TWI505492B - Chip with semiconductor dc voltage transformation structure - Google Patents

Chip with semiconductor dc voltage transformation structure Download PDF

Info

Publication number
TWI505492B
TWI505492B TW101142015A TW101142015A TWI505492B TW I505492 B TWI505492 B TW I505492B TW 101142015 A TW101142015 A TW 101142015A TW 101142015 A TW101142015 A TW 101142015A TW I505492 B TWI505492 B TW I505492B
Authority
TW
Taiwan
Prior art keywords
semiconductor
electro
conversion unit
wafer
photoelectric conversion
Prior art date
Application number
TW101142015A
Other languages
Chinese (zh)
Other versions
TW201344878A (en
Inventor
Lei Guo
Dongjing Zhao
Original Assignee
Lei Guo
Dongjing Zhao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lei Guo, Dongjing Zhao filed Critical Lei Guo
Publication of TW201344878A publication Critical patent/TW201344878A/en
Application granted granted Critical
Publication of TWI505492B publication Critical patent/TWI505492B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Led Devices (AREA)

Description

一種具有半導體直流變壓結構的晶片 Wafer with semiconductor DC transformer structure

本發明涉及半導體技術領域,特別涉及一種具有半導體直流變壓結構的晶片。 The present invention relates to the field of semiconductor technology, and in particular, to a wafer having a semiconductor DC transformer structure.

隨著半導體技術的不斷發展,一方面積體電路晶片的規模越來越大,集成度越來越高,各種不同的電路甚至功能模組集成在同一晶片上,如射頻電路,類比電路與數位電路,各種MEMS(Micro Electronic Mechanical System,微機電系統)裝置,快閃記憶體等,而它們需要不同的工作電壓,比如數位電路的電壓1V左右,快閃記憶體需要很高的寫入電壓,一些感測裝置可能需要幾十V甚至上百V的工作電壓,並且即使是同種電壓的電路模組之間也會通過電源線互相影響,如雜訊,失真等;另一方面裝置關鍵尺寸越來越小,工作電壓越來越低,晶片的功耗不斷增高,從而導致電源的工作電流直線上升,受晶片上互連線串聯電阻影響越來越大IR損失比較大。這些都對晶片的供電電源系統的性能提出了更高的要求。 With the continuous development of semiconductor technology, the size of one-area body circuit chip is getting larger and larger, the integration degree is getting higher and higher, various different circuits and even functional modules are integrated on the same wafer, such as RF circuit, analog circuit and digital circuit. , various MEMS (Micro Electronic Mechanical System) devices, flash memory, etc., and they require different operating voltages, such as the voltage of the digital circuit is about 1V, the flash memory requires a high write voltage, some The sensing device may require an operating voltage of several tens of V or even hundreds of V, and even circuit modules of the same voltage may interact with each other through a power line, such as noise, distortion, etc.; The smaller the operating voltage is, the lower the operating voltage is, and the power consumption of the chip is continuously increased. As a result, the operating current of the power supply rises linearly, and the IR loss is more and more affected by the series resistance of the interconnection line on the wafer. These put forward higher requirements on the performance of the power supply system of the chip.

現行技術通常是直接從外部引入多組不同的電壓源。該方法有如下缺點: 1.需要大量的片外電源裝置元件多,成本高,易受干擾,功耗電源管理複雜; 2.多組電源介面需要大量的片上輸入/輸出緩衝器用於打線的晶片焊盤,佔用了大量面積,並且需要大量的鍵合線; 3.從外部引入低壓大電流時,在晶片互連線電阻上的電壓降損耗非常大,並且需要大量的遠距離電源走線,佔用了大量晶片面積,不利於散熱,另也不利晶片的小型化和成本的降低。 Current technology typically introduces multiple sets of different voltage sources directly from the outside. This method has the following disadvantages: 1. A large number of off-chip power supply devices are required, the cost is high, the interference is high, and the power consumption power management is complicated; 2. Multiple sets of power interfaces require a large number of on-chip input/output buffers for wire bonding pads, occupying a large area and requiring a large number of bond wires; 3. When a low-voltage large current is introduced from the outside, the voltage drop loss on the interconnect resistance of the wafer is very large, and a large number of long-distance power supply traces are required, occupying a large amount of wafer area, which is disadvantageous for heat dissipation, and is also disadvantageous for miniaturization of the wafer and The cost is reduced.

為此,發展直流變壓技術和片上直流變壓裝置,從而實現積體電路片上集成的多電壓電源方案,自由的實現片上變壓,尤其是升壓是極待解決的關鍵問題。 To this end, the development of DC transformer technology and on-chip DC transformer device to achieve integrated multi-voltage power supply scheme on the integrated circuit, free to achieve on-chip transformer, especially boost is a key issue to be solved.

本發明的目的旨在至少解決上述技術缺陷之一,特別是提出一種體積小,電壓降損失少、可全片集成的晶片。 It is an object of the present invention to at least solve one of the above-mentioned technical drawbacks, and in particular to provide a wafer which is small in size, has little voltage drop loss, and can be integrated in a single piece.

本發明提供一種具有半導體直流變壓結構的晶片,包括:襯底;形成在襯底之上的至少一個半導體直流變壓結構,包括:至少一個半導體電光轉換單元,用於將輸入電能轉換為光能;和至少一個半導體光電轉換單元,用於將光能轉換為輸出電能,其中,半導體電光轉換單元與半導體光電轉換單元的工作光線頻譜相匹配。 The present invention provides a wafer having a semiconductor DC voltage transformation structure, comprising: a substrate; at least one semiconductor DC voltage transformation structure formed over the substrate, comprising: at least one semiconductor electro-optical conversion unit for converting input electrical energy into light And at least one semiconductor photoelectric conversion unit for converting light energy into output electrical energy, wherein the semiconductor electro-optical conversion unit matches the operating light spectrum of the semiconductor photoelectric conversion unit.

根據本發明的具有半導體直流變壓結構的晶片,其通過在半導體直流變壓結構中,在輸入端設置半導體電光轉換單元將直流電轉換為光進行傳輸,在輸出端設置半導體光電轉換單元以將光轉化為直流電輸出,在輸入端和輸出端分別採用不同數量的半導體電光轉換單元和半導體光電轉換單元串聯,利用半導體電光轉換單元和半導體光電轉換單元的工作電壓差異和個數比例實現直流電壓的變壓,然後通過電源管腳與負載電 路相連。該晶片具有直流變壓功能,具有無電磁輻射,無線圈結構,安全可靠,體積小,壽命長,重量輕,並且各個輸出模組互相獨立隔離不受影響,並且本發明的晶片可以與各種電路功能模組全片集成在同一個襯底上,實現片上的直流變壓,從而提供多組不同的直流電壓源滿足不同功能模組的需求,而且通過在片上電路模組附近片上集成本變壓晶片,生成所需要的電源電壓,可以降低由於大電流在晶片內部金屬線上的電能損失,這是先前完全依靠片外提供所需要的多組電源電壓技術所無法實現的。 A wafer having a semiconductor DC voltage transformation structure according to the present invention, wherein in a semiconductor DC voltage transformation structure, a semiconductor electro-optical conversion unit is provided at an input end to convert direct current into light for transmission, and a semiconductor photoelectric conversion unit is disposed at an output end to light It is converted into a direct current output, and a different number of semiconductor electro-optical conversion units and semiconductor photoelectric conversion units are respectively connected in series at the input end and the output end, and the DC voltage is changed by the operating voltage difference and the ratio of the number of the semiconductor electro-optical conversion unit and the semiconductor photoelectric conversion unit. Press and then pass the power pin and load The road is connected. The wafer has a DC voltage transformation function, has no electromagnetic radiation, has no coil structure, is safe and reliable, has small volume, long life, light weight, and independent isolation of each output module from each other, and the wafer of the present invention can be combined with various circuits. The functional module is integrated on the same substrate to realize on-chip DC voltage transformation, thereby providing multiple sets of different DC voltage sources to meet the requirements of different functional modules, and integrating the voltage transformer on the chip by the on-chip circuit module. The wafer, which generates the required supply voltage, can reduce the loss of electrical energy due to large currents on the metal lines inside the wafer, which was previously impossible with the multiple sets of supply voltage techniques required for off-chip provisioning.

