TWI587844B - Medical image processing apparatus and breast image processing method thereof - Google Patents
Medical image processing apparatus and breast image processing method thereof Download PDFInfo
- Publication number
- TWI587844B TWI587844B TW105112377A TW105112377A TWI587844B TW I587844 B TWI587844 B TW I587844B TW 105112377 A TW105112377 A TW 105112377A TW 105112377 A TW105112377 A TW 105112377A TW I587844 B TWI587844 B TW I587844B
- Authority
- TW
- Taiwan
- Prior art keywords
- breast
- image
- tissue
- breast image
- view
- Prior art date
Links
Landscapes
- Apparatus For Radiation Diagnosis (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Description
本發明是有關於一種影像處理技術,且特別是有關於一種醫療影像處理裝置及其乳房影像處理方法。 The present invention relates to an image processing technology, and more particularly to a medical image processing apparatus and a breast image processing method thereof.
乳腺癌(mammary carcinoma)是女性常見的惡性腫瘤之一,其主要癥狀包括乳房腫瘤(tumor)、異常分泌物或形狀變異等。提早篩檢出乳房的異常癥狀,將有助於盡早針對腫瘤進行治療,以降低癌細胞惡化或擴散等問題。諸如臨床或自我乳房檢測、活體組織檢查、乳房攝影術(mammography)、超音波(ultrasound)或磁共振(magnetic resonance)顯像等篩檢方式已廣泛在臨床上使用或成為學術研究的重要議題。 Mammary carcinoma is one of the common malignant tumors in women. The main symptoms include breast tumor, abnormal secretion or shape variation. Screening for abnormal symptoms of the breast early will help treat the tumor as early as possible to reduce the deterioration or spread of cancer cells. Screening methods such as clinical or self-breast testing, biopsy, mammography, ultrasound or magnetic resonance imaging have been widely used clinically or have become an important topic in academic research.
據研究指出,與低密度乳房相比,擁有高密度乳房之女性具有相對高的風險罹患乳癌。因此,乳房及乳腺組織的密度分析亦是乳癌評估的重要因素之一。另一方面,雖然現今臨床上已使用電腦輔助偵測(Computer Aided Detection;CADe)系統來自動辨識腫瘤、腫塊或鈣化點,但仍存在高偽陽性率的風險。 According to the study, women with high-density breasts have a relatively high risk of developing breast cancer compared with low-density breasts. Therefore, density analysis of breast and breast tissue is also an important factor in breast cancer assessment. On the other hand, although computer Aided Detection (CADe) systems have been used clinically to automatically identify tumors, bumps or calcifications, there is still a risk of high false positive rates.
本發明提供一種醫療影像處理裝置及其乳房影像處理方法,其可輔助乳腺組織密度分析且有效降低電腦輔助偵測系統之偽陽性。 The invention provides a medical image processing device and a breast image processing method thereof, which can assist the breast tissue density analysis and effectively reduce the false positive of the computer aided detection system.
本發明提出一種乳房影像處理方法,其適用於醫療影像處理裝置,且至少包括(但不僅限於)下列步驟。取得至少一片段(slice)的乳房影像。透過乳腺組織偵測器偵測各片段乳房影像中的乳腺組織。而此乳腺組織偵測器是基於紋理特徵(texture characteristic)分析。 The present invention provides a breast image processing method suitable for use in a medical image processing apparatus, and includes at least, but not limited to, the following steps. A breast image of at least one slice is obtained. The mammary gland tissue in the breast image of each segment is detected by a breast tissue detector. This breast tissue detector is based on texture characteristic analysis.
在本發明一實施例中,上述取得乳房影像之後,更包括下列步驟。將第一視圖的乳房影像轉換成第二視圖的轉向乳房影像。此第一視圖不同於第二視圖。依據轉向乳房影像決定肋骨資訊。依據肋骨資訊決定轉向乳房影像中的乳房區域。 In an embodiment of the invention, after the obtaining the breast image, the following steps are further included. Converting the breast image of the first view into a turning breast image of the second view. This first view is different from the second view. The rib information is determined based on the turning breast image. Based on the rib information, the breast area in the breast image is determined.
另一觀點而言,本發明提出一種醫療影像處理裝置,其至少包括(但不僅限於)儲存單元及處理單元。儲存單元儲存至少一片段的乳房影像,且記錄數個模組。而處理單元耦接儲存單元,且存取並執行此儲存單元所記錄的模組。而這些模組包括影像輸入模組及乳腺偵測模組。影像輸入模組取得乳房影像。而乳腺偵測模組透過乳腺組織偵測器偵測各乳房影像中的乳腺組織。此乳腺組織偵測器是基於紋理特徵分析。 In another aspect, the present invention provides a medical image processing apparatus including, but not limited to, a storage unit and a processing unit. The storage unit stores at least one segment of the breast image and records a plurality of modules. The processing unit is coupled to the storage unit and accesses and executes the module recorded by the storage unit. These modules include an image input module and a breast detection module. The image input module acquires a breast image. The mammary gland detection module detects breast tissue in each breast image through a breast tissue detector. This mammary tissue detector is based on texture feature analysis.
基於上述,本發明實施例所提出的醫療影像處理裝置及其乳房影像處理方法,其可基於紋理特徵分析而偵測乳房影像中 的乳腺組織。據此,本發明實施例便能提昇偵測乳腺組織的準確性,更能助於乳腺組織密度分析及減少電腦輔助偵測系統之偽陽性。 Based on the above, the medical image processing apparatus and the breast image processing method thereof according to the embodiments of the present invention can detect the breast image based on the texture feature analysis. Breast tissue. Accordingly, the embodiment of the present invention can improve the accuracy of detecting breast tissue, and can better analyze the density of breast tissue and reduce the false positive of the computer-aided detection system.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.
100‧‧‧醫療影像處理裝置 100‧‧‧ medical image processing device
1615‧‧‧胸腔區域 1615‧‧‧ chest area
110‧‧‧儲存單元 110‧‧‧ storage unit
1631‧‧‧胸壁線 1631‧‧‧ chest wall line
111‧‧‧影像輸入模組 111‧‧‧Image Input Module
1635‧‧‧非胸部區域 1635‧‧‧non-thoracic area
113‧‧‧乳腺偵測模組 113‧‧‧Mammary Detection Module
Hr‧‧‧肋骨陰影的最高點 Hr‧‧‧ highest point of rib shadow
114‧‧‧乳房區域切割模組 114‧‧‧Breast area cutting module
Rb‧‧‧參考點 Rb‧‧ reference point
115‧‧‧偵測訓練模組 115‧‧‧Detection Training Module
116‧‧‧密度量化模組 116‧‧‧Density Module
117‧‧‧偽陽性比對模組 117‧‧‧false positive comparison module
118‧‧‧泌乳量評估模組 118‧‧‧Lactation assessment module
119‧‧‧左右乳房乳腺密度對稱性測量模組 191‧‧‧About breast mammary gland density symmetry measurement module
150‧‧‧處理單元 150‧‧‧Processing unit
S210~S230、S515、S535、S559、S570、S750、S830、S1020、S1040、S1110~S1130‧‧‧步驟 S210~S230, S515, S535, S559, S570, S750, S830, S1020, S1040, S1110~S1130‧‧
310、330、410、510、530‧‧‧乳房訓練影像 310, 330, 410, 510, 530‧‧ ‧ breast training images
331‧‧‧乳腺組織類型 331‧‧‧ Breast tissue type
333‧‧‧皮下脂肪類型 333‧‧‧Subcutaneous fat type
335‧‧‧乳腺後脂肪及胸肌類型 335‧‧‧post-fat fat and chest muscle type
337‧‧‧陰影類型 337‧‧‧Shadow type
411‧‧‧部份影像 411‧‧‧Part image
411_1、711、713、715、721、811、813、814、951、953、955‧‧‧影像區塊 411_1, 711, 713, 715, 721, 811, 813, 814, 951, 953, 955‧‧‧ image blocks
551、553、555、557‧‧‧影像區塊群組 551, 553, 555, 557‧‧‧ image block groups
610、810、850、1010、1030、1050、1210‧‧‧乳房影像 610, 810, 850, 1010, 1030, 1050, 1210‧‧ ‧ breast images
611、851、853‧‧‧影像區域 611, 851, 853 ‧ ‧ image area
1051‧‧‧乳腺組織區域 1051‧‧‧Breast tissue area
1250、1310、1410、1510、1610、1650‧‧‧轉向乳房影像 1250, 1310, 1410, 1510, 1610, 1650‧ ‧ turn to breast image
1411‧‧‧胸壁參考線 1411‧‧‧ chest wall reference line
1513‧‧‧其他組織區域 1513‧‧‧Other organization areas
1515‧‧‧肋骨陰影區域 1515‧‧‧ Rib shadow area
1613、1633、1653‧‧‧胸部區域 1613, 1633, 1653‧‧‧ chest area
圖1是依據本發明一實施例說明醫療影像處理裝置的方塊圖。 1 is a block diagram showing a medical image processing apparatus in accordance with an embodiment of the present invention.
