TWI495242B - 雙向直流轉換器 - Google Patents

雙向直流轉換器 Download PDF

Info

Publication number
TWI495242B
TWI495242B TW102136613A TW102136613A TWI495242B TW I495242 B TWI495242 B TW I495242B TW 102136613 A TW102136613 A TW 102136613A TW 102136613 A TW102136613 A TW 102136613A TW I495242 B TWI495242 B TW I495242B
Authority
TW
Taiwan
Prior art keywords
switch
group
bidirectional
voltage
capacitor
Prior art date
Application number
TW102136613A
Other languages
English (en)
Other versions
TW201515374A (zh
Inventor
Ching Tsai Pan
Chen Feng Chuang
Original Assignee
Nat Univ Tsing Hua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Tsing Hua filed Critical Nat Univ Tsing Hua
Priority to TW102136613A priority Critical patent/TWI495242B/zh
Priority to US14/137,628 priority patent/US20150097546A1/en
Publication of TW201515374A publication Critical patent/TW201515374A/zh
Application granted granted Critical
Publication of TWI495242B publication Critical patent/TWI495242B/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Description

雙向直流轉換器
本發明係有關一種直流/直流轉換器,特別是一種交錯式雙向高效率高轉換比之直流/直流轉換器。
傳統交錯式升降壓轉換器(Boost/Buck Converter),其電壓轉換比過低且功率開關元件所受電壓應力太大,因此,傳統交錯式升降壓轉換器內之功率開關元件之導通損耗及切換損耗過大,整體轉換效率不佳。另外,當傳統交錯式升降壓轉換器操作在輕載時,流經電感之電流會發生不均流之現象,進而導致升降壓轉換器之輸入/輸出電流漣波增大。
為了同時解決以上兩點問題,目前常用的解決方式為,以輸入/輸出並接的方式組成多相交錯式升降壓轉換器,透過輸出多相分流大幅減少傳導損失,並透過交錯式切換策略,降低輸入/輸出電流漣波。雖然如此可解決漣波問題,但仍然存在功率開關元件在切換時的電壓應力太大、升降壓比不足、及電感電流不均流等問題。為了使電感元件之傳導損失降至最小,必須透過額外之感測電路及控制手段使各相之電感電流平均值皆為相同,因此大幅增加控制元件之成本及控制的複雜度。
本發明提供一種雙向直流轉換電路,包括:一電壓源,提供一輸入電壓;一儲能元件組,耦接至電壓源,接收輸入電壓;一開關組,包含一第一開關以及一第二開關,第一開關以及第二開關分別耦接至儲能元件組;一操作開關組,耦接至開關組,包含第一操作開關、第二操作開關、第三操作開關、以及第四操作開關;一阻隔電容組,分別耦接至開關組以及操作開關組;以及一輸出電容;其中,第一操作開關以及第二操作開關與第一開關為互補操作,第三操作開關與第四操作開關與第二開關為互補操作。其運用電容疊加與電容分壓概念提高轉換電壓升降壓比,並可進一步降低開關跨壓。故電路可採用較低開關跨壓之元件,以減少切換損失及導通損失,增加轉換器之轉換效率。