在本發明一個實施例中,該晶片還包括:隔離層,其中,至少一個半導體電光轉換單元形成在隔離層一側,且每個半導體電光轉換單元包括電光轉換層,以及至少一個半導體光電轉換單元形成在隔離層另一側,且每個半導體光電轉換單元包括光電轉換層,其中,隔離層對電光轉換層發出的工作光線透明,工作光線以透射方式傳播。 In one embodiment of the present invention, the wafer further includes: an isolation layer, wherein at least one semiconductor electro-optical conversion unit is formed on one side of the isolation layer, and each of the semiconductor electro-optical conversion units includes an electro-optical conversion layer, and at least one semiconductor photoelectric conversion unit Formed on the other side of the isolation layer, and each of the semiconductor photoelectric conversion units includes a photoelectric conversion layer, wherein the isolation layer is transparent to the working light emitted by the electro-optical conversion layer, and the working light is transmitted in a transmissive manner.

在本發明一個實施例中,該晶片還包括:隔離層,隔離層中具有反光結構,其中,至少一個半導體電光轉換單元與至少一個半導體光電轉換單元形成在隔離層的同一側且呈間隔排布,其中,每個半導體電光轉換單元包括電光轉換層,每個光電轉換單元包括光電轉換層,隔離層對電光轉換層發出的工作光線透明,反光結構用於將工作光線從電光轉換層反射到光電轉換層上。 In an embodiment of the invention, the wafer further includes: an isolation layer having a reflective structure in the isolation layer, wherein at least one of the semiconductor electro-optical conversion units and the at least one semiconductor photoelectric conversion unit are formed on the same side of the isolation layer and arranged at intervals Each of the semiconductor electro-optical conversion units includes an electro-optical conversion layer, each of the photoelectric conversion units includes a photoelectric conversion layer, the isolation layer is transparent to the working light emitted by the electro-optical conversion layer, and the reflective structure is used for reflecting the working light from the electro-optical conversion layer to the photoelectric On the conversion layer.

在本發明一個實施例中,半導體電光轉換單元、隔離層和半導體光電轉換單元的材料具有相近似的折射係數。 In one embodiment of the invention, the materials of the semiconductor electro-optical conversion unit, the isolation layer, and the semiconductor photoelectric conversion unit have similar refractive indices.

在本發明一個實施例中,半導體電光轉換單元、隔離層和半導體光電轉換單元的材料的折射係數遞增。 In one embodiment of the invention, the refractive indices of the materials of the semiconductor electro-optical conversion unit, the isolation layer, and the semiconductor photoelectric conversion unit are increased.

在本發明一個實施例中,半導體電光轉換單元、隔離層和半導體光電轉換單元中的至少一個具有粗糙化表面、圖形化表面或光子晶體結構。 In one embodiment of the invention, at least one of the semiconductor electro-optical conversion unit, the isolation layer, and the semiconductor photoelectric conversion unit has a roughened surface, a patterned surface, or a photonic crystal structure.

在本發明一個實施例中,隔離層材料為固態透明絕緣或半絕緣的Al2O3、Y2O3、Gd2O3、AlN、SiO2、MgO、CaO、Si3N4、BN、金剛石、LiAlO2、LiGaO2、GaAs、SiC、TiO2、ZrO2、SrTiO3、Ga2O3、ZnS、ZnSe、CdTe、SiC、MgAl2O4、LiNbO3、LiTaO3、Y3AI5O12、KNbO3、LiF、MgF2、BaF2、GaF2、LaF3、BeO、GaP、GaN以及稀土氧化物中的一種及其組合。優選的,可以採用IC積體電路工藝中常用的SiO2,Si3N4In an embodiment of the invention, the spacer material is solid transparent insulating or semi-insulating Al 2 O 3 , Y 2 O 3 , Gd 2 O 3 , AlN, SiO 2 , MgO, CaO, Si 3 N 4 , BN, Diamond, LiAlO 2 , LiGaO 2 , GaAs, SiC, TiO 2 , ZrO 2 , SrTiO 3 , Ga 2 O 3 , ZnS, ZnSe, CdTe, SiC, MgAl 2 O 4 , LiNbO 3 , LiTaO 3 , Y 3 AI 5 O 12 , one of KNbO 3 , LiF, MgF 2 , BaF 2 , GaF 2 , LaF 3 , BeO, GaP, GaN, and rare earth oxides, and combinations thereof. Preferably, SiO 2 , Si 3 N 4 which is commonly used in the IC integrated circuit process can be used.

在本發明一個實施例中,電光轉換層的材料為AlGaInP、GaN、InGaN、AlGaInN、ZnO、AlGaInAs、GaAS、InGaAs、InGaAsP、AlGaAs或InGaAsNSb中的一種及其組合。 In one embodiment of the invention, the material of the electro-optic conversion layer is one of AlGaInP, GaN, InGaN, AlGaInN, ZnO, AlGaInAs, GaAS, InGaAs, InGaAsP, AlGaAs or InGaAsNSb, and combinations thereof.

在本發明一個實施例中,光電轉換層的材料為Si、Ge、SiGe、AlGaInP、InGaAs、InGaN、AlGaInN、InGaAsP、GaAs、GaSb、InGaP、InGaAs、InGaAsP、AlGaAs、AlGaP、InAlP、AlGaAsSb或InGaAsNSb中的一種及其組合。 In one embodiment of the invention, the material of the photoelectric conversion layer is Si, Ge, SiGe, AlGaInP, InGaAs, InGaN, AlGaInN, InGaAsP, GaAs, GaSb, InGaP, InGaAs, InGaAsP, AlGaAs, AlGaP, InAlP, AlGaAsSb or InGaAsNSb. One and a combination thereof.

在本發明一個實施例中,位於工作光線傳輸路徑上的電極層的材料為透明導電材料GaAs、GaN、AlGaInP、AlGaInN、AlGaInAs、ITO(銦錫氧化物)、SnO2、ZnO或石墨烯中的一種及其組合。 In an embodiment of the invention, the material of the electrode layer located on the working light transmission path is transparent conductive material GaAs, GaN, AlGaInP, AlGaInN, AlGaInAs, ITO (indium tin oxide), SnO 2 , ZnO or graphene. One and a combination thereof.

在本發明一個實施例中,半導體電光轉換單元之間、半導體光電轉換單元之間,或者半導體電光轉換單元與半導體光電轉換單元之間,填充有透明絕緣介質且透明絕緣介質頂部覆蓋反光層;或者,半導體 電光轉換單元之間、半導體光電轉換單元之間,或者半導體電光轉換單元與半導體光電轉換單元之間,填充有反光絕緣介質。 In an embodiment of the present invention, between the semiconductor electro-optical conversion units, between the semiconductor photoelectric conversion units, or between the semiconductor electro-optical conversion unit and the semiconductor photoelectric conversion unit, a transparent insulating medium is filled and the transparent insulating medium covers the reflective layer at the top; or ,semiconductor Between the electro-optical conversion units, between the semiconductor photoelectric conversion units, or between the semiconductor electro-optical conversion unit and the semiconductor photoelectric conversion unit, a reflective insulating medium is filled.