圖2是依據本發明一實施例說明一種乳房影像處理方法流程圖。 2 is a flow chart illustrating a breast image processing method according to an embodiment of the invention.
圖3是區分類型的範例。 Figure 3 is an example of a distinction type.
圖4是影像區塊的範例。 Figure 4 is an example of an image block.
圖5是訓練分類器的流程示意圖。 Figure 5 is a flow chart of the training classifier.
圖6為乳腺組織偵測的範例。 Figure 6 shows an example of breast tissue detection.
圖7是乳腺組織填補的範例。 Figure 7 is an example of breast tissue filling.
圖8是乳腺組織填補的另一範例。 Figure 8 is another example of breast tissue filling.
圖9是雜點去除作業的範例。 Fig. 9 is an example of a noise removal operation.
圖10是輪廓轉換的流程範例。 Fig. 10 is an example of the flow of contour conversion.
圖11是依據本發明一實施例說明切割乳房區域之方法流程圖 11 is a flow chart illustrating a method of cutting a breast region in accordance with an embodiment of the present invention.
圖12A是一範例說明橫剖視圖的片段乳房影像。 Figure 12A is a fragmentary breast image illustrating a cross-sectional view.
圖12B是一範例說明將圖12A轉換成矢狀視圖的轉向乳房影 像。 Figure 12B is an illustration of a turning mammogram that converts Figure 12A into a sagittal view image.
圖13是一範例說明將圖12B之轉向乳房影像調整後的示意圖。 Fig. 13 is a schematic view showing the adjustment of the turned breast image of Fig. 12B.
圖14是一範例說明對圖13之轉向乳房影像進行平均投影過濾後所形成胸壁參考線的示意圖。 Figure 14 is a schematic illustration of a chest wall reference line formed after average projection filtering of the turned breast image of Figure 13.
圖15是一範例說明對圖13之轉向乳房影像進行大律二值化後所形成肋骨圖(rip map)的示意圖。 Fig. 15 is a view showing an example of a rip map formed by performing a large law binarization of the turned breast image of Fig. 13.
圖16A是一範例說明對將轉向乳房影像依據胸壁參考線調整後的示意圖。 Fig. 16A is a schematic view showing an adjustment of the steering breast image according to the chest wall reference line.
圖16B是一範例說明對將轉向乳房影像依據胸大肌的平均厚度調整後的示意圖。 Fig. 16B is a schematic view showing an adjustment of the average thickness of the pectoralis major muscle to the turned breast image.
圖16C是一範例說明取得圖12B中轉向乳房影像中胸部區域的示意圖。 Figure 16C is a schematic illustration of the acquisition of the chest region in the turned breast image of Figure 12B.
圖1是依據本發明一實施例說明醫療影像處理裝置的方塊圖。請參照圖1,醫療影像處理裝置100至少包括(但不僅限於)儲存單元110及處理單元150。醫療影像處理裝置100可以是伺服器、用戶端、桌上型電腦、筆記型電腦、網路電腦、工作站、個人數位助理(personal digital assistant;PDA)、平板個人電腦(personal computer;PC)等電子裝置,且不以此為限。 1 is a block diagram showing a medical image processing apparatus in accordance with an embodiment of the present invention. Referring to FIG. 1 , the medical image processing apparatus 100 includes at least, but is not limited to, a storage unit 110 and a processing unit 150. The medical image processing apparatus 100 can be a server, a client, a desktop computer, a notebook computer, a network computer, a workstation, a personal digital assistant (PDA), a personal computer (PC), and the like. Device, and not limited to this.
儲存單元110可以是任何型態的固定或可移動隨機存取 記憶體(random access memory,RAM)、唯讀記憶體(read-only memory,ROM)、快閃記憶體(flash memory)或類似元件或上述元件的組合。在本實施例中,儲存單元110係用以儲存至少一片段的乳房影像及乳房訓練影像、程式碼、裝置組態、緩衝的或永久的資料,並記錄影像輸入模組111、乳腺偵測模組113、乳房區域切割模組114、偵測訓練模組115、密度量化模組116、偽陽性(false positive)比對模組117、泌乳量評估模組118及左右乳房乳腺密度對稱性測量模組119等軟體程式。處理單元150可存取並執行前述模組,且其詳細運作內容待稍後實施例詳細說明。本實施例中所述的儲存單元110並未限制是單一記憶體元件,上述之各軟體模組亦可以分開儲存在兩個或兩個以上相同或不同型態之記憶體元件中。 The storage unit 110 can be any type of fixed or removable random access A random access memory (RAM), a read-only memory (ROM), a flash memory or the like or a combination of the above elements. In this embodiment, the storage unit 110 is configured to store at least one segment of the breast image and the breast training image, the program code, the device configuration, the buffered or permanent data, and record the image input module 111 and the mammary gland detection mode. Group 113, breast region cutting module 114, detection training module 115, density quantification module 116, false positive comparison module 117, lactation evaluation module 118, and mammary gland density symmetry measurement mode Group 119 and other software programs. The processing unit 150 can access and execute the foregoing modules, and the detailed operation contents thereof will be described in detail later in the embodiments. The storage unit 110 described in this embodiment is not limited to a single memory component, and each of the above software modules may be separately stored in two or more memory components of the same or different types.
處理單元150的功能可藉由使用諸如中央處理單元(central processing unit;CPU)、微處理器、微控制器、數位信號處理(digital signal processing;DSP)晶片、場可程式化邏輯閘陣列(Field Programmable Gate Array;FPGA)等可程式化單元來實施。處理單元150的功能亦可用獨立電子裝置或積體電路(integrated circuit;IC)實施,且處理單元150亦可用硬體或軟體實施。 The function of the processing unit 150 can be achieved by using, for example, a central processing unit (CPU), a microprocessor, a microcontroller, a digital signal processing (DSP) chip, and a field programmable logic gate array (Field). Programmable Gate Array; FPGA) and other programmable units to implement. The function of the processing unit 150 can also be implemented by a separate electronic device or an integrated circuit (IC), and the processing unit 150 can also be implemented by hardware or software.
為了方便理解本發明實施例的操作流程,以下將舉諸多實施例詳細說明本發明實施例中醫療影像處理裝置100進行乳房影像處理的流程。圖2是依據本發明一實施例說明一種乳房影像 處理方法流程圖。請參照圖2,本實施例的方法適用於圖1中的醫療影像處理裝置100。下文中,將搭配醫療影像處理裝置100中的各項元件及模組說明本發明實施例所述之方法。本方法的各個流程可依照實施情形而隨之調整,且並不僅限於此。 In order to facilitate the understanding of the operation flow of the embodiment of the present invention, the flow of the breast image processing by the medical image processing apparatus 100 in the embodiment of the present invention will be described in detail below. 2 is a diagram showing a breast image according to an embodiment of the invention Processing method flow chart. Referring to FIG. 2, the method of the present embodiment is applied to the medical image processing apparatus 100 of FIG. Hereinafter, the method described in the embodiments of the present invention will be described in conjunction with various components and modules in the medical image processing apparatus 100. The various processes of the method can be adjusted accordingly according to the implementation situation, and are not limited thereto.
在步驟S210中,影像輸入模組111取得至少一片段的乳房影像。此乳房影像可以是自動乳房超音波(automated breast ultrasound;ABUS)、數位乳房斷層層析(digital breast tomosynthesis;DBT)、磁共振顯影(magnetic resonance imaging:MRI)等針對乳房部位的二維或三維醫療影像。在篩檢中,三維影像技術可為癌症風險提供更加可靠乳房密度評估,但本發明實施例不僅限於三維影像。 In step S210, the image input module 111 obtains a breast image of at least one segment. The breast image can be two-dimensional or three-dimensional medical treatment for the breast site, such as automated breast ultrasound (ABUS), digital breast tomosynthesis (DBT), magnetic resonance imaging (MRI), and the like. image. In screening, three-dimensional imaging techniques can provide a more reliable breast density assessment for cancer risk, but embodiments of the invention are not limited to three-dimensional images.
影像輸入模組111可自儲存單元110、透過無線或有線通訊單元(例如,Wi-Fi、乙太網路(Ethernet))、醫學影像掃描器(例如,ABUS掃描儀器、MRI掃描儀器等)或儲存裝置(例如,DVD、隨身碟、硬碟等)取得乳房影像。 The image input module 111 can be from the storage unit 110, through a wireless or wired communication unit (for example, Wi-Fi, Ethernet), a medical image scanner (for example, an ABUS scanning instrument, an MRI scanning instrument, etc.) or A storage device (eg, a DVD, a flash drive, a hard drive, etc.) takes a breast image.
在步驟S230中,乳腺偵測模組113透過乳腺組織偵測器偵測各乳房影像中的乳腺組織(Mammary Glandular Tissue)。而此乳腺組織偵測器是基於紋理特徵(texture characteristic)分析。在本實施例中,偵測訓練模組115可基於紋理特徵分析訓練乳腺組織偵測器。 In step S230, the mammary glandular tissue is detected by the mammary gland detection module 113 through the mammary tissue detector. This breast tissue detector is based on texture characteristic analysis. In this embodiment, the detection training module 115 can train the breast tissue detector based on the texture feature analysis.
具體而言,在乳腺偵測模組113透過乳腺組織偵測器進行偵測之前,偵測訓練模組115可依據多張乳房訓練影像訓練乳 房組織偵測器。偵測訓練模組115可將多張乳房訓練影像的內容區分成數種特徵類型。這些特徵類型至少包括(但不僅限於)乳腺組織類型、皮下脂肪(Subcutaneous Fat)類型、乳腺後脂肪(Retromammary Fat)及胸肌(Pectroralis Muscle)類型以及陰影(shadow)類型。 Specifically, before the mammography detection module 113 detects through the mammary tissue detector, the detection training module 115 can train the milk according to the plurality of breast training images. Room tissue detector. The detection training module 115 can divide the content of the plurality of breast training images into several feature types. These types of features include, but are not limited to, breast tissue type, Subcutaneous Fat type, Retromammary Fat and Pectroralis Muscle types, and shadow types.
圖3是區分類型的範例。請參照圖3,醫療影像處理裝置100可透過顯示單元(例如,液晶顯示器(liquid crystal display;LCD)、電漿顯示器面板(plasma display panel;PDP)、有機發光二極體(organic light emitting diode;OLED)等)顯示乳房訓練影像310,並提供輸入單元(例如,觸控裝置、鍵盤、滑鼠等),以接收使用者在乳房訓練影像310上的區分操作。偵測訓練模組115可偵測區分操作對應的特徵類型及乳房訓練影像310上的選擇區域(或位置)。乳房訓練影像330是經特徵類型區分後的影像,其可能包括乳腺組織類型331、皮下脂肪類型333、乳腺後脂肪及胸肌類型335以及陰影類型337 Figure 3 is an example of a distinction type. Referring to FIG. 3, the medical image processing apparatus 100 can transmit a display unit (for example, a liquid crystal display (LCD), a plasma display panel (PDP), an organic light emitting diode (organic light emitting diode); The OLED) or the like displays the breast training image 310 and provides an input unit (eg, a touch device, a keyboard, a mouse, etc.) to receive a user's distinguishing operation on the breast training image 310. The detection training module 115 can detect the feature type corresponding to the distinguishing operation and the selection area (or position) on the breast training image 310. The breast training image 330 is an image that has been distinguished by feature type, which may include breast tissue type 331, subcutaneous fat type 333, post-mammary fat and chest muscle type 335, and shadow type 337.
偵測訓練模組115對這些乳房訓練影像中的數個影像區塊進行該紋理特徵分析。偵測訓練模組115可先定義影像區塊的單位大小(例如,11 * 11、12 * 12或15 * 20像素(pixels)等)。舉例而言,圖4是影像區塊的範例。請參照圖4,乳房訓練影像410中的部份影像411可以11 * 11像素作為影像區塊的單位大小(例如,影像區塊411_1)。 The detection training module 115 performs the texture feature analysis on several image blocks in the breast training images. The detection training module 115 can first define the unit size of the image block (for example, 11 * 11, 12 * 12 or 15 * 20 pixels, etc.). For example, Figure 4 is an example of an image block. Referring to FIG. 4, a portion of the image 411 in the breast training image 410 may have 11 * 11 pixels as the unit size of the image block (eg, image block 411_1).
接著,偵測訓練模組115針對各乳房訓練影像中的各影 像區塊萃取紋理特徵。例如,偵測訓練模組115可利用灰度共生矩陣(gray-level co-occurrence matrix;GLCM)方法,取得八個不同GLCM估測的平均及標準差(standard deviation)、能量(energy)、熵(entropy)、相關度(correlation)、差矩(difference moment)、慣量(inertia)、群聚陰暗度(cluster shade)、群聚突出度(cluster prominence)及哈拉利克相關度(Haralick’s correlation)其中之一或其組合的紋理特徵。需說明的是,偵測訓練模組115亦可採用諸如馬可夫隨機場(Markov Random Field;MRF)、賈柏濾波器(Gabor Filter)等任何紋理特徵相關的演算法來萃取所需的紋理特徵,本發明實施例不以此為限。 Then, the detection training module 115 monitors each image in each breast training image. Like block extraction texture features. For example, the detection training module 115 can use the gray-level co-occurrence matrix (GLCM) method to obtain the average and standard deviation, energy, and entropy of the eight different GLCM estimates. (entropy), correlation (correlation), difference moment, inertia, cluster shade, cluster prominence, and Haralick's correlation. A texture feature of one or a combination thereof. It should be noted that the detection training module 115 can also extract any desired texture features by using any texture feature related algorithms such as Markov Random Field (MRF) and Gabor Filter. The embodiments of the present invention are not limited thereto.
偵測訓練模組115針對這些特徵類型,基於各影像區塊的紋理特徵分析訓練分類器。換句而言,偵測訓練模組115可判斷所萃取的紋理特徵對應的影像區塊屬於乳腺組織類型、皮下脂肪類型、乳腺後脂肪及胸肌類型以及陰影類型中的何者,且分別針對不同特徵類型,以對應的紋理特徵對分類器進行訓練。 The detection training module 115 analyzes the training classifier based on the texture features of each image block for these feature types. In other words, the detection training module 115 can determine which image block corresponding to the extracted texture feature belongs to breast tissue type, subcutaneous fat type, post-mammary fat and chest muscle type, and shadow type, and respectively for different features. Type, training the classifier with the corresponding texture features.
在本實施例中,偵測訓練模組115可透過例如(但不僅限於)邏輯迴歸(Logistic Regression)、支持向量機器(Support Vector Machine;SVM)、類神經網路(Neural network;NN)等將各影像區塊中所萃取的紋理特徵來訓練分類器。 In this embodiment, the detection training module 115 can pass, for example, but not limited to, Logistic Regression, Support Vector Machine (SVM), Neural Network (NN), etc. The texture features extracted in each image block are used to train the classifier.
舉例而言,圖5是訓練分類器的流程示意圖。請參照圖5,偵測訓練模組115取得乳房訓練影像510,且依據使用者對於各特徵類型的區分操作(步驟S515),產生乳房訓練影像530。乳 房訓練影像530中以不同底色表示不同特徵類型。在步驟S535,偵測訓練模組115針對不同特徵類型對應的影像區塊進行分類,以產生分別對應於乳腺組織類型、皮下脂肪類型、乳腺後脂肪及胸肌類型以及陰影類型的影像區塊群組551、553、555、557。各影像區塊群組551~557中可能具有一或多個影像區塊,相同特徵類型的影像區塊屬於相同的影像區塊群組。在步驟S559中,偵測訓練模組115對各影像區塊群組551~557擷取紋理特徵。而在步驟S570中,偵測訓練模組115以邏輯迴歸模型訓練可區分出不同特徵類型的分類器。 For example, FIG. 5 is a schematic flow chart of a training classifier. Referring to FIG. 5, the detection training module 115 obtains the breast training image 510, and generates a breast training image 530 according to the user's distinguishing operation for each feature type (step S515). milk Different feature types are represented by different background colors in the room training image 530. In step S535, the detection training module 115 classifies the image blocks corresponding to different feature types to generate image block groups corresponding to breast tissue type, subcutaneous fat type, post-mammary fat and chest muscle type, and shadow type. 551, 553, 555, 557. Each of the image block groups 551-557 may have one or more image blocks, and the image blocks of the same feature type belong to the same image block group. In step S559, the detection training module 115 extracts texture features for each image block group 551~557. In step S570, the detection training module 115 trains the classifiers that can distinguish different feature types by using the logistic regression model.
在本實施例中,偵測訓練模組115可將此分類器中針對乳腺組織類型的一者作為乳腺組織偵測器。換句而言,偵測訓練模組115所訓練的分類器可作為乳腺組織類型、皮下脂肪類型、乳腺後脂肪及胸肌類型以及陰影類型等特徵類型的偵測器。 In this embodiment, the detection training module 115 can use one of the types of breast tissue in the classifier as a breast tissue detector. In other words, the classifier trained by the detection training module 115 can be used as a detector for feature types such as breast tissue type, subcutaneous fat type, post-mammary fat and chest muscle type, and shadow type.
在訓練完成乳腺組織偵測器之後,乳腺偵測模組113便能以乳腺組織偵測器來對影像輸入模組111所取得之乳房影像進行偵測。乳腺偵測模組113可利用偵測訓練模組115所使用的紋理特徵相關演算法來擷取各片段乳房影像中所有或部份影像區塊的紋理特徵,並透過分類器來與偵測訓練模組115所記錄的紋理特徵進行比對,以對影像區塊進行分類。舉例而言,圖6為乳腺組織偵測的範例。請參照圖6,乳房影像610中的影像區域611(以白底色呈現)為經乳腺組織偵測器偵測出乳腺組織的區域。 After training the breast tissue detector, the breast detection module 113 can detect the breast image obtained by the image input module 111 by using a breast tissue detector. The mammography detection module 113 can use the texture feature correlation algorithm used by the detection training module 115 to capture the texture features of all or part of the image blocks in each segment of the breast image, and use the classifier to detect the training. The texture features recorded by the module 115 are compared to classify the image blocks. For example, Figure 6 is an example of breast tissue detection. Referring to FIG. 6, the image area 611 (presented in white color) in the breast image 610 is an area where the breast tissue is detected by the mammary tissue detector.
由於乳腺組織偵測器是以影像區塊為單位大小(例如, 11 * 11、12 * 12或15 * 20像素等)來進行分類,因此經分類器分類的乳房影像會以影像區塊的形式呈現(例如,圖6的乳房影像610由數個影像區塊所組成)。在一實施例中,乳腺偵測模組113進一步對經分類的乳房影像進行影像後處理,以調整乳腺組織的形狀。 Since the mammary tissue detector is in the size of the image block (for example, 11 * 11, 12 * 12 or 15 * 20 pixels, etc. to classify, so the breast image classified by the classifier will be presented in the form of image blocks (for example, the breast image 610 of Figure 6 is composed of several image blocks) composition). In one embodiment, the mammary gland detection module 113 further performs image post-processing on the classified breast images to adjust the shape of the breast tissue.
乳腺偵測模組113可填補經分類器分類的乳房影像中乳腺組織的至少一個中空區域。乳腺偵測模組113判斷第一影像區塊鄰近是否存在經分類為乳腺組織的至少兩個第二影像區塊。舉例而言,圖7是乳腺組織填補的範例。請參照圖7,左圖是經分類的乳房影像中的部份影像區塊。影像區塊711、713、715經分類器分類成乳腺組織類型,且影像區塊721經分類器分類成皮下脂肪類型。乳腺偵測模組113判斷影像區塊721鄰近存在至少兩個經分類為乳腺組織類別的影像區塊(即,影像區塊711、713、715),便透過填補作業(步驟S750)將影像區塊721轉換成乳腺組織類型。右圖所示為經填補作業的部份影像區塊,影像區塊711、713、715、721皆屬於乳腺組織類別。 The mammography detection module 113 can fill at least one hollow region of the breast tissue in the breast image classified by the classifier. The mammography detection module 113 determines whether there are at least two second image blocks classified as breast tissue adjacent to the first image block. For example, Figure 7 is an example of breast tissue filling. Please refer to FIG. 7. The left image is a partial image block in the classified breast image. The image blocks 711, 713, and 715 are classified into a breast tissue type by a classifier, and the image block 721 is classified into a subcutaneous fat type by a classifier. The mammography detection module 113 determines that there are at least two image blocks classified as breast tissue types (ie, image blocks 711, 713, and 715) adjacent to the image block 721, and then passes the filling operation (step S750) to display the image area. Block 721 is converted to a breast tissue type. The image on the right shows some of the image blocks that have been filled. The image blocks 711, 713, 715, and 721 all belong to the breast tissue category.
需說明的是,將非屬乳腺組織類型的影像區塊轉換成乳腺組織類型的決策機制亦可能是,判斷鄰近影像區塊是否存在一、二或四個屬於乳腺組織類型的影像區塊,且不以此為限。 It should be noted that the decision mechanism for converting a non-mammary tissue type image block into a breast tissue type may also be to determine whether there are one, two or four image blocks belonging to the breast tissue type in the adjacent image block, and Not limited to this.
圖8是乳腺組織填補的另一範例。請參照圖8,經分類的乳房影像810中的影像區塊811、813、814未經分類器分類成乳腺組織類別。在步驟S830中,由於影像區塊811、813、814鄰近 存在至少兩個屬於乳腺組織類別的影像區塊,因此乳腺偵測模組113將影像區塊811、813、814進行填補作業,以將這些影像區塊811、813、814轉換成乳腺組織類別。經填補作業的乳房影像850中可區分成分別屬於乳腺組織類別及非屬乳腺組織類別(例如,皮下脂肪類型、陰影類型等)的影像區域851(以白底色呈現)、853(以黑色網點呈現),乳房影像810中的影像區塊811、813、814皆屬於影像區域851。 Figure 8 is another example of breast tissue filling. Referring to Figure 8, the image blocks 811, 813, 814 in the classified breast image 810 are classified into breast tissue categories without classifiers. In step S830, since the image blocks 811, 813, 814 are adjacent There are at least two image blocks belonging to the breast tissue category, so the mammography detection module 113 fills the image blocks 811, 813, 814 to convert the image blocks 811, 813, 814 into breast tissue categories. The filled breast image 850 can be divided into image regions 851 (presented in white color) and 853 (black dots) belonging to the breast tissue category and non-breast tissue types (for example, subcutaneous fat type, shadow type, etc.). The image blocks 811, 813, and 814 in the breast image 810 belong to the image area 851.
在一實施例中,乳腺偵測模組113可進一步去除乳腺組織中的雜點區塊。具體而言,經分類的乳房影像中可能存在數個屬於乳腺組織類別且相連的影像區塊,乳腺偵測模組113可決定一或多個相連影像區塊所形成的影像區域(例如,圖8的影像區域851)作為乳腺組織類別的決策影像區域。接著,乳腺偵測模組113將未與決策影像區域相連且屬於乳腺組織類別的影像區塊作為雜點區塊來去除(即,轉換成非屬乳腺組織類別)。舉例而言,圖9是雜點去除作業的範例。圖9的乳房影像850存在影像區塊951、953、955,其未與屬於乳腺組織類別的最大影像區域851相連,即為雜點區塊。乳腺偵測模組113可進行雜點去除作業,以將影像區塊951、953、955轉換成非屬乳腺組織類別的影像區域853。 In an embodiment, the mammary gland detection module 113 can further remove the mottle blocks in the breast tissue. Specifically, there may be several image blocks belonging to the breast tissue category and connected in the classified breast image, and the mammography detection module 113 may determine an image region formed by one or more connected image blocks (for example, a map) The image area 851 of 8 is a decision image area of the breast tissue type. Next, the mammary gland detection module 113 removes the image block that is not connected to the decision image region and belongs to the breast tissue category as a mottle block (ie, converts to a non-breast tissue category). For example, FIG. 9 is an example of a noise removal operation. The breast image 850 of FIG. 9 has image blocks 951, 953, and 955 that are not connected to the largest image area 851 belonging to the breast tissue category, that is, a dot block. The mammography detection module 113 can perform a mottle removal operation to convert the image blocks 951, 953, and 955 into image regions 853 that are not of the breast tissue type.
接著,乳腺偵測模組113可進一步取得乳腺組織的輪廓。乳腺偵測模組113可將以影像區塊呈現的乳腺組織輪廓轉換成平滑輪廓。舉例而言,圖10是輪廓轉換的流程範例。請參照圖10, 乳腺偵測模組113對乳房影像1010(例如,經雜點去除作業的乳房影像)進行侵蝕(erosion),再利用高斯濾波器(Gaussian filter)進行模糊化(步驟S1020),以形成乳房影像1030。接著,乳腺偵測模組113利用大律二值化(Otsu thresholding;或稱最大類間方差)將乳腺組織轉換成二值化乳房影像1050(步驟S1040)。而此二值化乳房影像1050中的乳腺組織區域1051(以白底色呈現)便是乳腺偵測模組113最後決定的乳腺組織。 Next, the mammary gland detection module 113 can further obtain the outline of the breast tissue. The mammography detection module 113 converts the outline of the breast tissue presented in the image block into a smooth contour. For example, FIG. 10 is an example of a flow of contour conversion. Please refer to Figure 10, The mammography detection module 113 erodes the mammogram 1010 (for example, the mammogram through the mottle removal operation), and then blurs it with a Gaussian filter (step S1020) to form the mammogram 1030. . Next, the mammary gland detection module 113 converts the mammary gland tissue into a binarized breast image 1050 using Otsu thresholding (or maximum inter-class variance) (step S1040). The breast tissue region 1051 (presented in white background) in the binarized breast image 1050 is the last determined breast tissue of the mammary gland detection module 113.
在一實施例中,為了判斷是否為緻密乳房(乳腺及結締組織較多,但脂肪較少),密度量化模組116可計算各乳房影像中的乳腺組織面積,且基於乳房影像中的乳腺組織面積,計算乳腺組織量化值。具體而言,密度量化模組116分別前述乳腺偵測模組113所取得各片段乳房影像中乳腺組織面積,將各片段乳房影像的乳腺組織面積除以所屬片段乳房影像的總面積,以計算出各片段乳房影像的乳腺組織密度。密度量化模組116可平均所有片段乳房影像的乳腺組織密度,以計算出乳腺組織量化值。密度量化模組116可進一步依據密度門檻值,判斷乳腺組織量化值是否超過密度門檻值,以決定為緻密乳房。反之,若乳腺組織量化值未超過密度門檻值,則決定為非緻密乳房。 In one embodiment, in order to determine whether it is a dense breast (more breast and connective tissue, but less fat), the density quantification module 116 can calculate the area of the breast tissue in each breast image and based on the breast tissue in the breast image. Area, calculate the quantitative value of breast tissue. Specifically, the density quantification module 116 respectively obtains the area of the mammary gland in the breast image of each segment of the breast detecting module 113, and divides the area of the breast tissue of each segment of the breast image by the total area of the breast image of the segment to calculate Breast tissue density of each segment of the breast image. The density quantification module 116 averages the breast tissue density of all segmented breast images to calculate a breast tissue quantified value. The density quantification module 116 can further determine whether the breast tissue quantized value exceeds the density threshold value according to the density threshold value to determine the dense breast. Conversely, if the quantitative value of the breast tissue does not exceed the density threshold, it is determined to be a non-dense breast.
在另一實施例中,偽陽性比對模組117可利用電腦輔助偵測(CADe)系統偵測至少一個異常位置,且將這些異常位置與對應乳房影像中的乳腺組織進行比對。具體而言,偽陽性比對模組117可記錄前述乳腺偵測模組113所取得各片段乳房影像中乳 房組織的乳腺組織位置。處理單元150可另外載入透過電腦輔助偵測程式或經由外部電腦輔助偵測系統,以取得步驟S210所輸入乳房影像中的可疑病變(lesion)(例如,腫瘤、腫塊等)位置(即,異常位置)。偽陽性比對模組117將乳腺組織位置及可疑病變位置進行比對,判斷可疑病變位置是否與乳腺組織位置重疊。由於臨床統計多數病變會沿著腺體長出,故將非位於乳腺組織位置上的可疑病變排除可降低偽陽性(電腦輔助偵測系統判斷為病變,但事實非病變)。換句而言,若偽陽性比對模組117判斷可疑病變位置與乳腺組織位置重疊,則可進一步確認此可疑病變位置上發生病變的機率極高(例如,大於50%、75%、80%等),從而讓醫療人員後續針對此可疑病變位置進一步診斷。 In another embodiment, the false positive alignment module 117 can detect at least one abnormal location using a computer aided detection (CADe) system and compare the abnormal locations to breast tissue in the corresponding breast image. Specifically, the false positive comparison module 117 can record the milk in each segment of the breast image obtained by the breast detecting module 113. The location of the breast tissue in the atrial tissue. The processing unit 150 may additionally load a computer-aided detection program or an external computer-assisted detection system to obtain a suspicious lesion (eg, a tumor, a lump, etc.) in the breast image input in step S210 (ie, an abnormality) position). The false positive comparison module 117 compares the position of the breast tissue with the position of the suspected lesion to determine whether the position of the suspected lesion overlaps with the position of the breast tissue. Due to clinical statistics, most lesions grow along the gland, so the removal of suspicious lesions that are not located in the breast tissue position can reduce false positives (computer-aided detection system determines lesions, but facts are not lesions). In other words, if the false positive comparison module 117 determines that the position of the suspected lesion overlaps with the position of the breast tissue, it can further confirm that the probability of occurrence of the lesion at the position of the suspected lesion is extremely high (for example, greater than 50%, 75%, 80%) Etc.), allowing medical personnel to further diagnose the location of this suspected lesion.
此外,由於乳汁是由乳房中腺體所分泌,因此決定泌乳量的多寡與乳腺的發育及完整度有關。在一實施例中,泌乳量評估模組118可依據密度量化模組116之量化結果以評估泌乳量。乳腺組織越多表示泌乳量越高,並通常存在正相關。例如,泌乳量評估模組118可判斷乳腺組織量化值是否大於泌乳量門檻值,以判斷受量測者的泌乳量較高。或者,泌乳量評估模組118可設定5、7或10等層級的泌乳量層級,並判斷乳腺組織量化值位於這些泌乳量層級中的何者。 In addition, since the milk is secreted by the glands in the breast, it is determined that the amount of lactation is related to the development and integrity of the breast. In one embodiment, the lactation assessment module 118 can quantify the amount of lactation based on the quantified results of the density quantification module 116. The more breast tissue, the higher the amount of milk, and there is usually a positive correlation. For example, the lactation amount assessment module 118 can determine whether the quantitative value of the breast tissue is greater than the threshold value of the lactation amount to determine that the amount of milk produced by the subject is higher. Alternatively, the lactation assessment module 118 may set a level of lactation at a level of 5, 7, or 10 and determine which of the lactation levels are located in the breast tissue level.
再一實施例中,左右乳房腺體密度對稱性測量模組119則使用密度量化模組116同時量化左右乳房之乳腺組織密度,並藉由比較左右乳房之乳腺組織密度來判斷對稱性(例如,相差比 例等)。左右乳房腺體密度對稱性測量模組119亦可同時透過顯示單元以視覺化方式顯示左右乳房之乳腺組織密度圖(例如,乳腺密度以不同顏色表示不同密度程度)。 In another embodiment, the left and right breast gland density symmetry measurement module 119 uses the density quantification module 116 to simultaneously quantify the breast tissue density of the left and right breasts, and to determine the symmetry by comparing the breast tissue density of the left and right breasts (eg, Difference ratio Example, etc.). The left and right breast gland density symmetry measurement module 119 can also visually display the mammary gland tissue density map of the left and right breasts through the display unit (for example, the breast density indicates different density levels in different colors).
又一實施例中,在前述步驟S210之後,醫療影像處理裝置100可自乳房影像中切割出乳房區域,再進行步驟S230的乳腺組織偵測作業。圖11是依據本發明一實施例說明切割乳房區域之方法流程圖。請參照圖11,本實施例的方法適用於圖1中的醫療影像處理裝置100。下文中,將搭配醫療影像處理裝置100中的各項元件及模組說明本實施例所述之方法。本方法的各個流程可依照實施情形而隨之調整,且並不僅限於此。 In another embodiment, after the foregoing step S210, the medical image processing apparatus 100 can cut the breast area from the breast image, and then perform the breast tissue detecting operation of step S230. 11 is a flow chart illustrating a method of cutting a breast region in accordance with an embodiment of the present invention. Referring to FIG. 11, the method of the present embodiment is applied to the medical image processing apparatus 100 of FIG. Hereinafter, the method described in this embodiment will be described in conjunction with various components and modules in the medical image processing apparatus 100. The various processes of the method can be adjusted accordingly according to the implementation situation, and are not limited thereto.
在步驟S1110中,乳房區域切割模組114將第一視圖的乳房影像轉換成第二視圖的轉向乳房影像。此第一視圖不同於第二視圖。具體而言,自動乳房超音波影像一般對鎖骨(collar bones)往下至乳頭的區域進行掃描,且通常是呈現橫剖(transverse)視圖。請參照圖12A是一範例說明橫剖視圖的片段乳房影像1210。由於在橫剖視圖中不同組織的紋理差異較不明顯,因此通常較難以分辨組織,從而區分乳房區域。 In step S1110, the breast region cutting module 114 converts the breast image of the first view into the turned breast image of the second view. This first view is different from the second view. In particular, automatic breast ultrasound images typically scan the area of the collar bones down to the nipple and typically present a transverse view. Please refer to FIG. 12A as an example of a fragmented breast image 1210 of a cross-sectional view. Since the texture differences of different tissues are less noticeable in the cross-sectional view, it is often more difficult to distinguish the tissues to distinguish the breast regions.
為了便於後續處理,本實施例初步進行前期處理(pre-processing)程序。在本實施例中,第一視圖為橫剖視圖,且第二視圖為矢狀(sagittal)視圖。換句而言,在步驟S210接收橫剖視圖的至少一片段乳房影像後,乳房區域切割模組114將橫剖視圖的這些乳房影像轉換成矢狀視圖的轉向乳房影像。請參照 圖12B是一範例說明將圖12A轉換成矢狀視圖的轉向乳房影像1250。相較於圖12A所示的橫剖視圖,矢狀視圖可提供大量資訊以辨認不同組織類型(例如,肋骨(rib)、肋骨陰影(影像中肋骨下方超音波無法通過的黑色區域)、皮膚等)。 In order to facilitate subsequent processing, the present embodiment initially performs a pre-processing procedure. In the present embodiment, the first view is a cross-sectional view and the second view is a sagittal view. In other words, after receiving at least one segment of the breast image of the cross-sectional view in step S210, the breast region cutting module 114 converts the breast images of the cross-sectional view into a panned breast image of the sagittal view. Please refer to Figure 12B is an illustration of a turned breast image 1250 that converts Figure 12A into a sagittal view. Compared to the cross-sectional view shown in Figure 12A, the sagittal view provides a wealth of information to identify different tissue types (eg, ribs, rib shadows (black areas where ultrasound cannot pass under the ribs), skin, etc.) .
接著,乳房區域切割模組114可利用影像增強濾波器(例如,S形(sigmoid)濾波器、直方圖等化(histogram equalization;HE))增強轉向乳房影像的對比度,以使得具有已降低像素強度(intensity)肋骨陰影區域與具有已提昇像素強度的其他組織之間的差異更加明顯。 Next, the breast region cutting module 114 can enhance the contrast of the turned breast image by using an image enhancement filter (eg, a sigmoid filter, a histogram equalization (HE)) to have a reduced pixel intensity. (intensity) The difference between the rib shadow area and other tissues with elevated pixel intensity is more pronounced.
此外,乳房區域切割模組114亦可對轉向乳房影像進行雜訊去除作業。例如,乳房區域切割模組114使用邊緣保存(edge preserving)濾波器對轉向乳房影像平滑化,並利用異方性(anisotropic)擴散(diffusion)濾波器去除斑點雜訊(speckle noise)。 In addition, the breast region cutting module 114 can also perform a noise removal operation on the turned breast image. For example, the breast region cutting module 114 smoothes the turned breast image using an edge preserving filter and removes speckle noise using an anisotropic diffusion filter.
舉例而言,圖13是一範例說明將圖12B之轉向乳房影像調整後的示意圖。請參照圖13,調整後之轉向乳房影像1310是透過S形及異方性擴散濾波器處理,其肋骨陰影對比度將增強且已降低斑點雜訊。 For example, FIG. 13 is a schematic diagram illustrating an adjustment of the turned breast image of FIG. 12B. Referring to FIG. 13, the adjusted steering breast image 1310 is processed by the S-shaped and anisotropic diffusion filter, and the rib shadow contrast is enhanced and the speckle noise is reduced.
在完成前期處理後,乳房區域切割模組114可取得比未處理前之影像更高對比度、更低雜訊的模糊化(blurry)影像。而在步驟S1120中,乳房區域切割模組114依據(調整後之)轉向乳房影像決定肋骨資訊。具體而言,本實施例結合局部(local) 資訊及整體(globe)資訊來分割胸壁(chest wall)線。此局部資訊是來自單一片段,而全體資訊是來自整組的轉向乳房影像。 After the pre-processing is completed, the breast region cutting module 114 can obtain a blury image with higher contrast and lower noise than the image before the unprocessed image. In step S1120, the breast region cutting module 114 determines the rib information according to the (adjusted) steering breast image. Specifically, this embodiment combines local (local) Information and global information to segment the chest wall. This local information comes from a single segment, and the entire information is from the entire group of turned breast images.
在一實施例中,肋骨資訊包括肋骨陰影資訊。自肋骨陰影資訊中,可助於觀察胸廓(chest cage)。由於各片段轉向乳房影像僅提供部份的肋骨陰影資訊,因此仍需要整體資訊。乳房區域切割模組114可計算所有的轉向乳房影像中的畫素的投影值,且依據這些畫素的投影值決定胸壁參考線。 In an embodiment, the rib information includes rib shadow information. From the rib shadow information, it helps to observe the chest cage. Since the segments turn to the breast image to provide only partial rib shadow information, overall information is still needed. The breast region cutting module 114 can calculate the projection values of the pixels in all the turned breast images, and determine the chest wall reference line based on the projected values of the pixels.
在本實施例中,乳房區域切割模組114可利用平均投影方法,將不同片段轉向乳房影像中對應於相同座標位置的畫素沿著片段軸進行投影以取得投影值,並計算所有片段轉向乳房影像中對應於相同座標位置的平均強度值。在相同座標位置上,以各像素的平均強度值作為門檻值,以將投影結果分為兩類(例如,第一類畫素及第二類畫素)。乳房區域切割模組114可判斷各片段轉向乳房影像中的各畫素的強度值是否大於所屬座標位置的平均強度值,且保留及/或紀錄強度值大於所屬座標位置的平均強度值的畫素(以下稱第一類畫素)。而若某一畫素(以下稱第二類畫素)之強度值未大於所屬座標位置的平均強度值,則乳房區域切割模組114會捨棄此第二類畫素及/或以不同於第一類畫素所紀錄數字、符號、代碼、樣式的方式來紀錄。例如,乳房區域切割模組114將第一類畫素設為1,且將第二類畫素設為0。 In this embodiment, the breast region cutting module 114 can use the average projection method to project different segments to the pixels corresponding to the same coordinate position in the breast image along the segment axis to obtain the projection value, and calculate all the segments to turn to the breast. The average intensity value in the image that corresponds to the same coordinate position. At the same coordinate position, the average intensity value of each pixel is used as a threshold value to classify the projection results into two categories (for example, the first type of pixels and the second type of pixels). The breast region cutting module 114 can determine whether the intensity value of each pixel in each segment of the turned breast image is greater than the average intensity value of the associated coordinate position, and retain and/or record the pixel whose intensity value is greater than the average intensity value of the associated coordinate position. (hereinafter referred to as the first type of pixels). If the intensity value of a certain pixel (hereinafter referred to as the second type of pixel) is not greater than the average intensity value of the coordinate position, the breast region cutting module 114 discards the second type of pixel and/or is different from the first pixel. A type of pixel records the number, symbol, code, and style of the record. For example, the breast region cutting module 114 sets the first type of pixels to one and the second type of pixels to zero.
藉此,各片段的部份肋骨陰影資訊將組合成為整體胸部資訊(例如,胸廓的輪廓及肋骨分佈),從而決定胸壁參考線。舉 例而言,圖14是一範例說明對圖13之轉向乳房影像進行平均投影過濾後所形成胸壁參考線1411的示意圖。請參照圖14,在平均投影過濾後之轉向乳房影像1410中,以白色區域代表在胸部中所有肋骨位置,其說明了肋骨位置橫剖區域(此區域包括所有肋骨,且包括整體肋骨陰影位置資訊)。另一方面,以黑色區域代表胸部區域,其說明了乳房影像中的所有乳房組織的分佈區域。而白色及黑色區域交界線即為胸壁參考線1411。 In this way, part of the rib shadow information of each segment will be combined into the overall chest information (for example, the outline of the thorax and the distribution of the ribs) to determine the chest wall reference line. Lift For example, FIG. 14 is a schematic diagram illustrating a chest wall reference line 1411 formed after average projection filtering of the turned breast image of FIG. Referring to FIG. 14, in the average projection filtered steering breast image 1410, the white region represents all rib positions in the chest, which illustrates the rib position cross-sectional area (this region includes all ribs, and includes the overall rib shadow position information). ). On the other hand, the black area represents the chest area, which illustrates the distribution area of all breast tissues in the breast image. The boundary line between the white and black areas is the chest wall reference line 1411.
在另一實施例中,肋骨資訊包括肋骨陰影資訊。乳房區域切割模組114可透過影像切割法(例如,大律二值化、區域成長(region growing)等方法)決定各轉向乳房影像中的肋骨陰影資訊。而此肋骨陰影資訊包括胸壁線。 In another embodiment, the rib information includes rib shadow information. The breast region cutting module 114 can determine rib shadow information in each turned breast image by image cutting method (for example, metrology binarization, region growing, etc.). This rib shadow information includes the chest wall line.
在本實施例中,乳房區域切割模組114可對(透過S形及異方性擴散濾波器調整後之)轉向乳房影像分割肋骨陰影區域,且執行分類(clustering)基礎的影像二值化處理,從而將轉向乳房影像區分成前景部份(肋骨陰影區域)及背景部份(其他組織)。而影像二值化處理所使用的二值化值為最大類間變異數(maximum between-class variance)。 In this embodiment, the breast region cutting module 114 can switch the rib shadow region to the breast image (adjusted by the S-shaped and anisotropic diffusion filter), and perform image binarization processing based on the clustering basis. Thus, the steering breast image is divided into a foreground portion (a rib shadow area) and a background portion (other tissues). The binarization value used in image binarization is the maximum between-class variance.
舉例而言,圖15是一範例說明對圖13之轉向乳房影像進行大律二值化後所形成肋骨圖(rip map)的示意圖。請參照圖15,在二值化之轉向乳房影像1510中,以白底色呈現的肋骨陰影區域1515可視為肋骨圖,且以黑底色呈現其他組織區域1513。而自各片段轉向乳房影像所取得的局部肋骨影陰影資訊(即,局部 資訊)將包括局部肋骨位置(例如,肋骨的長與寬資訊)。而這些肋骨之間的區域(肋間(intercostal)空間)不屬於乳房區域且將在稍後程序進行移除。 For example, FIG. 15 is a schematic diagram illustrating a rip map formed by performing a large law binarization of the turned breast image of FIG. Referring to FIG. 15, in the binarized turning breast image 1510, the rib shadow area 1515 in white color can be regarded as a rib map, and the other tissue regions 1513 are presented in a black background. Local rib shadow shadow information obtained from each segment turned to the breast image (ie, local Information) will include local rib position (eg, rib length and width information). The area between these ribs (intercostal space) does not belong to the breast area and will be removed later in the procedure.
在步驟S1130中,乳房區域切割模組114依據肋骨資訊決定轉向乳房影像中的乳房區域。具體而言,在前述程序之後,乳房區域切割模組114可取得整體資訊及各片段轉向乳房影像的局部資訊,從而依據這些資訊來區分胸壁。在一實施例中,乳房區域切割模組114可依據胸腔參考線調整各轉向乳房影像中的胸壁線。 In step S1130, the breast region cutting module 114 determines to turn the breast region in the breast image based on the rib information. Specifically, after the foregoing procedure, the breast region cutting module 114 can obtain the overall information and local information of each segment turning to the breast image, thereby distinguishing the chest wall based on the information. In one embodiment, the breast region cutting module 114 can adjust the chest wall line in each of the turned breast images in accordance with the chest reference line.
以圖14及圖15為例,乳房區域切割模組114可紀錄各片段肋骨圖(例如,圖15所示)中肋骨陰影的最高點Hr。而此最高點Hr說明了此片段轉向乳房影像中的最小胸部厚度。乳房區域切割模組114取得此最高點Hr在轉向乳房影像中的座標,自肋骨圖中紀錄此座標的行列數,且找尋圖14中胸壁參考線1411的對應行列數的座標位置(即,參考點Rb)。 Taking FIG. 14 and FIG. 15 as an example, the breast region cutting module 114 can record the highest point Hr of the rib shadow in each segment rib map (for example, as shown in FIG. 15). This highest point, Hr, indicates the minimum chest thickness of the segment turned into the breast image. The breast region cutting module 114 obtains the coordinates of the highest point Hr in the turned breast image, records the number of rows and columns of the coordinate from the rib map, and finds the coordinate position of the corresponding number of rows and columns of the chest wall reference line 1411 in FIG. 14 (ie, reference) Point Rb).
乳房區域切割模組114可依據最高點Hr及參考點Rb,將胸壁參考線1411與對應行列數進行對準,且移植各片段肋骨圖上的胸壁線畫素。換句而言,乳房區域切割模組114將轉向乳房影像1410及1510重疊,將參考點Rb對準至最高點Hr,並依據其他組織區域1513與胸壁參考線1411交界處將肋骨陰影區域1515對應行列數的畫素調整至胸壁參考線1411。而針對肋骨陰影區域1515與胸壁參考線1411交界處,則保留此行列數的輪廓。 藉此,可調整胸壁線以讓其他組織區域1513去除肋間空間。 The breast region cutting module 114 can align the chest wall reference line 1411 with the corresponding number of rows according to the highest point Hr and the reference point Rb, and transplant the chest wall line pixels on each segment rib map. In other words, the breast region cutting module 114 overlaps the turned breast images 1410 and 1510, aligns the reference point Rb to the highest point Hr, and maps the rib shadow region 1515 according to the intersection of the other tissue regions 1513 and the chest wall reference line 1411. The pixels of the number of rows and columns are adjusted to the chest wall reference line 1411. For the junction of the rib shadow area 1515 and the chest wall reference line 1411, the outline of the number of rows and columns is retained. Thereby, the chest wall line can be adjusted to allow the other tissue regions 1513 to remove the intercostal space.
舉例而言,圖16A是一範例說明對將轉向乳房影像1510依據胸壁參考線1411調整後的示意圖。請參照圖16A,在轉向乳房影像1610中,白色(代表胸腔區域1615(例如,包括肋骨、肋骨陰影、肋間等))及黑色區域(代表胸部區域1613,但包括胸大肌(pectoral muscles))交界線即為調整後之胸壁線1611。 For example, FIG. 16A is a schematic diagram illustrating an adjustment of the turned breast image 1510 according to the chest wall reference line 1411. Referring to Figure 16A, in the turned breast image 1610, white (representing chest region 1615 (eg, including ribs, rib shadows, intercostals, etc.)) and black regions (representing chest region 1613, but including pectoral muscles) The boundary line is the adjusted chest wall line 1611.
接著,乳房區域切割模組114自調整的轉向乳房影像中移除胸大肌部份,以決定乳房區域。具體而言,乳房區域切割模組114依據胸大肌的平均厚度(大約1.5~2.0公分),將胸部區域(例如,圖16A中的胸部區域1613)的厚度自最下方減去胸大肌的平均厚度,從而調整為胸壁線1631(例如,向上平移),進而將胸部區域1613去除胸大肌部份。 Next, the breast region cutting module 114 removes the pectoralis major portion from the adjusted turned breast image to determine the breast region. Specifically, the breast region cutting module 114 subtracts the thickness of the thoracic muscle from the bottom of the chest region (eg, the chest region 1613 in FIG. 16A) according to the average thickness of the pectoralis major muscle (about 1.5 to 2.0 cm). The average thickness is adjusted to the chest wall line 1631 (eg, translated upward), which in turn removes the pectoralis major portion of the chest region 1613.
調整後之胸壁線(例如,胸壁線1611)的高度減去胸大肌的平均厚度,以去除胸大肌部份,從而進一步調整胸壁線。舉例而言,圖16B是一範例說明對將轉向乳房影像1610依據胸大肌的平均厚度調整後的示意圖。在轉向乳房影像1630中,白色(代表非胸部區域1635(例如,包括肋骨、肋骨陰影、肋間、胸大肌(pectoral muscles)等))及黑色區域(代表胸部區域1633)交界線即為調整後之胸壁線1631。即,圖16A中胸部區域1613的厚度減去胸大肌的平均厚度所形成之胸壁線1631。 The height of the adjusted chest wall line (for example, chest wall line 1611) is subtracted from the average thickness of the pectoralis major muscle to remove the pectoralis major portion, thereby further adjusting the chest wall line. For example, FIG. 16B is a schematic diagram illustrating an adjustment of the average breast thickness of the pectoralis major muscle to the turned breast image 1610. In the turned breast image 1630, the white (representing the non-thoracic region 1635 (eg, including ribs, rib shadows, intercostals, pectoral muscles, etc.)) and the black region (representing the chest region 1633) are adjusted. The chest wall line 1631. That is, the thickness of the chest region 1613 in Fig. 16A is subtracted from the chest wall line 1631 formed by the average thickness of the pectoralis major muscle.
在部份實施例中,乳房區域切割模組114可進一步將胸部區域(例如,圖16B之胸部區域1633)中的皮膚部份刪除。以 圖16B為例,乳房區域切割模組114將胸部區域1633自最上方減去1.5至1.7釐米之皮膚厚度,從而調整胸部區域1633。 In some embodiments, the breast region cutting module 114 can further remove portions of the skin in the chest region (eg, the chest region 1633 of FIG. 16B). Take 16B is an example in which the breast region cutting module 114 adjusts the chest region 1633 by subtracting a skin thickness of 1.5 to 1.7 cm from the uppermost portion of the chest region 1633.
接著,乳房區域切割模組114可依據胸部區域(例如,圖16B之胸部區域1633)將原先經轉換成矢狀視圖的轉向乳房影像中胸壁線(例如,圖16B之胸壁線1631)以下之區域去除,從而取得僅包括胸部區域之轉向乳房影像。請參照圖16C是一範例說明取得圖12B中轉向乳房影像1250中胸部區域的示意圖。在轉向乳房影像1650中,僅保留胸部區域1653的影像。 Next, the breast region cutting module 114 can convert the area below the chest wall line (eg, the chest wall line 1631 of FIG. 16B) in the turned breast image that was originally converted into a sagittal view according to the chest region (eg, the chest region 1633 of FIG. 16B). Remove to obtain a turned breast image that includes only the chest area. Please refer to FIG. 16C as a schematic diagram for obtaining a chest region in the turned breast image 1250 of FIG. 12B. In the turned breast image 1650, only the image of the chest region 1653 is retained.
再一實施例中,乳房區域切割模組114可將轉向乳房影像還原成橫剖視圖或其他視圖的乳房影像,以方便後續作業。 In still another embodiment, the breast region cutting module 114 can restore the turned breast image to a breast image of a cross-sectional view or other view to facilitate subsequent operations.
在一些實施例中,處理單元150可進一步透過顯示單元呈現諸如乳腺組織量化值、緻密乳房判斷結果、可疑病變位置、乳腺組織位置、泌乳量、不同視圖的乳房影像、左右乳房之乳腺組織密度圖及病變提示訊息等其中的一者或其組合,以協助醫療人員清楚得知檢測狀況。 In some embodiments, the processing unit 150 may further present a breast tissue quantitative value such as a breast tissue quantitative value, a dense breast determination result, a suspicious lesion position, a breast tissue position, a lactation amount, a different view of the breast image, and a breast tissue density map of the left and right breasts through the display unit. And one of the lesion prompt messages or a combination thereof to assist the medical staff to clearly understand the detection status.
綜上所述,本發明實施例所提出的醫療影像處理裝置及其乳房影像處理方法,其基於諸如灰度共生矩陣、馬可夫隨機場或賈柏濾波器等紋理特徵分析方法來偵測乳房影像中的乳腺組織,且進一步依據偵測出的乳腺組織來計算乳腺組織量化值,並輔助確認電腦輔助偵測系統所偵測的可疑病變。據此,本發明實施例可助於提昇偵測乳腺組織的準確性,更能降低電腦輔助偵測系統之偽陽性。另一方面,本發明實施例亦能依據肋骨資訊來區 分出乳房影像中的乳房區域,從而助於後續密度結果的相關性。 In summary, the medical image processing apparatus and the breast image processing method thereof according to the embodiments of the present invention detect a breast image based on a texture feature analysis method such as a gray level co-occurrence matrix, a Markov random field or a Jaber filter. The breast tissue is further calculated based on the detected breast tissue to quantify the breast tissue and assist in confirming the suspected lesion detected by the computer-aided detection system. Accordingly, the embodiments of the present invention can improve the accuracy of detecting breast tissue, and can reduce the false positive of the computer-aided detection system. On the other hand, the embodiment of the present invention can also be based on the rib information. The breast area in the breast image is segmented to aid in the correlation of subsequent density results.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.
S210~S230‧‧‧步驟 S210~S230‧‧‧Steps
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/215,607 US9959617B2 (en) | 2016-01-28 | 2016-07-21 | Medical image processing apparatus and breast image processing method thereof |
CN201710061285.3A CN107067402B (en) | 2016-01-28 | 2017-01-25 | Medical image processing apparatus and breast image processing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105102753 | 2016-01-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI587844B true TWI587844B (en) | 2017-06-21 |
TW201726064A TW201726064A (en) | 2017-08-01 |
Family
ID=59688365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105112377A TWI587844B (en) | 2016-01-28 | 2016-04-21 | Medical image processing apparatus and breast image processing method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI587844B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI638643B (en) | 2017-10-02 | 2018-10-21 | 中山醫學大學附設醫院 | An image simulation system to covisualize electrodes and cortical vessels on 3d brain and its method |
CN112241947A (en) * | 2019-07-19 | 2021-01-19 | 财团法人资讯工业策进会 | Breast image analysis method, system and non-transitory computer readable medium |
TWI745940B (en) * | 2019-05-10 | 2021-11-11 | 國立臺灣大學 | Medical image analyzing system and method thereof |
US11424021B2 (en) | 2019-05-10 | 2022-08-23 | National Taiwan University | Medical image analyzing system and method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113797418A (en) * | 2020-06-12 | 2021-12-17 | 中强光电股份有限公司 | Medical imaging apparatus and medical image display method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090252396A1 (en) * | 2008-04-04 | 2009-10-08 | Fujifilm Corporation | Image processing apparatus and image processing method, and recording medium |
TW201415012A (en) * | 2012-10-11 | 2014-04-16 | Ind Tech Res Inst | Method and system of image reconstruction and method and system of image construction |
TW201445139A (en) * | 2013-05-31 | 2014-12-01 | Meiho University Of Science And Technology | Detection system for mastitis of dairy cow and method thereof |
CN104182965A (en) * | 2014-01-22 | 2014-12-03 | 上海联影医疗科技有限公司 | Pectoralis segmentation method in breast image |
US20150003702A1 (en) * | 2011-12-22 | 2015-01-01 | Koninklijke Philips N.V. | Processing and displaying a breast image |
-
2016
- 2016-04-21 TW TW105112377A patent/TWI587844B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090252396A1 (en) * | 2008-04-04 | 2009-10-08 | Fujifilm Corporation | Image processing apparatus and image processing method, and recording medium |
US20150003702A1 (en) * | 2011-12-22 | 2015-01-01 | Koninklijke Philips N.V. | Processing and displaying a breast image |
TW201415012A (en) * | 2012-10-11 | 2014-04-16 | Ind Tech Res Inst | Method and system of image reconstruction and method and system of image construction |
TW201445139A (en) * | 2013-05-31 | 2014-12-01 | Meiho University Of Science And Technology | Detection system for mastitis of dairy cow and method thereof |
CN104182965A (en) * | 2014-01-22 | 2014-12-03 | 上海联影医疗科技有限公司 | Pectoralis segmentation method in breast image |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI638643B (en) | 2017-10-02 | 2018-10-21 | 中山醫學大學附設醫院 | An image simulation system to covisualize electrodes and cortical vessels on 3d brain and its method |
TWI745940B (en) * | 2019-05-10 | 2021-11-11 | 國立臺灣大學 | Medical image analyzing system and method thereof |
US11424021B2 (en) | 2019-05-10 | 2022-08-23 | National Taiwan University | Medical image analyzing system and method thereof |
CN112241947A (en) * | 2019-07-19 | 2021-01-19 | 财团法人资讯工业策进会 | Breast image analysis method, system and non-transitory computer readable medium |
CN112241947B (en) * | 2019-07-19 | 2024-02-13 | 财团法人资讯工业策进会 | Multi-view breast image analysis method, system and non-transitory computer readable medium |
Also Published As
Publication number | Publication date |
---|---|
TW201726064A (en) | 2017-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107067402B (en) | Medical image processing apparatus and breast image processing method thereof | |
US11004196B2 (en) | Advanced computer-aided diagnosis of lung nodules | |
US10825180B2 (en) | System and method for computer aided diagnosis | |
TWI587844B (en) | Medical image processing apparatus and breast image processing method thereof | |
CN104751178B (en) | Lung neoplasm detection means and method based on shape template matching combining classification device | |
Nagi et al. | Automated breast profile segmentation for ROI detection using digital mammograms | |
Tripathy et al. | Unified preprocessing and enhancement technique for mammogram images | |
Pulagam et al. | Automated lung segmentation from HRCT scans with diffuse parenchymal lung diseases | |
JP2008520345A (en) | Method and system for detecting and classifying lesions in ultrasound images | |
TWI482102B (en) | Methods for processing enhancement of target pattern, method for generating classification system of target patterns and classifying detected target patterns | |
Gayathri et al. | A survey of breast cancer detection based on image segmentation techniques | |
Maitra et al. | Automated digital mammogram segmentation for detection of abnormal masses using binary homogeneity enhancement algorithm | |
Ribeiro et al. | Handling inter-annotator agreement for automated skin lesion segmentation | |
Nawreen et al. | Lung cancer detection and classification using CT scan image processing | |
Ramadijanti et al. | Automatic breast tumor segmentation using hierarchical k-means on mammogram | |
Srivastav et al. | Breast cancer detection in mammogram images using machine learning methods and clahe algorithm | |
JP5640280B2 (en) | Osteoporosis diagnosis support device and osteoporosis diagnosis support program | |
Fazilov et al. | Improvement of Image Enhancement Technique for Mammography Images | |
TW201800059A (en) | Analysis method for breast image and electronic apparatus thereof | |
TWM527991U (en) | Medical image processing apparatus | |
JP2022133479A (en) | Prognosis estimation device and prognosis estimation method | |
AlShowarah | Breast Cancer Detection System using Deep Learning Based on Fusion Features and Statistical Operations. | |
El-shazli et al. | Computer-aided model for breast cancer detection in mammograms | |
Prakash | Medical image processing methodology for liver tumour diagnosis | |
Palkar et al. | An approach to analyse digital mammogram using statistical parameters |