10‧‧‧直流轉換器
12‧‧‧開關組
14‧‧‧操作開關組(含阻隔電容)
16‧‧‧第一電壓源
18‧‧‧第二電壓源
20、22‧‧‧負載
圖1所示為根據本發明一實施例之交錯式雙向直流轉換器之電路示意圖。
圖2(a)所示為根據本發明一實施例之交錯式雙向直流轉換器10在升壓模式下於工作模式一及工作模式三之等效電路。
圖2(b)所示為根據本發明一實施例之交錯式雙向直流轉換器10在升壓模式下於工作模式二之等效電路。
圖2(c)所示為根據本發明一實施例之交錯式雙向直流轉換器10在升壓模式下於工作模式四之等效電路。
圖3所示為交錯式雙向直流轉換器在升壓模式下,各個開關S1 、S2 、以及各個操作開關S1a 、S1b 、S2a 、以及S2b 在不同模式下之開關切換訊號,開關跨壓,二極體跨壓及電感電流波形。
圖4(a)所示為根據本發明一實施例之交錯式雙向直流轉換器在降壓模式下於工作模式一之等效電路。
圖4(b)所示為根據本發明一實施例之交錯式雙向直流轉換器在降壓模式下於工作模式二及工作模式四之之等效電路。
圖4(c)所示為根據本發明一實施例之交錯式雙向直流轉換器在降壓模式下於工作模式三之等效電路。
圖5所示為交錯式雙向直流轉換器在降壓模式下,各個開關S1 、S2 、以及各個操作開關S1a 、s1b 、S2a 、以及S2b 在不同模式下之開關切換訊號,開關跨壓,二極體跨壓及電感電流波形。
以下將對本發明的實施例給出詳細的說明。雖然本發明將結合實施例進行闡述,但應理解這並非意指將本發明限定於這些實施例。相反,本發明意在涵蓋由後附申請專利範圍所界定的本發明精神和範圍內所定義的各種變化、修改和均等物。
此外,在以下對本發明的詳細描述中,為了提供針對本發明的完全的理解,提供了大量的具體細節。然而,於本技術領域中具有通常知識者將理解,沒有這些具體細節,本發明同樣可以實施。在另外的一些實例中,對於大家熟知的方法、程序、元件和電路未作詳細描述,以便於凸顯本發明之主旨。
圖1所示為根據本發明一實施例之交錯式雙向直流轉換器10之電路示意圖。直流轉換器10包含一開關組12,包含一第一開關S1 以及一第二開關S2 、一操作開關組14,包含四個操作開關S1a 、S1b 、 S2a 、S2b 以及兩個阻隔電容CA ,CB 、兩個電感L1 以及L2 ,其中,電感L1 及L2 之一端耦接至一第一電壓源16,電感L1 及L2 之另一端則分別與該第一開關S1 以及該第二開關S2 耦接。直流轉換器10還包含兩個串聯耦接之電容C1 以及C2 ,其中,串聯耦接之電容C1 以及C2 與一第二電壓源18並聯耦接。首先為方便清楚說明本創作之工作原理起見,以下假設所有電路元件均為理想,而電容之電容值足夠大使其電壓維持近似於一定值。
圖2(a)~圖2(c)所示為根據本發明一實施例之交錯式雙向直流轉換器10在升壓模式下於不同工作模式下之等效電路。圖3所示為交錯式雙向直流轉換器10在升壓模式下,各個開關S1 、S2 、以及各個操作開關S1a 、S1b 、S2a 、以及S2b 在不同模式下之開關切換訊號。圖2(a)~圖2(c)將結合圖3進行說明。
在一實施例中,操作開關S1a 和S1b (S2a 和S2b )與開關S1 (S2 )為互補操作,亦即,兩相之間的交錯相位移為180°。在穩定狀態下,當交錯式雙向直流轉換器10操作為升壓轉換器時,第一電壓源16做為輸入電壓,輸出側之第二電壓源18則由一負載20取代。而輸出側之電容C1 以及C2 則作為輸出電容。負載20耦接至電容C1 以及C2 。在進入工作模式一之前,開關S1a 和S1b 截止,電感電流IL1 自然分流流過開關S1a 和S1b 之本體二極體(Body Diode),而電感電流IL2 流過開關S2
