TWI495161B - Light-emitting diode - Google Patents

Light-emitting diode Download PDF

Info

Publication number
TWI495161B
TWI495161B TW097150970A TW97150970A TWI495161B TW I495161 B TWI495161 B TW I495161B TW 097150970 A TW097150970 A TW 097150970A TW 97150970 A TW97150970 A TW 97150970A TW I495161 B TWI495161 B TW I495161B
Authority
TW
Taiwan
Prior art keywords
light
semiconductor layer
emitting diode
carbon nanotube
electrode
Prior art date
Application number
TW097150970A
Other languages
Chinese (zh)
Other versions
TW201025666A (en
Inventor
Qun-Qing Li
Kai-Li Jiang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW097150970A priority Critical patent/TWI495161B/en
Publication of TW201025666A publication Critical patent/TW201025666A/en
Application granted granted Critical
Publication of TWI495161B publication Critical patent/TWI495161B/en

Links

Description

發光二極體 Light-emitting diode

本發明涉及一種發光二極體,尤其涉及一種基於奈米碳管之發光二極體。 The invention relates to a light-emitting diode, in particular to a light-emitting diode based on a carbon nanotube.

由氮化鎵半導體材料製成之高效藍光、綠光與白光發光二極體具有壽命長、節能、綠色環保等顯著特點,已被廣泛應用於大螢幕彩色顯示、汽車照明、交通信號、多媒體顯示與光通訊等領域,特別於照明領域具有廣闊之發展潛力。 High-efficiency blue, green and white light-emitting diodes made of gallium nitride semiconductor materials have longevity, energy saving, green environmental protection and other remarkable features, and have been widely used in large screen color display, automobile lighting, traffic signals, multimedia display. In the field of optical communication, especially in the field of lighting, it has broad potential for development.

先前之發光二極體通常包括N-半導體層、P-半導體層、設置於N-半導體層與P-半導體層之間之活性層、設置於P-半導體層之P型電極(通常為透明電極)以及設置於N-半導體層之N型電極。發光二極體處於工作狀態時,於P-半導體層與N-半導體層分別施加正、負電壓,這樣,存在於P-半導體層中之空穴與存在於N-半導體層中之電子在活性層中發生複合而產生光,該光透過透明電極從發光二極體中射出。 The prior light-emitting diode generally includes an N-semiconductor layer, a P-semiconductor layer, an active layer disposed between the N-semiconductor layer and the P-semiconductor layer, and a P-type electrode (usually a transparent electrode) disposed on the P-semiconductor layer. And an N-type electrode disposed on the N-semiconductor layer. When the light-emitting diode is in operation, positive and negative voltages are applied to the P-semiconductor layer and the N-semiconductor layer, respectively, so that holes existing in the P-semiconductor layer and electrons existing in the N-semiconductor layer are active. Recombination occurs in the layer to generate light which is emitted from the light-emitting diode through the transparent electrode.

然,先前之發光二極體光取出效率(光取出效率通常指活性層中所產生之光波從發光二極體內部釋放出之效率)較低,其主要原因如下:其一,由於半導體之折射率大於空氣折射率,來自活性層之光波於半導體與空氣介面處發生全反射,從而大部分光波被 限制於發光二極體內部,直至被發光二極體內之材料完全吸收。其二,發光二極體之工作電流容易被局限於P型電極之下而且其橫向分散距離大,電流分散不當,導致了發光二極體光取出效率低。光取出效率低導致發光二極體內部產生大量熱量,又因發光二極體之結構及材料的限制,使得發光二極體內部產生之熱量較難散發出去,從而使得半導體材料之性能發生變化,降低了發光二極體之使用壽命,進而影響發光二極體之大規模應用。 However, the light-emitting efficiency of the previous light-emitting diode (the light extraction efficiency generally refers to the efficiency of the light wave generated in the active layer being released from the inside of the light-emitting diode) is low, and the main reasons are as follows: First, due to the refraction of the semiconductor The rate is greater than the refractive index of the air, and the light from the active layer is totally reflected at the interface between the semiconductor and the air, so that most of the light waves are It is limited to the inside of the light-emitting diode until it is completely absorbed by the material in the light-emitting diode. Second, the operating current of the light-emitting diode is easily limited to the P-type electrode and its lateral dispersion distance is large, and the current is improperly dispersed, resulting in low light extraction efficiency of the light-emitting diode. The low light extraction efficiency causes a large amount of heat to be generated inside the light-emitting diode, and the heat generated inside the light-emitting diode is hard to be dissipated due to the limitation of the structure and material of the light-emitting diode, so that the performance of the semiconductor material changes. The service life of the light-emitting diode is reduced, which in turn affects the large-scale application of the light-emitting diode.

為解決上述問題,人們藉由各種手段來提高發光二極體之光取出效率,如,粗化半導體層表面、光子循環方法及增加反射層等,惟,以上方法於不同程度上破壞半導體層之晶體結構;而且,其光取出效率提高有限。為此,R.H.Horng等人研究了一種設置有透明導電層之發光二極體來提高發光二極體之光取出效率,具體請參見標題為“GaN-based light-emitting diodes with indium tin oxide textureing window layers using natural lithography”R.H.Horng et al.,Applied Physics Letters,vol.86,221101(2005)之文獻。 In order to solve the above problems, various means are used to improve the light extraction efficiency of the light emitting diode, such as roughening the surface of the semiconductor layer, photon recycling method, and adding a reflective layer, etc., but the above method destroys the semiconductor layer to varying degrees. Crystal structure; moreover, its light extraction efficiency is limited. To this end, RH Horng et al. studied a light-emitting diode provided with a transparent conductive layer to improve the light extraction efficiency of the light-emitting diode. For details, please refer to the title "GaN-based light-emitting diodes with indium tin oxide textureing window". Layers using natural lithography" RHHorng et al., Applied Physics Letters, vol. 86, 221101 (2005).

所述文獻揭示了一種發光二極體10,請參閱圖1。該發光二極體10從下向上依次設置一基底110、一緩衝層120、一N型半導體層132、一發光層134、一P型半導體層136、一透明接觸層140;該發光二極體10還包括一透明導電層150、第一電極142及第二電極144。所述第一電極142設置於N型半導體層132之表面。所述透明導電層150及第二電極144設置於所述透明接觸層140之表面,且共同覆蓋所述透明接觸層140。其中,上述緩衝層120與N型半導 體層132之間設置一無摻雜氮化鎵層122,該無摻雜氮化鎵層122亦起到緩衝之作用,有利於生長N型半導體,減少N型半導體晶格失配;該無摻雜氮化鎵層122為一可選擇結構。所述透明接觸層140完全覆蓋P型半導體層136,該透明接觸層140具有電連接第二電極144與P型半導體層136之作用。所述透明導電層150與所述透明接觸層140間形成歐姆接觸,並且可以使所述發光二極體10產生之光從該層射出。 The document discloses a light-emitting diode 10, see Figure 1. The light-emitting diode 10 is provided with a substrate 110, a buffer layer 120, an N-type semiconductor layer 132, a light-emitting layer 134, a P-type semiconductor layer 136, and a transparent contact layer 140 in this order from the bottom to the top; The 10 further includes a transparent conductive layer 150, a first electrode 142, and a second electrode 144. The first electrode 142 is disposed on a surface of the N-type semiconductor layer 132. The transparent conductive layer 150 and the second electrode 144 are disposed on the surface of the transparent contact layer 140 and collectively cover the transparent contact layer 140. Wherein, the buffer layer 120 and the N-type semi-conductive An undoped gallium nitride layer 122 is disposed between the bulk layers 132, and the undoped gallium nitride layer 122 also serves as a buffer for facilitating the growth of the N-type semiconductor and reducing the lattice mismatch of the N-type semiconductor; The hetero-GaN layer 122 is an optional structure. The transparent contact layer 140 completely covers the P-type semiconductor layer 136, and the transparent contact layer 140 has a function of electrically connecting the second electrode 144 and the P-type semiconductor layer 136. The transparent conductive layer 150 forms an ohmic contact with the transparent contact layer 140, and the light generated by the light emitting diode 10 can be emitted from the layer.

