TWI495908B - Method for fabricating optical filter - Google Patents

Method for fabricating optical filter Download PDF

Info

Publication number
TWI495908B
TWI495908B TW102122399A TW102122399A TWI495908B TW I495908 B TWI495908 B TW I495908B TW 102122399 A TW102122399 A TW 102122399A TW 102122399 A TW102122399 A TW 102122399A TW I495908 B TWI495908 B TW I495908B
Authority
TW
Taiwan
Prior art keywords
refractive index
index material
filter
material layer
substrate
Prior art date
Application number
TW102122399A
Other languages
Chinese (zh)
Other versions
TW201500777A (en
Inventor
Kuolung Huang
Junglieh Tsai
Original Assignee
Apogee Optocom Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apogee Optocom Co Ltd filed Critical Apogee Optocom Co Ltd
Priority to TW102122399A priority Critical patent/TWI495908B/en
Publication of TW201500777A publication Critical patent/TW201500777A/en
Application granted granted Critical
Publication of TWI495908B publication Critical patent/TWI495908B/en

Links

Landscapes

  • Optical Filters (AREA)

Description

濾光片之製造方法Filter manufacturing method

本發明是有關於一種濾光片之製造方法,且特別是有關於一種在高斯光束之高斯半角大於0.5度的情況下,可提高濾光效果的濾光片之製造方法。The present invention relates to a method of manufacturing a filter, and more particularly to a method of manufacturing a filter capable of improving a filtering effect in a case where a Gaussian half angle of a Gaussian beam is greater than 0.5 degrees.

在一般的光通訊系統中,光線會先通過一或多個聚焦鏡的聚焦,使光線趨向理想的平行光,也就是高斯半角接近0度角的高斯光束。接著高斯光束再入射到濾光片中,使高斯光束過濾為具有特定波長範圍的高斯光束。此處所述之特定波長範圍係依據濾光片之設計,使穿透濾光片後之高斯光束的波長多數落在預先設定的範圍。其中特定波長範圍越小,代表高斯光束的波長範圍越精確,這也會使得光通訊品質增加。反之,若是入射濾光片的高斯光束之高斯半角越大時,經濾光片過濾後的高斯光束的特定波長範圍將會變大,如此將降低光通訊的品質。In a typical optical communication system, light is first focused by one or more focusing mirrors to cause the light to illuminate the ideal parallel light, that is, a Gaussian beam with a Gaussian half angle close to 0 degrees. The Gaussian beam is then incident on the filter, filtering the Gaussian beam into a Gaussian beam of a particular wavelength range. The specific wavelength range described herein is based on the design of the filter such that the wavelength of the Gaussian beam after penetrating the filter falls mostly within a predetermined range. The smaller the specific wavelength range, the more accurate the wavelength range representing the Gaussian beam, which also increases the quality of optical communication. Conversely, if the Gaussian half-angle of the Gaussian beam of the incident filter is larger, the specific wavelength range of the Gaussian beam filtered by the filter will become larger, which will reduce the quality of optical communication.

為了達成上述的目的,現在通常有兩種方式來增加光通訊品質。第一種方式是增加濾光片中高、低折射率材料層的層數,以有效過濾出具所需波長範圍的高斯光束。第二種方式是增加聚焦鏡的數目,以使高斯光束的高斯半角越接近0度角。然而,在第一種方式中,當濾光片的層 數越高時,製程難度以及製程成本都會增加。而在第二種方式中,則會增加光通訊系統中聚焦鏡的數量成本。In order to achieve the above objectives, there are usually two ways to increase the quality of optical communication. The first way is to increase the number of layers of the high and low refractive index material layers in the filter to effectively filter out the Gaussian beam with the desired wavelength range. The second way is to increase the number of focusing mirrors so that the Gaussian half angle of the Gaussian beam is closer to the 0 degree angle. However, in the first way, when the layer of the filter The higher the number, the more difficult the process and the cost of the process. In the second mode, the number of focusing mirrors in the optical communication system is increased.

有鑑於此,亟須提供一種濾光片之製造方法,以改善習知濾光片之製造方法的缺陷。In view of the above, it is not necessary to provide a method of manufacturing a filter to improve the defects of the conventional filter manufacturing method.

鑒於以上的問題,本發明之一方面在於提供一種濾光片之製造方法,藉以減少習知濾光片之製造方法所產生的生產成本增加的問題。In view of the above problems, an aspect of the present invention provides a method of manufacturing a filter, which is capable of reducing the problem of an increase in production cost caused by a conventional method of manufacturing a filter.

根據本發明之一實施例,濾光片之製造方法包含提供基板。接著形成濾光腔於基板上。形成濾光腔之步驟中首先形成第一膜堆於基板上,其中第一膜堆包含複數個第一高折射率材料層及複數個第一低折射率材料層,且第一高折射率材料層及第一低折射率材料層交互堆疊。According to an embodiment of the invention, a method of fabricating a filter includes providing a substrate. A filter cavity is then formed on the substrate. Forming a filter cavity in the first step of forming a first film stack on the substrate, wherein the first film stack comprises a plurality of first high refractive index material layers and a plurality of first low refractive index material layers, and the first high refractive index material The layer and the first low refractive index material layer are stacked alternately.

在形成第一膜堆於基板上後,形成空間層於第一膜堆上,並且空間層之折射率大於基板之折射率。接著,在空間層上形成第二膜堆。此第二膜堆包含複數個第二高折射率材料層及複數個第二低折射率材料層,且第二高折射率材料層及第二低折射率材料層交互堆疊。After forming the first film stack on the substrate, a space layer is formed on the first film stack, and the refractive index of the space layer is greater than the refractive index of the substrate. Next, a second film stack is formed on the space layer. The second stack includes a plurality of second high refractive index material layers and a plurality of second low refractive index material layers, and the second high refractive index material layer and the second low refractive index material layer are alternately stacked.

依據本發明之另一實施例,上述之第一高折射率材料層及第二高折射率材料層之折射率係大於基板之折射率。According to another embodiment of the present invention, the first high refractive index material layer and the second high refractive index material layer have a refractive index greater than a refractive index of the substrate.

依據本發明之又一實施例,上述之第一高折射率材料層及第二高折射率材料層之材質係為二氧化鈦(TiO2 )、五氧化二鉭(Ta2 O5 )或五氧化二鈮(Nb2 O5 )。According to still another embodiment of the present invention, the first high refractive index material layer and the second high refractive index material layer are made of titanium dioxide (TiO 2 ), tantalum pentoxide (Ta 2 O 5 ) or pentoxide.铌 (Nb 2 O 5 ).

依據本發明之再一實施例,上述之第一高折射率材料層及第二高折射率材料層之折射率為1.8至2.8。According to still another embodiment of the present invention, the first high refractive index material layer and the second high refractive index material layer have a refractive index of 1.8 to 2.8.

依據本發明之再一實施例,上述之第一低折射率材料層及第二低折射率材料層之折射率係小於基板之折射率。According to still another embodiment of the present invention, the refractive indices of the first low refractive index material layer and the second low refractive index material layer are smaller than the refractive index of the substrate.

依據本發明之再一實施例,上述之第一低折射率材料層及第二低折射率材料層之材質為二氧化矽(SiO2 )。According to still another embodiment of the present invention, the first low refractive index material layer and the second low refractive index material layer are made of cerium oxide (SiO 2 ).

依據本發明之再一實施例,上述之第一低折射率材料層及第二低折射率材料層之折射率為1.3至1.47。According to still another embodiment of the present invention, the first low refractive index material layer and the second low refractive index material layer have a refractive index of 1.3 to 1.47.

依據本發明之再一實施例,上述之空間層之材質為二氧化鈦、五氧化二鉭或五氧化二鈮。According to still another embodiment of the present invention, the material of the space layer is titanium dioxide, antimony pentoxide or antimony pentoxide.

依據本發明之再一實施例,上述之空間層之折射率為1.8至2.8。According to still another embodiment of the present invention, the spatial layer has a refractive index of 1.8 to 2.8.

依據本發明之再一實施例,上述之基板之材質為玻璃或塑膠。According to still another embodiment of the present invention, the substrate is made of glass or plastic.

依據本發明之再一實施例,上述之基板之折射率為1.48至1.69。According to still another embodiment of the present invention, the substrate has a refractive index of 1.48 to 1.69.

因此,本發明之優點之一是在提供一種濾光片之製造方法,其係利用空間層之折射率大於基板之折射率,可使濾光片之濾光腔在相同厚度下,提高濾光片對高斯半角大於0.5度之高斯光束的濾光效果,藉此可減少光通訊系統中聚焦鏡之使用量,並可減少濾光腔之厚度而簡化製程難度。故,運用本發明之方法可大幅降低濾光片之製作成本。Therefore, one of the advantages of the present invention is to provide a method for manufacturing a filter which utilizes a refractive index of a space layer to be larger than a refractive index of a substrate, so that the filter cavity of the filter can be filtered at the same thickness. The filter effect of the Gaussian beam with a Gaussian half angle greater than 0.5 degrees can reduce the use of the focusing mirror in the optical communication system, and can reduce the thickness of the filter cavity and simplify the process. Therefore, the method of the present invention can greatly reduce the manufacturing cost of the filter.

有關本發明的特徵、實作與功效,茲配合圖式作最 佳實施例詳細說明如下。Regarding the features, implementation and efficacy of the present invention, The preferred embodiment is described in detail below.

100‧‧‧方法100‧‧‧ method

110‧‧‧步驟110‧‧‧Steps

120‧‧‧步驟120‧‧‧Steps

第1圖係繪示依照本發明之一實施方式之一種濾光片之製造方法的流程圖。1 is a flow chart showing a method of manufacturing a filter according to an embodiment of the present invention.

第2圖係繪示本發明之實施例之濾光片分別以高斯光束之穿透量取對數做為垂直軸以及以波長做為平行軸之實驗結果圖。Fig. 2 is a graph showing experimental results of the filter of the embodiment of the present invention taking the logarithm of the Gaussian beam as the vertical axis and the wavelength as the parallel axis.

第3圖係繪示比較例之濾光片分別以高斯光束之穿透量取對數做為垂直軸以及以波長做為平行軸之實驗結果圖。Fig. 3 is a graph showing experimental results of the filter of the comparative example taking the logarithm of the Gaussian beam as the vertical axis and the wavelength as the parallel axis.

以下詳細討論本發明之實施例的製造和使用。然而,可以理解的是,實施例提供許多可應用的發明概念,其可實施於各式各樣的特定內容中。所討論之特定實施例僅供說明,並非用以限定本發明之範圍。The making and using of the embodiments of the invention are discussed in detail below. However, it will be appreciated that the embodiments provide many applicable inventive concepts that can be implemented in a wide variety of specific content. The specific embodiments discussed are illustrative only and are not intended to limit the scope of the invention.

請參照第1圖,第1圖係繪示依照本發明之一實施方式之一種濾光片之製造方法的流程圖。在一實施例中,製作濾光片時首先可如方法100之步驟110所述,提供基板。接著,如步驟120所述,在基板上形成濾光腔。在形成濾光腔的步驟120中,可先形成第一膜堆在基板上,接著形成空間層於第一膜堆上,隨後形成第二膜堆在空間層上。Please refer to FIG. 1. FIG. 1 is a flow chart showing a method of manufacturing a filter according to an embodiment of the present invention. In one embodiment, the filter may first be provided as described in step 110 of method 100 when the filter is fabricated. Next, as described in step 120, a filter cavity is formed on the substrate. In the step 120 of forming a filter cavity, a first film stack may be formed on the substrate, followed by a space layer on the first film stack, and then a second film stack on the space layer.

在一實施例中,上述的第一膜堆可包含複數個第 一高折射率材料層及複數個第一低折射率材料層。並且,這些第一高折射率材料層及第一低折射率材料層係以交互堆疊的方式設置。In an embodiment, the first film stack may include a plurality of a high refractive index material layer and a plurality of first low refractive index material layers. Moreover, the first high refractive index material layer and the first low refractive index material layer are disposed in an alternately stacked manner.

另一方面,上述的第二膜堆可包含複數個第二高折射率材料層及複數個第二低折射率材料層。而且,第二高折射率材料層及第二低折射率材料層同樣可以交互堆疊的方式設置。In another aspect, the second film stack can include a plurality of second high refractive index material layers and a plurality of second low refractive index material layers. Moreover, the second high refractive index material layer and the second low refractive index material layer can also be disposed in an alternately stacked manner.

要特別提到的是,在本發明之濾光片之製造方法中,空間層之折射率需大於基板之折射率,以使濾光片之濾光腔在相同厚度下,提高濾光片對高斯半角大於0.5度之高斯光束的濾光效果。如此一來,可減少光通訊系統中聚焦鏡之使用量,並可減少濾光腔的厚度,相關的實驗數據將在後續段落描述。It is particularly mentioned that in the method of fabricating the filter of the present invention, the refractive index of the spatial layer needs to be greater than the refractive index of the substrate, so that the filter cavity of the filter is at the same thickness, and the filter pair is increased. The filtering effect of a Gaussian beam with a Gaussian half angle greater than 0.5 degrees. In this way, the amount of focusing mirror used in the optical communication system can be reduced, and the thickness of the filter cavity can be reduced. The relevant experimental data will be described in the following paragraphs.

首先,針對於濾光片的各個結構進行材質以及功能性上的描述。濾光片包含基板以及濾光腔,其中基板主要是作為承載濾光腔之用途。在一例示中,基板的材質可為玻璃或塑膠。在另一例示中,基板的折射率可為1.48至1.69。First, material and functional descriptions are made for each structure of the filter. The filter comprises a substrate and a filter cavity, wherein the substrate is mainly used for carrying the filter cavity. In an example, the material of the substrate may be glass or plastic. In another illustration, the refractive index of the substrate can range from 1.48 to 1.69.

濾光腔則是包含第一膜堆、空間層以及第二膜堆。在一實施例中,第二膜堆上可再依序堆疊空間層以及類似於第一膜堆或第二膜堆的其他膜堆。亦即,濾光腔可包含複數個膜堆及複數個空間層,並且此些膜堆及空間層係交互堆疊。The filter chamber is comprised of a first membrane stack, a spatial layer, and a second membrane stack. In an embodiment, the space layer and other film stacks similar to the first film stack or the second film stack may be stacked sequentially on the second film stack. That is, the filter cavity may include a plurality of film stacks and a plurality of spatial layers, and the film stacks and the spatial layers are alternately stacked.

第一膜堆、第二膜堆或其他膜堆,可由高折射率 材料層及低折射率材料層間隔排列所形成,且可用來反射特定波長範圍以外的高斯光束。而空間層則是用來與高斯光束達到特定共振頻率,以使特定波長範圍的高斯光束可以通過濾光片。The first film stack, the second film stack or other film stack may be made of a high refractive index The material layer and the low refractive index material layer are formed by an interval arrangement and can be used to reflect a Gaussian beam outside a specific wavelength range. The spatial layer is used to reach a specific resonant frequency with the Gaussian beam so that a Gaussian beam of a specific wavelength range can pass through the filter.

在一實施例中,第一膜堆的第一高折射率材料層與第二膜堆的第二高折射率材料層的材質可為二氧化鈦、五氧化二鉭或五氧化二鈮。在一例示中,第一高折射率材料層及第二高折射率材料層之折射率為1.8至2.8。在另一實施例中,第一低折射率材料層及第二低折射率材料層之材質可為二氧化矽。在另一例示中,第一低折射率材料層及第二低折射率材料層之折射率為1.3至1.47。要特別提到的是,本發明中所提及之高折射率或低折射率係與基板之折射率相比所產生之比較結果,亦即高折射率材料層之折射率大於基板之折射率,低折射率材料層之折射率小於基板之折射率。In an embodiment, the first high refractive index material layer of the first film stack and the second high refractive index material layer of the second film stack may be made of titanium dioxide, tantalum pentoxide or tantalum pentoxide. In one example, the first high refractive index material layer and the second high refractive index material layer have a refractive index of 1.8 to 2.8. In another embodiment, the material of the first low refractive index material layer and the second low refractive index material layer may be cerium oxide. In another illustration, the first low refractive index material layer and the second low refractive index material layer have a refractive index of 1.3 to 1.47. It is particularly mentioned that the high refractive index or low refractive index referred to in the present invention is compared with the refractive index of the substrate, that is, the refractive index of the high refractive index material layer is greater than the refractive index of the substrate. The refractive index of the low refractive index material layer is smaller than the refractive index of the substrate.

在一實施例中,空間層之材質可為二氧化鈦、五氧化二鉭或五氧化二鈮。在一例示中,空間層之折射率為1.8至2.8。In an embodiment, the material of the space layer may be titanium dioxide, tantalum pentoxide or tantalum pentoxide. In one example, the spatial layer has a refractive index of 1.8 to 2.8.

為了要更清楚解釋本發明之濾光片之製造方法可使濾光片之濾光腔在具有相同厚度下,提高濾光片對高斯半角大於0.5度之高斯光束的濾光效果。請參閱後述的實施例以及比較例。In order to more clearly explain the method of manufacturing the filter of the present invention, the filter cavity of the filter can have the same thickness, and the filter effect of the filter on a Gaussian beam having a Gaussian half angle greater than 0.5 degrees can be improved. Please refer to the examples and comparative examples described later.

【實施例】[Examples]

在基板上形成濾光腔,其中濾光腔所形成的排列 方式,以及基板與外界大氣之相對排列關係如下所示:大氣|[(HL)3 (4H)(LH)3 L]5 |基板A filter cavity is formed on the substrate, wherein the arrangement of the filter cavity and the relative arrangement relationship between the substrate and the outside atmosphere are as follows: atmosphere |[(HL) 3 (4H)(LH) 3 L] 5 |substrate

其中,H係表示高折射率材料層,L係表示低折射率材料層,4H係表示空間層。此空間層之折射率大於基板之折射率。另外,在H或L前面若未標係數,則是代表以四分之一波長的厚度分別形成高折射率材料層或低折射率材料層。至於4H中的4則是代表空間層的厚度為高折射率材料層的四倍。此外,上標數字係表示重複排列的次數,例如(HL)3 係表示HLHLHL的排列方式。Here, H represents a high refractive index material layer, L represents a low refractive index material layer, and 4H represents a space layer. The refractive index of this spatial layer is greater than the refractive index of the substrate. Further, if the coefficient is not marked in front of H or L, it means that a high refractive index material layer or a low refractive index material layer is formed by a thickness of a quarter wavelength. As for 4 in 4H, it represents that the thickness of the space layer is four times that of the high refractive index material layer. Further, the superscript number indicates the number of repetitions, for example, (HL) 3 indicates the arrangement of HLHLHL.

【比較例】[Comparative example]

在基板上形成濾光腔,其中濾光腔所形成的排列方式,以及基板與外界大氣之相對排列關係如下所示:大氣|[(HL)2 H(6L)H(LH)2 L]5 |基板A filter cavity is formed on the substrate, wherein the arrangement of the filter cavity and the relative arrangement of the substrate and the outside atmosphere are as follows: atmosphere |[(HL) 2 H(6L)H(LH) 2 L] 5 |Substrate

其中,H係表示高折射率材料層,L係表示低折射率材料層,6L係表示空間層。此空間層之折射率小於基板之折射率。另外,在H或L前面若未標係數,則是代表以四分之一波長的厚度分別形成高折射率材料層或低折射率材料層。至於6L中的6則是代表空間層的厚度為低折射率材料層的六倍。此外,上標數字係表示重複排列的次數,例如(HL)2 係表示HLHL的排列方式。Here, H represents a high refractive index material layer, L represents a low refractive index material layer, and 6L represents a space layer. The refractive index of this spatial layer is less than the refractive index of the substrate. Further, if the coefficient is not marked in front of H or L, it means that a high refractive index material layer or a low refractive index material layer is formed by a thickness of a quarter wavelength. As for 6 in 6L, it represents that the thickness of the space layer is six times that of the low refractive index material layer. Further, the superscript number indicates the number of repetitions, for example, (HL) 2 indicates the arrangement of HLHL.

從實施例與比較例的濾光片觀之,可知其濾光腔厚度相同,但不同點在於所選用的空間層材料不同,實施例之空間層係使用高折射率材料,比較例之空間層則使用低折射率材料。此外,以高斯半角接近0度以及6度之高 斯光束入射實施例以及比較例之濾光片,可得如下表一之結果。From the filter of the embodiment and the comparative example, it is known that the thickness of the filter chamber is the same, but the difference is that the space layer material used is different. The space layer of the embodiment uses a high refractive index material, and the space layer of the comparative example. A low refractive index material is then used. In addition, the Gaussian half angle is close to 0 degrees and 6 degrees. When the light beam was incident on the filters of the examples and the comparative examples, the results shown in Table 1 below were obtained.

請一併參閱上表一以及第2及3圖。第2圖係繪示本發明之實施例之濾光片分別以高斯光束之穿透量取對數做為垂直軸以及以波長做為平行軸之實驗結果圖,第3圖係繪示比較例之濾光片分別以高斯光束之穿透量取對數做為垂直軸以及以波長做為平行軸之實驗結果圖。其中,波長範圍增加寬度係依照第2及3圖中的實驗數據曲線左側及右側討論,例如,「左側(-0.3dB/-3dB)」表示分別以-0.3dB及-3 dB為原點所作之水平線與左側的曲線相交後,所得到對應之波長之差值。亦即,此波長之差值越大時,則表示經濾光片之高斯光束之特定波長範圍越大,也會使光通訊之品質越差。Please refer to Table 1 above and Figures 2 and 3 together. 2 is a graph showing an experimental result of taking a logarithm of a Gaussian beam as a vertical axis and a wavelength as a parallel axis, respectively, in the filter of the embodiment of the present invention, and FIG. 3 is a comparative example. The filter takes the logarithm of the Gaussian beam as the vertical axis and the wavelength as the parallel axis. The increase in the wavelength range is discussed in the left and right sides of the experimental data curves in Figures 2 and 3. For example, "left side (-0.3dB/-3dB)" means that the origin is -0.3dB and -3 dB, respectively. After the horizontal line intersects the curve on the left side, the difference between the corresponding wavelengths is obtained. That is, the larger the difference of the wavelengths, the larger the specific wavelength range of the Gaussian beam passing through the filter, and the worse the quality of the optical communication.

另外,上表一中的「比較」係指以同一濾光片對不同高斯半角的高斯光束過濾後,關於波長範圍寬度以及波長範圍增加寬度各數值的比較結果。如先前技術中所述,雖然高斯光束的高斯半角越大時,將會使得濾光效果 越低,此可從表一中的比較得知。然而,若是將本發明之實施例與比較例相比,可發現實施例在波長範圍增加寬度的比例相對於比較例的比例低,亦即空間層之折射率高於基板之折射率時,可減少波長範圍增加寬度的增加量。以另一方面而言,若是比較例欲達到如同實施例之濾光效果時,就必須增加濾光片的濾光腔厚度,或是降低高斯半角的角度,才能達到如實施例之濾光效果,而這樣將會增加濾光片的生產成本。由此可見,當濾光片之空間層的折射率高於基板之折射率時,不僅具有空間層使高斯光束達到特定共振頻率,以使特定波長範圍的高斯光束可以通過濾光片之效果外,還可提高濾光片對高斯半角大於0.5度之高斯光束的濾光效果,因此可減少光通訊系統中聚焦鏡之使用量與降低濾光片的濾光腔的厚度。In addition, "comparison" in the above Table 1 refers to a comparison result of increasing the width values of the wavelength range width and the wavelength range after filtering the Gaussian beams of different Gaussian half angles by the same filter. As described in the prior art, although the Gaussian half angle of the Gaussian beam is larger, the filtering effect will be achieved. The lower, this can be seen from the comparison in Table 1. However, if the embodiment of the present invention is compared with the comparative example, it can be found that the ratio of the width of the embodiment in the wavelength range is lower than that of the comparative example, that is, when the refractive index of the spatial layer is higher than the refractive index of the substrate, Reduce the increase in the width of the wavelength range. On the other hand, if the comparative example wants to achieve the filtering effect as in the embodiment, it is necessary to increase the filter cavity thickness of the filter or reduce the angle of the Gaussian half angle to achieve the filter effect as in the embodiment. This will increase the production cost of the filter. It can be seen that when the refractive index of the spatial layer of the filter is higher than the refractive index of the substrate, not only does the spatial layer cause the Gaussian beam to reach a specific resonant frequency, so that the Gaussian beam of a specific wavelength range can pass the effect of the filter. It can also improve the filtering effect of the filter on a Gaussian beam with a Gaussian half angle greater than 0.5 degrees, thereby reducing the amount of the focusing mirror used in the optical communication system and reducing the thickness of the filter cavity of the filter.

要特別提到的是,當高斯光束之高斯半角越大時,本發明之實施例與比較例的差距將越大,也就是比較例需使用越多的聚焦鏡以使高斯半角越接近0度,或是比較例之濾光鏡之濾光腔需越厚,才能得到類似實施例的濾光效果。It is particularly mentioned that when the Gaussian half angle of the Gaussian beam is larger, the difference between the embodiment of the present invention and the comparative example will be larger, that is, the more focusing mirrors used in the comparative example, the closer the Gaussian half angle is to 0 degree. The thicker the filter chamber of the filter of the comparative example, the more the filter effect of the similar embodiment can be obtained.

綜言之,由上述本發明實施方式可知,應用本發明濾光片之製造方法,所得之濾光片可在相同濾光腔厚度的情況下,減少因高斯光束之高斯半角所造成波長範圍增加寬度的增加量。In summary, it can be seen from the above embodiments of the present invention that, by applying the filter manufacturing method of the present invention, the obtained filter can reduce the wavelength range caused by the Gaussian half angle of the Gaussian beam in the same filter cavity thickness. The amount of increase in width.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,在本發明所屬技術領域中任何具有通常知 識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any of the technical fields in the art to which the present invention pertains is generally known. The scope of protection of the present invention is defined by the scope of the appended claims, and the scope of the invention is defined by the scope of the appended claims.

100‧‧‧方法100‧‧‧ method

110‧‧‧步驟110‧‧‧Steps

120‧‧‧步驟120‧‧‧Steps

Claims (10)

一種濾光片之製造方法,包含:提供一基板;以及形成一濾光腔於該基板上,其中形成該濾光腔之步驟包含:形成一第一膜堆於該基板上,其中該第一膜堆包含複數個第一高折射率材料層及複數個第一低折射率材料層,且該些第一高折射率材料層及該些第一低折射率材料層交互堆疊;形成一空間層於該第一膜堆上,其中該空間層之折射率大於該基板之折射率,該空間層之材質為五氧化二鈮;以及形成一第二膜堆於該空間層上,其中該第二膜堆包含複數個第二高折射率材料層及複數個第二低折射率材料層,且該些第二高折射率材料層及該些第二低折射率材料層交互堆疊。 A method of manufacturing a filter, comprising: providing a substrate; and forming a filter cavity on the substrate, wherein the step of forming the filter cavity comprises: forming a first film stack on the substrate, wherein the first The film stack includes a plurality of first high refractive index material layers and a plurality of first low refractive index material layers, and the first high refractive index material layers and the first low refractive index material layers are alternately stacked; forming a spatial layer On the first film stack, wherein the spatial layer has a refractive index greater than a refractive index of the substrate, the space layer is made of tantalum pentoxide; and a second film is formed on the space layer, wherein the second layer The film stack includes a plurality of second high refractive index material layers and a plurality of second low refractive index material layers, and the second high refractive index material layers and the second low refractive index material layers are alternately stacked. 如申請專利範圍第1項所述之濾光片之製造方法,其中該第一高折射率材料層及該第二高折射率材料層之折射率係大於該基板之折射率。 The method of manufacturing a filter according to claim 1, wherein the first high refractive index material layer and the second high refractive index material layer have a refractive index greater than a refractive index of the substrate. 如申請專利範圍第1項所述之濾光片之製造方法,其中該第一高折射率材料層及該第二高折射率材料層之材質係為二氧化鈦、五氧化二鉭或五氧化二鈮。 The method for manufacturing a filter according to claim 1, wherein the first high refractive index material layer and the second high refractive index material layer are made of titanium dioxide, tantalum pentoxide or tantalum pentoxide. . 如申請專利範圍第1項所述之濾光片之製造方法,其中該第一高折射率材料層及該第二高折射率材料層之折射率為1.8至2.8。 The method of manufacturing a filter according to claim 1, wherein the first high refractive index material layer and the second high refractive index material layer have a refractive index of 1.8 to 2.8. 如申請專利範圍第1項所述之濾光片之製造方法,其中該第一低折射率材料層及該第二低折射率材料層之折射率係小於該基板之折射率。 The method of manufacturing a filter according to claim 1, wherein the first low refractive index material layer and the second low refractive index material layer have a refractive index smaller than a refractive index of the substrate. 如申請專利範圍第1項所述之濾光片之製造方法,其中該第一低折射率材料層及該第二低折射率材料層之材質為二氧化矽。 The method for producing a filter according to claim 1, wherein the first low refractive index material layer and the second low refractive index material layer are made of cerium oxide. 如申請專利範圍第1項所述之濾光片之製造方法,其中該第一低折射率材料層及該第二低折射率材料層之折射率為1.3至1.47。 The method of manufacturing a filter according to claim 1, wherein the first low refractive index material layer and the second low refractive index material layer have a refractive index of 1.3 to 1.47. 如申請專利範圍第1項所述之濾光片之製造方法,其中該空間層之折射率為1.8至2.8。 The method of producing a filter according to claim 1, wherein the spatial layer has a refractive index of 1.8 to 2.8. 如申請專利範圍第1項所述之濾光片之製造方法,其中該基板之材質為玻璃或塑膠。 The method for manufacturing a filter according to claim 1, wherein the substrate is made of glass or plastic. 如申請專利範圍第1項所述之濾光片之製造方 法,其中該基板之折射率為1.48至1.69。The manufacturer of the filter described in claim 1 of the patent application scope The method wherein the substrate has a refractive index of 1.48 to 1.69.
TW102122399A 2013-06-24 2013-06-24 Method for fabricating optical filter TWI495908B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102122399A TWI495908B (en) 2013-06-24 2013-06-24 Method for fabricating optical filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102122399A TWI495908B (en) 2013-06-24 2013-06-24 Method for fabricating optical filter

Publications (2)

Publication Number Publication Date
TW201500777A TW201500777A (en) 2015-01-01
TWI495908B true TWI495908B (en) 2015-08-11

Family

ID=52717899

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102122399A TWI495908B (en) 2013-06-24 2013-06-24 Method for fabricating optical filter

Country Status (1)

Country Link
TW (1) TWI495908B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW455703B (en) * 1999-01-29 2001-09-21 Secr Defence Optical filters
TW200604582A (en) * 2004-07-21 2006-02-01 Asia Optical Co Inc CWDM filter with four channels
TW201250301A (en) * 2011-06-03 2012-12-16 Asia Optical Co Inc Optical filter apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW455703B (en) * 1999-01-29 2001-09-21 Secr Defence Optical filters
TW200604582A (en) * 2004-07-21 2006-02-01 Asia Optical Co Inc CWDM filter with four channels
TW201250301A (en) * 2011-06-03 2012-12-16 Asia Optical Co Inc Optical filter apparatus

Also Published As

Publication number Publication date
TW201500777A (en) 2015-01-01

Similar Documents

Publication Publication Date Title
TWI500978B (en) Infrared filter
JP4404568B2 (en) Infrared cut filter and manufacturing method thereof
JP6202785B2 (en) Antireflection film, optical system, optical apparatus, and method for forming antireflection film
CN203433138U (en) Low warping degree infrared cutoff filter
CN102809772B (en) Infrared cut-off filter with blue glass
JP2015004919A (en) Anti-reflection film and optical element having the same
WO2005116696A1 (en) Reflection preventing film
CN202177716U (en) Optical filter used for high pixel image system
KR20220002320A (en) Near-infrared band-pass optical filter and optical sensing system
TW202009529A (en) Infrared bandpass filter
TWI611199B (en) Optical lens and imaging lens with ir light filtering
CN107430226B (en) Optical filter and imaging device comprising same
JP5072395B2 (en) Antireflection film and optical component having the same
TWI495908B (en) Method for fabricating optical filter
JP5888124B2 (en) Multilayer filter and method for manufacturing multilayer filter
CN106932848B (en) Infrared isolation filter and wide-angle and long-focus double-camera mobile phone adopting infrared isolation filter
CN113139279A (en) Silicon-based liquid crystal panel and design method and preparation method thereof
CN102998724A (en) Lens and lens module with same
JP7493918B2 (en) Optical member with anti-reflection film and method for producing same
JP5084603B2 (en) Polarizer and liquid crystal projector
JP2003043202A (en) Antireflection film and optical parts
JPWO2016136262A1 (en) Antireflection film, method for producing the same, and optical member
CN100529801C (en) Film layer structure of optical lens
KR20190049277A (en) Optical antireflection film and manufacturing method of the same
JP6108871B2 (en) Antireflection film, optical system, and optical apparatus