當進入工作模式一,在時間t0 時,如圖2(a)所示,開關S1 導通,先前流過S1a 和S1b 之本體二極體之電流,全部流入開關S1 。此時開關S1 及S2 皆導通,操作開關S1a 、S1b 、S2a 、與S2b 全部截止。此模式下,第一電壓源16對電感L1 和L2 儲能,由輸出電容C1 和C2 提供能量至輸出側之負載20。 操作開關S1a 及S2a 上之跨壓分別箝位於電容電壓VCA 及VCB 、操作開關S1b 及S2b 開關上之跨壓則分別箝位於VC2 -VCB 及VC1 -VCA 。此時,電感電流IL1 和IL2 繼續增加。接著,進入工作模式二。
如圖2(b)所示,在時間t1 時,進入工作模式二,開關S2 截止,操作開關S2a 與S2b 上之本體二極體自然導通。經過極小的延遲時間後,操作開關S2a 與S2b 導通,對開關S2a 與S2b 而言,有零電壓切換效果。從圖2(b)中可知,電感L2 之部分能量結合電容CA 之能量被釋放至輸出電容C1 和負載20。同時,電感L2 之部分能量釋放儲存至一阻隔電容CB 。在工作模式二下,輸出電容C1 上之電壓VC1 為VCA 與VCB 之相加總和。此時,電感電流IL1 繼續增加,電感電流IL2 則線性減少。接著,進入工作模式三。
如圖2(a)所示,在時間t2 時,進入工作模式三,操作開關S2a 與S2b 截止。經過極小的延遲時間後,開關S2 導通。先前流過操作開關S2a 和S2b 之本體二極體之電流,全部流進開關S2 。工作模式三之等效電路與圖2(a)相同,工作原理亦與工作模式一相同,在此不再贅述。最後,進入工作模式四。
如圖2(c)所示,在時間t3 時,進入工作模式四,開關S1 截止,操作開關S1a 與S1b 之本體二極體導通。經過極小的延遲時間後,操作開關S1a 與S1b 導通,對開關S1a 與S1b 而言,有零電壓切換效果。從圖2(c)中可知,電感L1 之部分能量結合電容CB 能量釋放至輸出電容C2 和負載20。同時,電感L1 之部分能量釋放儲存至一阻隔電容CA 。在工作模式四下,輸出電容C2 上之電壓VC2 為VCA 與VCB 之相加總和。此時,電感電流IL2 繼續增加,電感電流IL1 則線性減少。
圖4(a)~圖4(c)所示為根據本發明一實施例之交錯式雙向直流轉換器10在降壓模式下於不同工作模式下之等效電路。圖5所示為交錯式雙向直流轉換器10在降壓模式下,各個開關S1 、S2 、以及各個操作開關S1a 、S1b 、S2a 、以及S2b 在不同模式下之開關切換訊號。圖4(a)~圖4(c)將結合圖5進行說明。
在一實施例中,操作開關S1a 和S1b (S2a 和S2b )與開關S1 (S2 )互補操作,亦即,兩相之間的交錯相位移為180°。在穩定狀態下,當交錯式雙向直流轉換器10操作為降壓轉換器時,第二電壓源18做為輸入電壓,輸出側之第一電壓源16則由一負載22並聯一輸出電容Co耦接至電感L1 以及L2 。在進入工作模式一之前,開關S2 截止,電感電流IL1 流過開關S1 ,電感電流IL2 自然流過開關S2 之本體二極體。
當進入工作模式一,在時間t0 時,如圖4(a)所示,操作開關S2a 和S2b 導通,先前流過S2 之本體二極體之電流,則流入開關S1 和操作開關S2a 。從圖4(a)可知,電感電流IL1 經由開關S1 流入輸出電容Co 和負載22。此模式下,電感電流IL2 由二個電流迴路組合而成,電流迴路一為輸入電容C1 對電感L2 和阻隔電容CA 儲能,並同時將能量送至負載22。電流迴路二為阻隔電容CB 對電感L2 儲能,並同時將能量送至負載22。由圖5(a)可知,由於操作開關S2a 、S2b 和開關S1 導通,因此,電容C1上之VC1 電壓為VCA 與VCB 相加總和。操作開關S1a 及S1b 上之跨壓分別箝位於電容電壓VC1 及VC2 。開關S2 上之跨壓則箝位於電容電壓VCB 。此時,電感電流IL2 繼續增加,電感電流IL1 則線性減少。接著,進入工作模式二。