在本發明一個實施例中,該晶片還包括:陷光結構,陷光結構用於將工作光線限制在半導體直流變壓結構的內部,減少光損失帶來的能量損耗。 In an embodiment of the invention, the wafer further includes: a trap structure for confining the working light to the inside of the semiconductor DC transformer structure to reduce energy loss caused by light loss.

在本發明一個實施例中,該晶片還包括:一個或多個電源管腳,電源管腳與外部電源相連;片內電源分佈網路,片內電源分佈網路與電源管腳和至少一個半導體直流變壓結構相連;以及電路功能模組,每個電路功能模組與至少一個半導體直流變壓結構相連,其中,半導體直流變壓結構的輸入端與片內電源分佈網路相連,輸出端與晶片上需要供電的電路功能模組相連。 In one embodiment of the invention, the chip further includes: one or more power pins, the power pins are connected to an external power source; the on-chip power distribution network, the on-chip power distribution network and the power pins, and the at least one semiconductor The DC transformer structure is connected; and the circuit function module, each circuit function module is connected to at least one semiconductor DC transformer structure, wherein the input end of the semiconductor DC transformer structure is connected to the on-chip power distribution network, and the output end is The circuit function modules on the wafer that need to be powered are connected.

在本發明一個實施例中,該晶片還包括:至少一個控制模組,控制模組與至少一個半導體直流變壓結構,相連並所述半導體直流變壓結構其進行控制。 In one embodiment of the invention, the wafer further includes: at least one control module coupled to the at least one semiconductor DC transformer structure and controlled by the semiconductor DC transformer structure.

在本發明一個實施例中,該晶片為片上全集成,襯底的材料為Si、SiGe、GaAs、InP、SiC、Al2O3或柔性材料。 In one embodiment of the invention, the wafer is fully on-chip, and the material of the substrate is Si, SiGe, GaAs, InP, SiC, Al 2 O 3 or a flexible material.

在本發明一個實施例中,該晶片包括多個半導體直流變壓結構,其中多個半導體直流變壓結構共用一個半導體電光轉換單元。 In one embodiment of the invention, the wafer includes a plurality of semiconductor DC voltage transformation structures, wherein the plurality of semiconductor DC voltage transformation structures share a semiconductor electro-optical conversion unit.

本發明附加的方面和優點將在下面的描述中部分給出,部分將從下面的描述中變得明顯,或通過本發明的實踐瞭解到。 The additional aspects and advantages of the invention will be set forth in part in the description which follows.

10‧‧‧半導體直流變壓結構 10‧‧‧Semiconductor DC transformer structure

20‧‧‧襯底 20‧‧‧Substrate

30‧‧‧電源管腳 30‧‧‧Power pin

40‧‧‧片內電源分佈網路 40‧‧‧On-chip power distribution network

50‧‧‧電路功能模組 50‧‧‧Circuit function module

110、120‧‧‧轉換單元 110, 120‧‧‧ conversion unit

130‧‧‧隔離層 130‧‧‧Isolation

131‧‧‧反光結構 131‧‧‧Reflective structure

LI、LO‧‧‧引線 LI, LO‧‧‧ lead

本發明上述的和/或附加的方面和優點從下面結合附圖對實 施例的描述中將變得明顯和容易理解,其中:第1圖為根據本發明一個實施例的晶片的結構示意圖;第2圖為根據本發明晶片中的半導體直流變壓結構的工作原理圖;第3圖為根據本發明一個實施例的晶片的結構示意圖;第4圖為根據本發明一個實施例的晶片的半導體直流變壓結構的結構示意圖;第5圖為根據本發明一個實施例的晶片的半導體直流變壓結構的結構示意圖;以及第6圖為根據本發明一個實施例的晶片的結構示意圖。 The above and/or additional aspects and advantages of the present invention will be apparent from the following description The description of the embodiment will become apparent and easy to understand, wherein: FIG. 1 is a schematic structural view of a wafer according to an embodiment of the present invention; and FIG. 2 is a working principle diagram of a semiconductor DC transformer structure in a wafer according to the present invention. 3 is a schematic structural view of a wafer according to an embodiment of the present invention; FIG. 4 is a schematic structural view of a semiconductor DC voltage transformation structure of a wafer according to an embodiment of the present invention; and FIG. 5 is a schematic view of a semiconductor DC voltage transformation structure according to an embodiment of the present invention; A schematic structural view of a semiconductor DC voltage transformation structure of a wafer; and FIG. 6 is a schematic structural view of a wafer according to an embodiment of the present invention.

下面詳細描述本發明的實施例,所述實施例的示例在附圖中示出,其中自始至終相同或類似的標號表示相同或類似的元件或具有相同或類似功能的元件。下面通過參考附圖描述的實施例是示例性的,僅用於解釋本發明,而不能解釋為對本發明的限制。 The embodiments of the present invention are described in detail below, and the examples of the embodiments are illustrated in the drawings, wherein the same or similar reference numerals are used to refer to the same or similar elements or elements having the same or similar functions. The embodiments described below with reference to the drawings are intended to be illustrative of the invention and are not to be construed as limiting.

下文的公開提供了許多不同的實施例或例子用來實現本發明的不同結構。為了簡化本發明的公開,下文中對特定例子的部件和設置進行描述。當然,它們僅僅為示例,並且目的不在於限制本發明。此外,本發明可以在不同例子中重複參考數位和/或字母。這種重複是為了簡化和清楚的目的,其本身不指示所討論各種實施例和/或設置之間的關係。此外,本發明提供了的各種特定的工藝和材料的例子,但是本領域普通技術人員可以意識到其他工藝的可應用於性和/或其他材料的使用。另外,以下描述的第一特徵在第二特徵之“上”的結構可以包括第一和第二特徵形成為直 接接觸的實施例,也可以包括另外的特徵形成在第一和第二特徵之間的實施例,這樣第一和第二特徵可能不是直接接觸。 The following disclosure provides many different embodiments or examples for implementing different structures of the present invention. In order to simplify the disclosure of the present invention, the components and arrangements of the specific examples are described below. Of course, they are merely examples and are not intended to limit the invention. Moreover, the present invention may repeat reference numerals and/or letters in different examples. This repetition is for the purpose of simplicity and clarity, and is not in the nature of the description of the various embodiments and/or arrangements discussed. Moreover, the present invention provides examples of various specific processes and materials, but one of ordinary skill in the art will recognize the applicability of other processes and/or the use of other materials. Additionally, the structure of the first feature described below on the "on" of the second feature may include the first and second features being formed straight Embodiments of the contact contact may also include embodiments in which additional features are formed between the first and second features such that the first and second features may not be in direct contact.

本發明提供一種具有半導體直流變壓結構的晶片,如第1圖所示,該晶片包括:襯底20;形成在襯底20之上的至少一個半導體直流變壓結構10。該半導體直流變壓結構10進一步包括:至少一個半導體電光轉換單元110,用於將輸入電能轉換為光能;和至少一個半導體光電轉換單元120,用於將光能轉換為輸出電能。其中,半導體光電轉換單元120的數目與半導體電光轉換單元110的數目成一定比例以實現直流變壓,且半導體電光轉換單元110與半導體光電轉換單元120的工作光線的波段相匹配。需要說明的是,第1圖中雖然示出了固定數目的半導體直流變壓結構10、半導體電光轉換單元110和半導體光電轉換單元120,但在實際情況中可以為任意數目。 The present invention provides a wafer having a semiconductor DC transformer structure, as shown in FIG. 1, the wafer comprising: a substrate 20; and at least one semiconductor DC transformer structure 10 formed over the substrate 20. The semiconductor DC transformer structure 10 further includes: at least one semiconductor electro-optical conversion unit 110 for converting input electrical energy into optical energy; and at least one semiconductor photoelectric conversion unit 120 for converting optical energy into output electrical energy. The number of the semiconductor photoelectric conversion units 120 is proportional to the number of the semiconductor electro-optical conversion units 110 to achieve DC voltage transformation, and the semiconductor electro-optical conversion unit 110 matches the wavelength band of the working light of the semiconductor photoelectric conversion unit 120. It should be noted that although a fixed number of semiconductor DC voltage transformation structures 10, semiconductor electro-optical conversion units 110, and semiconductor photoelectric conversion units 120 are shown in FIG. 1, they may be any number in practice.

在本發明的晶片中的半導體直流變壓結構10工作原理如第2圖所示:輸入端引線LI與半導體電光轉換單元110相連,輸出端引線LO與半導體光電轉換單元120相連。其中,半導體電光轉換單元110包括m個直流工作電壓為V1的發光二極體(LED)、諧振發光二極體(RC_LED)或鐳射二極體(LD),半導體光電轉換單元120包括n個光生電壓為V2的光電池。其中,半導體電光轉換單元110發出的光線要與半導體光電轉換單元120發出的光電轉換效率最優化的光線的波段相同,即二者的工作光線需要相匹配,以使裝置的電光-光電能量轉換效率較高,變壓過程中的能損較少。工作狀態下,半導體電光轉換單元110因兩端加上電壓而發光,光子傳輸至半導體光電轉換單元120,以在半導體光電轉換單元120中激發產生不同的載流子並 通過內建電場分離,形成光生電壓和光生電流,從而利用光波實現能量傳輸。在該能量傳輸過程中,則輸入電壓/輸出電壓=(m*V1)/(n*V2)。 The operation principle of the semiconductor DC voltage transformer structure 10 in the wafer of the present invention is as shown in Fig. 2: the input terminal lead LI is connected to the semiconductor electro-optical conversion unit 110, and the output terminal lead LO is connected to the semiconductor photoelectric conversion unit 120. The semiconductor electro-optic conversion unit 110 includes m light-emitting diodes (LEDs), resonant light-emitting diodes (RC_LEDs) or laser diodes (LD) having a DC operating voltage of V1, and the semiconductor photoelectric conversion unit 120 includes n light-emitting units. Photovoltaic cell with voltage V2. The light emitted by the semiconductor electro-optical conversion unit 110 is the same as the wavelength of the light optimized by the photoelectric conversion efficiency of the semiconductor photoelectric conversion unit 120, that is, the working light of the two needs to be matched to make the electro-optical-photoelectric energy conversion efficiency of the device. Higher, less energy loss during the pressure transformation process. In the operating state, the semiconductor electro-optical conversion unit 110 emits light by applying a voltage to both ends, and the photons are transmitted to the semiconductor photoelectric conversion unit 120 to excite different carriers in the semiconductor photoelectric conversion unit 120. The photo-generated voltage and the photo-generated current are formed by the separation of the built-in electric field, thereby realizing energy transmission using the optical wave. During this energy transfer, the input voltage / output voltage = (m * V1) / (n * V2).

根據本發明實施例的晶片,通過在半導體直流變壓結構中,在輸入端設置半導體電光轉換單元將直流電轉換為光進行傳輸,在輸出端設置半導體光電轉換單元以將光轉化為直流電輸出,在輸入端和輸出端分別採用不同數量的半導體電光轉換單元和半導體光電轉換單元串聯,利用半導體電光轉換單元和半導體光電轉換單元的工作電壓差異和個數比例實現直流電壓的變壓,然後通過電源管腳與負載電路相連。該晶片具有直流變壓功能,具有無電磁輻射,無線圈結構,安全可靠,體積小,壽命長,重量輕,安裝維護方便等優點,各個輸出模組互相獨立隔離不受影響,並且本發明的晶片可以全片集成,這是先前技術無法實現的。 According to the wafer of the embodiment of the present invention, in the semiconductor DC voltage transformation structure, a semiconductor electro-optical conversion unit is provided at the input end to convert direct current into light for transmission, and a semiconductor photoelectric conversion unit is disposed at the output end to convert the light into a direct current output. The input end and the output end respectively use different numbers of semiconductor electro-optical conversion units and semiconductor photoelectric conversion units in series, and the DC voltage is transformed by the operating voltage difference and the ratio of the semiconductor electro-optical conversion unit and the semiconductor photoelectric conversion unit, and then passed through the power supply tube. The pin is connected to the load circuit. The wafer has a DC voltage transformation function, has no electromagnetic radiation, has no coil structure, is safe and reliable, has small volume, long life, light weight, convenient installation and maintenance, and the like, and each output module is independently isolated from each other, and the invention is not affected. The wafers can be integrated in a single piece, which was not possible with prior art.

第3圖為根據本發明實施例的具有半導體直流變壓結構的晶片的示意圖。 Figure 3 is a schematic illustration of a wafer having a semiconductor DC transformer structure in accordance with an embodiment of the present invention.

如第3圖所示,該晶片具有四個半導體直流變壓結構10,分別可將12V的直流輸入電壓轉化為5V、1.8V、50V和3.3V的輸出電壓,其中12V為常見直流輸入電壓,5V和3.3V為常見類比輸出電壓,1.8V為常見數位輸出電壓,50V為常見MEMS輸出電壓。該晶片可以實現提供一種輸入電壓,輸出多種不同輸出電壓驅動不同直流電壓功能模組的目的。 As shown in Figure 3, the wafer has four semiconductor DC transformer structures 10, which can convert 12V DC input voltage into 5V, 1.8V, 50V and 3.3V output voltages, of which 12V is a common DC input voltage. 5V and 3.3V are common analog output voltages, 1.8V is a common digital output voltage, and 50V is a common MEMS output voltage. The chip can realize the purpose of providing an input voltage and outputting a plurality of different output voltages to drive different DC voltage function modules.

在本發明的一個實施例中,該晶片的半導體直流變壓結構10中還進一步包括隔離層130,用於對半導體電光轉換單元110和半導體光電轉換單元120進行電氣隔離。根據隔離層130的具體位置的不同,有第4圖和第5圖兩種情況,其中第4圖和第5圖中的箭頭表示工作光線的傳導方向。 In one embodiment of the present invention, the semiconductor DC transformer structure 10 of the wafer further includes an isolation layer 130 for electrically isolating the semiconductor electro-optical conversion unit 110 and the semiconductor photoelectric conversion unit 120. According to the specific position of the isolation layer 130, there are two cases of FIG. 4 and FIG. 5, wherein the arrows in FIGS. 4 and 5 indicate the conduction direction of the working light.

如第4圖所示,晶片中的半導體直流變壓結構10為雙面結構,隔離層130位於其中間。至少一個半導體電光轉換單元110形成在隔離層130的一側,且每個半導體電光轉換單元110包括電光轉換層,以及至少一個半導體光電轉換單元120形成在隔離層130的另一側,且每個半導體光電轉換單元120包括光電轉換層,其中,隔離層130對電光轉換層發出的工作光線透明,工作光線以透射方式傳播。 As shown in FIG. 4, the semiconductor DC transformer structure 10 in the wafer has a double-sided structure with the isolation layer 130 in between. At least one semiconductor electro-optical conversion unit 110 is formed on one side of the isolation layer 130, and each of the semiconductor electro-optical conversion units 110 includes an electro-optical conversion layer, and at least one semiconductor photoelectric conversion unit 120 is formed on the other side of the isolation layer 130, and each The semiconductor photoelectric conversion unit 120 includes a photoelectric conversion layer in which the isolation layer 130 is transparent to the working light emitted by the electro-optical conversion layer, and the working light is transmitted in a transmissive manner.

如第5圖所示,晶片中的半導體直流變壓結構10為單面結構,隔離層130位於其底部或頂部。隔離層130中具有反光結構131。至少一個半導體電光轉換單元110與至少一個半導體光電轉換單元120形成在隔離層130的同一側且呈間隔排布,其中,每個半導體電光轉換單元110包括電光轉換層,每個光電轉換單元120包括光電轉換層,隔離層130對電光轉換層發出的工作光線透明,反光結構131用於將工作光線從電光轉換層反射到光電轉換層上。 As shown in FIG. 5, the semiconductor DC transformer structure 10 in the wafer is a single-sided structure, and the isolation layer 130 is located at the bottom or the top thereof. The isolation layer 130 has a reflective structure 131 therein. At least one semiconductor electro-optical conversion unit 110 and at least one semiconductor photoelectric conversion unit 120 are formed on the same side of the isolation layer 130 and arranged at intervals, wherein each of the semiconductor electro-optical conversion units 110 includes an electro-optical conversion layer, and each of the photoelectric conversion units 120 includes The photoelectric conversion layer, the isolation layer 130 is transparent to the working light emitted by the electro-optical conversion layer, and the reflective structure 131 is for reflecting the working light from the electro-optical conversion layer onto the photoelectric conversion layer.

此外,為了獲得良好的光電能量轉換效率,應當避免工作光線在傳播時在各層介面處發生全反射現象。由於當且僅當光線從折射係數較大的材料進入折射係數較小的材料時發生全反射,故只須沿著光的傳播方向上各層折射係數適當匹配即可避免全反射的發生。故為了減少工作光線在介面之間的全反射,要求沿著工作光線傳輸路徑的各層結構的材料的折射係數滿足匹配條件。具體地,在本發明一個實施例中,半導體電光轉換單元110、隔離層130和半導體光電轉換單元120具有相近似的折射係數。在本發明另一個實施例中,半導體電光轉換單元110、隔離層130和半導體光電轉換單元120的材料折射係數遞增。在本發明一個實施例中,半導體電 光轉換單元110、隔離層130和半導體光電轉換單元120中的至少一個具有粗糙化表面、圖形化表面或光子晶體結構。以上措施均能減少光在介面的全反射,有利於工作光線的傳導,從而有利於能量的轉換。 In addition, in order to obtain good photoelectric energy conversion efficiency, it should be avoided that total reflection occurs at the interface of each layer when the working light propagates. Since total reflection occurs when light enters a material having a small refractive index from a material having a large refractive index, it is only necessary to appropriately match the refractive indices of the layers along the direction of propagation of the light to avoid the occurrence of total reflection. Therefore, in order to reduce the total reflection of the working light between the interfaces, the refractive index of the material of each layer structure along the working light transmission path is required to satisfy the matching condition. Specifically, in one embodiment of the present invention, the semiconductor electro-optical conversion unit 110, the isolation layer 130, and the semiconductor photoelectric conversion unit 120 have similar refractive indices. In another embodiment of the present invention, the material refractive index of the semiconductor electro-optical conversion unit 110, the isolation layer 130, and the semiconductor photoelectric conversion unit 120 is increased. In one embodiment of the invention, the semiconductor power At least one of the light conversion unit 110, the isolation layer 130, and the semiconductor photoelectric conversion unit 120 has a roughened surface, a patterned surface, or a photonic crystal structure. All of the above measures can reduce the total reflection of light at the interface, which is beneficial to the conduction of working light, thereby facilitating the conversion of energy.

在本發明的上述實施例中,隔離層130材料可為固態透明絕緣或半絕緣的Al2O3、Y2O3、Gd2O3、AlN、SiO2、MgO、CaO、Si3N4、BN、金剛石、LiAlO2、LiGaO2、GaAs、SiC、TiO2、ZrO2、SrTiO3、Ga2O3、ZnS、ZnSe、CdTe、SiC、MgAl2O4、LiNbO3、LiTaO3、Y3AI5O12、KNbO3、LiF、MgF2、BaF2、GaF2、LaF3、BeO、GaP、GaN以及稀土氧化物中的一種及其組合。 In the above embodiments of the present invention, the material of the isolation layer 130 may be solid transparent insulating or semi-insulating Al 2 O 3 , Y 2 O 3 , Gd 2 O 3 , AlN, SiO 2 , MgO, CaO, Si 3 N 4 . , BN, diamond, LiAlO 2 , LiGaO 2 , GaAs, SiC, TiO 2 , ZrO 2 , SrTiO 3 , Ga 2 O 3 , ZnS, ZnSe, CdTe, SiC, MgAl 2 O 4 , LiNbO 3 , LiTaO 3 , Y 3 One of AI 5 O 12 , KNbO 3 , LiF, MgF 2 , BaF 2 , GaF 2 , LaF 3 , BeO, GaP, GaN, and rare earth oxides, and combinations thereof.

在本發明的上述實施例中,半導體電光轉換單元110中的電光轉換層材料可為AlGaInP、GaN、InGaN、AlGaInN、ZnO、AlGaInAs、GaAS、InGaAs、InGaAsP、AlGaAs或InGaAsNSb中的一種及其組合。 In the above embodiment of the present invention, the electro-optic conversion layer material in the semiconductor electro-optical conversion unit 110 may be one of AlGaInP, GaN, InGaN, AlGaInN, ZnO, AlGaInAs, GaAS, InGaAs, InGaAsP, AlGaAs or InGaAsNSb, and combinations thereof.

在本發明的上述實施例中,半導體光電轉換單元120中的光電轉換層的材料可為Si、Ge、SiGe、AlGaInP、InGaAs、InGaN、AlGaInN、InGaAsP、GaAs、GaSb、InGaP、InGaAs、InGaAsP、AlGaAs、AlGaP、InAlP、AlGaAsSb或InGaAsNSb中的一種及其組合。 In the above embodiment of the present invention, the material of the photoelectric conversion layer in the semiconductor photoelectric conversion unit 120 may be Si, Ge, SiGe, AlGaInP, InGaAs, InGaN, AlGaInN, InGaAsP, GaAs, GaSb, InGaP, InGaAs, InGaAsP, AlGaAs. One of AlGaP, InAlP, AlGaAsSb or InGaAsNSb and combinations thereof.

在本發明的上述實施例中,位於工作光線傳輸路徑上的電極層的材料可為透明導電材料GaAs、GaN、AlGaInP、AlGaInN、AlGaInAs、ITO、SnO2、ZnO或石墨烯中的一種及其組合。 In the above embodiment of the present invention, the material of the electrode layer located on the working light transmission path may be one of a transparent conductive material GaAs, GaN, AlGaInP, AlGaInN, AlGaInAs, ITO, SnO 2 , ZnO or graphene, and combinations thereof. .

在本發明的優選實施例中,在單元與單元之間填充的介質也具有限光作用。具體地,在具有如第4圖所示的雙面結構半導體直流變壓結構10的晶片中,多個半導體電光轉換單元110之間和多個半導體光電轉換 單元120之間,可以填充有透明絕緣介質且透明絕緣介質頂部覆蓋反光層,或者填充有反光絕緣介質;或者,在具有如第5圖所示的單面結構半導體直流變壓結構10的晶片中,半導體電光轉換單元110和半導體光電轉換單元120之間,可以填充有透明絕緣介質且透明絕緣介質頂部覆蓋反光層,或者填充有反光絕緣介質。 In a preferred embodiment of the invention, the medium filled between the unit and the unit also has a light limiting effect. Specifically, in a wafer having the double-sided structure semiconductor DC voltage transformation structure 10 as shown in FIG. 4, a plurality of semiconductor electro-optical conversion units 110 and a plurality of semiconductor photoelectric conversions The cells 120 may be filled with a transparent insulating medium and the transparent insulating medium may be covered with a reflective layer or filled with a reflective insulating medium; or, in a wafer having a single-sided semiconductor DC transformer structure 10 as shown in FIG. Between the semiconductor electro-optical conversion unit 110 and the semiconductor photoelectric conversion unit 120, a transparent insulating medium may be filled and the transparent insulating medium may be covered with a reflective layer or filled with a reflective insulating medium.

在本發明一個優選實施例中,該晶片還包括:陷光結構140,陷光結構140用於將工作光線限制在半導體直流變壓結構的內部,減少光損失帶來的能量損耗。限光結構的設置方法靈活多樣,例如,當半導體直流變壓結構10為雙面結構時,限光結構140可以採取在半導體電光轉換單元110和半導體光電轉換單元120的不相鄰近的兩個面上設置全方位反射鏡(ODR)或者分散式布拉格反射鏡(DBR)反射光線,以使工作光線無法射出。又例如,當半導體直流變壓結構10為單面結構時,限光結構140可以採取在半導體電光轉換單元110和半導體光電轉換單元120的不接觸隔離層130的面上設置全方位反射鏡(ODR)或者分散式布拉格反射鏡(DBR)反射光線,以使工作光線無法射出。其中,布拉格反射鏡可由稀土氧化物(REO)材料構成,REO材料對工作光線透明,絕緣特性好,耐高壓防擊穿。 In a preferred embodiment of the present invention, the wafer further includes: a light trapping structure 140 for limiting the working light to the inside of the semiconductor DC transformer structure to reduce energy loss caused by light loss. The method of setting the light-limiting structure is flexible. For example, when the semiconductor DC-varying structure 10 is a double-sided structure, the light-limiting structure 140 can take two non-adjacent faces of the semiconductor electro-optical conversion unit 110 and the semiconductor photoelectric conversion unit 120. An omnidirectional mirror (ODR) or a decentralized Bragg mirror (DBR) is provided to reflect light so that the working light cannot be emitted. For another example, when the semiconductor DC transformer structure 10 is a single-sided structure, the light-limiting structure 140 may adopt an omnidirectional mirror (ODR) disposed on a surface of the semiconductor electro-optical conversion unit 110 and the semiconductor photoelectric conversion unit 120 that does not contact the isolation layer 130. Or a decentralized Bragg reflector (DBR) reflects light so that working light cannot be emitted. Among them, the Bragg mirror can be made of rare earth oxide (REO) material, and the REO material is transparent to working light, has good insulation properties, and is resistant to high voltage and puncture.

在本發明一個實施例中,如第6圖所示,該晶片還包括:一個或多個電源管腳30、片內電源分佈網路40以及電路功能模組50。其中,電源管腳30與外部電源相連;片內電源分佈網路40連接電源管腳30和至少一個半導體直流變壓結構10的輸入端,從而實現半導體直流變壓結構10的輸入端接入外部電源;半導體直流變壓結構10的輸出端則與需要供電的電 路功能模組50相連,為其提供工作所需的電能。其中,電路功能模組50是指集成在同一晶片上的數位邏輯電路、類比電路、RF電路、flash電路、MEMS裝置等需要不同電壓的模組。比如flash晶片上就需要多組不同的供電電壓,從1.2V-20V都有,尤其是其寫入編程電壓,往往需要10-20V。 In one embodiment of the invention, as shown in FIG. 6, the wafer further includes one or more power pins 30, an on-chip power distribution network 40, and a circuit function module 50. The power pin 30 is connected to the external power source; the on-chip power distribution network 40 is connected to the power pin 30 and the input end of the at least one semiconductor DC transformer structure 10, so that the input end of the semiconductor DC transformer structure 10 is connected to the outside. Power supply; the output of the semiconductor DC transformer structure 10 is connected to the power that needs to be supplied The road function module 50 is connected to provide the power required for the work. The circuit function module 50 refers to a digital logic circuit, an analog circuit, an RF circuit, a flash circuit, a MEMS device and the like that are integrated on the same chip and require different voltages. For example, on a flash chip, multiple sets of different supply voltages are required, ranging from 1.2V to 20V, especially when writing programming voltages, which often require 10-20V.

在本發明一個實施例中,該晶片還包括:至少一個控制模組60,控制模組60與至少一個半導體直流變壓結構10相連,並對其進行控制。具體地,控制模組60可對半導體直流變壓結構10的輸入輸出端的電流電壓進行採樣和控制,以實現電壓調節、穩壓、電源效率優化、電源節能關斷等目標。 In one embodiment of the invention, the wafer further includes at least one control module 60 coupled to and controlled by the at least one semiconductor DC transformer structure 10. Specifically, the control module 60 can sample and control the current and voltage of the input and output terminals of the semiconductor DC transformer structure 10 to achieve voltage regulation, voltage regulation, power supply efficiency optimization, and power supply shutdown.

在本發明一個實施例中,該晶片為片上全集成工藝製成,襯底20的材料為Si、SiGe、GaAs、InP、SiC、Al2O3或柔性材料。其中,當襯底20為柔性材料例如塑膠薄膜時,半導體電光轉換單元110可採用有機發光二極體(OLED)或量子點發光二極體,而半導體光電轉換單元120可採用有機光電池或量子點光電池。 In one embodiment of the invention, the wafer is fabricated in an on-chip, fully integrated process, and the material of the substrate 20 is Si, SiGe, GaAs, InP, SiC, Al 2 O 3 or a flexible material. Wherein, when the substrate 20 is a flexible material such as a plastic film, the semiconductor electro-optical conversion unit 110 may employ an organic light emitting diode (OLED) or a quantum dot light emitting diode, and the semiconductor photoelectric conversion unit 120 may be an organic photovoltaic cell or a quantum dot. Photocell.

在本發明一個實施例中,該晶片包括多個半導體直流變壓結構10,其中多個半導體直流變壓結構10共用一個半導體電光轉換單元110。例如,可以用一個大面積的發光二極體來充當多個半導體直流變壓結構中的半導體電光轉換單元110,該實施例的晶片結構更加簡潔可靠。 In one embodiment of the invention, the wafer includes a plurality of semiconductor DC transformer structures 10, wherein the plurality of semiconductor DC transformer structures 10 share a semiconductor electro-optical conversion unit 110. For example, a large-area light-emitting diode can be used to serve as the semiconductor electro-optical conversion unit 110 in a plurality of semiconductor DC-transformed structures, and the wafer structure of this embodiment is more compact and reliable.

本發明還有其他一些變形的實施方案,例如利用三維晶片堆疊或鍵合技術把實現電源直流變壓的晶片和實現存儲,運算和MEMS傳感等功能的晶片集成在一起形成一個完整的系統,或者是通過系統級封裝把實現直流變壓的晶片和其他功能模組封裝在一起形成一個系統。 There are other variant embodiments of the present invention, such as using a three-dimensional wafer stacking or bonding technique to integrate a wafer that implements DC voltage transformation of a power supply with a wafer that implements functions such as storage, computing, and MEMS sensing to form a complete system. Or, a system-level package is used to package a DC-transformed wafer and other functional modules together to form a system.

儘管已經示出和描述了本發明的實施例,對於本領域的普通技術人員而言,可以理解在不脫離本發明的原理和精神的情況下可以對這些實施例進行多種變化、修改、替換和變型,本發明的範圍由所附申請專利範圍及其等同限定。 While the embodiments of the present invention have been shown and described, it will be understood by those skilled in the art Variations, the scope of the invention is defined by the scope of the appended claims and their equivalents.

10‧‧‧半導體直流變壓結構 10‧‧‧Semiconductor DC transformer structure

20‧‧‧襯底 20‧‧‧Substrate

30‧‧‧電源管腳 30‧‧‧Power pin

40‧‧‧片內電源分佈網路 40‧‧‧On-chip power distribution network

50‧‧‧電路功能模組 50‧‧‧Circuit function module

Claims (16)

一種具有半導體直流變壓結構的晶片,其特徵在於,包括:襯底;形成在所述襯底之上的至少一個半導體直流變壓結構,包括:電壓輸入;電壓輸出;至少一個半導體電光轉換單元,用於將所述電壓輸入上所接收的輸入電能轉換為光能;和至少一個半導體光電轉換單元位於所述襯底上,用於接收來自所述至少一個半導體電光轉換單元的所述光能以及將所述接收的光能轉換為在所述電壓輸出上的輸出電能,其中,所述半導體電光轉換單元與所述半導體光電轉換單元的工作光線頻譜相匹配;以及負載電路,連接至所述電壓輸出並由其供電。 A wafer having a semiconductor DC transformer structure, comprising: a substrate; at least one semiconductor DC voltage transformation structure formed on the substrate, comprising: a voltage input; a voltage output; at least one semiconductor electro-optical conversion unit And for converting the input electrical energy received on the voltage input into optical energy; and at least one semiconductor photoelectric conversion unit is disposed on the substrate for receiving the light energy from the at least one semiconductor electro-optical conversion unit And converting the received light energy to output electrical energy at the voltage output, wherein the semiconductor electro-optical conversion unit matches a working light spectrum of the semiconductor photoelectric conversion unit; and a load circuit coupled to the The voltage is output and powered by it. 請專利範圍第1項所述的晶片,其特徵在於,還包括:隔離層,其中,所述至少一個半導體電光轉換單元形成在所述隔離層一側,且每個所述半導體電光轉換單元包括電光轉換層,以及所述至少一個半導體光電轉換單元形成在所述隔離層另一側,且每個所述半導體光電轉換單元包括光電轉換層,其中,所述隔離層對所述電光轉換層發出的工作光線透明,所述工作光線以透射方式傳播。 The wafer of claim 1, further comprising: an isolation layer, wherein the at least one semiconductor electro-optical conversion unit is formed on one side of the isolation layer, and each of the semiconductor electro-optical conversion units comprises An electro-optical conversion layer, and the at least one semiconductor photoelectric conversion unit is formed on the other side of the isolation layer, and each of the semiconductor photoelectric conversion units includes a photoelectric conversion layer, wherein the isolation layer emits to the electro-optical conversion layer The working light is transparent, and the working light propagates in a transmitted manner. 如申請專利範圍第1項所述的晶片,其特徵在於,還包括:隔離層,所述隔離層中具有反光結構, 其中,所述至少一個半導體電光轉換單元與所述至少一個半導體光電轉換單元形成在所述隔離層的同一側且呈間隔排布,其中,每個所述半導體電光轉換單元包括電光轉換層,每個所述光電轉換單元包括光電轉換層,所述隔離層對所述電光轉換層發出的工作光線透明,所述反光結構用於將所述工作光線從所述電光轉換層反射到所述光電轉換層上。 The wafer of claim 1, further comprising: an isolation layer having a reflective structure therein, Wherein the at least one semiconductor electro-optical conversion unit and the at least one semiconductor photoelectric conversion unit are formed on the same side of the isolation layer and arranged at intervals, wherein each of the semiconductor electro-optical conversion units comprises an electro-optical conversion layer, each The photoelectric conversion unit includes a photoelectric conversion layer, the isolation layer is transparent to working light emitted by the electro-optical conversion layer, and the reflective structure is configured to reflect the working light from the electro-optical conversion layer to the photoelectric conversion On the floor. 如申請專利範圍第2項或第3項所述的晶片,其特徵在於,所述半導體電光轉換單元、所述隔離層和所述半導體光電轉換單元的材料具有相近似的折射係數。 The wafer according to claim 2, wherein the material of the semiconductor electro-optical conversion unit, the isolation layer and the semiconductor photoelectric conversion unit has a similar refractive index. 如申請專利範圍第2項或第3項所述的晶片,其特徵在於,所述半導體電光轉換單元、所述隔離層和所述半導體光電轉換單元的材料的折射係數遞增。 The wafer according to claim 2, wherein the refractive index of the material of the semiconductor electro-optical conversion unit, the isolation layer, and the semiconductor photoelectric conversion unit is increased. 如申請專利範圍第2項或第3項所述的晶片,其特徵在於,所述半導體電光轉換單元、所述隔離層和所述半導體光電轉換單元中的至少一個具有粗糙化表面、圖形化表面或光子晶體結構。 The wafer of claim 2 or 3, wherein at least one of the semiconductor electro-optic conversion unit, the isolation layer, and the semiconductor photoelectric conversion unit has a roughened surface and a patterned surface. Or photonic crystal structure. 如申請專利範圍第2項或第3項所述的晶片,其特徵在於,所述隔離層材料為固態透明絕緣或半絕緣的Al2O3、Y2O3、Gd2O3、AlN、SiO2、MgO、CaO、Si3N4、BN、金剛石、LiAlO2、LiGaO2、GaAs、SiC、TiO2、ZrO2、SrTiO3、Ga2O3、ZnS、ZnSe、CdTe、SiC、MgAl2O4、LiNbO3、LiTaO3、Y3AI5O12、KNbO3、LiF、MgF2、BaF2、GaF 2 、LaF 3 、BeO、GaP、GaN及稀土氧化物中的至少其中一種。 The wafer of claim 2 or 3, wherein the spacer material is solid transparent or semi-insulating Al 2 O 3 , Y 2 O 3 , Gd 2 O 3 , AlN, SiO 2 , MgO, CaO, Si 3 N 4 , BN, diamond, LiAlO 2 , LiGaO 2 , GaAs, SiC, TiO 2 , ZrO 2 , SrTiO 3 , Ga 2 O 3 , ZnS, ZnSe, CdTe, SiC, MgAl 2 At least one of O 4 , LiNbO 3 , LiTaO 3 , Y 3 AI 5 O 12 , KNbO 3 , LiF, MgF 2 , BaF 2 , GaF 2 , LaF 3 , BeO, GaP, GaN, and rare earth oxide. 如申請專利範圍第7項所述的晶片,其特徵在於,所述電光轉換層的材料為AlGaInP、GaN、InGaN、AlGaInN、ZnO、AlGaInAs、GaAS、InGaAs、InGaAsP、AlGaAs及InGaAsNSb中的至少其中一種。 The wafer according to claim 7, wherein the material of the electro-optical conversion layer is at least one of AlGaInP, GaN, InGaN, AlGaInN, ZnO, AlGaInAs, GaAS, InGaAs, InGaAsP, AlGaAs, and InGaAsNSb. . 如申請專利範圍第8項所述的晶片,其特徵在於,所述光電轉換層的材料為Si、Ge、SiGe、AlGaInP、InGaAs、InGaN、AlGaInN、InGaAsP、GaAs、GaSb、InGaP、InGaAs、InGaAsP、AlGaAs、AlGaP、InAlP、AlGaAsSb及InGaAsNSb中的至少其中一種。 The wafer according to claim 8, wherein the material of the photoelectric conversion layer is Si, Ge, SiGe, AlGaInP, InGaAs, InGaN, AlGaInN, InGaAsP, GaAs, GaSb, InGaP, InGaAs, InGaAsP, At least one of AlGaAs, AlGaP, InAlP, AlGaAsSb, and InGaAsNSb. 如申請專利範圍第9項所述的晶片,其特徵在於,位於所述工作光線傳輸路徑上的電極層的材料為透明導電材料GaAs、GaN、AlGaInP、AlGaInN、AlGaInAs、ITO、SnO2、ZnO及石墨烯中的至少其中一種。 The wafer according to claim 9 is characterized in that the material of the electrode layer located on the working light transmission path is transparent conductive materials GaAs, GaN, AlGaInP, AlGaInN, AlGaInAs, ITO, SnO 2 , ZnO and At least one of graphene. 如申請專利範圍第10項所述的晶片,其特徵在於,所述半導體電光轉換單元之間、所述半導體光電轉換單元之間,或者所述半導體電光轉換單元與所述半導體光電轉換單元之間,填充有透明絕緣介質且所述透明絕緣介質頂部覆蓋反光層;或者,所述半導體電光轉換單元之間、所述半導體光電轉換單元之間,或者所述半導體電光轉換單元與所述半導體光電轉換單元之間,填充有反光絕緣介質。 The wafer according to claim 10, characterized in that between the semiconductor electro-optical conversion units, between the semiconductor photoelectric conversion units, or between the semiconductor electro-optical conversion unit and the semiconductor photoelectric conversion unit Filled with a transparent insulating medium and covering the reflective layer on top of the transparent insulating medium; or between the semiconductor electro-optical conversion units, between the semiconductor photoelectric conversion units, or the semiconductor electro-optical conversion unit and the semiconductor photoelectric conversion The units are filled with a reflective insulating medium. 如申請專利範圍第11項所述的晶片,其特徵在於,還包括:陷光結構,所述陷光結構用於將所述工作光線限制在所述半導體直流變壓結構的內部,減少光損失帶來的能量損耗。 The wafer of claim 11, further comprising: a light trapping structure for limiting the working light to the inside of the semiconductor DC transformer structure to reduce light loss The energy loss brought. 如申請專利範圍第12項所述的晶片,其特徵在於,還包括:一個或多個電源管腳,所述電源管腳與外部電源相連; 片內電源分佈網路,所述片內電源分佈網路與所述電源管腳和所述至少一個半導體直流變壓結構相連;以及電路功能模組,每個所述電路功能模組與至少一個半導體直流變壓結構相連,其中,所述半導體直流變壓結構的輸入端與所述片內電源分佈網路相連,輸出端與所述晶片上需要供電的所述電路功能模組相連。 The wafer of claim 12, further comprising: one or more power pins, wherein the power pins are connected to an external power source; An on-chip power distribution network, the on-chip power distribution network being coupled to the power pin and the at least one semiconductor DC transformer structure; and a circuit function module, each of the circuit function modules and at least one The semiconductor DC voltage transformation structure is connected, wherein an input end of the semiconductor DC voltage transformation structure is connected to the on-chip power distribution network, and an output end is connected to the circuit function module on the wafer that needs to be powered. 如申請專利範圍第13項所述的晶片,其特徵在於,還包括:至少一個調節控制模組,所述調節控制模組與所述至少一個半導體直流變壓結構相連,用於根據所述半導體直流變壓結構的輸出電壓對所述半導體直流變壓結構進行調壓控制。 The wafer of claim 13, further comprising: at least one adjustment control module, the adjustment control module being coupled to the at least one semiconductor DC transformer structure for The output voltage of the DC transformer structure controls the voltage regulation of the semiconductor DC voltage transformation structure. 如申請專利範圍第14項所述的晶片,其特徵在於,所述晶片為片上全集成,所述襯底的材料為Si、SiGe、GaAs、InP、SiC、Al2O3或柔性材料。 The wafer of claim 14, wherein the wafer is fully on-chip, the material of the substrate being Si, SiGe, GaAs, InP, SiC, Al 2 O 3 or a flexible material. 如申請專利範圍第15項所述的晶片,其特徵在於,所述晶片包括多個所述半導體直流變壓結構,其中所述多個所述半導體直流變壓結構共用一個所述半導體電光轉換單元。 The wafer of claim 15 , wherein the wafer comprises a plurality of the semiconductor DC voltage transformation structures, wherein the plurality of the semiconductor DC voltage transformation structures share one of the semiconductor electro-optical conversion units .
TW101142015A 2012-04-24 2012-11-12 Chip with semiconductor dc voltage transformation structure TWI505492B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210123075.XA CN103378086B (en) 2012-04-24 2012-04-24 A kind of chip with semiconductor direct current variable pressure structure