雖然所述透明導電層150為網狀結構,該網狀結構可以使工作電流橫向分佈均勻,可增加光之取出效率。惟,由於該透明導電層150採用氧化銦錫(ITO)材料,ITO材料具有機械性能不夠好及阻值分佈不均勻等缺點。此外,ITO材料於潮濕之空氣中透明度會逐漸下降。另外,所述透明接觸層140完全覆蓋P型半導體層136,該透明接觸層140可以吸收部分光。因此,該發光二極體10之光取出效率仍較低,而且性能不穩定。 Although the transparent conductive layer 150 is a mesh structure, the mesh structure can make the lateral distribution of the working current uniform, and the light extraction efficiency can be increased. However, since the transparent conductive layer 150 is made of indium tin oxide (ITO) material, the ITO material has disadvantages such as insufficient mechanical properties and uneven distribution of resistance values. In addition, the transparency of the ITO material gradually decreases in moist air. In addition, the transparent contact layer 140 completely covers the P-type semiconductor layer 136, and the transparent contact layer 140 can absorb part of the light. Therefore, the light extraction efficiency of the light-emitting diode 10 is still low, and the performance is unstable.

有鑒於此,提供一種發光二極體,以解決發光二極體光取出效率低之問題實為必要。 In view of the above, it is necessary to provide a light-emitting diode to solve the problem of low light extraction efficiency of the light-emitting diode.

一種發光二極體,其包括:一基底;一有源層,該有源層設置於所述基底之表面,該有源層包括一第一半導體層、一第二半導體層以及一活性層,該活性層設置於第一半導體層與第二半導體層之間;一第一電極,該第一電極與第一半導體層;一第二電極,該第二電極與第二半導體層電連接;以及至少一透明導電層,該至少一透明導電層覆蓋至少部分所述有源層,並與所述第一電極 及第二電極中之至少一個電極電連接。其中,所述透明導電層包括一奈米碳管結構。 A light emitting diode comprising: a substrate; an active layer disposed on a surface of the substrate, the active layer comprising a first semiconductor layer, a second semiconductor layer and an active layer The active layer is disposed between the first semiconductor layer and the second semiconductor layer; a first electrode, the first electrode and the first semiconductor layer; a second electrode, the second electrode is electrically connected to the second semiconductor layer; At least one transparent conductive layer covering at least a portion of the active layer and the first electrode And at least one of the second electrodes is electrically connected. Wherein, the transparent conductive layer comprises a carbon nanotube structure.

與先前技術相比,所述之發光二極體採用奈米碳管結構作為透明導電層具有以下優點:其一,由於奈米碳管具有優異之導電性能,則由奈米碳管組成之奈米碳管結構亦具有優異之導電性能,因此,採用上述奈米碳管結構作透明導電層,可以相應地提高發光二極體之有效工作電流,減少電流損失。其二,由於奈米碳管於潮濕條件下具有良好之透明度,故採用奈米碳管結構作為發光二極體之透明導電層,可以使該發光二極體具有較好之透明度,避免發光二極體之光取出效率降低,進而使得該發光二極體之性能較穩定。 Compared with the prior art, the use of the carbon nanotube structure as the transparent conductive layer has the following advantages: First, since the carbon nanotube has excellent electrical conductivity, the nanometer is composed of a carbon nanotube. The carbon tube structure also has excellent electrical conductivity. Therefore, by using the above-mentioned carbon nanotube structure as a transparent conductive layer, the effective working current of the light-emitting diode can be correspondingly improved, and current loss can be reduced. Secondly, since the carbon nanotubes have good transparency under humid conditions, the carbon nanotube structure is used as the transparent conductive layer of the light-emitting diode, so that the light-emitting diode can have better transparency and avoid the light-emitting two. The light extraction efficiency of the polar body is lowered, and the performance of the light-emitting diode is further stabilized.

20、30、40‧‧‧發光二極體 20, 30, 40‧‧‧Lighting diodes

210、310、410‧‧‧基底 210, 310, 410‧‧‧ base

220、320、420‧‧‧緩衝層 220, 320, 420‧‧‧ buffer layer

242、342、442‧‧‧第一電極 242, 342, 442‧‧‧ first electrode

244、344、444‧‧‧第二電極 244, 344, 444‧‧‧ second electrode

250、350‧‧‧透明導電層 250, 350‧‧‧ transparent conductive layer

230、330、430‧‧‧有源層 230, 330, 430‧‧‧ active layer

240、340‧‧‧固定電極 240, 340‧‧‧ fixed electrode

232、332、432‧‧‧第一半導體層 232, 332, 432‧‧‧ first semiconductor layer

234、334、434‧‧‧活性層 234, 334, 434‧‧‧ active layer

236、336、436‧‧‧第二半導體層 236, 336, 436‧‧‧ second semiconductor layer

262、362、462‧‧‧第一表面 262, 362, 462‧‧‧ first surface

264、364、464‧‧‧第二表面 264, 364, 464‧‧‧ second surface

450‧‧‧第一透明導電層 450‧‧‧First transparent conductive layer

452‧‧‧第二透明導電層 452‧‧‧Second transparent conductive layer

446‧‧‧第一固定電極 446‧‧‧First fixed electrode

440‧‧‧第二固定電極 440‧‧‧Second fixed electrode

圖1係先前發光二極體之結構剖視圖。 1 is a cross-sectional view showing the structure of a conventional light-emitting diode.

圖2係本發明第一實施例發光二極體立體分解示意圖。 2 is a perspective exploded view of a light-emitting diode according to a first embodiment of the present invention.

圖3係本發明第一實施例發光二極體之結構示意圖。 3 is a schematic structural view of a light-emitting diode according to a first embodiment of the present invention.

圖4係本發明第一實施例中作為透明導電層之奈米碳管膜之掃描電鏡照片。 Fig. 4 is a scanning electron micrograph of a carbon nanotube film as a transparent conductive layer in the first embodiment of the present invention.

圖5係本發明第二實施例發光二極體之結構示意圖。 FIG. 5 is a schematic structural view of a light emitting diode according to a second embodiment of the present invention.

圖6係本發明第三實施例發光二極體之結構示意圖。 Fig. 6 is a schematic view showing the structure of a light-emitting diode according to a third embodiment of the present invention.

下面將結合附圖對本發明提供之發光二極體作進一步之詳細說明。 The illuminating diode provided by the present invention will be further described in detail below with reference to the accompanying drawings.

請一併參閱圖2與圖3,本發明第一實施例提供一種發光二極體20,其主要包括一基底210、一緩衝層220、一有源層230、一第一電極242、一第二電極244、一透明導電層250及一固定電極240。所述基底210、緩衝層220、有源層230、固定電極240、透明導電層250以及第二電極244依次堆疊設置。所述第一電極242設置於有源層230之表面。所述第二電極244與所述透明導電層250電連接。 Referring to FIG. 2 and FIG. 3 together, a first embodiment of the present invention provides a light emitting diode 20, which mainly includes a substrate 210, a buffer layer 220, an active layer 230, a first electrode 242, and a first The second electrode 244, a transparent conductive layer 250 and a fixed electrode 240. The substrate 210, the buffer layer 220, the active layer 230, the fixed electrode 240, the transparent conductive layer 250, and the second electrode 244 are sequentially stacked. The first electrode 242 is disposed on a surface of the active layer 230. The second electrode 244 is electrically connected to the transparent conductive layer 250.

所述基底210具有支撐之作用。所述基底210之厚度為300-500微米,其材料為藍寶石、砷化鎵、磷化銦、偏鋁酸鋰、鎵酸鋰、氮化鋁、矽、碳化矽及氮化矽等材料中之一種。本實施例中,所述基底210之厚度為400微米,其材料為藍寶石。 The substrate 210 has a supporting role. The substrate 210 has a thickness of 300-500 micrometers and is made of materials such as sapphire, gallium arsenide, indium phosphide, lithium metaaluminate, lithium gallate, aluminum nitride, tantalum, tantalum carbide and tantalum nitride. One. In this embodiment, the substrate 210 has a thickness of 400 microns and the material is sapphire.

所述緩衝層220設置於基底210之表面。所述緩衝層220有利於提高材料之外延生長品質,減少晶格失配。所述緩衝層220之厚度為10-300奈米,其材料為氮化鎵或氮化鋁等。本實施例中,所述緩衝層220之厚度為20-50奈米,材料為氮化鎵。所述緩衝層220為可選擇結構。 The buffer layer 220 is disposed on a surface of the substrate 210. The buffer layer 220 is advantageous for improving the growth quality of the material and reducing the lattice mismatch. The buffer layer 220 has a thickness of 10-300 nm, and the material thereof is gallium nitride or aluminum nitride. In this embodiment, the buffer layer 220 has a thickness of 20-50 nm, and the material is gallium nitride. The buffer layer 220 is an optional structure.

所述有源層230設置於所述緩衝層220相背於基底210之表面,即所述緩衝層220位於基底210與有源層230之間。可以理解,當沒有緩衝層220時,該有源層230直接設置於所述基底210之表面。所述有源層230包括依次堆疊設置之第一半導體層232、活性層234及第二半導體層236,其中,該活性層234設置於第一半導體層232與第二半導體層236之間。 The active layer 230 is disposed on the surface of the buffer layer 220 opposite to the substrate 210 , that is, the buffer layer 220 is located between the substrate 210 and the active layer 230 . It can be understood that when there is no buffer layer 220, the active layer 230 is directly disposed on the surface of the substrate 210. The active layer 230 includes a first semiconductor layer 232, an active layer 234, and a second semiconductor layer 236. The active layer 234 is disposed between the first semiconductor layer 232 and the second semiconductor layer 236.

具體地,所述第一半導體層232靠近基底210設置。可以理解,當沒有緩衝層220時,所述第一半導體層232直接設置於基底210之表面。所述有源層230為一臺階結構,所述活性層234與第二半導體層236依次設置於所述第一半導體層232之表面。所述第一半導體層232包括一第一表面262與一第二表面264,該第一半導體層232之第一表面262與第二表面264具有不同之高度,所述活性層234與第二半導體層236依次設置於第一表面262。可以理解,所述第一半導體層232之第一表面262與第二表面264可位於同一平面,此時,所述活性層234與第二半導體層236依次設置於所述第一半導體層232之部分表面。 Specifically, the first semiconductor layer 232 is disposed adjacent to the substrate 210. It can be understood that when there is no buffer layer 220, the first semiconductor layer 232 is directly disposed on the surface of the substrate 210. The active layer 230 is a stepped structure, and the active layer 234 and the second semiconductor layer 236 are sequentially disposed on the surface of the first semiconductor layer 232. The first semiconductor layer 232 includes a first surface 262 and a second surface 264. The first surface 262 and the second surface 264 of the first semiconductor layer 232 have different heights. The active layer 234 and the second semiconductor Layers 236 are disposed in sequence on first surface 262. It can be understood that the first surface 262 and the second surface 264 of the first semiconductor layer 232 can be located in the same plane. In this case, the active layer 234 and the second semiconductor layer 236 are sequentially disposed on the first semiconductor layer 232. Part of the surface.

所述第一半導體層232、第二半導體層236為N型半導體層或P型半導體層兩種類型。具體地,當該第一半導體層232為N型半導體層時,第二半導體層236為P型半導體層;當該第一半導體層232為P型半導體層時,第二半導體層236為N型半導體層。所述N-半導體層用於提供電子,所述P-半導體層起到提供空穴之作用。N型半導體層之材料為N-氮化鎵、N-砷化鎵及N-磷化銅等材料中之一種。P型半導體層之材料為P-氮化鎵、P-砷化鎵及P-磷化銅等材料中之一種。所述第一半導體層232之厚度為1-5微米。所述第二半導體層236之厚度為0.1-3微米。本實施例中,所述第一半導體層232為N型半導體層,該第一半導體層232之厚度為2微米,材料為N-氮化鎵。所述第二半導體層236為P型半導體層,該第二半導體層236之厚度為0.3微米,材料為P-氮化鎵。 The first semiconductor layer 232 and the second semiconductor layer 236 are of an N-type semiconductor layer or a P-type semiconductor layer. Specifically, when the first semiconductor layer 232 is an N-type semiconductor layer, the second semiconductor layer 236 is a P-type semiconductor layer; when the first semiconductor layer 232 is a P-type semiconductor layer, the second semiconductor layer 236 is an N-type Semiconductor layer. The N-semiconductor layer serves to provide electrons, and the P-semiconductor layer functions to provide holes. The material of the N-type semiconductor layer is one of materials such as N-gallium nitride, N-GaAs and N-phosphorus. The material of the P-type semiconductor layer is one of materials such as P-gallium nitride, P-GaAs and P-phosphorus phosphide. The first semiconductor layer 232 has a thickness of 1-5 microns. The second semiconductor layer 236 has a thickness of 0.1 to 3 μm. In this embodiment, the first semiconductor layer 232 is an N-type semiconductor layer, and the first semiconductor layer 232 has a thickness of 2 μm and the material is N-GaN. The second semiconductor layer 236 is a P-type semiconductor layer having a thickness of 0.3 μm and a material of P-GaN.

所述活性層234為包含一層或多層量子阱層之量子阱結構 (Quantum Well)。所述活性層234用於提供光子。所述活性層234之材料為氮化鎵、氮化銦鎵、氮化銦鎵鋁、砷化稼、砷化鋁稼、磷化銦鎵、磷化銦砷及砷化銦鎵中之一種或其任意組合,其厚度為0.01-0.6微米。本實施例中,所述活性層234為兩層結構,包括一氮化銦鎵層及一氮化鎵層;其厚度為0.3微米。 The active layer 234 is a quantum well structure including one or more quantum well layers (Quantum Well). The active layer 234 is used to provide photons. The material of the active layer 234 is one of gallium nitride, indium gallium nitride, indium gallium aluminum nitride, arsenic oxide, aluminum arsenide, indium gallium phosphide, indium phosphide, and indium gallium arsenide. Any combination thereof has a thickness of 0.01 to 0.6 μm. In this embodiment, the active layer 234 has a two-layer structure including an indium gallium nitride layer and a gallium nitride layer; the thickness of the layer is 0.3 micrometers.

所述固定電極240設置於有源層230之表面,且覆蓋至少部分該有源層230。具體地,所述固定電極240設置於所述第二半導體層236之表面,並與所述透明導電層250至少部分接觸。本實施例中,所述固定電極240設置於第二半導體層236與透明導電層250之間。所述固定電極240至少為一層結構,其材料包括鈦、鋁、鎳及金中之一種或其任意組合。本實施例中,所述固定電極240為兩層結構,包括一厚度為150埃之鎳層,另一厚度為1000埃之金層。所述固定電極240之設置既有利於增強所述透明導電層250與第二半導體層236之附著力,又利於所述第二電極244、透明導電層250與第二半導體層236電連接。所述固定電極240為可選擇之結構。 The fixed electrode 240 is disposed on a surface of the active layer 230 and covers at least a portion of the active layer 230. Specifically, the fixed electrode 240 is disposed on a surface of the second semiconductor layer 236 and at least partially in contact with the transparent conductive layer 250. In this embodiment, the fixed electrode 240 is disposed between the second semiconductor layer 236 and the transparent conductive layer 250. The fixed electrode 240 is at least one layer structure, and the material thereof comprises one of titanium, aluminum, nickel and gold or any combination thereof. In this embodiment, the fixed electrode 240 has a two-layer structure including a nickel layer having a thickness of 150 angstroms and a gold layer having a thickness of 1000 angstroms. The arrangement of the fixed electrode 240 is advantageous for enhancing the adhesion between the transparent conductive layer 250 and the second semiconductor layer 236, and facilitating the electrical connection between the second electrode 244 and the transparent conductive layer 250 and the second semiconductor layer 236. The fixed electrode 240 is of an alternative construction.

所述第一電極242、所述第二電極244分別與有源層230電連接。具體地,所述第一電極242與所述第一半導體層232電連接。所述第二電極244與所述第二半導體層236電連接。所述第一電極242、第二電極244可以為N型電極或P型電極兩種極性。所述第一電極242、第二電極244之極性分別與第一半導體層232、第二半導體層236之極性相同。所述第一電極242、第二電極244至少為一層結構,它們之厚度為0.01-2微米。所述第一電極242、第二電 極244之材料包括鈦、鋁、鎳及金中的一種或其任意組合。本實施例中,所述第一電極242為N型電極,該第一電極242為兩層結構,包括一厚度為150埃之鈦層及一厚度為2000埃之金層。所述第二電極244為P型電極,該第二電極238為兩層結構,包括一厚度為150埃之鎳層及一厚度為1000埃之金層。 The first electrode 242 and the second electrode 244 are electrically connected to the active layer 230, respectively. Specifically, the first electrode 242 is electrically connected to the first semiconductor layer 232. The second electrode 244 is electrically connected to the second semiconductor layer 236. The first electrode 242 and the second electrode 244 may have two polarities of an N-type electrode or a P-type electrode. The polarities of the first electrode 242 and the second electrode 244 are the same as the polarities of the first semiconductor layer 232 and the second semiconductor layer 236, respectively. The first electrode 242 and the second electrode 244 are at least one layer structure and have a thickness of 0.01 to 2 micrometers. The first electrode 242 and the second electricity The material of the pole 244 includes one of titanium, aluminum, nickel, and gold, or any combination thereof. In this embodiment, the first electrode 242 is an N-type electrode, and the first electrode 242 has a two-layer structure including a titanium layer having a thickness of 150 angstroms and a gold layer having a thickness of 2000 angstroms. The second electrode 244 is a P-type electrode, and the second electrode 238 has a two-layer structure including a nickel layer having a thickness of 150 angstroms and a gold layer having a thickness of 1000 angstroms.

所述透明導電層250設置於第二電極244與第二半導體層236之間,並覆蓋至少部分第二半導體層236之表面。所述透明導電層250包括一奈米碳管結構。所述奈米碳管結構包括至少一奈米碳管膜、多個奈米碳管線狀結構或其組合。所述奈米碳管膜中之奈米碳管有序排列或無序排列。所述有序排列係指奈米碳管有規則排列。所述無序排列係指奈米碳管無規則排列。所述奈米碳管膜包括奈米碳管拉膜、奈米碳管碾壓膜、絮化膜及長奈米碳管膜等中之一種。所述多個奈米碳管線狀結構相互平行或交叉設置。所述奈米碳管線狀結構包括至少一奈米碳管線,該奈米碳管線包括非扭轉奈米碳管線或奈米碳管絞線。 The transparent conductive layer 250 is disposed between the second electrode 244 and the second semiconductor layer 236 and covers at least a portion of the surface of the second semiconductor layer 236. The transparent conductive layer 250 includes a carbon nanotube structure. The carbon nanotube structure includes at least one carbon nanotube film, a plurality of nanocarbon line structures, or a combination thereof. The carbon nanotubes in the carbon nanotube film are ordered or disorderly arranged. The ordered arrangement means that the carbon nanotubes are regularly arranged. The disordered arrangement refers to a random arrangement of carbon nanotubes. The carbon nanotube membrane comprises one of a carbon nanotube membrane, a carbon nanotube membrane, a flocculation membrane, and a long carbon nanotube membrane. The plurality of nanocarbon line-like structures are disposed in parallel or intersecting each other. The nanocarbon line-like structure includes at least one nanocarbon line including a non-twisted nano carbon line or a carbon nanotube strand.

請參閱圖4,所述奈米碳管膜為奈米碳管拉膜。所述奈米碳管膜包括多個擇優取向排列之奈米碳管。所述奈米碳管藉由凡德瓦爾力首尾相連。具體地,所述奈米碳管膜包括多個連續且定向排列之奈米碳管片段,該多個奈米碳管片段藉由凡德瓦爾力首尾相連。每一奈米碳管片段包括多個相互平行之奈米碳管,該多個相互平行之奈米碳管藉由凡德瓦爾力緊密結合。該奈米碳管片段具有任意之長度、厚度、均勻性及形狀。所述奈米碳管膜可採用直接拉伸一奈米碳管陣列之方式獲得,其中,該奈米碳管膜中之奈米 碳管排列方向與拉伸方向相同。所述奈米碳管膜之寬度與奈米碳管陣列所生長之基底之尺寸有關,該奈米碳管膜之長度不限,可根據實際需求制得。進一步地,所述奈米碳管結構包括至少兩個重疊設置之奈米碳管膜,相鄰兩層奈米碳管膜中之奈米碳管之間具有一交叉角度α,且0°≦α≦90°。所述奈米碳管結構及其製備方法請參閱范守善等人於2007年2月9日申請的、2008年8月13日公開的、公開號為CN101239712A、標題為“奈米碳管薄膜結構及其製備方法”之大陸專利申請。 Referring to FIG. 4, the carbon nanotube film is a carbon nanotube film. The carbon nanotube film comprises a plurality of carbon nanotubes arranged in a preferred orientation. The carbon nanotubes are connected end to end by Van der Valli. Specifically, the carbon nanotube film comprises a plurality of continuous and aligned carbon nanotube segments, the plurality of carbon nanotube segments being connected end to end by Van der Waals force. Each of the carbon nanotube segments includes a plurality of carbon nanotubes that are parallel to each other, and the plurality of mutually parallel carbon nanotubes are tightly coupled by a van der Waals force. The carbon nanotube segments have any length, thickness, uniformity, and shape. The carbon nanotube film can be obtained by directly stretching an array of carbon nanotubes, wherein the nano tube in the carbon nanotube film The carbon tubes are arranged in the same direction as the stretching direction. The width of the carbon nanotube film is related to the size of the substrate on which the carbon nanotube array is grown. The length of the carbon nanotube film is not limited and can be obtained according to actual needs. Further, the carbon nanotube structure comprises at least two carbon nanotube membranes arranged in an overlapping manner, and the carbon nanotubes in the adjacent two layers of carbon nanotube membranes have an intersection angle α, and 0°≦ α≦90°. For the structure of the carbon nanotubes and the preparation method thereof, please refer to the disclosure of CN101239712A, entitled "Nano Carbon Tube Film Structure", published on February 13, 2008, which was applied by Fan Shoushan et al. on February 9, 2007. Continental patent application for its preparation method.

可選擇地,所述奈米碳管膜為奈米碳管碾壓膜。所述奈米碳管膜包括多個均勻分佈之奈米碳管,奈米碳管各向同性,沿同一方向或不同方向擇優取向排列。所述奈米碳管膜中之奈米碳管相互交疊。所述奈米碳管膜可藉由碾壓一奈米碳管陣列獲得。所述奈米碳管結構之長度與寬度不限。所述奈米碳管膜之厚度為1微米~1000微米。所述奈米碳管碾壓膜之結構及其製備方法請參閱范守善等人於2007年6月1日申請的、申請號為200710074699.6、標題為“奈米碳管薄膜的製備方法”之大陸專利申請。 Alternatively, the carbon nanotube membrane is a carbon nanotube rolled membrane. The carbon nanotube film comprises a plurality of uniformly distributed carbon nanotubes, and the carbon nanotubes are isotropic and arranged in a preferred orientation in the same direction or in different directions. The carbon nanotubes in the carbon nanotube film overlap each other. The carbon nanotube film can be obtained by rolling an array of carbon nanotubes. The length and width of the carbon nanotube structure are not limited. The carbon nanotube film has a thickness of from 1 micrometer to 1000 micrometers. For the structure of the carbon nanotube rolled film and the preparation method thereof, please refer to the mainland patent filed on June 1, 2007 by Fan Shoushan et al., application number 200710074699.6, entitled "Preparation method of carbon nanotube film" Application.

可選擇地,所述奈米碳管膜為奈米碳管絮化膜。所述奈米碳管膜包括多個相互纏繞之奈米碳管,藉由凡德瓦爾力相互吸引、纏繞,形成網格狀結構。所述奈米碳管膜各向同性,其中之奈米碳管均勻分佈,無規則排列。所述奈米碳管膜之長度與寬度不限。所述奈米碳管膜之結構及製備方法請參閱范守善等人於2007年4月13日申請的、申請號為200710074027.5、標題為“奈米碳管薄膜的製備方法”之大陸專利申請。 Alternatively, the carbon nanotube membrane is a carbon nanotube flocculation membrane. The carbon nanotube film comprises a plurality of intertwined carbon nanotubes which are attracted to each other by a van der Waals force to form a grid-like structure. The carbon nanotube film is isotropic, wherein the carbon nanotubes are uniformly distributed and arranged irregularly. The length and width of the carbon nanotube film are not limited. For the structure and preparation method of the carbon nanotube film, please refer to the mainland patent application entitled "Preparation Method of Nano Carbon Tube Film", which is filed on Apr. 13, 2007, to the application No. 200710074027.5.

可選擇地,所述奈米碳管膜為長奈米碳管膜。所述奈米碳管膜包括多個擇優取向排列之奈米碳管。該多個奈米碳管之間相互平行,並排設置且藉由凡德瓦爾力緊密結合。該多個奈米碳管具有大致相等之長度,且其長度可達到毫米量級。所述奈米碳管膜之長度可與奈米碳管之長度相等。所述奈米碳管膜之長度受奈米碳管之長度的限制。所述奈米碳管膜之結構及其製備方法請參閱范守善等人於2008年2月1日申請的、申請號為200810066048.7、標題為“奈米碳管薄膜結構及其製備方法”之大陸專利申請。 Alternatively, the carbon nanotube membrane is a long carbon nanotube membrane. The carbon nanotube film comprises a plurality of carbon nanotubes arranged in a preferred orientation. The plurality of carbon nanotubes are parallel to each other, arranged side by side and tightly coupled by Van der Waals force. The plurality of carbon nanotubes have substantially equal lengths and may be of the order of millimeters in length. The length of the carbon nanotube film may be equal to the length of the carbon nanotube. The length of the carbon nanotube film is limited by the length of the carbon nanotube. For the structure of the carbon nanotube film and the preparation method thereof, please refer to the mainland patent filed on February 1, 2008 by Fan Shoushan et al., application No. 200810066048.7, entitled "Nano Carbon Tube Film Structure and Preparation Method" Application.

所述奈米碳管線狀結構包括至少一個非扭轉奈米碳管線。所述非扭轉奈米碳管線包括多個奈米碳管沿該奈米碳管線長度方向排列。優選地,該非扭轉奈米碳管線包括多個奈米碳管片段,該多個奈米碳管片段藉由凡德瓦爾力首尾相連,每一奈米碳管片段包括多個相互平行並藉由凡德瓦爾力緊密結合之奈米碳管。該奈米碳管片段具有任意之長度、厚度、均勻性及形狀。該非扭轉奈米碳管線之長度不限,直徑為0.5奈米-100000奈米。所述非扭轉奈米碳管線及其製備方法請參閱范守善等人於2002年9月16日申請的、2008年8月20日公告的、公告號為CN100411979C、標題為“一種奈米碳管繩及其製備方法”之大陸專利。 The nanocarbon line-like structure includes at least one non-twisted nanocarbon line. The non-twisted nanocarbon pipeline includes a plurality of carbon nanotubes arranged along the length of the nanocarbon pipeline. Preferably, the non-twisted nanocarbon pipeline comprises a plurality of carbon nanotube segments, the plurality of carbon nanotube segments being connected end to end by a van der Waals force, each of the carbon nanotube segments comprising a plurality of mutually parallel and by Van der Valli is tightly integrated with the carbon nanotubes. The carbon nanotube segments have any length, thickness, uniformity, and shape. The length of the non-twisted nanocarbon pipeline is not limited, and the diameter is from 0.5 nm to 100,000 nm. The non-twisted nano carbon pipeline and the preparation method thereof are referred to the application of Fan Shoushan et al., which was filed on September 16, 2002 and announced on August 20, 2008, and the announcement number is CN100411979C, entitled "A Nano Carbon Pipe Rope" And its preparation method" of the mainland patent.

可選擇地,所述奈米碳管線狀結構包括至少一個奈米碳管絞線。所述奈米碳管絞線還進一步包括多個繞奈米碳管線長度方向螺旋排列之奈米碳管。優選地,該奈米碳管絞線包括多個奈米碳管片段,該多個奈米碳管片段藉由凡德瓦爾力首尾相連,每一奈米碳管片段包括多個相互平行並藉由凡德瓦爾力緊密結合之奈米碳管 。該奈米碳管片段具有任意之長度、厚度、均勻性及形狀。該奈米碳管線之長度不限,直徑為0.5奈米-100000奈米。該奈米碳管絞線為採用一機械力將一奈米碳管拉膜兩端沿相反方向扭轉獲得。 Optionally, the nanocarbon line-like structure comprises at least one carbon nanotube strand. The carbon nanotube stranded wire further includes a plurality of carbon nanotubes spirally arranged in a longitudinal direction around the carbon nanotube line. Preferably, the carbon nanotube strand comprises a plurality of carbon nanotube segments, the plurality of carbon nanotube segments are connected end to end by Van der Waals force, and each of the carbon nanotube segments comprises a plurality of parallel and borrowed Nano carbon tube tightly combined by Van der Valli . The carbon nanotube segments have any length, thickness, uniformity, and shape. The length of the nano carbon pipeline is not limited, and the diameter is from 0.5 nm to 100,000 nm. The carbon nanotube strand is obtained by twisting both ends of a carbon nanotube film in a reverse direction by a mechanical force.

可以理解,所述奈米碳管結構並不限於上述之奈米碳管膜及多個奈米碳管線狀結構,其他任何奈米碳管結構只要具有透明導電性能並能提高發光二極體之光取出效率,均於本發明之保護範圍內。 It can be understood that the carbon nanotube structure is not limited to the above-mentioned nano carbon tube film and a plurality of nano carbon line-like structures, and any other carbon nanotube structure has a transparent conductive property and can improve the light-emitting diode. The light extraction efficiency is within the protection scope of the present invention.

所述奈米碳管包括單壁奈米碳管、雙壁奈米碳管與多壁奈米碳管中之一種或多種。所述單壁奈米碳管之直徑為0.5奈米~50奈米,雙壁奈米碳管之直徑為1奈米~50奈米,多壁奈米碳管之直徑為1.5奈米~50奈米。 The carbon nanotubes include one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The single-walled carbon nanotube has a diameter of 0.5 nm to 50 nm, the double-walled carbon nanotube has a diameter of 1 nm to 50 nm, and the multi-walled carbon nanotube has a diameter of 1.5 nm to 50 nm. Nano.

本實施例中,所述透明導電層250包括一奈米碳管結構,所述奈米碳管結構為兩層奈米碳管膜,該奈米碳管膜包括多個奈米碳管首尾相連且擇優取向排列。具體地,所述奈米碳管膜包括多個連續且定向排列之奈米碳管片段。該多個奈米碳管片段藉由凡德瓦爾力首尾相連。每一奈米碳管片段包括多個相互平行之奈米碳管,該多個相互平行之奈米碳管藉由凡德瓦爾力緊密結合。所述兩層奈米碳管膜重疊設置,且每層奈米碳管膜中之奈米碳管沿同一方向擇優取向排列。具體地,所述透明導電層250中之兩層奈米碳管膜相互重疊設置,相鄰之兩層奈米碳管膜中之奈米碳管具有一交叉角度α,其中α為90度。所述奈米碳管為多壁奈米碳管,該多壁奈米碳管之直徑為1.5奈米~50奈米。 In this embodiment, the transparent conductive layer 250 includes a carbon nanotube structure, the nano carbon tube structure is a two-layer carbon nanotube film, and the carbon nanotube film includes a plurality of carbon nanotubes connected end to end. And the preferred orientation is arranged. Specifically, the carbon nanotube membrane comprises a plurality of continuous and aligned carbon nanotube segments. The plurality of carbon nanotube segments are connected end to end by Van der Valli. Each of the carbon nanotube segments includes a plurality of carbon nanotubes that are parallel to each other, and the plurality of mutually parallel carbon nanotubes are tightly coupled by a van der Waals force. The two layers of carbon nanotube films are arranged in an overlapping manner, and the carbon nanotubes in each layer of the carbon nanotube film are arranged in a preferred orientation in the same direction. Specifically, the two layers of the carbon nanotube film in the transparent conductive layer 250 are overlapped with each other, and the carbon nanotubes in the adjacent two layers of carbon nanotube film have an intersection angle α, wherein α is 90 degrees. The carbon nanotubes are multi-walled carbon nanotubes, and the multi-walled carbon nanotubes have a diameter of 1.5 nm to 50 nm.

當所述發光二極體20處於工作狀態時,第二電極244有少量空穴產生,第一電極242有少量電子產生。第二電極244產生之一部分空穴經過透明導電層250到達第二半導體層236,並誘發第二半導體層236使其產生大量之空穴;同時,第二電極244產生之另一部分空穴從第二電極244,依次經過透明導電層250、固定電極240到達第二半導體層236,並誘發第二半導體層236使其產生大量之空穴;之後,這些空穴移動至活性層234。其中,透明導電層250與第二半導體層236直接電連接,有利於電流之橫向分散以及均勻分佈,進而提高發光二極體20之光之取出效率。電子從第一電極242移動至第一半導體層232,並誘發第一半導體層232產生大量之電子;之後,電子移動至活性層234。這些空穴與電子於活性層234相遇,並發生撞擊,產生光子。 When the light emitting diode 20 is in an operating state, the second electrode 244 has a small amount of holes generated, and the first electrode 242 has a small amount of electrons generated. The second electrode 244 generates a portion of the holes passing through the transparent conductive layer 250 to the second semiconductor layer 236, and induces the second semiconductor layer 236 to generate a large number of holes; meanwhile, the second electrode 244 generates another portion of the cavity from the second The two electrodes 244 sequentially pass through the transparent conductive layer 250 and the fixed electrode 240 to reach the second semiconductor layer 236, and induce the second semiconductor layer 236 to generate a large amount of holes; afterwards, the holes move to the active layer 234. The transparent conductive layer 250 and the second semiconductor layer 236 are directly electrically connected to each other, which facilitates lateral dispersion and uniform distribution of current, thereby improving the light extraction efficiency of the light-emitting diode 20 . Electrons move from the first electrode 242 to the first semiconductor layer 232, and induce the first semiconductor layer 232 to generate a large amount of electrons; thereafter, the electrons move to the active layer 234. These holes and electrons meet the active layer 234 and collide to generate photons.

大部分之光子經過第二半導體層236,到達透明導電層250。其中,當這部分之光不經過固定電極240,而從透明導電層250中直接折射出去時,可避免固定電極240吸收光而降低光之取出效率。同時,一部分之光子從活性層234到達第一半導體層232,並從第一半導體層232之第二表面264折射出去。還有一部分之光子於該發光二極體20之內部經過多次折射並射出。因此,所述發光二極體20具有較高之光取出效率。 Most of the photons pass through the second semiconductor layer 236 to the transparent conductive layer 250. When the light of this portion is directly refracted from the transparent conductive layer 250 without passing through the fixed electrode 240, the fixed electrode 240 can be prevented from absorbing light and reducing the light extraction efficiency. At the same time, a portion of the photons pass from the active layer 234 to the first semiconductor layer 232 and are refracted from the second surface 264 of the first semiconductor layer 232. A part of the photons are refracted and emitted a plurality of times inside the light-emitting diode 20. Therefore, the light emitting diode 20 has a higher light extraction efficiency.

請參閱圖5,本發明第二實施例提供一種發光二極體30,其主要包括一基底310、一緩衝層320、一有源層330、一第一電極342、一第二電極344、一透明導電層350及一固定電極340;其中,所述有源層330包括一第一半導體層332、一活性層334及一第二半 導體層336,且該活性層334設置於第一半導體層332與第二半導體層336之間。所述第一半導體層332包括一第一表面362及一第二表面364,該第一表面362與第二表面364具有不同之高度,所述活性層334與第二半導體層336依次堆疊設置於第一表面362。可以理解,所述第一表面362與第二表面364可以位於同一平面,此時所述活性層334與第二半導體層336依次堆疊設置於所述第一半導體層332之部分表面。 Referring to FIG. 5, a second embodiment of the present invention provides a light emitting diode 30, which mainly includes a substrate 310, a buffer layer 320, an active layer 330, a first electrode 342, and a second electrode 344. The transparent conductive layer 350 and a fixed electrode 340; wherein the active layer 330 includes a first semiconductor layer 332, an active layer 334, and a second half The conductor layer 336 is disposed between the first semiconductor layer 332 and the second semiconductor layer 336. The first semiconductor layer 332 includes a first surface 362 and a second surface 364. The first surface 362 and the second surface 364 have different heights. The active layer 334 and the second semiconductor layer 336 are sequentially stacked on the second surface. First surface 362. It can be understood that the first surface 362 and the second surface 364 may be in the same plane, and the active layer 334 and the second semiconductor layer 336 are sequentially stacked on a part of the surface of the first semiconductor layer 332.

第二實施例發光二極體30與第一實施例發光二極體20之結構基本相同,其區別為:發光二極體30中,透明導電層350覆蓋第一半導體層332之至少部分第二表面364,並與第一電極342電連接。所述透明導電層350之結構與第一實施例中之透明導電層250之結構相同。所述固定電極340設置於第一半導體層332之第二表面364與透明導電層350之間。所述第一電極342設置於所述透明導電層350之表面,並與所述固定電極340相對設置。所述第二電極344設置於第二半導體層336之表面。 The structure of the light-emitting diode 30 of the second embodiment is substantially the same as that of the light-emitting diode 20 of the first embodiment. The difference is that in the light-emitting diode 30, the transparent conductive layer 350 covers at least part of the second semiconductor layer 332. Surface 364 is electrically coupled to first electrode 342. The structure of the transparent conductive layer 350 is the same as that of the transparent conductive layer 250 in the first embodiment. The fixed electrode 340 is disposed between the second surface 364 of the first semiconductor layer 332 and the transparent conductive layer 350. The first electrode 342 is disposed on a surface of the transparent conductive layer 350 and disposed opposite to the fixed electrode 340. The second electrode 344 is disposed on a surface of the second semiconductor layer 336.

本實施例提供之發光二極體30處於工作狀態時,第二電極344有少量空穴產生,第一電極342有少量電子產生。第二電極344產生之少量空穴移動至第二半導體層336,並誘發第二半導體層336產生大量之空穴;之後,這些空穴移動之活性層334。同時,所述少量電子從第一電極342移動至第一半導體層332,並誘發第一半導體層332產生大量之電子;之後,這些電子移動至活性層334。這些空穴與電子於活性層334相遇,並發生撞擊,產生光子。一部分光子移動到第二半導體層336,並從第二半導體層336之表面 折射出去;同時,大部分之光子經過第一半導體層332,到達透明導電層350,其中之大部分光從透明導電層350中直接折射出去;還有一部分之光子於該發光二極體30之內部經過多次折射並射出。 When the light-emitting diode 30 provided in this embodiment is in an operating state, the second electrode 344 has a small amount of holes generated, and the first electrode 342 has a small amount of electrons generated. The small amount of holes generated by the second electrode 344 moves to the second semiconductor layer 336, and induces the second semiconductor layer 336 to generate a large number of holes; afterwards, the holes move the active layer 334. At the same time, the small amount of electrons move from the first electrode 342 to the first semiconductor layer 332, and induces the first semiconductor layer 332 to generate a large amount of electrons; thereafter, the electrons move to the active layer 334. These holes and electrons meet at the active layer 334 and collide to generate photons. A portion of the photons are moved to the second semiconductor layer 336 and from the surface of the second semiconductor layer 336 At the same time, most of the photons pass through the first semiconductor layer 332 to reach the transparent conductive layer 350, and most of the light is directly refracted from the transparent conductive layer 350; and a part of the photons are emitted from the light-emitting diode 30. The interior is refracted multiple times and shot.

請參閱圖6,本發明第三實施例提供一種發光二極體40。該發光二極體40之結構主要包括一基底410、一緩衝層420、一有源層430、一第一電極442、一第二電極444、一第一透明導電層450、一第二透明導電層452、一第一固定電極446及一第二固定電極440;其中,所述有源層430包括一第一半導體層432、一活性層434及一第二半導體層436,且該活性層434設置於第一半導體層432與第二半導體層436之間。所述第一半導體層432包括一第一表面462與一第二表面464,該第一表面462與第二表面464具有不同之高度,所述活性層434與第二半導體層436依次堆疊設置於第一表面462。可以理解,所述第一表面462與第二表面464可以位於同一平面,此時所述活性層434與第二半導體層436依次堆疊設置於所述第一半導體層432之部分表面。所述第二透明導電層452覆蓋所述第二半導體層436之至少部分表面,並與第二電極444電連接。所述第二固定電極440設置於第二半導體層436與第二透明導電層452之間。所述第二電極444設置於所述第二透明導電層452的表面。 Referring to FIG. 6, a third embodiment of the present invention provides a light emitting diode 40. The structure of the LED body 40 mainly includes a substrate 410, a buffer layer 420, an active layer 430, a first electrode 442, a second electrode 444, a first transparent conductive layer 450, and a second transparent conductive layer. The layer 452, the first fixed electrode 446 and the second fixed electrode 440; wherein the active layer 430 includes a first semiconductor layer 432, an active layer 434, and a second semiconductor layer 436, and the active layer 434 The first semiconductor layer 432 is disposed between the first semiconductor layer 432 and the second semiconductor layer 436. The first semiconductor layer 432 includes a first surface 462 and a second surface 464. The first surface 462 and the second surface 464 have different heights. The active layer 434 and the second semiconductor layer 436 are sequentially stacked on the second semiconductor layer 436. First surface 462. It can be understood that the first surface 462 and the second surface 464 may be in the same plane, and the active layer 434 and the second semiconductor layer 436 are sequentially stacked on a part of the surface of the first semiconductor layer 432. The second transparent conductive layer 452 covers at least a portion of the surface of the second semiconductor layer 436 and is electrically connected to the second electrode 444. The second fixed electrode 440 is disposed between the second semiconductor layer 436 and the second transparent conductive layer 452. The second electrode 444 is disposed on a surface of the second transparent conductive layer 452.

第三實施例發光二極體40與第一實施例發光一極管20之結構基本相同,其區別為:所述發光二極體40中,所述第一透明導電層450覆蓋第一半導體層432之第二表面464的至少部分表面,並與 第一電極442電連接。所述第一固定電極446設置於所述第一透明導電層450與所述第一半導體層432之第二表面464之間。所述第一電極設置於所述第一透明導電層450的表面,並與所述第一固定電極446相對設置。所述第一透明導電層450、第二透明導電層452分別與第一電極442、第二電極444電連接,可以使所述發光二極體40產生之光從第一半導體層432、第二半導體層436中射出。所述第一透明導電層450及第二透明導電層452至少有一個透明導電層為奈米碳管結構。所述第一透明導電層450及第二透明導電層452中之另一個透明導電層為氧化銦鉈、氧化鋅、鎳金合金、氧化錫及奈米碳管結構中之一種。所述奈米碳管結構與第一實施例之奈米碳管結構相同。 The structure of the light-emitting diode 40 of the third embodiment is substantially the same as that of the light-emitting diode 20 of the first embodiment. The difference is that in the light-emitting diode 40, the first transparent conductive layer 450 covers the first semiconductor layer. At least a portion of the surface of the second surface 464 of 432, and The first electrode 442 is electrically connected. The first fixed electrode 446 is disposed between the first transparent conductive layer 450 and the second surface 464 of the first semiconductor layer 432 . The first electrode is disposed on a surface of the first transparent conductive layer 450 and disposed opposite to the first fixed electrode 446. The first transparent conductive layer 450 and the second transparent conductive layer 452 are electrically connected to the first electrode 442 and the second electrode 444, respectively, so that the light generated by the light emitting diode 40 can be generated from the first semiconductor layer 432 and the second The semiconductor layer 436 is emitted. The first transparent conductive layer 450 and the second transparent conductive layer 452 have at least one transparent conductive layer which is a carbon nanotube structure. The other transparent conductive layer of the first transparent conductive layer 450 and the second transparent conductive layer 452 is one of an indium lanthanum oxide, a zinc oxide, a nickel gold alloy, a tin oxide, and a carbon nanotube structure. The carbon nanotube structure is the same as that of the first embodiment.

本發明實施例提供之發光二極體,採用奈米碳管結構作為透明導電層具有以下優點:其一,由於奈米碳管具有優異之導電性能,則由奈米碳管組成之奈米碳管結構亦具有優異之導電性能,因此,採用上述奈米碳管結構作透明導電層,可相應提高發光二極體的有效工作電流,減少電流損失。其二,由於奈米碳管於潮濕環境中具有良好之透明度,故採用奈米碳管結構作為發光二極體之透明導電層,可使該發光二極體具有較好之透明度,避免發光二極體於潮濕環境下,光取出效率降低。第三,當奈米碳管膜中之奈米碳管有序排列時,其中之奈米碳管之孔隙有序排列,使得該奈米碳管膜具有光子晶體結構之特性,光可以從奈米碳管之間的孔隙中射出,從而提高光之取出效率,減少發光二極體內部熱量之產生,延長發光二極體之使用壽命。第四,奈米碳管膜中之奈 米碳管有序排列,可以使發光二極體之工作電流分佈均勻,避免因電流分佈不均,而造成光取出效率降低。此外,透明導電層與半導體層直接電連接,既減少了工作電流損失,增加了發光二極體發光效率;又減少了光被固定電極吸收,提高了發光二極體之光取出效率。因此,本發明實施例提供之發光二極體具有使用壽命長,光取出效率高、性能穩定之特點。 The light-emitting diode provided by the embodiment of the invention has the advantages that the use of the carbon nanotube structure as the transparent conductive layer has the following advantages: First, since the carbon nanotube has excellent electrical conductivity, the carbon nanotube composed of the carbon nanotube is composed of carbon nanotubes. The structure also has excellent electrical conductivity. Therefore, by using the above-mentioned nano carbon tube structure as a transparent conductive layer, the effective working current of the light-emitting diode can be correspondingly improved, and current loss can be reduced. Secondly, since the carbon nanotube has good transparency in a humid environment, the carbon nanotube structure is used as a transparent conductive layer of the light-emitting diode, so that the light-emitting diode has better transparency and avoids light-emitting. In a humid environment, the light extraction efficiency is lowered. Third, when the carbon nanotubes in the carbon nanotube film are arranged in an orderly manner, the pores of the carbon nanotubes are arranged in an orderly manner, so that the carbon nanotube film has the characteristics of a photonic crystal structure, and the light can be from Nye The pores between the carbon nanotubes are emitted, thereby improving the light extraction efficiency, reducing the heat generation inside the light-emitting diode, and prolonging the service life of the light-emitting diode. Fourth, the nanotube in the carbon nanotube film The carbon nanotubes are arranged in an orderly manner, so that the working current distribution of the light-emitting diodes is uniform, and the light extraction efficiency is reduced due to uneven current distribution. In addition, the transparent conductive layer and the semiconductor layer are directly electrically connected, which reduces the working current loss, increases the luminous efficiency of the light emitting diode, reduces the absorption of light by the fixed electrode, and improves the light extraction efficiency of the light emitting diode. Therefore, the light-emitting diode provided by the embodiment of the invention has the characteristics of long service life, high light extraction efficiency and stable performance.

綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.

20‧‧‧發光二極體 20‧‧‧Lighting diode

210‧‧‧基底 210‧‧‧Base

220‧‧‧緩衝層 220‧‧‧buffer layer

242‧‧‧第一電極 242‧‧‧First electrode

244‧‧‧第二電極 244‧‧‧second electrode

250‧‧‧透明導電層 250‧‧‧Transparent conductive layer

230‧‧‧有源層 230‧‧‧Active layer

240‧‧‧固定電極 240‧‧‧Fixed electrode

232‧‧‧第一半導體層 232‧‧‧First semiconductor layer

234‧‧‧活性層 234‧‧‧Active layer

236‧‧‧第二半導體層 236‧‧‧Second semiconductor layer

262‧‧‧第一表面 262‧‧‧ first surface

264‧‧‧第二表面 264‧‧‧ second surface

Claims (18)

一種發光二極體,其包括:一基底;一有源層,該有源層設置於所述基底之表面,該有源層包括一第一半導體層、一第二半導體層以及一活性層,該活性層設置於該第一半導體層與該第二半導體層之間;一第一電極,該第一電極與所述第一半導體層電連接;一第二電極,該第二電極與所述第二半導體層電連接;以及至少一透明導電層,該至少一透明導電層直接覆蓋至少部分所述有源層,並與所述第一電極及第二電極中之至少一個電極電連接;其改良在於,所述至少一透明導電層包括一奈米碳管結構,進一步包括一固定電極,該固定電極設置於部分該奈米碳管結構與所述有源層之間,用於固定該奈米碳管結構。 A light emitting diode comprising: a substrate; an active layer disposed on a surface of the substrate, the active layer comprising a first semiconductor layer, a second semiconductor layer and an active layer The active layer is disposed between the first semiconductor layer and the second semiconductor layer; a first electrode, the first electrode is electrically connected to the first semiconductor layer; a second electrode, the second electrode is The second semiconductor layer is electrically connected; and at least one transparent conductive layer directly covering at least a portion of the active layer and electrically connected to at least one of the first electrode and the second electrode; The improvement is that the at least one transparent conductive layer comprises a carbon nanotube structure, further comprising a fixed electrode disposed between a portion of the carbon nanotube structure and the active layer for fixing the nano Carbon tube structure. 如請求項第1項所述之發光二極體,其中,所述奈米碳管結構包括至少一奈米碳管膜、多個奈米碳管線狀結構或其組合。 The light-emitting diode of claim 1, wherein the carbon nanotube structure comprises at least one carbon nanotube film, a plurality of nanocarbon line-like structures, or a combination thereof. 如請求項第2項所述之發光二極體,其中,所述奈米碳管結構包括至少兩層重疊設置之奈米碳管膜,該奈米碳管膜包括多個有序排列的奈米碳管,且該至少兩層重疊設置之奈米碳管膜中相鄰兩層奈米碳管膜中的奈米碳管之間具有一交叉角,且該交叉角大於等於0度,且小於等於90度。 The light-emitting diode according to claim 2, wherein the carbon nanotube structure comprises at least two layers of carbon nanotube films arranged in an overlapping manner, the carbon nanotube film comprising a plurality of ordered arrays of naphthalene a carbon nanotube, and the carbon nanotubes in the adjacent two carbon nanotube membranes in the at least two overlapping carbon nanotube membranes have an intersection angle between the carbon nanotubes, and the intersection angle is greater than or equal to 0 degrees, and Less than or equal to 90 degrees. 如請求項第2項所述之發光二極體,其中,所述奈米碳管膜包括 多個奈米碳管首尾相連且沿同一方向擇優取向排列,相鄰之奈米碳管之間藉由凡德瓦爾力緊密結合。 The light-emitting diode of claim 2, wherein the carbon nanotube film comprises A plurality of carbon nanotubes are connected end to end and arranged in a preferred orientation in the same direction, and the adjacent carbon nanotubes are tightly coupled by van der Waals force. 如請求項第2項所述之發光二極體,其中,所述奈米碳管膜包括多個奈米碳管平行於奈米碳管膜之表面。 The light-emitting diode according to claim 2, wherein the carbon nanotube film comprises a plurality of carbon nanotubes parallel to a surface of the carbon nanotube film. 如請求項第2項所述之發光二極體,其中,所述奈米碳管膜包括多個奈米碳管相互交疊,沿一個方向或多個方向擇優取向排列。 The light-emitting diode according to claim 2, wherein the carbon nanotube film comprises a plurality of carbon nanotubes overlapping each other and arranged in a preferred orientation in one direction or in a plurality of directions. 如請求項第2項所述之發光二極體,其中,所述奈米碳管線狀結構包括至少一奈米碳管線,該奈米碳管線包括多個奈米碳管沿該奈米碳管線長度方向擇優取向排列或繞奈米碳管線長度方向螺旋排列。 The light-emitting diode of claim 2, wherein the nanocarbon line-like structure comprises at least one nanocarbon pipeline, the nanocarbon pipeline comprising a plurality of carbon nanotubes along the nanocarbon pipeline The length direction is preferably oriented or spirally arranged around the length of the nanocarbon line. 如請求項第2項所述之發光二極體,其中,所述多個奈米碳管線狀結構相互平行或交叉設置。 The light-emitting diode of claim 2, wherein the plurality of nanocarbon line-like structures are disposed in parallel or intersecting each other. 如請求項第1項所述之發光二極體,其中,所述有源層具有一臺階結構,所述活性層與第二半導體層堆疊設置於第一半導體層之部分表面,並暴露出部分第一半導體層;所述第一電極設置於第一半導體層暴露出之表面,所述第二電極設置於第二半導體層之表面。 The light-emitting diode of claim 1, wherein the active layer has a stepped structure, and the active layer and the second semiconductor layer are stacked on a portion of the surface of the first semiconductor layer, and a portion is exposed a first semiconductor layer; the first electrode is disposed on a surface of the exposed portion of the first semiconductor layer, and the second electrode is disposed on a surface of the second semiconductor layer. 如請求項第1項所述之發光二極體,其中,所述第一半導體層為N型半導體層,所述第二半導體層為P型半導體層。 The light-emitting diode according to claim 1, wherein the first semiconductor layer is an N-type semiconductor layer, and the second semiconductor layer is a P-type semiconductor layer. 如請求項第1項所述之發光二極體,其中,所述固定電極通過所述奈米碳管結構與所述第一電極及第二電極中之至少一個電極相對設置。 The light-emitting diode according to claim 1, wherein the fixed electrode is disposed opposite to at least one of the first electrode and the second electrode through the carbon nanotube structure. 如請求項第11項所述之發光二極體,其中,所述固定電極設置於所述有源層與所述至少一透明導電層之間。 The light-emitting diode of claim 11, wherein the fixed electrode is disposed between the active layer and the at least one transparent conductive layer. 如請求項第1項所述之發光二極體,其中,進一步包括一緩衝層,該緩衝層設置於所述基底與有源層之間。 The light-emitting diode of claim 1, further comprising a buffer layer disposed between the substrate and the active layer. 如請求項第1項所述之發光二極體,其中,所述基底為藍寶石、砷化鎵、磷化銦、矽、碳化矽及氮化矽中之一種或其任意組合。 The light-emitting diode of claim 1, wherein the substrate is one of sapphire, gallium arsenide, indium phosphide, antimony, antimony carbide, and tantalum nitride, or any combination thereof. 如請求項第1項所述之發光二極體,其中,所述第一半導體層之材料為N-氮化鎵、N-砷化鎵或N-磷化銅。 The light-emitting diode of claim 1, wherein the material of the first semiconductor layer is N-gallium nitride, N-GaAs or N-phosphorus. 如請求項第15項所述之發光二極體,其中,所述第二半導體層之材料為P-氮化鎵、P-砷化鎵或P-磷化銅。 The light-emitting diode of claim 15, wherein the material of the second semiconductor layer is P-gallium nitride, P-gallium arsenide or P-phosphorus phosphide. 如請求項第1項所述之發光二極體,其中,所述活性層之材料為氮化鎵、氮化銦鎵、氮化銦鎵鋁、砷化稼、砷化鋁稼、磷化銦鎵、磷化銦砷及砷化銦鎵中之一種或其任意組合。 The light-emitting diode according to Item 1, wherein the material of the active layer is gallium nitride, indium gallium nitride, indium gallium nitride, arsenic, aluminum arsenide, indium phosphide. One of gallium, indium phosphide, and indium gallium arsenide or any combination thereof. 如請求項第1項所述之發光二極體,其中,所述第一電極、第二電極之材料包括鈦、鋁、鎳及金中之一種或其任意組合。 The light-emitting diode of claim 1, wherein the material of the first electrode and the second electrode comprises one of titanium, aluminum, nickel and gold or any combination thereof.
TW097150970A 2008-12-26 2008-12-26 Light-emitting diode TWI495161B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097150970A TWI495161B (en) 2008-12-26 2008-12-26 Light-emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097150970A TWI495161B (en) 2008-12-26 2008-12-26 Light-emitting diode

Publications (2)

Publication Number Publication Date
TW201025666A TW201025666A (en) 2010-07-01
TWI495161B true TWI495161B (en) 2015-08-01

Family

ID=44852684

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097150970A TWI495161B (en) 2008-12-26 2008-12-26 Light-emitting diode

Country Status (1)

Country Link
TW (1) TWI495161B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102760803B (en) * 2011-04-29 2015-08-26 清华大学 Light-emitting diode
CN103700779B (en) * 2012-09-28 2016-05-04 北京富纳特创新科技有限公司 Organic light emitting diode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW554550B (en) * 2001-04-30 2003-09-21 Lumileds Lighting Llc Forming low resistivity p-type gallium nitride
US20050199894A1 (en) * 2004-02-20 2005-09-15 University Of Florida Research Foundation, Inc. Semiconductor device and method using nanotube contacts
US20060102921A1 (en) * 2004-11-12 2006-05-18 Liang-Wen Wu High-brightness gallium-nitride based light emitting diode structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW554550B (en) * 2001-04-30 2003-09-21 Lumileds Lighting Llc Forming low resistivity p-type gallium nitride
US20050199894A1 (en) * 2004-02-20 2005-09-15 University Of Florida Research Foundation, Inc. Semiconductor device and method using nanotube contacts
US20060102921A1 (en) * 2004-11-12 2006-05-18 Liang-Wen Wu High-brightness gallium-nitride based light emitting diode structure

Also Published As

Publication number Publication date
TW201025666A (en) 2010-07-01

Similar Documents

Publication Publication Date Title
US10205056B2 (en) Light emitting diode having carbon nanotubes
US8021902B2 (en) Method for fabricating light emitting diode
TWI451597B (en) Optoelectronic device and method for manufacturing the same
TWI420694B (en) Opto-electrical device
JP2014507069A (en) Photoelectric device and manufacturing method thereof
US9634196B2 (en) Nanostructure layer and light emitting diode with the same
Gui et al. Nanoscale Ni/Au wire grids as transparent conductive electrodes in ultraviolet light-emitting diodes by laser direct writing
KR20130120876A (en) Light emitting diode and method for manufacturing the same
TWI546980B (en) Light emitting diode
TWI524551B (en) Nitride semiconductor structure and semiconductor light-emitting element
TWI495161B (en) Light-emitting diode
CN113871520A (en) Semiconductor light-emitting element and manufacturing method thereof
KR20100034931A (en) Light emitting diode
TW201624762A (en) Light emitting diode
KR20120059060A (en) Stack structure having nanoparticles and light emitting device including the stack structure
TWI557940B (en) Light emitting diode
TWI504022B (en) Light emitting diode
CN211017113U (en) Structure for enhancing L ED luminous efficiency by using double-layer surface plasmon
JP7261193B2 (en) light emitting diode
KR101286211B1 (en) Method of fabricating light emitting device and light emitting device fabricated by using the same
JP2012064647A (en) Compound semiconductor light-emitting element and method of manufacturing the same
CN103904179A (en) Light emitting diode crystal particle and manufacturing method thereof
US11482673B2 (en) Solar battery
KR20150043710A (en) Nitride based light emitting device using nano materials
TWI637531B (en) Nitride semiconductor structure and semiconductor light-emitting element