如圖4(b)所示,在t1 時,進入工作模式二,操作開關S2a 和S2b 截止,開關S2 之本體二極體導通。經過極小的延遲時間後,開關S2 導通,對開關S2 而言,有零電壓切換效果。此時,電感電流IL1 及IL2 分別經由開關S1 和S2 流入輸出電容Co 和負載22。在工作模式二,操作開關S1a 及S2a 上之跨壓分別箝位於電容電壓VCA 及VCB 、操作開關S1b 及S2b 上之跨壓則分別箝位於VC2 -VCB 及VC1 -VCA 電壓。此時,電感電流IL1 和IL2 線性減少。接著,進入工作模式三。
如圖4(c)所示,在時間t2 時,進入工作模式三,開關S1 截止,電感電流IL1 流進開關S1 上之本體二極體。經過極小的延遲時間後,操作開關S1a 和S1b 導通。先前流過開關S1 之本體二極體之電流,流進開關S2 。由圖4(c)可知,電感電流IL2 經由開關S2 流入輸出電容Co 和負載22。此模式下,電感電流IL1 由二個電流迴路組合而成,電流迴路一為輸入電容C2 對電感L1 和阻隔電容CB 儲能,並同時將能量送至負載22。電流迴路二為阻隔電容CA 對電感L1 儲能,並同時將能量送至負載22。由於操作開關S1a 和S1b 導通,此時電容C2上之電壓VC2 為VCA 與VCB 相加總和。操作開關S2b 及S2a 上之跨壓則個別箝位於電容電壓VC1 及VCB 、開關S1 上之跨壓則箝位於電容電壓VCA 。此時,電感電流IL1 繼續增加,電感電流IL2 則線性減少。最後,進入工作模式四。
如圖4(b)所示,在t3 時,進入工作模式四。操作開關S1a 和S1b 截止,開關S1之本體二極體導通。經過極小的延遲時間後,開關S1 導通,對開關S1 而言,有零電壓切換效果。工作模式四之等效電路與圖4(b)相同,工作原理亦與工作模式二相同,在此不再贅述。
綜上所述,在一實施例中,在升壓模式下,高壓側電壓在工 作週期(0.5<D<1)下可得到4*VL /(1-D)倍之升壓。在降壓模式下,低壓側電壓在工作週期(0<D<0.5)下可得到D*VH /4倍之降壓,其轉換過程中因交錯式技術,可得較低輸入電流漣波及較低輸出電壓漣波效果。基於電容倍壓及分壓原理,直流/直流轉換器之電容式切換電路其主要目的,除了將能量儲存在阻隔電容以增加電壓轉換比外,又可以分擔主動開關電壓應力。因此,本實施例之電路擁有低開關跨壓特性,電路實作時可採用較低開關跨壓之元件,以減少切換損失及導通損失,增加轉換器之轉換效率。
另外,本發明之電路具有主動分流特性而不需要額外輔助電路或複雜控制方法,主要為內建電容式切換電路具有電荷能量均衡於交錯式輸入/輸出電感電路上,故在各分路電感上電流可以達到主動均流特性,如此可減少導通損失增加轉換器之轉換效率。
表2所示為根據本發明一實施例之交錯式雙向直流轉換器 在降壓模式下,與傳統降壓直流轉換器之特性比較,其中,D為責任週期。
本案揭露一種內容簡單且實際有效之雙向直流轉換器,以六開關、兩電容、以及兩個電感構成一種雙向升降壓轉換電路,可有效提升直流轉換器之效能、升降壓比、低元件耐壓及使用壽命並降低系統成本。
上文具體實施方式和附圖僅為本發明之常用實施例。顯然,在不脫離權利要求書所界定的本發明精神和發明範圍的前提下可以有各種增補、修改和替換。本領域技術人員應該理解,本發明在實際應用中可根據具體的環境和工作要求在不背離發明準則的前提下在形式、結構、佈局、比例、材料、元素、元件及其它方面有所變化。因此,在此披露之實施例僅用於說明而非限制,本發明之範圍由後附權利要求及其合法等同物界定,而不限於此前之描述。
10‧‧‧直流轉換器
12‧‧‧開關組
14‧‧‧操作開關組(含阻隔電容)
16‧‧‧第一電壓源
18‧‧‧第二電壓源

Claims (8)

  1. 一種雙向直流轉換電路,包括:一電壓源,提供一輸入電壓;一儲能元件組,耦接至該電壓源,接收該輸入電壓;一開關組,包含一第一開關以及一第二開關,該第一開關以及該第二開關分別耦接至該儲能元件組;一操作開關組,耦接至該開關組,包含一第一操作開關、一第二操作開關、一第三操作開關、以及一第四操作開關;一阻隔電容組,分別耦接至該開關組以及該操作開關組;以及一輸出電容,接收來自該儲能元件組以及該輸入電壓之能量並對一負載供電;其中,該第一操作開關以及該第二操作開關與該第一開關為互補操作,該第三操作開關與該第四操作開關與該第二開關為互補操作。
  2. 如申請專利範圍第1項的雙向直流轉換電路,其中,該第一操作開關以及該第二操作開關與該第一開關之間的一交錯相位移為180°。
  3. 如申請專利範圍第1項的雙向直流轉換電路,其中,該儲能元件組包含一電容組以及一電感組。
  4. 如申請專利範圍第3項的雙向直流轉換電路,其中,當該雙向直流轉換電路操作在一升壓模式時,該電容組與該負載耦接,該電感組提供所儲存之能量,控制該操作開關組,讓該阻 隔電容組上之電壓產生疊加效果傳送至該電容組,並對該負載供電。
  5. 如申請專利範圍第3項的雙向直流轉換電路,其中,當該雙向直流轉換電路操作在一降壓模式時,該電容組與該電壓源耦接,該電感組耦接至該負載以及一輸出電容,控制該操作開關組,讓該阻隔電容組上之電壓產生分壓效果傳送給該電感組,再將能量傳送至該輸出電容,進而對該負載供電。
  6. 如申請專利範圍第1項的雙向直流轉換電路,其中,來自該儲能元件組之能量可儲存於該阻隔電容組,以增加電壓轉換比。
  7. 如申請專利範圍第1項的雙向直流轉換電路,其中,該雙向直流轉換電路在一升壓模式下,該負載在一工作週期介於0.5至1之間之條件下可得到4*VL /(1-D)倍之升壓,其中,該VL 為該電壓源之電壓大小。
  8. 如申請專利範圍第1項的雙向直流轉換電路,其中,該雙向直流轉換電路在一在降壓模式下,該負載在一工作週期介於0至0.5之間之條件下可得到D*VH /4倍之降壓,其中,該VH 為該電壓源之電壓大小。
TW102136613A 2013-10-09 2013-10-09 雙向直流轉換器 TWI495242B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW102136613A TWI495242B (zh) 2013-10-09 2013-10-09 雙向直流轉換器
US14/137,628 US20150097546A1 (en) 2013-10-09 2013-12-20 Bidirectional dc-dc converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102136613A TWI495242B (zh) 2013-10-09 2013-10-09 雙向直流轉換器