Publications (2)

Publication Number Publication Date
TW201344878A TW201344878A (en) 2013-11-01
TWI505492B true TWI505492B (en) 2015-10-21

Family

ID=49462976

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101142015A TWI505492B (en) 2012-04-24 2012-11-12 Chip with semiconductor dc voltage transformation structure

Country Status (2)

Country Link
CN (1) CN103378086B (en)
TW (1) TWI505492B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020167013A1 (en) * 2001-05-10 2002-11-14 Tatsuya Iwasaki Optoelectronic substrate
CN102005978A (en) * 2010-11-30 2011-04-06 中国工程物理研究院流体物理研究所 Electric energy isolation photovoltaic power unit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI552369B (en) * 2009-09-25 2016-10-01 伊穆諾萊特公司 Up and down conversion systems for improved solar cell performance or other energy conversion
CN102569488B (en) * 2012-01-20 2016-01-27 郭磊 A kind of semiconductor direct current transformer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020167013A1 (en) * 2001-05-10 2002-11-14 Tatsuya Iwasaki Optoelectronic substrate
CN102005978A (en) * 2010-11-30 2011-04-06 中国工程物理研究院流体物理研究所 Electric energy isolation photovoltaic power unit

Also Published As

Publication number Publication date
CN103378086A (en) 2013-10-30
CN103378086B (en) 2016-04-06
TW201344878A (en) 2013-11-01

Similar Documents

Publication Publication Date Title
TWI484625B (en) Semiconductor voltage transformation structure and chip with same
JP5865859B2 (en) Optical coupling device
US8941126B2 (en) Semiconductor electricity converter
CN108780829B (en) Semiconductor device with a plurality of transistors
JP6470904B2 (en) Light emitting module
US9391226B2 (en) Semiconductor DC transformer
CN102569489B (en) A kind of semiconductor direct current transformer
CN102569488B (en) A kind of semiconductor direct current transformer
TWI550844B (en) Semiconductor photoelectric electricity converter
TWI505492B (en) Chip with semiconductor dc voltage transformation structure
US8785950B2 (en) Chip with semiconductor electricity conversion structure
CN103426967B (en) Semiconductor photoelectric/electric energy conversion system
KR102550033B1 (en) Semiconductor device and semiconductor decive package having the same
JP2016066817A (en) Optical coupling device
US20230275075A1 (en) Semiconductor Optocoupler
TWI675522B (en) Light-emitting element
CN110071100B (en) Radiation-emitting device
KR20170084805A (en) A light emitting device package
WO2013159693A1 (en) Group iii-v semiconductor dc transformer and method for forming same
WO2013067805A1 (en) Semiconductor dc transformer
KR20090065631A (en) Powersupply semiconductor device and its manufacturing methods

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees