TWI495155B - Optoelectronic device and method for manufacturing the same - Google Patents

Optoelectronic device and method for manufacturing the same Download PDF

Info

Publication number
TWI495155B
TWI495155B TW102138040A TW102138040A TWI495155B TW I495155 B TWI495155 B TW I495155B TW 102138040 A TW102138040 A TW 102138040A TW 102138040 A TW102138040 A TW 102138040A TW I495155 B TWI495155 B TW I495155B
Authority
TW
Taiwan
Prior art keywords
layer
semiconductor layer
hole
semiconductor
substrate
Prior art date
Application number
TW102138040A
Other languages
Chinese (zh)
Other versions
TW201407820A (en
Inventor
De Shan Kuo
Tsun Kai Ko
Original Assignee
Epistar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epistar Corp filed Critical Epistar Corp
Priority to TW102138040A priority Critical patent/TWI495155B/en
Publication of TW201407820A publication Critical patent/TW201407820A/en
Application granted granted Critical
Publication of TWI495155B publication Critical patent/TWI495155B/en

Links

Description

光電元件及其製造方法Photoelectric element and method of manufacturing same

本發明係關於一種具有形成在半導體層內之孔洞結構之光電元件。The present invention relates to a photovoltaic element having a pore structure formed in a semiconductor layer.

發光二極體是半導體元件中一種被廣泛使用的光源。相較於傳統的白熾燈泡或螢光燈管,發光二極體具有省電及使用壽命較長的特性,因此逐漸取代傳統光源,而應用於各種領域,如交通號誌、背光模組、路燈照明、醫療設備等產業。A light-emitting diode is a widely used light source among semiconductor elements. Compared with traditional incandescent bulbs or fluorescent tubes, LEDs have the characteristics of power saving and long service life, so they gradually replace traditional light sources and are used in various fields such as traffic signs, backlight modules, and street lamps. Lighting, medical equipment and other industries.

隨著發光二極體光源的應用與發展對於亮度的需求越來越高,如何增加其發光效率以提高其亮度,便成為產業界所共同努力的重要方向。With the application and development of the light-emitting diode light source, the demand for brightness is getting higher and higher, and how to increase its luminous efficiency to increase its brightness has become an important direction for the industry to work together.

一種光電元件,包含:一半導體疊層;一第一金屬層形成於半導體疊層之上,其中第一金屬層具有一第一主平面且第一金屬層之兩邊緣的厚度為漸進式減薄;及一第二金屬層形成於第一金屬層之上,其中第二金屬層具有一與第一主平面平行之第二主平面且第二金屬層之兩邊緣的厚度為漸進式減薄,且第二金屬層之邊緣超過第一金屬層之邊緣一種光電元件,包含:一基板,具有一表面,並具有一與表面垂直之法線方向;複數個第一晶種柱,位於基板之表面上並與表面接觸,並裸露出部分基板之表面;一第一保護層,位於第一晶種柱之側壁及基板之裸露表面之上;一第一緩衝層,位於複數個第一晶種柱之上,其中第一緩 衝層具有一第一表面及一與第一表面相對之第二表面,且第一表面與複數個第一晶種柱直接接觸;及至少一第一孔洞結構,位於複數個第一晶種柱、基板之表面及第一緩衝層之第一表面之間,其中,至少一第一孔洞結構具有一寬度與一高度,其中寬度係為第一孔洞結構於平行表面方向之最大尺寸,高度係為第一孔洞結構於平行法線方向之最大尺寸,其中高度與寬度之比值介於1/5~3。A photovoltaic element comprising: a semiconductor stack; a first metal layer formed over the semiconductor stack, wherein the first metal layer has a first major plane and the thickness of both edges of the first metal layer is progressively thinned And a second metal layer formed on the first metal layer, wherein the second metal layer has a second main plane parallel to the first main plane and the thickness of both edges of the second metal layer is progressively thinned, And the edge of the second metal layer exceeds the edge of the first metal layer, and comprises: a substrate having a surface and having a normal direction perpendicular to the surface; and a plurality of first seed columns on the surface of the substrate Contacting the surface and exposing a surface of a portion of the substrate; a first protective layer on the sidewall of the first seed column and the exposed surface of the substrate; a first buffer layer located in the plurality of first seed columns Above, the first The punch layer has a first surface and a second surface opposite to the first surface, and the first surface is in direct contact with the plurality of first seed columns; and at least one first hole structure is located in the plurality of first seed columns Between the surface of the substrate and the first surface of the first buffer layer, wherein the at least one first hole structure has a width and a height, wherein the width is the largest dimension of the first hole structure in the direction of the parallel surface, and the height is The maximum dimension of the first hole structure in the direction parallel to the normal direction, wherein the ratio of the height to the width is between 1/5 and 3.

一種光電元件,包含:一基板,具有一表面,並具有一與表面垂直之法線方向;一第一半導體層包含複數個不規則孔洞結構,位於基板之表面上;一保護層,位於複數個孔洞結構之側壁;及一緩衝層,位於第一半導體層之上。A photovoltaic element comprising: a substrate having a surface and having a normal direction perpendicular to the surface; a first semiconductor layer comprising a plurality of irregular pore structures on the surface of the substrate; and a protective layer at a plurality of a sidewall of the hole structure; and a buffer layer over the first semiconductor layer.

一種製造一光電元件之方法,包含下列步驟:提供一基板,具有一表面並具有一與該表面垂直之法線方向;形成一第一半導體層於該基板之該表面上;圖案化該第一半導體層,以形成形成複數個孔洞結構;提供一保護層於該孔洞結構之側壁之上;及形成一緩衝層於該第一半導體層之上。A method of fabricating a photovoltaic element, comprising the steps of: providing a substrate having a surface and having a normal direction perpendicular to the surface; forming a first semiconductor layer on the surface of the substrate; patterning the first a semiconductor layer to form a plurality of hole structures; a protective layer over the sidewalls of the hole structure; and a buffer layer over the first semiconductor layer.

第1A~1D,1F圖係本發明實施例之光電元件之製程示意圖;第1E圖係依本發明實施例所形成第一孔洞之掃描式電子顯微鏡(Scanning Electron Microscopy,SEM)圖;第2圖係本發明光電半導體元件之剖面示意圖;及第3A~3F圖係本發明實施例之光電元件之製程示意圖。1A to 1D, 1F is a schematic diagram of a process of a photovoltaic element according to an embodiment of the present invention; and FIG. 1E is a scanning electron microscope (SEM) diagram of a first hole formed according to an embodiment of the present invention; A schematic cross-sectional view of the optoelectronic semiconductor device of the present invention; and 3A to 3F are schematic views of the process of the photovoltaic device of the embodiment of the present invention.

本發明揭示一種發光元件及其製造方法,為了使本發明之敘述更加詳盡與完備,請參照下列描述並配合第3A圖至第7圖之圖示。為了使本發明之敘述更加詳盡與完備,請參照下列描述並配合第1A圖至第3圖 之圖示。如第1A~第1F圖所例示,依據本發明之第一實施例之光電元件之製造方法簡述如下:如第1A圖所示,在一基板101之第一表面1011成長一第一晶種層102,其中基板具有一法線方向N。The present invention discloses a light-emitting element and a method of manufacturing the same. In order to make the description of the present invention more detailed and complete, please refer to the following description and cooperate with the drawings of FIGS. 3A to 7. In order to make the description of the present invention more detailed and complete, please refer to the following description and cooperate with Figures 1A to 3 Graphic. As illustrated in FIGS. 1A to 1F, a method of manufacturing a photovoltaic element according to a first embodiment of the present invention is as follows: as shown in FIG. 1A, a first seed crystal is grown on a first surface 1011 of a substrate 101. Layer 102, wherein the substrate has a normal direction N.

之後,如第1B圖所示,將第一晶種層102蝕刻成為複數個形成在基板101之第一表面1011上的第一晶種柱1021。在本實施例中,上述第一晶種柱1021係藉由電化學蝕刻、非等向性蝕刻,例如感應耦合電漿(inductive coupling plasma,ICP)之乾蝕刻或使用草酸、氫氧化鉀、或磷酸硫酸溶液等單一溶液或混合溶液之濕蝕刻,使之包含至少一個孔洞結構,例如為孔洞(pore,void,bore)、針孔(pinhole),或至少兩個孔洞結構可相互連結形成一網狀孔洞結構(porous structure),其形成之一種方法可參閱本案申請人之第099132135號台灣專利申請案,並援引其為本申請案之一部分。Thereafter, as shown in FIG. 1B, the first seed layer 102 is etched into a plurality of first seed columns 1021 formed on the first surface 1011 of the substrate 101. In this embodiment, the first seed column 1021 is subjected to electrochemical etching, anisotropic etching, such as dry etching of an inductive coupling plasma (ICP), or using oxalic acid, potassium hydroxide, or Wet etching of a single solution or a mixed solution such as a phosphoric acid sulfuric acid solution to include at least one pore structure, such as pore, void, pinhole, or at least two pore structures may be connected to each other to form a net A method of forming a porous structure can be found in the Taiwan Patent Application No. 099132135, which is incorporated herein by reference.

之後,如第1C圖所示,披覆一保護層103於上述第一晶種柱1021之表面及裸露出之基板第一表面之上,其中包含披覆於第一晶種柱1021之側壁之第一保護層1031,披覆於相間之第一晶種柱1021所裸露出之基板第一表面1011上之第二保護層1032,及披覆於第一晶種柱1021之頂面之第三保護層1033。在一實施例中,保護層103採用旋轉塗佈玻璃之方式形成(SOG,spin on glass coating),保護層103之材料可為SiO2 、HSQ(Hydrogen Silesquioxane)和MSQ(Methylsequioxane)等以Silsequioxane為基材的聚合物(Polymer)。Thereafter, as shown in FIG. 1C, a protective layer 103 is disposed on the surface of the first seed column 1021 and the exposed first surface of the substrate, and includes a sidewall coated on the first seed column 1021. The first protective layer 1031 is coated on the second protective layer 1032 on the first surface 1011 of the substrate exposed by the first seed column 1021, and the third surface coated on the top surface of the first seed column 1021. Protective layer 1033. In one embodiment, the protective layer 103 is formed by spin-on glass coating (SOG), and the material of the protective layer 103 may be SiO 2 , HSQ (Hydrogen Silesquioxane), MSQ (Methylsequioxane), etc., by Silsequioxane. Polymer of the substrate (Polymer).

之後,移除上述第三保護層1033後,繼續成長一第一緩衝層105,其中第一緩衝層105會沿著上述複數第一晶種柱1021之頂面以磊晶側向成長(Epitaxial Lateral Overgrowth,ELOG)之方式同時側向及往上成長,如第1D圖所示,在生長上述第一緩衝層105的同時,會在兩相鄰第一晶種柱1021、基板101及第一緩衝層105之間形成至少一個第一孔洞104。在本實施例中,因為第一保護層1031覆蓋第一晶種柱1021之側壁,因此可以有效控制第一緩衝層105生長之方向性與空間成長優先性。在本實施例中,第一晶種層102或第一緩衝層105可為一非故意摻雜層或一未摻雜層,或為一n型摻雜層。After the third protective layer 1033 is removed, the first buffer layer 105 is further grown, wherein the first buffer layer 105 is laterally elongated along the top surface of the plurality of first seed columns 1021 (Epitaxial Lateral). The method of Overgrowth, ELOG) grows laterally and upwardly. As shown in FIG. 1D, while growing the first buffer layer 105, it will be in two adjacent first seed column 1021, substrate 101 and first buffer. At least one first aperture 104 is formed between the layers 105. In the present embodiment, since the first protective layer 1031 covers the sidewall of the first seed column 1021, the directivity and spatial growth priority of the growth of the first buffer layer 105 can be effectively controlled. In this embodiment, the first seed layer 102 or the first buffer layer 105 may be an unintentionally doped layer or an undoped layer, or an n-type doped layer.

在一實施例中,第一孔洞104之寬度可介於50nm~600nm, 或50nm~500nm,或50nm~400nm,或50nm~300nm,或50nm~200nm,或50nm~100nm。第一孔洞104之高度可介於0.5μm~2μm,或0.5μm~1.8μm,或0.5μm~1.6μm,或0.5μm~1.4μm,或0.5μm~1.2μm,或0.5μm~1μm,或0.5μm~0.8μm。此外,在一實施例中,第一孔洞可具有一高寬比(高度與寬度之比值)介於1/5~3,或1/5~2,或1/5~1,或1/5~1/2,或1/5~1/3,或1/5~1/4。在一實施例中,在兩相鄰第一晶種柱1021與基板101之間可形成複數個第一孔洞104。在另一實施例中,因複數個第一晶種柱1021可為一規則陣列結構,因此上述複數個第一孔洞104也可為一規則陣列結構。In an embodiment, the width of the first hole 104 may be between 50 nm and 600 nm. Or 50nm~500nm, or 50nm~400nm, or 50nm~300nm, or 50nm~200nm, or 50nm~100nm. The height of the first hole 104 may be between 0.5 μm and 2 μm, or 0.5 μm to 1.8 μm, or 0.5 μm to 1.6 μm, or 0.5 μm to 1.4 μm, or 0.5 μm to 1.2 μm, or 0.5 μm to 1 μm, or 0.5. Mm~0.8μm. In addition, in an embodiment, the first hole may have an aspect ratio (ratio of height to width) of 1/5~3, or 1/5~2, or 1/5~1, or 1/5. ~1/2, or 1/5~1/3, or 1/5~1/4. In an embodiment, a plurality of first holes 104 may be formed between two adjacent first seed columns 1021 and the substrate 101. In another embodiment, since the plurality of first seed columns 1021 can be a regular array structure, the plurality of first holes 104 can also be a regular array structure.

第1E圖顯示依本發明實施例所形成之第一孔洞104之掃描 式電子顯微鏡(Scanning Electron Microscopy,SEM)圖,如第1E圖所示,此複數個第一孔洞104可為彼此獨立之單獨第一孔洞1041,或此單獨第一孔洞1041可相互連結,形成一個或複數個網狀第一孔洞群1042。FIG. 1E shows a scan of the first hole 104 formed in accordance with an embodiment of the present invention. Scanning Electron Microscopy (SEM) image, as shown in FIG. 1E, the plurality of first holes 104 may be separate first holes 1041 independent of each other, or the first first holes 1041 may be connected to each other to form a Or a plurality of mesh first hole groups 1042.

其中上述複數個第一孔洞104之平均寬度Wx 可介於50nm~600nm,或50nm~500nm,或50nm~400nm,或50nm~300nm,或50nm~200nm,或50nm~100nm。上述複數個第一孔洞104之平均高度Hx 可介於0.5μm~2μm,或0.5μm~1.8μm,或0.5μm~1.6μm,或0.5μm~1.4μm,或0.5μm~1.2μm,或0.5μm~1μm,或0.5μm~0.8μm。在一實施例中,上述複數個第一孔洞104之平均間距可介於10nm~1.5μm,或30nm~1.5μm,或50nm~1.5μm,80nm~1.5μm,或1μm~1.5μm,或1.2μm~1.5μm。此外,在一實施例中,上述複數個第一孔洞104可具有一平均高寬比(平均高度與平均寬度之比值)介於1/5~3,或1/5~2,或1/5~1,或1/5~1/2,或1/5~1/3,或1/5~1/4。上述複數個第一孔洞104形成之孔隙度Φ(porosity) 定義為第一孔洞104總體積VV 除以整體體積,其中整體體積 VT 為第一孔洞104總體積加上第一晶種層102體積。在本實施例中,孔隙度Φ可介於5%-90%,或10%-90%,或20%-90%,或30%-90%,或40%-90%,或50%-90%,或60%-90%,或70%-90%,或80%-90%。The average width W x of the plurality of first holes 104 may be between 50 nm and 600 nm, or 50 nm to 500 nm, or 50 nm to 400 nm, or 50 nm to 300 nm, or 50 nm to 200 nm, or 50 nm to 100 nm. The average height H x of the plurality of first holes 104 may be between 0.5 μm and 2 μm, or 0.5 μm to 1.8 μm, or 0.5 μm to 1.6 μm, or 0.5 μm to 1.4 μm, or 0.5 μm to 1.2 μm, or 0.5. Mm~1μm, or 0.5μm~0.8μm. In an embodiment, the average spacing of the plurality of first holes 104 may be between 10 nm and 1.5 μm, or 30 nm to 1.5 μm, or 50 nm to 1.5 μm, 80 nm to 1.5 μm, or 1 μm to 1.5 μm, or 1.2 μm. ~1.5μm. In addition, in an embodiment, the plurality of first holes 104 may have an average aspect ratio (the ratio of the average height to the average width) is between 1/5 and 3, or 1/5 to 2, or 1/5. ~1, or 1/5~1/2, or 1/5~1/3, or 1/5~1/4. The porosity Φ formed by the plurality of first holes 104 is defined as the total volume V V of the first hole 104 divided by the overall volume. Wherein the overall volume V T is the total volume of the first hole 104 plus the volume of the first seed layer 102. In this embodiment, the porosity Φ may be between 5% and 90%, or 10% to 90%, or 20% to 90%, or 30% to 90%, or 40% to 90%, or 50%. 90%, or 60%-90%, or 70%-90%, or 80%-90%.

接著,如第1F圖所示,於上述第一緩衝層105之上繼續成 長第一半導體層106、一主動層107與一第二半導體層108後,蝕刻部份上述主動層107與一第二半導體層108以露出部分第一半導體層106後,於第一半導體層106及第二半導體層108之上形成兩電極109、110以形成一光電元件100。上述電極109、110材料可選自:鉻(Cr)、鈦(Ti)、鎳(Ni)、鉑(Pt)、銅(Cu)、金(Au)、鋁(Al)、或銀(Ag)等金屬材料之單一組成或合金或疊層之組合。Next, as shown in FIG. 1F, continuing on the first buffer layer 105 After the first semiconductor layer 106, an active layer 107 and a second semiconductor layer 108 are formed, a portion of the active layer 107 and a second semiconductor layer 108 are etched to expose a portion of the first semiconductor layer 106, after the first semiconductor layer 106. Two electrodes 109, 110 are formed over the second semiconductor layer 108 to form a photovoltaic element 100. The materials of the electrodes 109 and 110 may be selected from the group consisting of chromium (Cr), titanium (Ti), nickel (Ni), platinum (Pt), copper (Cu), gold (Au), aluminum (Al), or silver (Ag). A single composition of a metallic material or a combination of alloys or laminates.

在本實施例中,因上述第一孔洞104係為一中空結構,此 第一孔洞104具有一折射率,適可作為空氣透鏡,當光線於光電元件100中行進至第一孔洞104時,由於第一孔洞104內外部材料折射率之差異(例如,緩衝層之折射率約介於2~3之間,空氣的折射率為1),光線將會在第一孔洞104處改變方向,而增加光摘出效率。另外,第一孔洞104也可作為一散射中心(scattering center)以改變光子之行進方向並且減少全反射。藉由第一孔洞104密度的增加,可更增加上述功效。In this embodiment, since the first hole 104 is a hollow structure, this The first hole 104 has a refractive index suitable as an air lens. When the light travels in the photovoltaic element 100 to the first hole 104, the refractive index of the outer material in the first hole 104 is different (for example, the refractive index of the buffer layer). Between about 2 and 3, the refractive index of the air is 1), the light will change direction at the first hole 104, and the light extraction efficiency is increased. In addition, the first hole 104 can also serve as a scattering center to change the direction of travel of the photons and reduce total reflection. By increasing the density of the first holes 104, the above effects can be further increased.

如第2圖所例示,係說明本發明之第二實施例之光電元件之 剖面示意圖。本實施例之製程與第一實施例大致相同,詳細流程請參照第一實施例,在此不再贅述。在本實施例中包含一基板201,形成於基板201上之複數個第一晶種柱2021,並披覆一第一保護層2031於第一晶種柱2021之側壁,及一第二保護層2032披覆於相間之第一晶種柱2021所裸露出之基板第一表面2011上。在一實施例中,第一保護層2031及第二保護層2032採用旋轉塗佈玻璃之方式形成(SOG,spin on glass coating)。第一保護層2031及第二保護層2032之材料可為SiO2 、HSQ(Hydrogen Silesquioxane)和MSQ(Methylsequioxane)等以Silsequioxane為基材的聚合物(Polymer)。As illustrated in Fig. 2, a schematic cross-sectional view of a photovoltaic element according to a second embodiment of the present invention will be described. The process of this embodiment is substantially the same as that of the first embodiment. For details, refer to the first embodiment, and details are not described herein again. In this embodiment, a substrate 201 is formed on the plurality of first seed columns 2021 formed on the substrate 201, and a first protective layer 2031 is coated on the sidewall of the first seed column 2021, and a second protective layer is disposed. 2032 is coated on the first surface 2011 of the substrate exposed by the first seed column 2021. In one embodiment, the first protective layer 2031 and the second protective layer 2032 are formed by spin-on glass coating (SOG). The material of the first protective layer 2031 and the second protective layer 2032 may be a polymer (Polymer) based on Silsequioxane such as SiO 2 , HSQ (Hydrogen Silesquioxane), and MSQ (Methylsequioxane).

之後,沿著上述複數第一晶種柱2021之頂面以磊晶側向成長(Epitaxial Lateral Overgrowth,ELOG)之方式同時側向及往上成長一第一緩衝層205,並在兩相鄰第一晶種柱2021、基板201及第一緩衝層205之間形成至少一個第一孔洞204。在本實施例中,因為第一保護層2031覆蓋第一晶種柱2021之側壁,因此可以有效控制第一緩衝層205生長之方向性與空間成長優先性。在本實施例中,第一緩衝層205可為一非故意摻雜層或一未摻雜層,或為一n型摻雜層。Then, a first buffer layer 205 is simultaneously grown laterally and upwardly along the top surface of the plurality of first seed crystal columns 2021 by Epitaxial Lateral Overgrowth (ELOG), and in two adjacent At least one first hole 204 is formed between the seed column 2021, the substrate 201, and the first buffer layer 205. In the present embodiment, since the first protective layer 2031 covers the sidewall of the first seed column 2021, the directivity and spatial growth priority of the growth of the first buffer layer 205 can be effectively controlled. In this embodiment, the first buffer layer 205 can be an unintentionally doped layer or an undoped layer, or an n-type doped layer.

之後,於第一緩衝層205上之形成複數個第二晶種柱2061, 並披覆一第三保護層2071於第一晶種柱2021之側壁,及一第四保護層2072披覆於相間之第一晶種柱2021所裸露出之第一緩衝層之第一表面2051上之。在一實施例中,第一保護層2031、第二保護層2032、第三保護層2071及第四保護層2072採用旋轉塗佈玻璃之方式形成(SOG,spin on glass coating),材料可為SiO2 、HSQ(Hydrogen Silesquioxane)和MSQ(Methylsequioxane)等以Silsequioxane為基材的聚合物(Polymer)。Thereafter, a plurality of second seed columns 2061 are formed on the first buffer layer 205, and a third protective layer 2071 is coated on the sidewall of the first seed column 2021, and a fourth protective layer 2072 is coated between the phases. The first seed column 2021 is exposed on the first surface 2051 of the first buffer layer. In one embodiment, the first protective layer 2031, the second protective layer 2032, the third protective layer 2071, and the fourth protective layer 2072 are formed by spin-on glass coating (SOG), and the material may be SiO. 2 , HSQ (Hydrogen Silesquioxane) and MSQ (Methylsequioxane) and other polymers based on Silsequioxane (Polymer).

之後,沿著上述複數第二晶種柱2061之頂面以磊晶側向成 長(Epitaxial Lateral Overgrowth,ELOG)之方式同時側向及往上成長一第二緩衝層209,並在兩相鄰第二晶種柱2061、第一緩衝層205及第二緩衝層209之間形成至少一個第二孔洞208。在本實施例中,因為第三保護層2071覆蓋第二晶種柱2061之側壁,因此可以有效控制第二緩衝層209生長之方向性與空間成長優先性。在本實施例中,第二緩衝層209可為一非故意摻雜層或一未摻雜層,或為一n型摻雜層。Thereafter, the top surface of the plurality of second seed crystal columns 2061 is laterally epitaxially formed. The method of Epitaxial Lateral Overgrowth (ELOG) simultaneously grows a second buffer layer 209 laterally and upwardly, and forms between two adjacent second seed column 2061, the first buffer layer 205 and the second buffer layer 209. At least one second hole 208. In the present embodiment, since the third protective layer 2071 covers the sidewall of the second seed column 2061, the directivity and spatial growth priority of the growth of the second buffer layer 209 can be effectively controlled. In this embodiment, the second buffer layer 209 can be an unintentionally doped layer or an undoped layer, or an n-type doped layer.

在一實施例中,第一孔洞204、第二孔洞208之寬度可介於 50nm~600nm,或50nm~500nm,或50nm~400nm,或50nm~300nm,或50nm~200nm,或50nm~100nm。第一孔洞204、第二孔洞208之高度可介於0.5μm~2μm,或0.5μm~1.8μm,或0.5μm~1.6μm,或0.5μm~1.4μm,或0.5μm~1.2μm,或0.5μm~1μm,或0.5μm~0.8μm。此外,在一實施例中,第一孔洞204、第二孔洞208可分別具有一高寬比(高度與寬度之比值)介於1/5~3,或1/5~2,或1/5~1,或1/5~1/2,或1/5~1/3,或1/5~1/4。In an embodiment, the width of the first hole 204 and the second hole 208 may be between 50 nm to 600 nm, or 50 nm to 500 nm, or 50 nm to 400 nm, or 50 nm to 300 nm, or 50 nm to 200 nm, or 50 nm to 100 nm. The height of the first hole 204 and the second hole 208 may be between 0.5 μm and 2 μm, or 0.5 μm to 1.8 μm, or 0.5 μm to 1.6 μm, or 0.5 μm to 1.4 μm, or 0.5 μm to 1.2 μm, or 0.5 μm. ~1μm, or 0.5μm~0.8μm. In addition, in an embodiment, the first hole 204 and the second hole 208 may respectively have an aspect ratio (ratio of height to width) of 1/5~3, or 1/5~2, or 1/5. ~1, or 1/5~1/2, or 1/5~1/3, or 1/5~1/4.

在一實施例中,上述第一孔洞204之體積幾乎等於上述第二孔洞208。在另一實施例中,上述第一孔洞204之體積大於上述第二孔洞208。In one embodiment, the volume of the first hole 204 is almost equal to the second hole 208. In another embodiment, the first hole 204 has a larger volume than the second hole 208.

在一實施例中,在兩相鄰第一晶種柱2021與基板201之間可形成複數個第一孔洞204。在另一實施例中,因複數個第一晶種柱2021可為一規則陣列結構,因此上述複數個第一孔洞204也可為一規則陣列結構。在另一實施例中,此複數個第一孔洞204可為一單獨第一孔洞,或此單獨第一孔洞可相互連結,形成一個或複數個網狀第一孔洞群。In an embodiment, a plurality of first holes 204 may be formed between two adjacent first seed columns 2021 and the substrate 201. In another embodiment, since the plurality of first seed columns 2021 can be a regular array structure, the plurality of first holes 204 can also be a regular array structure. In another embodiment, the plurality of first holes 204 may be a single first hole, or the separate first holes may be coupled to each other to form one or a plurality of mesh first holes.

其中上述複數個第一孔洞204之平均寬度Wx 可介於50nm~ 600nm,或50nm~500nm,或50nm~400nm,或50nm~300nm,或50nm~200nm,或50nm~100nm。上述複數個第一孔洞204之平均高度Hx 可介於0.5μm~2μm,或0.5μm~1.8μm,或0.5μm~1.6μm,或0.5μm~1.4μm,或0.5μm~1.2μm,或0.5μm~1μm,或0.5μm~0.8μm。在一實施例中,上述複數個第一孔洞204之平均間距可介於10nm~1.5μm,或30nm~1.5μm,或50nm~1.5μm,80nm~1.5μm,或1μm~1.5μm,或1.2μm~1.5μm。此外,在一實施例中,上述複數個第一孔洞204可具有一平均高寬比(平均高度與平均寬度之比值)介於1/5~3,或1/5~2,或1/5~1,或1/5~1/2,或1/5~1/3,或1/5~1/4。上述複數個第一孔洞204形成之孔隙度Φ(porosity) 定義為第一孔洞204總體積VV 除以整體體積,其中整體體積 VT 為第一孔洞204總體積加上第一晶種柱2021體積。在本實施例中,孔隙度Φ可介於5%-90%,或10%-90%,或20%-90%,或30%-90%,或40%-90%,或50%-90%,或60%-90%,或70%-90%,或80%-90%。The average width W x of the plurality of first holes 204 may be between 50 nm and 600 nm, or 50 nm to 500 nm, or 50 nm to 400 nm, or 50 nm to 300 nm, or 50 nm to 200 nm, or 50 nm to 100 nm. The average height H x of the plurality of first holes 204 may be between 0.5 μm and 2 μm, or 0.5 μm to 1.8 μm, or 0.5 μm to 1.6 μm, or 0.5 μm to 1.4 μm, or 0.5 μm to 1.2 μm, or 0.5. Mm~1μm, or 0.5μm~0.8μm. In an embodiment, the average spacing of the plurality of first holes 204 may be between 10 nm and 1.5 μm, or 30 nm to 1.5 μm, or 50 nm to 1.5 μm, 80 nm to 1.5 μm, or 1 μm to 1.5 μm, or 1.2 μm. ~1.5μm. In addition, in an embodiment, the plurality of first holes 204 may have an average aspect ratio (the ratio of the average height to the average width) is between 1/5 and 3, or 1/5 to 2, or 1/5. ~1, or 1/5~1/2, or 1/5~1/3, or 1/5~1/4. The porosity Φ formed by the plurality of first holes 204 is defined as the total volume V V of the first hole 204 divided by the overall volume. Wherein the overall volume V T is the total volume of the first hole 204 plus the volume of the first seed column 2021. In this embodiment, the porosity Φ may be between 5% and 90%, or 10% to 90%, or 20% to 90%, or 30% to 90%, or 40% to 90%, or 50%. 90%, or 60%-90%, or 70%-90%, or 80%-90%.

在一實施例中,在兩相鄰第二晶種柱2061與第二緩衝層205 之間可形成複數個第二孔洞208。在另一實施例中,因複數個第二晶種柱2061可為一規則陣列結構,因此上述複數個第二孔洞208也可為一規則陣列結構。在另一實施例中,此複數個第二孔洞208可為一單獨第二孔洞,或此單獨第二孔洞可相互連結,形成一個或複數個網狀第二孔洞群。In an embodiment, the two adjacent second seed column 2061 and the second buffer layer 205 A plurality of second holes 208 may be formed therebetween. In another embodiment, since the plurality of second seed columns 2061 can be a regular array structure, the plurality of second holes 208 can also be a regular array structure. In another embodiment, the plurality of second holes 208 can be a single second hole, or the separate second holes can be joined to each other to form one or a plurality of mesh second holes.

其中上述複數個第二孔洞208之平均寬度Wx 可介於50nm~600nm,或50nm~500nm,或50nm~400nm,或50nm~300nm,或50nm~200nm,或50nm~100nm。上述複數個第二孔洞208之平均高度Hx 可介於0.5μm~2μm,或0.5μm~1.8μm,或0.5μm~1.6μm,或0.5μm~1.4μm,或0.5μm~1.2μm,或0.5μm~1μm,或0.5μm~0.8μm。在一實施例中,上述複數個第二孔洞208之平均間距可介於10nm~1.5μm,或30nm~1.5μm,或50nm~1.5μm,80nm~1.5μm,或1μm~1.5μm,或1.2μm~1.5μm。此外,在一實施例中,上述複數個第二孔洞208可具有一平均高寬比(平均高度與平均寬度之比值)介於1/5~3,或1/5~2,或1/5~1,或1/5~1/2,或1/5~1/3,或1/5~1/4。上述複數個第二孔洞208形成之孔隙度Φ(porosity) 定義為第二孔洞208總體積VV 除以整體體積,其中整體體積 VT 為第二孔洞208總體積加上第二晶種柱2061體積。在本實施例中,孔隙度Φ可介於5%-90%,或10%-90%,或20%-90%,或30%-90%,或40%-90%,或50%-90%,或60%-90%,或70%-90%,或80%-90%。The average width W x of the plurality of second holes 208 may be between 50 nm and 600 nm, or 50 nm to 500 nm, or 50 nm to 400 nm, or 50 nm to 300 nm, or 50 nm to 200 nm, or 50 nm to 100 nm. The average height H x of the plurality of second holes 208 may be between 0.5 μm and 2 μm, or 0.5 μm to 1.8 μm, or 0.5 μm to 1.6 μm, or 0.5 μm to 1.4 μm, or 0.5 μm to 1.2 μm, or 0.5. Mm~1μm, or 0.5μm~0.8μm. In an embodiment, the average spacing of the plurality of second holes 208 may be between 10 nm and 1.5 μm, or 30 nm to 1.5 μm, or 50 nm to 1.5 μm, 80 nm to 1.5 μm, or 1 μm to 1.5 μm, or 1.2 μm. ~1.5μm. In addition, in an embodiment, the plurality of second holes 208 may have an average aspect ratio (the ratio of the average height to the average width) is between 1/5 and 3, or 1/5 to 2, or 1/5. ~1, or 1/5~1/2, or 1/5~1/3, or 1/5~1/4. The porosity Φ formed by the plurality of second holes 208 is defined as the total volume V V of the second holes 208 divided by the overall volume. Wherein the overall volume V T is the total volume of the second hole 208 plus the volume of the second seed column 2061. In this embodiment, the porosity Φ may be between 5% and 90%, or 10% to 90%, or 20% to 90%, or 30% to 90%, or 40% to 90%, or 50%. 90%, or 60%-90%, or 70%-90%, or 80%-90%.

於上述第二緩衝層209之上繼續成長第一半導體層210、一主動層211與一第二半導體層212後,蝕刻部份上述主動層211與一第二半導體層212以露出部分第一半導體層210後,於第一半導體層210及第二半導體層212之上形成兩電極213、214以形成一光電元件200。上述電極213、214材料可選自:鉻(Cr)、鈦(Ti)、鎳(Ni)、鉑(Pt)、銅(Cu)、金(Au)、鋁(Al)、或銀(Ag)等金屬材料之單一組成或合金或疊層之組合。After the first semiconductor layer 210, an active layer 211 and a second semiconductor layer 212 are grown on the second buffer layer 209, a portion of the active layer 211 and a second semiconductor layer 212 are etched to expose a portion of the first semiconductor. After the layer 210, two electrodes 213, 214 are formed on the first semiconductor layer 210 and the second semiconductor layer 212 to form a photovoltaic element 200. The materials of the electrodes 213 and 214 may be selected from the group consisting of chromium (Cr), titanium (Ti), nickel (Ni), platinum (Pt), copper (Cu), gold (Au), aluminum (Al), or silver (Ag). A single composition of a metallic material or a combination of alloys or laminates.

在本實施例中,因上述第一孔洞204及第二孔洞208係為中空結構。此第一孔洞204及第二孔洞208具有一折射率,可作為空氣透鏡,當光線於光電元件200中行進至第一孔洞204及第二孔洞208時,由於第一孔洞204及第二孔洞208內外部材料折射率之差異(例如,緩衝層之折射率約介於2~3之間,空氣的折射率為1),光線將會在204及第二孔洞208處改變方向,而增加光摘出效率。另外,204及第二孔洞208也可作為一散射中心(scattering center)以改變光子之行進方向並且減少全反射。藉由204及第二孔洞208密度的增加,可更增加上述功效。In this embodiment, the first hole 204 and the second hole 208 are hollow structures. The first hole 204 and the second hole 208 have a refractive index and can serve as an air lens. When the light travels in the photovoltaic element 200 to the first hole 204 and the second hole 208, the first hole 204 and the second hole 208 are formed. The difference in refractive index between the inner and outer materials (for example, the refractive index of the buffer layer is between about 2 and 3, and the refractive index of air is 1), the light will change direction at 204 and the second hole 208, and the light extraction is increased. effectiveness. In addition, 204 and second holes 208 can also serve as a scattering center to change the direction of travel of the photons and reduce total reflection. This effect can be further increased by the increase in density of 204 and second holes 208.

在另一實施例中,於上述第二緩衝層209與第一半導體層210更可選擇性的依上述實施例之相同製程形成一第三晶種柱(未顯示)及一第三緩衝層(未顯示),並在第二緩衝層209與第三晶種柱(未顯示)之間形成至少一第三孔洞(未顯示)而更增加上述增加光摘出效率之功效。在一實施例中,上述第一孔洞204、第二孔洞208及第三孔洞(未顯示)之體積幾乎相同。在另一實施例中,上述第一孔洞204之體積大於上述第二孔洞208,且上述第二孔洞208體積大於上述第三孔洞(未顯示)。In another embodiment, the second buffer layer 209 and the first semiconductor layer 210 are selectively formed into a third seed column (not shown) and a third buffer layer according to the same process of the above embodiment. Not shown), and at least a third hole (not shown) is formed between the second buffer layer 209 and the third seed column (not shown) to further increase the above-described effect of increasing light extraction efficiency. In one embodiment, the first hole 204, the second hole 208, and the third hole (not shown) have substantially the same volume. In another embodiment, the first hole 204 has a larger volume than the second hole 208, and the second hole 208 has a larger volume than the third hole (not shown).

在另一實施例中,可依上述實施例之相同製程,依序形成第四孔洞(未顯示)、第五孔洞(未顯示)等,且第一孔洞至第五孔洞之體積可逐漸變小。In another embodiment, a fourth hole (not shown), a fifth hole (not shown), and the like may be sequentially formed according to the same process of the above embodiment, and the volume of the first hole to the fifth hole may gradually become smaller. .

如第3A~第3F圖所例示,將更詳細說明上述第一實施例中 將第一半導體層102蝕刻成為複數個第一半導體柱1021之一種方法。如第3A圖所示,在一基板301之第一表面3011成長一第一晶種層302。As illustrated in FIGS. 3A to 3F, the above-described first embodiment will be described in more detail. A method of etching the first semiconductor layer 102 into a plurality of first semiconductor pillars 1021. As shown in FIG. 3A, a first seed layer 302 is grown on the first surface 3011 of the substrate 301.

之後,如第3B圖所示,在第一半導體層302之上成長一抗蝕刻層303,材料可為二氧化矽(SiO2 )。並在抗蝕刻層303之上繼續形成一薄膜金屬層304,此薄膜金屬層304材質可以為鎳,且薄膜金屬層304之厚度介於500至2000nm間。Thereafter, as shown in FIG. 3B, an anti-etching layer 303 is grown on the first semiconductor layer 302, and the material may be cerium oxide (SiO 2 ). A thin film metal layer 304 is further formed on the anti-etching layer 303. The thin film metal layer 304 may be made of nickel, and the thin film metal layer 304 has a thickness of between 500 and 2000 nm.

之後,如第3C圖所示,對此薄膜金屬層304進行熱處理,此熱處理溫度可介於750-900℃,使薄膜金屬層304形成一規則或不規則排列之複數奈米級金屬顆粒3041。Thereafter, as shown in FIG. 3C, the thin film metal layer 304 is subjected to heat treatment at a temperature of 750 to 900 ° C to form the thin film metal layer 304 into a plurality of regular-sized metal particles 3041 which are regularly or irregularly arranged.

如第3D圖所示,以上述複數個奈米級金屬顆粒3041作為遮罩,對抗蝕刻層303進行非等向性蝕刻,例如進行一感應耦合電漿(inductive coupling plasma,ICP),將抗蝕刻層303形成複數奈米抗蝕刻柱3031。As shown in FIG. 3D, the plurality of nano-sized metal particles 3041 are used as a mask to perform an anisotropic etching on the etching layer 303, for example, an inductive coupling plasma (ICP), which is resistant to etching. Layer 303 forms a plurality of nano anti-etch columns 3031.

如第3E圖~第3F圖所示,泡入攝氏100℃的硝酸蝕刻液中進行酸蝕刻,將殘留的金屬顆粒3041移除。接著以上述複數個抗蝕刻柱3031作為遮罩對第一晶種層302進行乾蝕刻以形成複數個第一晶種柱3021。最後,將複數個抗蝕刻柱3031移除。As shown in FIGS. 3E to 3F, the acid etching was performed by immersing in a nitric acid etching solution at 100 ° C to remove residual metal particles 3041. The first seed layer 302 is then dry etched using the plurality of anti-etch columns 3031 as a mask to form a plurality of first seed columns 3021. Finally, a plurality of anti-etch columns 3031 are removed.

具體而言,光電元件100、200係為發光二極體(LED)、光電二極體(photodiode)、光敏電阻(photoresister)、雷射(laser)、紅外線發射體(infrared emitter)、有機發光二極體(organic light-emitting diode)及太陽能電池(solar cell)中至少其一。Specifically, the photovoltaic elements 100 and 200 are a light emitting diode (LED), a photodiode, a photoresistor, a laser, an infrared emitter, and an organic light emitting diode. At least one of an organic light-emitting diode and a solar cell.

基板101、201係為一成長、承載基礎。候選材料其一係包含但不限於鍺(Ge)、砷化鎵(GaAs)、銦化磷(InP)、藍寶石(Sapphire)、碳化矽(SiC)、矽(Si)、鋁酸鋰(LiAlO2 )、氧化鋅(ZnO)、氮化鎵(GaN)、氮化鋁(AlN)、金屬、玻璃、複合材料(Composite)、鑽石、CVD鑽石、與類鑽碳(Diamond-Like Carbon;DLC)、尖晶石(spinel,MgAl2 O4 )、氧化鋁(Al2 O3 )、氧化矽(SiOX )及鎵酸鋰(LiGaO2 )等。The substrates 101 and 201 are a growth and bearing foundation. The candidate materials include but are not limited to germanium (Ge), gallium arsenide (GaAs), indium phosphate (InP), sapphire (Sapphire), tantalum carbide (SiC), germanium (Si), lithium aluminate (LiAlO 2 ), zinc oxide (ZnO), gallium nitride (GaN), aluminum nitride (AlN), metals, glass, composites, diamonds, CVD diamonds, and diamond-like carbon (DLC), Spinel (MgAl 2 O 4 ), alumina (Al 2 O 3 ), cerium oxide (SiO X ), and lithium gallate (LiGaO 2 ).

上述第一半導體層106、210及第二半導體層108、212係彼此中至少二個部分之電性、極性或摻雜物相異、或者係分別用以提供電子 與電洞之半導體材料單層或多層(「多層」係指二層或二層以上,以下同。),其電性選擇可以為p型、n型、及i型中至少任意二者之組合。主動層107、211係位於第一半導體層106、210及第二半導體層108、212之間,為電能與光能可能發生轉換或被誘發轉換之區域。電能轉變或誘發光能者係如發光二極體、液晶顯示器、有機發光二極體;光能轉變或誘發電能者係如太陽能電池、光電二極體。上述第一晶種層102、202,第一緩衝層105、205,第二晶種層206,第二緩衝層209,第一半導體層106、210,主動層107、211及第二半導體層108、212包含一種或一種以上之元素選自鎵(Ga)、鋁(Al)、銦(In)、砷(As)、磷(P)、氮(N)以及矽(Si)所構成群組。The first semiconductor layers 106, 210 and the second semiconductor layers 108, 212 are different in electrical, polar or dopants of at least two of the two, or are respectively used to provide electrons The semiconductor material of the hole and the single hole or the plurality of layers ("multilayer" means two or more layers, the same below), and the electrical selection may be a combination of at least two of p type, n type, and i type. . The active layers 107, 211 are located between the first semiconductor layers 106, 210 and the second semiconductor layers 108, 212, and are regions where electrical energy and light energy may be converted or induced to be converted. Those who convert or induce light energy are such as light-emitting diodes, liquid crystal displays, and organic light-emitting diodes; those that convert or induce light energy are such as solar cells and photodiodes. The first seed layer 102, 202, the first buffer layer 105, 205, the second seed layer 206, the second buffer layer 209, the first semiconductor layer 106, 210, the active layers 107, 211 and the second semiconductor layer 108 212 includes one or more elements selected from the group consisting of gallium (Ga), aluminum (Al), indium (In), arsenic (As), phosphorus (P), nitrogen (N), and cerium (Si).

依據本發明之另一實施例之光電元件100、200係一發光二 極體,其發光頻譜可以藉由改變半導體單層或多層之物理或化學要素進行調整。常用之材料係如磷化鋁鎵銦(AlGaInP)系列、氮化鋁鎵銦(AlGaInN)系列、氧化鋅(ZnO)系列等。轉換部之結構係如:單異質結構(single heterostructure;SH)、雙異質結構(double heterostructure;DH)、雙側雙異質結構(double-side double heterostructure;DDH)、或多層量子井(multi-quantμm well;MQW)。再者,調整量子井之對數亦可以改變發光波長。The photovoltaic element 100, 200 according to another embodiment of the present invention is a light-emitting two In polar bodies, the luminescence spectrum can be adjusted by changing the physical or chemical elements of a single layer or multiple layers of a semiconductor. Commonly used materials are such as aluminum gallium indium phosphide (AlGaInP) series, aluminum gallium indium nitride (AlGaInN) series, zinc oxide (ZnO) series and the like. The structure of the conversion unit is: single heterostructure (SH), double heterostructure (DH), double-side double heterostructure (DDH), or multi-quant μm Well; MQW). Furthermore, adjusting the logarithm of the quantum well can also change the wavelength of the illumination.

於本發明之一實施例中,第一晶種層102、202與基板101、201 間尚可選擇性地包含一過渡層(未顯示)。此過渡層係介於二種材料系統之間,使基板之材料系統”過渡”至半導體系統之材料系統。對發光二極體之結構而言,一方面,過渡層係例如緩衝層(buffer layer)等用以降低二種材料間晶格不匹配之材料層。另一方面,過渡層亦可以是用以結合二種材料或二個分離結構之單層、多層或結構,其可選用之材料係如:有機材料、無機材料、金屬、及半導體等;其可選用之結構係如:反射層、導熱層、導電層、歐姆接觸(ohmic contact)層、抗形變層、應力釋放(stress release)層、應力調整(stress adjustment)層、接合(bonding)層、波長轉換層、及機械固定構造等。In an embodiment of the invention, the first seed layer 102, 202 and the substrate 101, 201 A transition layer (not shown) may optionally be included. This transition layer is between the two material systems, "transition" the material system of the substrate to the material system of the semiconductor system. For the structure of the light-emitting diode, on the one hand, a transition layer such as a buffer layer or the like is used to reduce the material layer of the lattice mismatch between the two materials. On the other hand, the transition layer may also be a single layer, a plurality of layers or a structure for combining two materials or two separate structures, such as organic materials, inorganic materials, metals, and semiconductors; The selected structure is: reflective layer, thermally conductive layer, conductive layer, ohmic contact layer, anti-deformation layer, stress release layer, stress adjustment layer, bonding layer, wavelength Conversion layer, mechanical fixing structure, etc.

第二半導體層108、212上更可選擇性地形成一接觸層(未顯示)。接觸層係設置於第二半導體層108、212遠離主動層107、211之一側。具體而言,接觸層可以為光學層、電學層、或其二者之組合。光學層係可 以改變來自於或進入主動層107、211的電磁輻射或光線。在此所稱之「改變」係指改變電磁輻射或光之至少一種光學特性,前述特性係包含但不限於頻率、波長、強度、通量、效率、色溫、演色性(rendering index)、光場(light field)、及可視角(angle of view)。電學層係可以使得接觸層之任一組相對側間之電壓、電阻、電流、電容中至少其一之數值、密度、分布發生變化或有發生變化之趨勢。接觸層之構成材料係包含氧化物、導電氧化物、透明氧化物、具有50%或以上穿透率之氧化物、金屬、相對透光金屬、具有50%或以上穿透率之金屬、有機質、無機質、螢光物、磷光物、陶瓷、半導體、摻雜之半導體、及無摻雜之半導體中至少其一。於某些應用中,接觸層之材料係為氧化銦錫、氧化鎘錫、氧化銻錫、氧化銦鋅、氧化鋅鋁、與氧化鋅錫中至少其一。若為相對透光金屬,其厚度係約為0.005μm~0.6μm。A contact layer (not shown) is more selectively formed on the second semiconductor layers 108, 212. The contact layer is disposed on a side of the second semiconductor layer 108, 212 away from the active layers 107, 211. In particular, the contact layer can be an optical layer, an electrical layer, or a combination of both. Optical layer system To change the electromagnetic radiation or light from or into the active layers 107, 211. As used herein, "change" means changing at least one optical property of electromagnetic radiation or light, including but not limited to frequency, wavelength, intensity, flux, efficiency, color temperature, rendering index, light field. (light field), and angle of view. The electrical layer system may change or change the value, density, distribution of at least one of voltage, resistance, current, and capacitance between opposite sides of any one of the contact layers. The constituent material of the contact layer comprises an oxide, a conductive oxide, a transparent oxide, an oxide having a transmittance of 50% or more, a metal, a relatively light-transmissive metal, a metal having a transmittance of 50% or more, an organic substance, At least one of an inorganic substance, a phosphor, a phosphor, a ceramic, a semiconductor, a doped semiconductor, and an undoped semiconductor. In some applications, the material of the contact layer is at least one of indium tin oxide, cadmium tin oxide, antimony tin oxide, indium zinc oxide, zinc aluminum oxide, and zinc tin oxide. In the case of a relatively light-transmissive metal, the thickness is about 0.005 μm to 0.6 μm.

以上各圖式與說明雖僅分別對應特定實施例,然而,各個實施例中所說明或揭露之元件、實施方式、設計準則、及技術原理除在彼此顯相衝突、矛盾、或難以共同實施之外,吾人當可依其所需任意參照、交換、搭配、協調、或合併。The above figures and descriptions are only corresponding to specific embodiments, however, the elements, embodiments, design criteria, and technical principles described or disclosed in the various embodiments are inconsistent, contradictory, or difficult to implement together. In addition, we may use any reference, exchange, collocation, coordination, or merger as required.

雖然本發明已說明如上,然其並非用以限制本發明之範圍、實施順序、或使用之材料與製程方法。對於本發明所作之各種修飾與變更,皆不脫本發明之精神與範圍。Although the invention has been described above, it is not intended to limit the scope of the invention, the order of implementation, or the materials and process methods used. Various modifications and variations of the present invention are possible without departing from the spirit and scope of the invention.

Claims (10)

一種光電元件,包含:一基板,具有一表面,並具有一與該表面垂直之法線方向;一第一半導體層包含複數個不規則孔洞結構,位於該基板之該表面上;一保護層,位於該複數個孔洞結構之側壁;及一緩衝層,位於該第一半導體層之上。A photovoltaic element comprising: a substrate having a surface and having a normal direction perpendicular to the surface; a first semiconductor layer comprising a plurality of irregular pore structures on the surface of the substrate; a protective layer, Located on a sidewall of the plurality of holes; and a buffer layer over the first semiconductor layer. 如請求項1所述之光電元件,其中該些孔洞結構可彼此獨立;或可相互連結;或形成一個或複數個網狀第一孔洞群;或呈一規則陣列,且該些孔洞結構其平均間距介於100Å~1.5μm,孔隙度介於5%-90%。The photovoltaic element according to claim 1, wherein the pore structures are independent of each other; or may be connected to each other; or form one or a plurality of networked first pore groups; or in a regular array, and the pore structures are averaged The spacing is between 100Å and 1.5μm and the porosity is between 5% and 90%. 如請求項1所述之光電元件,更包含一第二半導體層、一主動層及一第三半導體層形成於該緩衝層之上。The photovoltaic device according to claim 1, further comprising a second semiconductor layer, an active layer and a third semiconductor layer formed on the buffer layer. 如請求項1所述之光電元件,其中該緩衝層可為一非故意摻雜層或一未摻雜層或為一n型摻雜層。The photovoltaic device of claim 1, wherein the buffer layer is an unintentionally doped layer or an undoped layer or an n-type doped layer. 如請求項1所述之光電元件,其中該保護層之材料可為SiO2 、HSQ(Hydrogen Silesquioxane)或MSQ(Methylsequioxane)等以Silsequioxane為基材的聚合物(Polymer)。The photovoltaic element according to claim 1, wherein the material of the protective layer is SiO 2 , HSQ (Hydrogen Silesquioxane) or MSQ (Methylsequioxane) or the like (Siliequioxane) based polymer (Polymer). 一種製造一光電元件之方法,包含下列步驟:提供一基板,具有一表面並具有一與該表面垂直之法線方向; 形成一第一半導體層於該基板之該表面上;圖案化該第一半導體層,以形成形成複數個孔洞結構;提供一保護層於該孔洞結構之側壁之上;及形成一緩衝層於該第一半導體層之上。A method of fabricating a photovoltaic element, comprising the steps of: providing a substrate having a surface and having a normal direction perpendicular to the surface; Forming a first semiconductor layer on the surface of the substrate; patterning the first semiconductor layer to form a plurality of holes; providing a protective layer over the sidewall of the hole structure; and forming a buffer layer thereon Above the first semiconductor layer. 如請求項6所述之方法,其中該圖案化該第一半導體層之步驟包含:形成一抗蝕刻層於該第一晶種層上;形成一薄膜金屬層於該抗蝕刻層上;加熱該薄膜金屬層使之成為複數個金屬顆粒;以該複數個金屬顆粒作為遮罩,對該抗蝕刻層進行非等向性蝕刻以形成一圖案;去除該複數個金屬顆粒;及以該圖案化抗蝕刻層作為遮罩,乾蝕刻該第一晶種層。The method of claim 6, wherein the patterning the first semiconductor layer comprises: forming an anti-etching layer on the first seed layer; forming a thin film metal layer on the anti-etching layer; heating the The thin film metal layer is formed into a plurality of metal particles; the plurality of metal particles are used as a mask, the anti-etching layer is anisotropically etched to form a pattern; the plurality of metal particles are removed; and the patterned resist is used The etching layer acts as a mask to dry etch the first seed layer. 如請求項6所述之方法,其中該些孔洞結構可彼此獨立;或可相互連結;或形成一個或複數個網狀第一孔洞群;或呈一規則陣列,且該些孔洞結構其平均間距介於100Å~1.5μm,孔隙度介於5%-90%。The method of claim 6, wherein the pore structures are independent of each other; or may be connected to each other; or form one or a plurality of networked first pore groups; or in a regular array, and the average spacing of the pore structures It is between 100Å and 1.5μm and the porosity is between 5% and 90%. 如請求項6所述之方法,更包含形成一第二半導體層、一主動層及一第三半導體層於該緩衝層之上。The method of claim 6, further comprising forming a second semiconductor layer, an active layer, and a third semiconductor layer over the buffer layer. 如請求項6所述之方法,其中該保護層採用旋轉塗佈玻璃之方式形成(SOG,spin on glass coating)。The method of claim 6, wherein the protective layer is formed by spin-on glass coating (SOG).
TW102138040A 2010-12-02 2010-12-02 Optoelectronic device and method for manufacturing the same TWI495155B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102138040A TWI495155B (en) 2010-12-02 2010-12-02 Optoelectronic device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102138040A TWI495155B (en) 2010-12-02 2010-12-02 Optoelectronic device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW201407820A TW201407820A (en) 2014-02-16
TWI495155B true TWI495155B (en) 2015-08-01

Family

ID=50550596

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102138040A TWI495155B (en) 2010-12-02 2010-12-02 Optoelectronic device and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI495155B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI636602B (en) * 2017-03-21 2018-09-21 機光科技股份有限公司 Organic optoelectronic device structure and manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060060866A1 (en) * 2000-03-14 2006-03-23 Toyoda Gosel Co., Ltd. Group III nitride compound semiconductor devices and method for fabricating the same
US20070041214A1 (en) * 2005-05-24 2007-02-22 Ha Jun S Rod type light emitting device and method for fabricating the same
US20090127567A1 (en) * 2007-11-19 2009-05-21 Wang Nang Wang Led chip thermal management and fabrication methods
TW201017718A (en) * 2008-10-16 2010-05-01 Advanced Optoelectronic Tech Method for interdicting dislocation of semiconductor with dislocation defects

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060060866A1 (en) * 2000-03-14 2006-03-23 Toyoda Gosel Co., Ltd. Group III nitride compound semiconductor devices and method for fabricating the same
US20070041214A1 (en) * 2005-05-24 2007-02-22 Ha Jun S Rod type light emitting device and method for fabricating the same
US20090127567A1 (en) * 2007-11-19 2009-05-21 Wang Nang Wang Led chip thermal management and fabrication methods
TW201017718A (en) * 2008-10-16 2010-05-01 Advanced Optoelectronic Tech Method for interdicting dislocation of semiconductor with dislocation defects

Also Published As

Publication number Publication date
TW201407820A (en) 2014-02-16

Similar Documents

Publication Publication Date Title
TWI419367B (en) Optoelectronic device and method for manufacturing the same
TWI451597B (en) Optoelectronic device and method for manufacturing the same
TWI501421B (en) Optoelectronic device and method for manufacturing the same
US8735185B2 (en) Light emitting device and fabrication method thereof
US8519430B2 (en) Optoelectronic device and method for manufacturing the same
US8343788B2 (en) Light emitting device and manufacturing method thereof
JP5763789B2 (en) Photoelectric device and manufacturing method thereof
US8946736B2 (en) Optoelectronic device and method for manufacturing the same
TWI495155B (en) Optoelectronic device and method for manufacturing the same
TWI431810B (en) Optoelectronic device and method for manufacturing the same
CN102544287B (en) Photoelectric cell and manufacture method thereof
CN102420281B (en) Photoelectric element and manufacturing method thereof
CN102623580B (en) Photoelectric element and manufacturing method thereof
JP2012094752A (en) Photoelectric element and method of manufacturing the same
KR101643213B1 (en) Optoelectronic device and method for manufacturing the same
JP2012142473A (en) Photoelectric element and method of manufacturing the same
KR101464282B1 (en) Semiconductor device
KR20120040426A (en) Optoelectronic device and method for manufacturing the same
TW201424059A (en) Optoelectronic device and method for manufacturing the same