Publications (2)

Publication Number Publication Date
TW201515374A TW201515374A (zh) 2015-04-16
TWI495242B true TWI495242B (zh) 2015-08-01

Family

ID=52776436

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102136613A TWI495242B (zh) 2013-10-09 2013-10-09 雙向直流轉換器

Country Status (2)

Country Link
US (1) US20150097546A1 (zh)
TW (1) TWI495242B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI581552B (zh) * 2015-11-27 2017-05-01 國立臺灣科技大學 升壓轉換裝置
US11404966B2 (en) 2020-07-02 2022-08-02 Delta Electronics, Inc. Isolated multi-phase DC/DC converter with reduced quantity of blocking capacitors

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104283417B (zh) * 2013-07-12 2017-06-27 华硕电脑股份有限公司 多相降压直流转换器
US9564806B2 (en) * 2013-09-25 2017-02-07 Cree, Inc. Boost converter with reduced switching loss and methods of operating the same
US10075007B2 (en) 2014-09-02 2018-09-11 Apple Inc. Multi-phase battery charging with boost bypass
US10097017B2 (en) * 2015-06-24 2018-10-09 Apple Inc. Systems and methods for bidirectional two-port battery charging with boost functionality
EP3335305B1 (en) * 2015-08-11 2018-12-12 Koninklijke Philips N.V. Converter circuit for reducing a nominal capacitor voltage
US9973099B2 (en) 2015-08-26 2018-05-15 Futurewei Technologies, Inc. AC/DC converters with wider voltage regulation range
KR101734210B1 (ko) * 2015-10-29 2017-05-11 포항공과대학교 산학협력단 양방향 직류-직류 컨버터
TW201720040A (zh) * 2015-11-26 2017-06-01 Yi-Hong Liao 無橋式交直流轉換器
US20180041120A1 (en) * 2016-08-03 2018-02-08 Schneider Electric It Corporation High step down dc/dc converter
US10778026B2 (en) 2016-09-23 2020-09-15 Apple Inc. Multi-phase buck-boost charger
US10270368B2 (en) * 2016-12-02 2019-04-23 Lawrence Livermore National Security, Llc Bi-directional, transformerless voltage system
CN110611424B (zh) 2017-02-28 2021-10-26 华为技术有限公司 电压转换器及其控制方法和电压转换系统
TWI625922B (zh) * 2017-04-12 2018-06-01 國立中山大學 高升降壓比之直流-直流轉換器
KR101987238B1 (ko) * 2017-06-15 2019-06-11 한국과학기술원 플라잉 커패시터를 이용한 승압/강압형 직류-직류 컨버터 및 이의 제어 방법
CN107395010B (zh) * 2017-06-20 2019-04-23 天津大学 用于储能系统交错并联开关电容型宽增益双向直流变换器
US10122256B1 (en) * 2017-07-13 2018-11-06 Infineon Technologies Austria Ag Method and apparatus for zero-current switching control in switched-capacitor converters
US10680512B2 (en) 2017-07-19 2020-06-09 Infineon Technologies Austria Ag Switched-capacitor converters with capacitor pre-charging
CN107482910B (zh) * 2017-09-15 2019-07-09 天津大学 双向开关电容直流变换器
US10224803B1 (en) 2017-12-20 2019-03-05 Infineon Technologies Austria Ag Switched capacitor converter with compensation inductor
US10554128B2 (en) * 2018-01-05 2020-02-04 Futurewei Technologies, Inc. Multi-level boost converter
CN110034674B (zh) * 2018-01-12 2020-03-31 山东大学 一种高增益双向三相dc-dc变换器及控制方法
CN110912406B (zh) * 2019-11-19 2023-01-17 中国船舶重工集团公司第七一九研究所 一种宽范围高频直流变换装置的控制方法
CN111293884B (zh) * 2020-03-25 2021-01-15 西安交通大学 一种面向能源应用的非隔离双向直流变换器
CN111682757B (zh) * 2020-05-21 2021-11-19 西安交通大学 一种非隔离高降压增益的dc-dc变换器
CN111682752B (zh) * 2020-05-21 2021-09-03 西安交通大学 一种非变压器的隔离型大降压比dc-dc转换器
TWI740562B (zh) * 2020-07-02 2021-09-21 崑山科技大學 雙向電壓轉換器
US11394302B2 (en) 2020-08-10 2022-07-19 Terminal Power LLC DC-DC auto-converter module
WO2022241035A1 (en) * 2021-05-12 2022-11-17 The Regents Of The University Of California Multi-phase hybrid power converter architecture with large conversion ratios
CN113659835B (zh) * 2021-07-30 2023-03-07 山东大学 电容自稳压低开关电压应力高增益直流变换器及控制方法
TWI819586B (zh) * 2022-04-29 2023-10-21 亞源科技股份有限公司 具電壓箝制之全橋相移轉換器
CN115664211B (zh) * 2022-12-14 2023-04-07 惠州市乐亿通科技有限公司 Dc/dc变换器及电源装置
CN117277810A (zh) * 2023-11-22 2023-12-22 宁德时代新能源科技股份有限公司 电压变换器及其控制方法、装置及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6784644B2 (en) * 2001-02-22 2004-08-31 Virginia Tech Intellectual Properties, Inc. Multiphase clamp coupled-buck converter and magnetic integration
TW201240302A (en) * 2011-03-31 2012-10-01 Nat Univ Tsing Hua High boost ratio DC converter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6437999B1 (en) * 2001-05-12 2002-08-20 Technical Witts, Inc. Power electronic circuits with ripple current cancellation
JP3874247B2 (ja) * 2001-12-25 2007-01-31 株式会社ルネサステクノロジ 半導体集積回路装置
US8102678B2 (en) * 2008-05-21 2012-01-24 Flextronics Ap, Llc High power factor isolated buck-type power factor correction converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6784644B2 (en) * 2001-02-22 2004-08-31 Virginia Tech Intellectual Properties, Inc. Multiphase clamp coupled-buck converter and magnetic integration
TW201240302A (en) * 2011-03-31 2012-10-01 Nat Univ Tsing Hua High boost ratio DC converter

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
C. T. Pan, C. F Chuang , and C. C. Chu , " A transformer-less interleaved four-phase current-fed converter with new voltage multiplier topology," Future Energy Electronics Conference (IFEEC), 2013 1st International, pp. 187–193, 3-6 Nov. 2013 *
W. Li, Y. Zhao, J. Wu, and X. He, "Interleaved high step-up converter with winding-cross-coupled inductors and voltage multiplier cells," IEEE Trans. Power Electron., vol. 27, no. 1, pp. 133–143, Jan. 2012 *
W. Li, Y. Zhao, Y. Deng, and X. He, "Interleaved converter with voltage multiplier cell for high step-up and high efficiency conversion," IEEE Trans. Power Electron., vol. 25, no. 9, pp. 2397–2408, Sep. 2010. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI581552B (zh) * 2015-11-27 2017-05-01 國立臺灣科技大學 升壓轉換裝置
US11404966B2 (en) 2020-07-02 2022-08-02 Delta Electronics, Inc. Isolated multi-phase DC/DC converter with reduced quantity of blocking capacitors

Also Published As

Publication number Publication date
TW201515374A (zh) 2015-04-16
US20150097546A1 (en) 2015-04-09

Similar Documents

Publication Publication Date Title
TWI495242B (zh) 雙向直流轉換器
TWI495244B (zh) 直流雙向電源轉換系統及其電路
TWI489762B (zh) High efficiency AC - DC voltage conversion circuit
TWI511435B (zh) AC - DC power converter
JP2010268676A (ja) 高圧入力電圧応用に適した段階昇圧/段階降圧型力率補正dc−dcコンバータ付き電子安定器
US9036386B2 (en) Interleaved two-stage power factor correction system
CN103457506B (zh) 一种宽输入单级双向升降压逆变器
Fang et al. Zero ripple single stage AC-DC LED driver with unity power factor
CN106787775A (zh) 一种双向直流转换器及其控制方法
TWI489754B (zh) 可逆型多輸入交錯式直流/直流轉換器
Hossain et al. Input switched single phase high performance bridgeless AC-DC Zeta converter
TWI575857B (zh) 升壓型直流轉換器
TW201807945A (zh) 電源轉換系統及其操作方法
CN109309448A (zh) 一种宽输入宽输出Cuk DC-DC变换器
Broday et al. A novel 5-switch tapped-inductor multi-state bidirectional DC-DC converter
Seol et al. Multiple-output step-up/down switching DC-DC converter with vestigial current control
Sun et al. A novel topology of high voltage and high power bidirectional ZCS DC-DC converter based on serial capacitors
Priya et al. Analysis of multidevice interleaved boost converter for high power applications
CN104956575A (zh) Dc-dc变换器
TWI568156B (zh) 降壓型直流轉換器
Mishima et al. A new family of soft switching PWM non-isolated DC-DC converters with Active auxiliary Edge-Resonant Cell
CN209184482U (zh) 一种宽输入宽输出Cuk DC-DC变换器
TWI545879B (zh) Parallel input / parallel output isolated DC / DC converters for wind power generation systems
Akter et al. Performance Analysis of a High Power Quality Single Phase AC-DC Buck Boost Converter
Venugopalan et al. Integrated dual output buck boost converter for industrial application

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees