁波束是逐一地通過每一量測子空間(及每一待測區塊),且脈衝式電磁波束由一個量測子空間(及一個待測區塊)移動至下一量測子空間(及下一待測區塊)時,脈衝式電磁波束的強度實質上為零。因此,所量測到的對應於每一量測子空間(及每一待測區塊)的多個第一強度(及多個第二強度)不易受到其他因素的干擾,進而使以本實施例的影像重建方法及影像重建系所重建的多個衰減量影像能更精準地呈現待測物內部組成的實際狀況。In the image reconstruction method and the image reconstruction system of the embodiment, since the pulsed electromagnetic beams are passed through each measurement subspace (and each of the blocks to be tested) one by one, and the pulsed electromagnetic beam is measured by one measurement subspace. When (and a block to be tested) moves to the next measurement subspace (and the next block to be tested), the intensity of the pulsed electromagnetic beam is substantially zero. Therefore, the measured plurality of first intensities (and the plurality of second intensities) corresponding to each measurement subspace (and each of the blocks to be tested) are not easily interfered by other factors, thereby enabling the implementation. The image reconstruction method and the multiple attenuation image reconstructed by the image reconstruction system can more accurately represent the actual condition of the internal composition of the object to be tested.

第三實施例Third embodiment

本實施例的影像建構方法及影像建構系統與第二實施例的影像重建方法及影像重建系統相似,因此相同元件以相同的標號表示。The image construction method and the image construction system of the present embodiment are similar to the image reconstruction method and the image reconstruction system of the second embodiment, and therefore the same elements are denoted by the same reference numerals.

圖7為本發明一實施例的影像建構方法流程圖。圖8為本發明一實施例的影像建構系統的示意圖。特別是,圖7的影像建構方法適用於圖8的影像建構系統。請同時參照圖7及圖8,本實施例的影像建構方法及影像建構系統100B用以建構待測物S的影像。首先,提供脈衝式電磁波束xr (步驟S510)。進一步而言,可先提供脈衝式電磁波xr ,然後令脈衝式電磁波xr 傳遞至具有孔洞H1的準直器116,其中通過孔洞H1的部分的脈衝式電磁波x形成所述脈衝式電磁波束xrFIG. 7 is a flowchart of a method for constructing an image according to an embodiment of the present invention. FIG. 8 is a schematic diagram of an image construction system according to an embodiment of the present invention. In particular, the image construction method of FIG. 7 is applicable to the image construction system of FIG. Referring to FIG. 7 and FIG. 8 simultaneously, the image construction method and the image construction system 100B of the present embodiment are used to construct an image of the object S to be tested. First, a pulsed electromagnetic beam x r is provided (step S510). Further, a pulsed electromagnetic wave x r may be first supplied, and then the pulsed electromagnetic wave x r is transmitted to the collimator 116 having the hole H1, wherein the pulsed electromagnetic beam x is formed by a portion of the pulsed electromagnetic wave x of the hole H1 r .

具體而言,本實施例的影像建構系統100B包括脈衝式電磁波束提供單元110A。脈衝式電磁波束提供單元110A包括提供脈衝式電磁波x的脈衝式電磁波源110a以及準直器116。脈衝式電磁波源110a包括X光光管112及電源供應器114。本實施例的影像建構系統100B可進一步包括與電磁波提供單元110A電性連接的控制單元130。控制單元130可透過傳輸管道210、220控制電源供應器114輸入至X光光管112的電壓及電流,進而使X光光管112發出脈衝式電磁波x。本實施例的準直器116配置於脈衝式電磁波x的傳遞路徑上。準直器116具有孔洞H1。部分的脈衝式電磁波x通過準直器116的孔洞H1而形成脈衝式電磁波束 xrSpecifically, the image construction system 100B of the present embodiment includes a pulsed electromagnetic beam providing unit 110A. The pulsed electromagnetic beam providing unit 110A includes a pulsed electromagnetic wave source 110a that supplies a pulsed electromagnetic wave x and a collimator 116. The pulsed electromagnetic wave source 110a includes an X-ray tube 112 and a power supply 114. The image construction system 100B of the present embodiment may further include a control unit 130 electrically connected to the electromagnetic wave providing unit 110A. The control unit 130 can control the voltage and current input from the power supply 114 to the X-ray tube 112 through the transmission pipes 210 and 220, thereby causing the X-ray tube 112 to emit a pulsed electromagnetic wave x. The collimator 116 of the present embodiment is disposed on the transmission path of the pulsed electromagnetic wave x. The collimator 116 has a hole H1. A portion of the pulsed electromagnetic wave x passes through the hole H1 of the collimator 116 to form a pulsed electromagnetic beam x r .

接著,利用脈衝式電磁波束xr 掃描待測物O的多個待測區塊O0 、O1 …Or ,其中當脈衝式電磁波束xr 的強度實質上為零時,使脈衝式電磁波束xr 的對準位置從這些待測區塊O0 、O1 …Or 的一相對移動到這些待測區塊O0 、O1 …Or 的另一,且當脈衝式電磁波束xr 的強度實質上不為零時,使脈衝式電磁波束xr 的對準位置相對於待測物O維持實質上靜止(步驟S520)。具體而言,請參照圖8,本實施例的控制單元130透過移動準直器116而使脈衝式電磁波束xr 掃描待測物O的多個待測區塊O0 、O1 …Or 。當脈衝式電磁波束xr 的強度實質上為零時,控制單元130使脈衝式電磁波束xr 的對準位置從這些待測區塊O0 、O1 …Or 的其中之一相對移動到這些待測區塊O0 、O1 …Or 的另一。並且,當脈衝式電磁波束xr 的強度實質上不為零時(例如為一個定值時),控制單元130使脈衝式電磁波束xr 的對準位置相對於一個待測區塊Or 維持實質上靜止。Then, the pulsed electromagnetic beam x r is used to scan a plurality of blocks O 0 , O 1 ... O r of the object to be tested O, wherein when the intensity of the pulsed electromagnetic beam x r is substantially zero, the pulsed electromagnetic wave is made R & lt beam alignment position x from the blocks under test O 0, O 1 ... O r a relative movement of the blocks to be measured O 0, O 1 ... O r of the other, and when the pulsed electromagnetic beams x When the intensity of r is substantially not zero, the alignment position of the pulsed electromagnetic beam x r is maintained substantially stationary with respect to the object to be tested O (step S520). Specifically, referring to FIG. 8 , the control unit 130 of the present embodiment transmits the pulsed electromagnetic beam x r to scan a plurality of to-be-tested blocks O 0 , O 1 ... O r of the object to be tested O by moving the collimator 116 . . When the intensity of the pulsed electromagnetic beam x r is substantially zero, the control unit 130 relatively moves the aligned position of the pulsed electromagnetic beam x r from one of the blocks O 0 , O 1 ... O r to The other of the blocks O 0 , O 1 ... O r to be tested. Alignment position and, when the intensity of the pulsed electromagnetic beam x r is substantially zero (e.g., when a predetermined value), the control unit 130 so that the pulsed electromagnetic beam with respect to x r O r a test block to maintain It is essentially static.

接著,當脈衝式電磁波束xr 的對準位置分別停留於這些待測區塊O0 、O1 …Or 時,分別量測脈衝式電磁波束xr 通過這些待測區塊後的多個強度(步驟S530)。具體而言,影像建構100B包括電磁波偵測器120A。電磁波偵測器120A在脈衝式電磁波束xr 的對準位置分別停留於這些待測區塊O0 、O1 …Or 時分別量測電磁波束xr 通過多個待測區塊O0 、O1 …Or 後的多個第一強度。更進一步地說,在本實施例中,控制單元130可令可準直器116的孔洞 H1與用以量測這些強度的電磁波偵測器120A同步地移動。並且,當電磁波偵測器120A量測這些強度時,控制單元130可令準直器116的孔洞H1、每一被量測的待測區塊O0 、O1 …Or 、電磁波偵測器120A的感測區H2實質上對準。Then, when the aligned positions of the pulsed electromagnetic beam x r respectively stay in the blocks O 0 , O 1 ... O r to be tested, respectively, the plurality of pulsed electromagnetic beams x r are measured to pass through the blocks to be tested. Intensity (step S530). Specifically, the image construction 100B includes an electromagnetic wave detector 120A. The electromagnetic wave detector 120A measures the electromagnetic beam x r through the plurality of blocks to be tested O 0 when the aligned positions of the pulsed electromagnetic beam x r respectively stay in the blocks O 0 , O 1 ... O r , A plurality of first intensities after O 1 ... O r . Further, in the present embodiment, the control unit 130 can move the hole H1 of the collimator 116 in synchronization with the electromagnetic wave detector 120A for measuring these intensities. Moreover, when the electromagnetic wave detector 120A measures the intensities, the control unit 130 can make the holes H1 of the collimator 116, each of the measured blocks O 0 , O 1 ... O r , and the electromagnetic wave detector. The sensing region H2 of 120A is substantially aligned.

詳言之,本實施例的影像重建系統100B更包括第一機構170及第二機構180。準直器116架設於第一機構170上。電磁波偵測器120A架設於第二機構180上。控制單元130透過第一機構170與第二機構180令準直器116的孔洞H1與電磁波偵測器120A的感應區H2同步地移動,進而使準直器116的孔洞H1、電磁波偵測器120A的感應區H2與欲量測的待測區塊Or 同時對準。然而,本發明不限於此,在其他實施例中,準直器116的孔洞H1與電磁波偵測器120A的感應區H2亦可分別在不同的時間點與欲量測的待測區塊Or 對準。In detail, the image reconstruction system 100B of the present embodiment further includes a first mechanism 170 and a second mechanism 180. The collimator 116 is mounted on the first mechanism 170. The electromagnetic wave detector 120A is mounted on the second mechanism 180. The control unit 130 moves the hole H1 of the collimator 116 and the sensing area H2 of the electromagnetic wave detector 120A synchronously through the first mechanism 170 and the second mechanism 180, thereby causing the hole H1 of the collimator 116 and the electromagnetic wave detector 120A. sensing region H2 to be aligned simultaneously with the measurement block to be measured O r. However, the present invention is not limited thereto, in other embodiments, the collimator holes H1 detector 116 and the electromagnetic wave sensing area 120A may H2 at different time points are to be measured and the measured block O r alignment.

接著,紀錄這些強度與這些待測區塊的對應關係(步驟S540)。然後,利用這些強度以及此對應關係建構待測物O的影像(步驟S550)。具體而言,影像建構100B包括處理單元140A。處理單元140A可紀錄這些強度與這些待測區塊O0 、O1 …Or 的對應關係,例如紀錄電磁波偵測器120A量測到這些強度時,這些強度與電磁波偵測器120A的感測區H2座標之間的關係,或者紀錄電磁波偵測器120A量測到這些強度時,這些強度與孔洞H1座標之間的關係。處理單元140A利用這些強度以及此對應關係建構待測物O的影像。Next, the correspondence between these intensities and the blocks to be tested is recorded (step S540). Then, using these intensities and the corresponding relationship, an image of the object to be tested O is constructed (step S550). In particular, image construction 100B includes processing unit 140A. The processing unit 140A can record the correspondence between these intensities and the blocks O 0 , O 1 ... O r to be tested. For example, when the recording electromagnetic wave detector 120A measures the intensities, the intensities and the sensing of the electromagnetic wave detector 120A are detected. The relationship between the coordinates of the zone H2, or the relationship between these intensities and the coordinates of the hole H1 when the electromagnetic wave detector 120A measures these intensities. The processing unit 140A constructs an image of the object to be tested O using these intensities and the corresponding relationship.

在本實施例的影像建構方法及影像建構系統中,由於脈衝式電磁波束是逐一地掃描每一待測區塊,且脈衝式電磁波束由一個待測區塊移動至下一待測區塊時,脈衝式電磁波束的強度實質上為零。因此,所量測到的對應於每一待測區塊的強度不易受到其他因素的干擾,進而使本實施例的影像建構方法及影像建構系統可精準地建構待測物的影像。In the image construction method and the image construction system of the embodiment, since the pulsed electromagnetic beam scans each of the blocks to be tested one by one, and the pulsed electromagnetic beam moves from one block to be tested to the next block to be tested The intensity of the pulsed electromagnetic beam is substantially zero. Therefore, the measured intensity corresponding to each of the blocks to be tested is not easily interfered by other factors, so that the image construction method and the image construction system of the embodiment can accurately construct the image of the object to be tested.

綜上所述,本發明一個實施例的影像重建方法及影像重建系統可透過上述資料處理方法計算出待測物分別對應於多種成分的多個衰減量影像,而使待測物的多種組成可各自形成一個衰減量影像。如此一來,待測物的各組成便可清楚被觀察到,而改善習知技術中由於待測物的多個組成的位置過近或重疊所造成的不易分辨的問題。In summary, the image reconstruction method and the image reconstruction system according to an embodiment of the present invention can calculate a plurality of attenuation image corresponding to a plurality of components by using the data processing method, and the plurality of components of the object to be tested can be Each forms an attenuation image. As a result, the composition of the object to be tested can be clearly observed, and the problem of the indistinguishable problem caused by the too close or overlapping of the plurality of components of the object to be tested is improved in the prior art.

此外,在本發明另一實施例的影像重建方法及影像重建系統中,透過掃描待測物一次(或取像一次)便可獲得待測物的多種組成的多個衰減量影像,而避免待測物接收過高的輻射劑量,進而降低待測物在接受檢查時所受到的傷害。In addition, in the image reconstruction method and the image reconstruction system according to another embodiment of the present invention, by scanning the object to be tested once (or taking the image once), a plurality of attenuation images of various components of the object to be tested can be obtained, and the image is avoided. The sample receives an excessively high dose of radiation, which in turn reduces the damage to the object under test.

再者,在本發明又一實施例的影像重建方法及影像重建系統中,由於脈衝式電磁波束是逐一地通過每一量測子空間(及每一待測區塊),且由一個量測子空間(及一個待測區塊)移動至下一量測子空間(及下一待測區塊)時脈衝式電磁波束的強度實質上為零,因此所量測到的對應於每一量測子空間(及每一待測區塊)的多個第一強度(及多個第二強度)不易受到其他因素的 干擾,進而使以本發明又一實施例的影像重建方法及影像重建系所重建的多個衰減量影像能更正確地呈現待測物內部組成的實際狀況。Furthermore, in the image reconstruction method and the image reconstruction system according to another embodiment of the present invention, since the pulsed electromagnetic beams are passed through each measurement subspace (and each of the blocks to be tested) one by one, and one measurement is performed. When the subspace (and a block to be tested) moves to the next measurement subspace (and the next block to be tested), the intensity of the pulsed electromagnetic beam is substantially zero, so the measured amount corresponds to each amount The plurality of first intensities (and the plurality of second intensities) of the subspace (and each block to be tested) are not susceptible to other factors The interference, and the image reconstruction method and the image reconstruction system reconstructed by the image reconstruction system according to another embodiment of the present invention can more accurately present the actual condition of the internal composition of the object to be tested.

在本發明一實施例的影像建構方法及影像建構系統中,由於脈衝式電磁波束是逐一地掃描每一待測區塊,且脈衝式電磁波束由一個待測區塊移動至下一待測區塊時,脈衝式電磁波束的強度實質上為零。因此,所量測到的對應於每一待測區塊的強度不易受到其他因素的干擾,進而使本發明一實施例的影像建構方法及影像建構系統中可精準地建構待測物的影像。In the image construction method and image construction system according to an embodiment of the invention, since the pulsed electromagnetic beam scans each of the blocks to be tested one by one, and the pulsed electromagnetic beam moves from one block to the next to be tested. At the time of the block, the intensity of the pulsed electromagnetic beam is substantially zero. Therefore, the measured intensity corresponding to each block to be tested is not easily interfered by other factors, so that the image construction method and the image construction system according to an embodiment of the present invention can accurately construct an image of the object to be tested.

S100、S110、S120、S200、S210、S220、S300、S310、S320、S321、S322、S323、S324‧‧‧步驟S100, S110, S120, S200, S210, S220, S300, S310, S320, S321, S322, S323, S324‧‧

Claims (31)

一種影像重建方法,用以重建一待測物的影像,該影像重建方法包括:在一量測空間沒有配置該待測物時,量測通過該量測空間的一電磁波分別在多個不同光子能量下的多個第一強度影像;在該待測物設置於該量測空間時,量測通過該待測物的該電磁波分別在該些光子能量下的多個第二強度影像;提供一資料庫的資料,該資料庫的資料包括分別具有多個成分的多個物質中的每一個物質在每一該光子能量所對應的電磁波照射下的衰減係數及每一該物質在該光子能量所對應的電磁波傳遞方向上的厚度;以及根據該資料庫的資料、該些第一強度影像以及該些第二強度影像計算出該待測物分別對應於該些成分的多個衰減量影像。An image reconstruction method for reconstructing an image of a sample to be tested, the image reconstruction method comprising: measuring an electromagnetic wave passing through the measurement space in a plurality of different photons when a measurement object is not disposed in a measurement space a plurality of first intensity images under the energy; when the object to be tested is disposed in the measurement space, measuring a plurality of second intensity images of the electromagnetic waves passing through the object to be tested respectively at the photon energy; providing one The data of the database, the data of the database includes an attenuation coefficient of each of the plurality of substances having a plurality of components under the electromagnetic wave corresponding to each photon energy, and each of the substances in the photon energy Corresponding electromagnetic wave transmission direction thickness; and calculating, according to the data of the database, the first intensity image and the second intensity image, the plurality of attenuation image corresponding to the components. 如申請專利範圍第1項所述的影像重建方法,其中該待測物劃分為多個待測區塊,該量測空間劃分為多個量測子空間,該些待測區塊分別預定設置於該些量測子空間,一電磁波束通過對應之該一個量測子空間,該電磁波束為部份的該電磁波;在該量測空間沒有配置該待測物時,量測通過該量測空間的該電磁波分別在該些不同光子能量下的該些第一強度影像的步驟為:在該些量測子空間沒有配置該些待測區塊時,量測通過每一該量測子空間的該電磁波束在該些光子能量下的多個第一強度,其中通過每一該量測子空間的該電磁波束在該些光子能量下的該些第一強度分別構成該些第一強度影像;在該待測物設置於該量測空間時,量測通過該待測物的該電磁波在該些不同光子能量下的該些第二強度影像的步驟為:在該些待測區塊分別設置於該些量測子空間時,量測通過每一該待測區塊的該電磁波束在該些光子能量下的多個第二強度,通過每一該待測區塊的該電磁波束在該些光子能 量下的該些第二強度分別構成該些第二強度影像;根據該資料庫的資料、該些第一強度影像以及該些第二強度影像計算出該待測物分別對應於該些成分的該些衰減量影像的步驟為:利用通過每一該量測子空間的該電磁波束在該些光子能量下的該些第一強度、通過每一該待測區塊的該電磁波束在該些光子能量下的該些第二強度、該些物質的該些衰減係數以及該些物質的該些厚度計算出每一該待測區塊對應於每一該成份在該些光子能量所對應的電磁波束照射下的多個第一衰減係數,該些第一衰減係數構成該些衰減量影像。The image reconstruction method of claim 1, wherein the object to be tested is divided into a plurality of blocks to be tested, and the measurement space is divided into a plurality of measurement subspaces, and the blocks to be tested are respectively scheduled to be set. In the measurement subspaces, an electromagnetic beam passes through the corresponding measurement subspace, and the electromagnetic beam is part of the electromagnetic wave; when the measurement object is not configured in the measurement space, the measurement passes the measurement The step of the electromagnetic waves in the space respectively at the first intensity images of the different photon energies is: when the plurality of measurement blocks are not disposed in the measurement subspaces, measuring each of the measurement subspaces The plurality of first intensities of the electromagnetic beam at the photon energy, wherein the first intensities of the electromagnetic beams passing through each of the measuring subspaces at the photon energies respectively constitute the first intensity images When the object to be tested is disposed in the measurement space, the step of measuring the second intensity images of the electromagnetic wave passing through the object to be tested under the different photon energies is: respectively, in the blocks to be tested When set in the measurement subspaces Measure a plurality of second intensities of the electromagnetic beam passing through each of the photon energy of each of the to-be-tested blocks, and pass the electromagnetic beams of each of the to-be-tested blocks to the photon energy The second intensity of the quantity respectively constitutes the second intensity images; and the materials according to the database, the first intensity images and the second intensity images are respectively calculated to correspond to the components The step of attenuating the image is: using the first intensity of the electromagnetic beam passing through each of the measurement subspaces at the photon energy, and the electromagnetic beam passing through each of the blocks to be tested The second intensity at the photon energy, the attenuation coefficients of the substances, and the thicknesses of the substances calculate an electromagnetic wave corresponding to each of the photons of the photon energy corresponding to each of the components to be tested. a plurality of first attenuation coefficients under beam illumination, the first attenuation coefficients constituting the attenuation image. 如申請專利範圍第2項所述的影像重建方法,其中該些成分包括一第一成分、一第二成分至一第N成分,N為大於或等於2的正整數,該些光子能量包括一第一光子能量、一第二光子能量至一第M光子能量,M為大於或等於N的正整數,而利用通過每一該量測子空間的該電磁波束在該些光子能量下的該些第一強度、通過每一該待測區塊的該電磁波束在該些光子能量下的該些第二強度、該些物質的該些衰減係數以及該些物質的該些厚度計算出每一該待測區塊對應於該第一成分、該第二成分至該第N成分在該第一光子能量所對應的電磁波束照射下的該些第一衰減係數的方法包括:利用該些物質的該些衰減係數計算出該第一成分在該第一光子能量所對應的電磁波照射下的該衰減係數與該第一成分在該第二光子能量至該第M光子能量所對應的電磁波照射下的該些衰減係數之間的轉換關係、該第二成分在該第一光子能量所對應的電磁波照射下的該衰減係數與該第二成分在該第二光子能量至該第M光子能量所對應的電磁波照射下的該些衰減係數之間的轉換關係、到該第N成分在該第一光子能量所對應的電磁波照射下的該 衰減係數與該第N成分在該第二光子能量至該第M光子能量所對應的電磁波照射下的該些衰減係數之間的轉換關係;利用該些轉換關係建立一轉換矩陣;利用通過每一該量測子空間的該電磁波束在該些光子能量下的該些第一強度以及通過每一該待測區塊的該電磁波束在該些光子能量下的該些第二強度建立一比例矩陣;以及利用該比例矩陣、該轉換矩陣以及該些物質的該些厚度計算出每一該待測區塊對應於該第一成分、該第二成分至該第N成分在該第一光子能量所對應的電磁波照射下的該些第一衰減係數。The image reconstruction method of claim 2, wherein the components comprise a first component, a second component to an Nth component, and N is a positive integer greater than or equal to 2, and the photon energy comprises a a first photon energy, a second photon energy to a Mth photon energy, M being a positive integer greater than or equal to N, and utilizing the electromagnetic beam passing through each of the measured subspaces at the photon energies Calculating, by the first intensity, the second intensity of the electromagnetic beam passing through each of the photon energy at the photon energy, the attenuation coefficients of the substances, and the thicknesses of the substances The method for determining, by the first component, the second component to the N component, the first attenuation coefficients of the Nth component under the electromagnetic beam corresponding to the first photon energy comprises: using the materials Calculating the attenuation coefficient of the first component under the electromagnetic wave corresponding to the first photon energy and the electromagnetic wave corresponding to the first component at the second photon energy to the Mth photon energy Attenuation system a conversion relationship between the attenuation coefficient of the second component under the electromagnetic wave corresponding to the first photon energy and the electromagnetic wave corresponding to the second component at the second photon energy to the energy of the Mth photon a conversion relationship between the attenuation coefficients, and the electromagnetic component of the Nth component under the irradiation of the first photon energy a conversion relationship between the attenuation coefficient and the attenuation coefficients of the Nth component under the electromagnetic wave illumination corresponding to the energy of the second photon energy to the Mth photon; establishing a conversion matrix by using the conversion relationships; The first intensity of the electromagnetic beam of the measurement subspace at the photon energy and the second intensity of the electromagnetic beam passing through each of the photon energies of each of the to-be-measured blocks establish a proportional matrix And using the proportional matrix, the conversion matrix, and the thicknesses of the substances to calculate that each of the blocks to be tested corresponds to the first component, and the second component to the Nth component are at the first photon energy The first attenuation coefficients under the corresponding electromagnetic wave illumination. 如申請專利範圍第3項所述的影像重建方法,其中該第一光子能量、該第二光子能量至該第M光子能量分別表示為E1 、E2 ~EM ,該第一成分在該第一光子能量所對應的電磁波照射下的該衰減係數與該第一成分在該第二光子能量至該第M光子能量所對應的電磁波照射下的該些衰減係數之間的該些轉換關係分別表示為w(μr1 ,E2 )~w(μr1 ,EM ),該第二成分在該第一光子能量所對應的電磁波照射下的該衰減係數與該第二成分在該第二光子能量至該第M光子能量所對應的電磁波照射下的該些衰減係數之間的該些轉換關係分別表示為w(μr2 ,E2 )~w(μr2 ,EM ),該第N成分在該第一光子能量所對應的電磁波照射下的該衰減係數與該第N成分在該第二光子能量至該第M光子能量所對應的電磁波照射下的該些衰減係數之間的該些轉換關係分別表示為w(μrN ,E2 )~w(μrN ,EM ),該轉換矩陣表示為W, ,通過每一該量測子空間的該電磁波束在該第一光子能量、該第二光子能量至該第M光子能量下的該些第一強度分別表示為Ir1 (E1 )、Ir1 (E2 )至Ir1 (EM ),通過每一該待測區塊的該電磁波束在該第一光子能量、該第二光子能量至該第M光子能量下的該些第二強度分別表示為Ir2 (E1 )、Ir2 (E2 )至Ir2 (EM ),該比例矩陣表示為Tr 具有該第一成份之該物體的該厚度、具有該第二成份之該物體的該厚度、至具有該第N成份之該物體的該厚度分別表示為t1 、t2 至tN ,每一該待測區塊對應於該第一成分、該第二成分至該第N成分在該第一光子能量所對應的電磁波束照射下的該些第一衰減係數分別表示為μr1 (E1 )、μr1 (E1 )至μrN (E1 ),利用該比例矩陣、該轉換矩陣以及該些物質的該些厚度計算出每一該待測區塊對應於該第一成分、該第二成分至該第N成分在該第一光子能量下的該些第一衰減係數的方法包括:利用下式(1)計算出每一該待測區塊對應於該第一成分、該第二成分至該第N成分在該第一光子能量下的該些第一衰減係數, The image reconstruction method according to claim 3, wherein the first photon energy, the second photon energy to the Mth photon energy are respectively represented as E 1 , E 2 to E M , and the first component is The conversion relationship between the attenuation coefficient of the electromagnetic wave corresponding to the first photon energy and the attenuation coefficients of the first component under the electromagnetic wave irradiation corresponding to the energy of the second photon energy to the Mth photon energy respectively Expressed as w(μ r1 , E 2 )~w(μ r1 , E M ), the attenuation coefficient of the second component under the electromagnetic wave corresponding to the first photon energy and the second component in the second photon The conversion relationship between the attenuation coefficients of the energy to the electromagnetic wave corresponding to the Mth photon energy is expressed as w(μ r2 , E 2 )~w(μ r2 , E M ), respectively, the Nth component The conversion between the attenuation coefficient of the electromagnetic wave corresponding to the first photon energy and the attenuation coefficients of the Nth component under the electromagnetic wave illumination corresponding to the energy of the second photon energy to the Mth photon relationship respectively denoted w (μ rN, E 2) ~ w (μ rN, E M), which converter Array is represented as W, And the first intensities of the electromagnetic beam passing through the first photon energy and the second photon energy to the Mth photon energy of each of the measurement subspaces are represented as I r1 (E 1 ), I r1 (E 2 ) to I r1 (E M ), respectively, the second intensity of the electromagnetic beam passing through the electromagnetic field of the to-be-tested block at the first photon energy, the second photon energy, and the Mth photon energy Expressed as I r2 (E 1 ), I r2 (E 2 ) to I r2 (E M ), the scale matrix is expressed as T r , The thickness of the object having the first component, the thickness of the object having the second component, and the thickness of the object having the Nth component are represented as t 1 , t 2 to t N , respectively. The first attenuation coefficients corresponding to the first component, the second component to the Nth component, and the electromagnetic beam corresponding to the first photon energy are respectively represented as μ r1 (E 1 ) And μ r1 (E 1 ) to μ rN (E 1 ), using the proportional matrix, the conversion matrix, and the thicknesses of the substances to calculate that each of the blocks to be tested corresponds to the first component and the second The method for the first attenuation coefficient of the component to the Nth component at the first photon energy comprises: calculating, by using the following formula (1), each of the to-be-tested blocks corresponding to the first component and the second component The first attenuation coefficients of the Nth component at the first photon energy, 如申請專利範圍第2項所述的影像重建方法,其中量測通 過每一該量測子空間的該電磁波束在多個光子能量下的該些第一強度的方法為包括:令該些電磁波束同時分別通過該些量測子空間;以及同時量測通過該些量測子空間的該些電磁波束在該些光子能量下的該些第一強度,而量測通過每一該待測區塊的該電磁波束在該些光子能量下的該些第二強度的方法包括:令該些電磁波束同時分別通過該些待測區塊;以及同時量測每一該電磁波束通過該待測區塊後在該些光子能量下的該些第二強度。For example, the image reconstruction method described in claim 2, wherein the measurement is The method for the first intensity of the electromagnetic beam at each of the plurality of photon energies of each of the measurement subspaces includes: causing the electromagnetic beams to pass through the measurement subspaces simultaneously; and simultaneously measuring the Measuring the first intensities of the electromagnetic beams of the subspace at the photon energies, and measuring the second intensities of the electromagnetic beams passing through each of the photons to be measured The method includes: causing the electromagnetic beams to pass through the blocks to be tested at the same time; and simultaneously measuring the second intensities of the electromagnetic beams that pass through the block to be tested at the photon energy. 如申請專利範圍第5項所述的影像重建方法,其中該些電磁波束的強度在量測該些第一強度影像及該些第二強度影像的期間內為定值。The image reconstruction method of claim 5, wherein the intensity of the electromagnetic beams is constant during the measurement of the first intensity image and the second intensity image. 如申請專利範圍第5項所述的影像重建方法,在令該些電磁波束同時分別通過該些量測子空間以及該些待測區塊之前,更包括:濾除該些電磁波束中光子能量低於該些光子能量中最小之一的部份。The method for image reconstruction according to claim 5, wherein before the electromagnetic beams are respectively passed through the measurement subspaces and the blocks to be tested, the method further comprises: filtering out photon energy in the electromagnetic beams. Below the smallest of the photon energies. 如申請專利範圍第2項所述的影像重建方法,其中該電磁波束為一脈衝式電磁波束,量測通過每一該量測子空間的該電磁波束在該些光子能量下的該些第一強度的方法包括:令該脈衝式電磁波束掃描該些量測子空間,其中當該脈衝式電磁波束的強度實質上為零時,使該脈衝式電磁波束的對準位置從該些量測子空間其中之一相對移動到該些量測子空間的另一,且當該脈衝式電磁波束的強度實質上不為零時,使該脈衝式電磁波束的對準位置相對於該量測子空間維持實質上靜止,當該脈衝式電磁波束的對準位置分別停留於該些量測子空間時,分別量測通過每一該量測子空間的該脈衝式電磁波束在該些光子能量下的該些第一強度。The image reconstruction method of claim 2, wherein the electromagnetic beam is a pulsed electromagnetic beam, and the first one of the electromagnetic beams passing through each of the measurement subspaces under the photon energy is measured. The method of intensity includes: causing the pulsed electromagnetic beam to scan the measurement subspaces, wherein when the intensity of the pulsed electromagnetic beam is substantially zero, the alignment position of the pulsed electromagnetic beam is obtained from the quantisers One of the spaces is relatively moved to the other of the measurement subspaces, and when the intensity of the pulsed electromagnetic beam is substantially non-zero, the aligned position of the pulsed electromagnetic beam is relative to the measurement subspace Maintaining a substantially stationary state, when the aligned positions of the pulsed electromagnetic beams respectively stay in the measurement subspaces, respectively measuring the pulsed electromagnetic beams passing through each of the measurement subspaces under the photon energies These first intensities. 如申請專利範圍第8項所述的影像重建方法,更包括:紀錄通過每一該量測子空間的該電磁波束在該些光子能量下的該些第一強度與該量測子空間的一第一對應關係;以及利用通過每一該量測子空間的該電磁波束在該些光子能量下的該些第一強度與該第一對應關係獲得該些第一強度影像。The image reconstruction method of claim 8, further comprising: recording the first intensity of the electromagnetic beam passing through each of the measurement subspaces at the photon energy and one of the measurement subspaces a first correspondence relationship; and obtaining the first intensity images by using the first intensity of the electromagnetic beam at each of the photon energies and the first correspondence relationship. 如申請專利範圍第8項所述的影像重建方法,其中量測通過每一該待測區塊的該電磁波束在該些光子能量下的該些第二強度的方法包括:令該脈衝式電磁波束掃描該些待測區塊,其中當該脈衝式電磁波束的強度實質上為零時,使該脈衝式電磁波束的對準位置從該些待測區塊其中之一相對移動到該些待測區塊的另一,且當該脈衝式電磁波束的強度實質上不為零時,使該脈衝式電磁波束的對準位置相對於該待測區塊維持實質上靜止,當該脈衝式電磁波束的對準位置分別停留於該些待測區塊時,分別量測通過每一該待測區塊的該脈衝式電磁波束在該些光子能量下的該些第二強度。The method of image reconstruction according to claim 8, wherein the method of measuring the second intensities of the electromagnetic beams passing through each of the photon energies of the block to be tested comprises: causing the pulsed electromagnetic waves The beam scans the blocks to be tested, wherein when the intensity of the pulsed electromagnetic beam is substantially zero, the aligned position of the pulsed electromagnetic beam is relatively moved from one of the blocks to be tested to the Detecting another of the blocks, and when the intensity of the pulsed electromagnetic beam is substantially non-zero, maintaining the aligned position of the pulsed electromagnetic beam substantially stationary relative to the block to be tested, when the pulsed electromagnetic wave When the aligned positions of the beams respectively stay in the blocks to be tested, the second intensities of the pulsed electromagnetic beams passing through each of the to-be-measured blocks at the photon energies are respectively measured. 如申請專利範圍第10項所述的影像重建方法,更包括:紀錄通過每一該待測區塊的該電磁波束在該些光子能量下的該些第二強度與該待測區塊的一第二對應關係;以及利用通過每一該待測區塊的該電磁波束在該些光子能量下的該些第二強度與該第二對應關係獲得該些第二強度影像。The image reconstruction method of claim 10, further comprising: recording the second intensity of the electromagnetic beam passing through each of the to-be-tested blocks at the photon energy and one of the to-be-tested blocks a second correspondence relationship; and obtaining the second intensity images by using the second intensity of the electromagnetic beam passing through each of the to-be-tested blocks at the photon energy and the second correspondence. 一種影像重建系統,用以重建一待測物的影像,該影像重建系統包括:一電磁波提供單元,提供一電磁波;一電磁波偵測器,在一量測空間沒有配置該待測物時量測通過該量測空間的該電磁波分別在多個不同光子能量下的多個第一 強度影像,在該待測物設置於該量測空間時量測通過該待測物的該電磁波分別在該些光子能量下的多個第二強度影像;以及一處理單元,一資料庫的資料包括分別具有多個成分的多個物質中的每一個物質在每一該光子能量所對應的電磁波照射下的衰減係數及每一該物質在該光子能量所對應的電磁波傳遞方向上的厚度,該處理單元根據該資料庫的資料、該些第一強度影像以及該些第二強度影像計算出該待測物的分別對應於該些成分的多個衰減量影像。An image reconstruction system for reconstructing an image of a sample to be tested, the image reconstruction system comprising: an electromagnetic wave providing unit for providing an electromagnetic wave; and an electromagnetic wave detector for measuring when the object to be tested is not disposed in a measurement space a plurality of first electromagnetic waves passing through the measurement space at a plurality of different photon energies An intensity image, when the object to be tested is disposed in the measurement space, measuring a plurality of second intensity images of the electromagnetic wave passing through the object to be tested under the photon energy; and a processing unit, a data of the database And including an attenuation coefficient of each of the plurality of substances having a plurality of components respectively under the electromagnetic wave irradiation corresponding to the photon energy, and a thickness of each of the substances in the electromagnetic wave transmission direction corresponding to the photon energy, The processing unit calculates, according to the data of the database, the first intensity images, and the second intensity images, a plurality of attenuation image corresponding to the components. 如申請專利範圍第12項所述的影像重建系統,其中該待測物劃分為多個待測區塊,該量測空間劃分為多個量測子空間,該些待測區塊分別預定設置於該些量測子空間,一電磁波束通過對應之該一個量測子空間,該電磁波束為部份的該電磁波;該電磁波偵測器在該些量測子空間沒有配置該些待測區塊時,量測通過每一該量測子空間的該電磁波束在該些光子能量下的多個第一強度,該電磁波偵測器在該些待測區塊分別設置於該些量測子空間時量測通過每一該待測區塊的該電磁波束在該些光子能量下的多個第二強度,其中通過每一該量測子空間的該電磁波束在該些光子能量下的該些第一強度分別構成該些第一強度影像,通過每一該待測區塊的該電磁波束在該些光子能量下的該些第二強度分別構成該些第二強度影像,該處理單元根據通過每一該量測子空間的該電磁波束在該些光子能量下的該些第一強度、通過每一該待測區塊的該電磁波束在該些光子能量下的該些第二強度、該些物質的該些衰減係數以及該些物質的該些厚度計算出每一該待測區塊對應於每一該成份在該些光子能量所對應的電磁波束照射下的多個第一衰減係數,該些第一衰減係數構成該些衰減量影像。The image reconstruction system of claim 12, wherein the object to be tested is divided into a plurality of blocks to be tested, and the measurement space is divided into a plurality of measurement subspaces, and the blocks to be tested are respectively scheduled to be set. In the measurement subspaces, an electromagnetic beam passes through the corresponding one of the measurement subspaces, and the electromagnetic beam is a part of the electromagnetic waves; the electromagnetic wave detector is not disposed in the measurement subspaces. Blocking, measuring a plurality of first intensities of the electromagnetic beam passing through each of the measuring subspaces at the photon energies, wherein the electromagnetic wave detectors are respectively disposed in the plurality of measuring subtags Spatially measuring a plurality of second intensities of the electromagnetic beam passing through each of the photon energy of each of the to-be-measured blocks, wherein the electromagnetic beam passing through each of the measurement subspaces is at the photon energy The first intensity images respectively form the first intensity images, and the second intensity images of the electromagnetic beams of each of the to-be-measured blocks at the photon energy respectively constitute the second intensity images, and the processing unit is configured according to the Through each of the measured subspaces The first intensity of the electromagnetic beam at the photon energy, the second intensity of the electromagnetic beam passing through each of the to-be-measured blocks at the photon energy, the attenuation coefficients of the substances, and The thicknesses of the substances are calculated, and each of the blocks to be tested corresponds to a plurality of first attenuation coefficients of each of the components under the electromagnetic beam illumination corresponding to the photon energies, and the first attenuation coefficients constitute the These attenuation images. 如申請專利範圍第13項所述的影像重建系統,其中該些 成分包括一第一成分、一第二成分至一第N成分,N為大於或等於2的正整數,該些光子能量包括一第一光子能量、一第二光子能量至一第M光子能量,M為大於或等於N的正整數,而該處理單元利用該些物質的該些衰減係數計算出該第一成分在該第一光子能量所對應的電磁波照射下的該衰減係數與該第一成分在該第二光子能量至該第M光子能量所對應的電磁波照射下的該些衰減係數之間的轉換關係、該第二成分在該第一光子能量所對應的電磁波照射下的該衰減係數與該第二成分在該第二光子能量至該第M光子能量所對應的電磁波照射下的該些衰減係數之間的轉換關係、到該第N成分在該第一光子能量所對應的電磁波照射下的該衰減係數與該第N成分在該第二光子能量至該第M光子能量所對應的電磁波照射下的該些衰減係數之間的轉換關係,利用該些轉換關係建立一轉換矩陣,利用通過每一該量測子空間的該電磁波束在該些光子能量下的該些第一強度以及通過每一該待測區塊的該電磁波束在該些光子能量下的該些第二強度建立一比例矩陣,利用該比例矩陣、該轉換矩陣以及該些物體之該些厚度計算出每一該待測區塊對應於該第一成分、該第二成分至該第N成分在該第一光子能量所對應的電磁波束照射下的該些第一衰減係數。The image reconstruction system of claim 13, wherein the image reconstruction system The composition includes a first component, a second component to an Nth component, and N is a positive integer greater than or equal to 2. The photon energy includes a first photon energy, a second photon energy, and an Mth photon energy. M is a positive integer greater than or equal to N, and the processing unit calculates the attenuation coefficient of the first component under the electromagnetic wave corresponding to the first photon energy and the first component by using the attenuation coefficients of the substances a conversion relationship between the attenuation coefficients of the second photon energy to the electromagnetic wave corresponding to the energy of the Mth photon, and the attenuation coefficient of the second component under the electromagnetic wave corresponding to the first photon energy a conversion relationship between the attenuation coefficients of the second component in the second photon energy to the electromagnetic wave corresponding to the energy of the Mth photon, to the electromagnetic component of the Nth component corresponding to the first photon energy The conversion relationship between the attenuation coefficient and the attenuation coefficients of the Nth component under the electromagnetic wave irradiation corresponding to the energy of the second photon energy to the energy of the Mth photon is utilized by the conversion relationship a conversion matrix utilizing the first intensity of the electromagnetic beam passing through each of the measurement subspaces at the photon energy and the electromagnetic beam passing through each of the to-be-tested blocks at the photon energy The second intensity establishes a proportional matrix, and the scale matrix, the conversion matrix, and the thicknesses of the objects are used to calculate that each of the blocks to be tested corresponds to the first component, the second component to the Nth component The first attenuation coefficients under the illumination of the electromagnetic beam corresponding to the first photon energy. 如申請專利範圍第14項所述的影像重建系統,其中該第一光子能量、該第二光子能量至該第M光子能量分別表示為E1 、E2 ~EM ,該第一成分在該第一光子能量所對應的電磁波照射下的該衰減係數與該第一成分在該第二光子能量至該第M光子能量所對應的電磁波照射下的該些衰減係數之間的該些轉換關係分別表示為w(μr1 ,E2 )~w(μr1 ,EM ),該第二成分在該第一光子能量所對應的電磁波照射下的該衰減係數與該第二成分在該第二光子能量至該第M光子能量所對應的電磁波照射下的該些衰減係數之間的該些 轉換關係分別表示為w(μr2 ,E2 )~w(μr2 ,EM ),該第N成分在該第一光子能量所對應的電磁波照射下的該衰減係數與該第N成分在該第二光子能量至該第M光子能量所對應的電磁波照射下的該些衰減係數之間的該些轉換關係分別表示為w(μrN ,E2 )~w(μrN ,EM ),該轉換矩陣表示為W, ,通過每一該量測子空間的該電磁波束在該第一光子能量、該第二光子能量至該第M光子能量下的該些第一強度分別表示為Ir1 (E1 )、Ir1 (E2 )至Ir1 (EM ),通過每一該待測區塊的該電磁波束在該第一光子能量、該第二光子能量至該第M光子能量下的該些第二強度分別表示為Ir2 (E1 )、Ir2 (E2 )至Ir2 (EM ),該比例矩陣表示為Tr 具有該第一成份之該物體的該厚度、具有該第二成份之該物體的該厚度、至具有該第N成份之該物體的該厚度分別表示為t1 、t2 至tN ,每一該待測區塊對應於該第一成分、該第二成分至該第N成分在該第一光子能量所對應的電磁波束照射下的該些第一衰減係數分別表示為μr1 (E1 )、μr1 (E1 )至μrN (E1 ),該處理單元利用下式(1)計算出每一該待測區塊對應於該第一成分、該第二成分至該第N成分在該第一光子能量下的第一衰減係數, If the application of the image reconstruction system of patentable scope of clause 14, wherein the first photon energy, the photon energy to the second photon energy of M are represented by E 1, E 2 ~ E M , the first component in the The conversion relationship between the attenuation coefficient of the electromagnetic wave corresponding to the first photon energy and the attenuation coefficients of the first component under the electromagnetic wave irradiation corresponding to the energy of the second photon energy to the Mth photon energy respectively Expressed as w(μ r1 , E 2 )~w(μ r1 , E M ), the attenuation coefficient of the second component under the electromagnetic wave corresponding to the first photon energy and the second component in the second photon The conversion relationship between the attenuation coefficients of the energy to the electromagnetic wave corresponding to the Mth photon energy is expressed as w(μ r2 , E 2 )~w(μ r2 , E M ), respectively, the Nth component The conversion between the attenuation coefficient of the electromagnetic wave corresponding to the first photon energy and the attenuation coefficients of the Nth component under the electromagnetic wave illumination corresponding to the energy of the second photon energy to the Mth photon relationship respectively denoted w (μ rN, E 2) ~ w (μ rN, E M), which converter Array is represented as W, And the first intensities of the electromagnetic beam passing through the first photon energy and the second photon energy to the Mth photon energy of each of the measurement subspaces are represented as I r1 (E 1 ), I r1 (E 2 ) to I r1 (E M ), respectively, the second intensity of the electromagnetic beam passing through the electromagnetic field of the to-be-tested block at the first photon energy, the second photon energy, and the Mth photon energy Expressed as I r2 (E 1 ), I r2 (E 2 ) to I r2 (E M ), the scale matrix is expressed as T r , The thickness of the object having the first component, the thickness of the object having the second component, and the thickness of the object having the Nth component are represented as t 1 , t 2 to t N , respectively. The first attenuation coefficients corresponding to the first component, the second component to the Nth component, and the electromagnetic beam corresponding to the first photon energy are respectively represented as μ r1 (E 1 ) , μ r1 (E 1 ) to μ rN (E 1 ), the processing unit calculates, by using the following formula (1), each of the blocks to be tested corresponds to the first component, the second component to the N component The first attenuation coefficient at the first photon energy, 如申請專利範圍第13項所述的影像重建系統,其中該電磁波包括多個該電磁波束,該些電磁波束同時分別通過該些量測子空間,該電磁波偵測器具有與該些量測子空間對應的多個感測像素,該些感測像素同時分別量測該些電磁波束通過該些量測子空間後在該些光子能量下的該些第一強度,該些電磁波束同時分別通過該些待測區塊,該些感測像素同時分別量測該些電磁波束通過該些待測區塊後於該些光子能量下的該些第二強度。The image reconstruction system of claim 13, wherein the electromagnetic wave comprises a plurality of the electromagnetic beams, and the electromagnetic beams respectively pass through the measurement subspaces at the same time, and the electromagnetic wave detector has the measurement submeters a plurality of sensing pixels corresponding to the space, the sensing pixels simultaneously measuring the first intensities of the electromagnetic beams at the photon energies after passing through the measuring subspaces, and the electromagnetic beams are simultaneously passed through The sensing pixels, the sensing pixels simultaneously measure the second intensities of the electromagnetic beams passing through the plurality of photon energies. 如申請專利範圍第16項所述的影像重建系統,更包括:一控制單元,與該電磁波提供單元以及該電磁波偵測器電性連接,該控制單元令該電磁波提供單元所發出的該些電磁波束的強度在該電磁波偵測器量測該些第一強度影像及該些第二強度影像的期間內為定值。The image reconstruction system of claim 16, further comprising: a control unit electrically connected to the electromagnetic wave providing unit and the electromagnetic wave detector, wherein the control unit causes the electromagnetic wave to be emitted by the electromagnetic wave providing unit The intensity of the beam is constant during the period in which the electromagnetic wave detector measures the first intensity image and the second intensity image. 如申請專利範圍第16項所述的影像重建系統,更包括:一濾光單元,配置於該些電磁波束的傳遞路徑上且位於該電磁波提供單元與該些量測子空間之間,該濾光單元用以濾除該些電磁波束中光子能量低於該些光子能量中最小之一的部份。The image reconstruction system of claim 16, further comprising: a filter unit disposed on the transmission path of the electromagnetic beams and located between the electromagnetic wave providing unit and the measurement subspaces, the filter The light unit is configured to filter out a portion of the electromagnetic beams whose photon energy is lower than a minimum of the photon energies. 如申請專利範圍第13項所述的影像重建系統,其中該電磁波提供單元為一脈衝式電磁波束提供單元,該脈衝式電磁波束提供單元包括一脈衝式電磁波源以及一準直器,該脈衝式電磁波源提供一脈衝式電磁波,該脈衝式電磁波為通過該量測空間的該電磁波,該準直器配置於該脈衝式電磁波的傳遞路徑上,該準直器具有一孔洞,部分的該脈衝式電磁波通過該準直器的該孔洞而形成一脈衝式電磁波束,該脈衝式電磁波束為該電磁波束。The image reconstruction system of claim 13, wherein the electromagnetic wave providing unit is a pulsed electromagnetic beam providing unit, the pulsed electromagnetic beam providing unit comprises a pulsed electromagnetic wave source and a collimator. The electromagnetic wave source provides a pulsed electromagnetic wave, the pulsed electromagnetic wave is the electromagnetic wave passing through the measurement space, the collimator is disposed on the transmission path of the pulsed electromagnetic wave, the collimator has a hole, and part of the pulsed electromagnetic wave A pulsed electromagnetic beam is formed by the hole of the collimator, and the pulsed electromagnetic beam is the electromagnetic beam. 如申請專利範圍第19項所述的影像重建系統,更包括:一控制單元,透過移動該準直器而使該脈衝式電磁波束掃描該待測物的該些待測區塊,當該脈衝式電磁波束的強度實質上為零時,該控制單元使該脈衝式電磁波束的對準位置從該些待測區塊的一相對移動到該些待測區塊的另一,且當該脈衝式電磁波束的強度實質上不為零時,該控制單元使該脈衝式電磁波束的對準位置相對於該待測物維持實質上靜止,該電磁波偵測器在該脈衝式電磁波束的對準位置分別停留於該些量測子空間時分別量測該電磁波束通過該些量測子空間後的該些第一強度,該電磁波偵測器在該脈衝式電磁波束的對準位置分別停留於該些待測區塊時分別量測該電磁波束通過該些待測區塊後的該些第二強度,該處理單元紀錄該電磁波束通過每一該量測子空間後的該些第一強度與該量測子空間的第一對應關係,該處理單元紀錄該電磁波束通過每一該待測區塊後的該些第二強度與該待測區塊的第二對應關係,該處理單元利用對應於每一該量測子空間的該些第一強度以及該第一對應關係建立該些第一強度影像,該處理單元利用每一該待測區塊的該些第二強度以及該第二對應關係建立該些第二強度影像。The image reconstruction system of claim 19, further comprising: a control unit that scans the collimator to cause the pulsed electromagnetic beam to scan the to-be-tested blocks of the object to be tested, when the pulse When the intensity of the electromagnetic beam is substantially zero, the control unit moves the aligned position of the pulsed electromagnetic beam from a relative position of the blocks to be tested to another of the blocks to be tested, and when the pulse When the intensity of the electromagnetic beam is substantially non-zero, the control unit maintains the aligned position of the pulsed electromagnetic beam substantially stationary relative to the object to be tested, and the electromagnetic wave detector is aligned in the pulsed electromagnetic beam When the positions are respectively in the measurement subspaces, respectively, the first intensities of the electromagnetic beams passing through the measurement subspaces are measured, and the electromagnetic wave detectors respectively stay at the aligned positions of the pulsed electromagnetic beams. When the blocks to be tested are respectively measured, the second intensities of the electromagnetic beams passing through the blocks to be tested, and the processing unit records the first intensities of the electromagnetic beams after passing through each of the measured subspaces With the measurement a first correspondence of the space, the processing unit records a second correspondence between the second intensity of the electromagnetic beam passing through each of the to-be-tested blocks and the block to be tested, and the processing unit utilizes each of the corresponding The first intensity of the measurement subspace and the first correspondence establish the first intensity images, and the processing unit establishes the second intensity and the second correspondence of each of the to-be-tested blocks Second intensity image. 如申請專利範圍第20項所述的影像重建系統,其中該控制單元令該準直器的該孔洞與該電磁波偵測器同步地移動。The image reconstruction system of claim 20, wherein the control unit moves the hole of the collimator in synchronization with the electromagnetic wave detector. 如申請專利範圍第21項所述的影像重建系統,其中當該電磁波偵測器量測該些第一強度時,該準直器的該孔洞、每一該量測子空間、該電磁波偵測器的一感測區實質上對準,當該電磁波偵測器量測該些第二強度時,該準直器的該孔洞、每一該待測區塊、該電磁波偵測器的該感測區實質上對準。The image reconstruction system of claim 21, wherein when the electromagnetic wave detector measures the first intensity, the hole of the collimator, each of the measurement subspaces, and the electromagnetic wave detection a sensing area of the device is substantially aligned, and when the electromagnetic wave detector measures the second intensity, the hole of the collimator, each of the to-be-tested blocks, and the sense of the electromagnetic wave detector The measurement area is substantially aligned. 如申請專利範圍第21項所述的影像重建系統,其中更包 括:一第一機構,該準直器架設於該第一機構上;一第二機構,該電磁波偵測器架設於該第二機構上,該控制單元透過該第一機構與該第二機構令該準直器的該孔洞與該電磁波偵測器的該感應區同步地移動。For example, the image reconstruction system described in claim 21 of the patent application, wherein a first mechanism, the collimator is mounted on the first mechanism; a second mechanism, the electromagnetic wave detector is mounted on the second mechanism, and the control unit transmits the first mechanism and the second mechanism The hole of the collimator is moved in synchronization with the sensing area of the electromagnetic wave detector. 一種影像建構方法,用以建構一待測物的影像,該影像建構方法包括:提供一脈衝式電磁波束;利用該脈衝式電磁波束掃描該待測物的多個待測區塊,其中當該脈衝式電磁波束的強度實質上為零時,使該脈衝式電磁波束的對準位置從該些待測區塊的一相對移動到該些待測區塊的另一,且當該脈衝式電磁波束的強度實質上不為零時,使該脈衝式電磁波束的對準位置相對於該待測物維持實質上靜止;當該脈衝式電磁波束的對準位置分別停留於該些待測區塊時,分別量測該脈衝式電磁波束通過該些待測區塊後的多個強度;紀錄該些強度與該些待測區塊的對應關係;以及利用該些強度以及該對應關係建構該待測物的影像。An image construction method for constructing an image of a sample to be tested, the image construction method comprising: providing a pulsed electromagnetic beam; scanning the plurality of blocks to be tested of the object to be tested by using the pulsed electromagnetic beam, wherein When the intensity of the pulsed electromagnetic beam is substantially zero, the alignment position of the pulsed electromagnetic beam is moved from a relative of the blocks to be tested to the other of the blocks to be tested, and when the pulsed electromagnetic wave When the intensity of the beam is substantially non-zero, the alignment position of the pulsed electromagnetic beam is maintained substantially stationary with respect to the object to be tested; when the aligned positions of the pulsed electromagnetic beam respectively stay in the blocks to be tested And measuring, respectively, the plurality of intensities of the pulsed electromagnetic beams passing through the blocks to be tested; recording the correspondence between the intensities and the blocks to be tested; and constructing the tones by using the intensities and the corresponding relationships The image of the object. 如申請專利範圍第24項所述的影像建構方法,其中提供該脈衝式電磁波束的方法包括:提供一脈衝式電磁波;以及令該脈衝式電磁波傳遞至具有一孔洞的一準直器,其中通過該孔洞的部分的該脈衝式電磁波形成該脈衝式電磁波束。The image construction method of claim 24, wherein the method for providing the pulsed electromagnetic beam comprises: providing a pulsed electromagnetic wave; and transmitting the pulsed electromagnetic wave to a collimator having a hole, wherein The pulsed electromagnetic wave of a portion of the hole forms the pulsed electromagnetic beam. 如申請專利範圍第25項所述的影像建構方法,其中分別量測該電磁波束通過該些待測區塊後的該些強度的方法包括:令該準直器的該孔洞與用以量測該些強度的一電磁波偵測器同步地移動。The method for constructing an image according to claim 25, wherein the method for separately measuring the intensities of the electromagnetic beams passing through the blocks to be tested comprises: making the holes of the collimator and measuring the holes The electromagnetic wave detectors of the strengths move synchronously. 如申請專利範圍第26項所述的影像建構方法,其中當該電磁波偵測器量測該些強度時,該準直器的該孔洞、每一該待測區塊、該電磁波偵測器的一感測區實質上對準。The image construction method according to claim 26, wherein when the electromagnetic wave detector measures the intensities, the hole of the collimator, each of the to-be-tested blocks, and the electromagnetic wave detector A sensing zone is substantially aligned. 一種影像建構系統,用以建構一待測物的影像,該影像建構系統包括:一脈衝式電磁波束提供單元,包括:一脈衝式電磁波源,提供一脈衝式電磁波;以及一準直器,配置於該脈衝式電磁波的傳遞路徑上,該準直器具有一孔洞,部分的該脈衝式電磁波通過該準直器的該孔洞而形成一脈衝式電磁波束;一控制單元,透過移動該準直器而使該脈衝式電磁波束掃描該待測物的多個待測區塊,當該脈衝式電磁波束的強度實質上為零時,該控制單元使該脈衝式電磁波束的對準位置從該些待測區塊的一相對移動到該些待測區塊的另一,且當該脈衝式電磁波束的強度實質上不為零時,該控制單元使該脈衝式電磁波束的對準位置相對於該待測物維持實質上靜止;一電磁波偵測器,當該脈衝式電磁波束的對準位置分別停留於該些待測區塊時,分別量測該電磁波束通過該些待測區塊後的多個強度;以及一處理單元,紀錄該些強度與該些待測區塊的對應關係,並利用該些強度以及該對應關係建構該待測物的影像。An image construction system for constructing an image of a test object, the image construction system comprising: a pulsed electromagnetic beam supply unit comprising: a pulsed electromagnetic wave source, providing a pulsed electromagnetic wave; and a collimator, configured In the transmission path of the pulsed electromagnetic wave, the collimator has a hole, and part of the pulsed electromagnetic wave forms a pulsed electromagnetic beam through the hole of the collimator; a control unit moves the collimator through Having the pulsed electromagnetic beam scan a plurality of blocks to be tested of the object to be tested, and when the intensity of the pulsed electromagnetic beam is substantially zero, the control unit causes the aligned position of the pulsed electromagnetic beam to be from the a relative movement of the test block to the other of the blocks to be tested, and when the intensity of the pulsed electromagnetic beam is substantially non-zero, the control unit causes the aligned position of the pulsed electromagnetic beam relative to the The object to be tested remains substantially stationary; an electromagnetic wave detector, when the aligned positions of the pulsed electromagnetic beams respectively stay in the blocks to be tested, respectively measure the electromagnetic beam through A plurality of strength after some test block; and a processing unit, the plurality of records corresponding to the intensity relationship between the plurality of test blocks, and using the plurality of intensity, and the correspondence of the construction of the image analyte. 如申請專利範圍第28項所述的影像建構系統,其中該控制單元令該準直器的該孔洞與用以量測該些強度的該電磁波偵測器同步地移動。The image construction system of claim 28, wherein the control unit moves the hole of the collimator in synchronization with the electromagnetic wave detector for measuring the intensities. 如申請專利範圍第28項所述的影像建構系統,其中當該電磁波偵測器量測該些強度時,該控制單元令該準直器的該孔 洞、每一該待測區塊、該電磁波偵測器的一感測區實質上對準。The image construction system of claim 28, wherein the control unit causes the hole of the collimator when the electromagnetic wave detector measures the intensities The hole, each of the blocks to be tested, and a sensing area of the electromagnetic wave detector are substantially aligned. 如申請專利範圍第28項所述的影像建構系統,更包括:一第一機構,該準直器架設於該第一機構上;一第二機構,該電磁波偵測器架設於該第二機構上,該控制單元透過該第一機構與該第二機構令該準直器的該孔洞與該電磁波偵測器的該感應區同步地移動。The image construction system of claim 28, further comprising: a first mechanism, the collimator is mounted on the first mechanism; and a second mechanism, the electromagnetic wave detector is mounted on the second mechanism The control unit moves the hole of the collimator synchronously with the sensing area of the electromagnetic wave detector through the first mechanism and the second mechanism.
TW102105746A 2012-10-11 2013-02-19 Method and system of image reconstruction and method and system of image construction TWI506272B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201310160725.2A CN103720482B (en) 2012-10-11 2013-05-03 Image reconstruction method and system and image construction method and system
US13/914,648 US9101326B2 (en) 2012-10-11 2013-06-11 Method and system of image reconstruction and method and system of image construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201261712281P 2012-10-11 2012-10-11

Publications (2)

Publication Number Publication Date
TW201415012A TW201415012A (en) 2014-04-16
TWI506272B true TWI506272B (en) 2015-11-01

Family

ID=55182015

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102105746A TWI506272B (en) 2012-10-11 2013-02-19 Method and system of image reconstruction and method and system of image construction

Country Status (1)

Country Link
TW (1) TWI506272B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9959617B2 (en) 2016-01-28 2018-05-01 Taihao Medical Inc. Medical image processing apparatus and breast image processing method thereof
TWI587844B (en) * 2016-01-28 2017-06-21 太豪生醫股份有限公司 Medical image processing apparatus and breast image processing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080118023A1 (en) * 2005-02-11 2008-05-22 Besson Guy M Method And System For Dynamic Low Dose X-ray Imaging
CN101416073A (en) * 2006-03-29 2009-04-22 皇家飞利浦电子股份有限公司 Dynamic optimization of the signal-to-noise ratio of dual-energy attenuation data for reconstructing images
TW201238564A (en) * 2011-03-22 2012-10-01 Nat Univ Tsing Hua Dual photons emission computed tomography system and method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080118023A1 (en) * 2005-02-11 2008-05-22 Besson Guy M Method And System For Dynamic Low Dose X-ray Imaging
CN101416073A (en) * 2006-03-29 2009-04-22 皇家飞利浦电子股份有限公司 Dynamic optimization of the signal-to-noise ratio of dual-energy attenuation data for reconstructing images
TW201238564A (en) * 2011-03-22 2012-10-01 Nat Univ Tsing Hua Dual photons emission computed tomography system and method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王詩秀、陳志成、陳宗哲,"微型正子斷層掃描儀之影像衰減修正研究",國立陽明大學 放射醫學科學研究所 碩士學位論文,中華民國95年(2006)8月 *

Also Published As

Publication number Publication date
TW201415012A (en) 2014-04-16

Similar Documents

Publication Publication Date Title
US9795350B2 (en) Material differentiation with phase contrast imaging
US9861319B2 (en) Noncontact three-dimensional diffuse optical imaging of deep tissue blood flow distribution
US9842414B2 (en) Monochromatic attenuation contrast image generation by using phase contrast CT
US20240057867A1 (en) Nir image-guided targeting
JP5143471B2 (en) Imaging device
RU2524302C2 (en) Extension on basis of model of vision field in radionuclide visualisation
US20210000436A1 (en) Methods for x-ray imaging of a subject using multiple-energy decomposition
US9480443B2 (en) Method for selecting a radiation form filter and X-ray imaging system
CN104939848B (en) The generation of monochrome image
US11426078B2 (en) Object information acquiring apparatus and control method thereof
US10806419B2 (en) X-ray CT apparatus, X-ray CT system, and injector
Tapfer et al. X-ray phase-contrast CT of a pancreatic ductal adenocarcinoma mouse model
US20150117595A1 (en) Method and x-ray system for generating a phase contrast image
KR101948800B1 (en) 3d scattering radiation imager, radiation medical apparatus having the same and method for placing the 3d scattering radiation imager
CN106535767A (en) Foaming cleanser
US11234663B2 (en) Apparatus for generating multi energy data from phase contrast imaging data
Nakamura et al. Simultaneous measurement of patient dose and distribution of indoor scattered radiation during digital breast tomosynthesis
US9101326B2 (en) Method and system of image reconstruction and method and system of image construction
CN108601571A (en) CT imaging systems and method for CT imaging systems
TWI506272B (en) Method and system of image reconstruction and method and system of image construction
Hossein et al. Image quality and dose assessment of collimator slit width effect in SLOT-SCAN X-ray imaging system
KR101749324B1 (en) 3d scattering radiation imager and radiation medical apparatus
Leong et al. High spatiotemporal resolution measurement of regional lung air volumes from 2D phase contrast x‐ray images
US11850022B2 (en) NIR image-guided targeting
JP2005034539A (en) X-ray diagnostic imaging apparatus with measuring function for bone density distribution