TWI493317B - Solar power generation devices, solar power generation methods, maximum power tracking module and maximum power tracking control method - Google Patents

Solar power generation devices, solar power generation methods, maximum power tracking module and maximum power tracking control method Download PDF

Info

Publication number
TWI493317B
TWI493317B TW103110506A TW103110506A TWI493317B TW I493317 B TWI493317 B TW I493317B TW 103110506 A TW103110506 A TW 103110506A TW 103110506 A TW103110506 A TW 103110506A TW I493317 B TWI493317 B TW I493317B
Authority
TW
Taiwan
Prior art keywords
voltage
error amount
zero
power
control signal
Prior art date
Application number
TW103110506A
Other languages
Chinese (zh)
Other versions
TW201537330A (en
Original Assignee
Univ Kun Shan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Kun Shan filed Critical Univ Kun Shan
Priority to TW103110506A priority Critical patent/TWI493317B/en
Application granted granted Critical
Publication of TWI493317B publication Critical patent/TWI493317B/en
Publication of TW201537330A publication Critical patent/TW201537330A/en

Links

Landscapes

  • Control Of Electrical Variables (AREA)

Description

太陽能發電裝置、太陽能發電方法、最大功率 追蹤模組及最大功率追蹤控制方法Solar power generation device, solar power generation method, maximum power Tracking module and maximum power tracking control method

本發明是有關於一種裝置、方法,及模組,特別是指一種太陽能發電裝置、太陽能發電方法、最大功率追蹤模組及最大功率追蹤控制方法。The invention relates to a device, a method, and a module, in particular to a solar power generation device, a solar power generation method, a maximum power tracking module and a maximum power tracking control method.

隨著環保意識的抬高,綠色能源之一的太陽能在應用上逐漸受到重視。使用太陽能發電具有諸多優點:對環境的影響小、可作為永久性的能源、到處都有、一種清潔不會帶來污染的能源、不會增加地球的熱負荷等。近年來歐美等先進國家不斷投入太陽光發電設置,例如2010年全球太陽光發電新增設容量為16.5GW,其中德國設置量達7.4GW,為全球第一,其次為義大利、捷克、日本與美國,前五大市場共佔全球79%。2011年全球太陽光發電新增設容量為21.2GW。預估2014年全球太陽光發電新增設容量將達30GW。而台灣位處亞熱帶,一年四季常受到日照,使用太陽能發電應是值得考慮的方向。With the rise of environmental awareness, solar energy, one of the green energy sources, has gradually gained attention in its application. The use of solar power has many advantages: it has little impact on the environment, it can be used as a permanent energy source, everywhere, a clean energy that does not cause pollution, and does not increase the earth's heat load. In recent years, advanced countries such as Europe and the United States have been continually investing in solar power generation. For example, in 2010, the global solar power generation capacity was 16.5 GW, of which Germany set a volume of 7.4 GW, ranking first in the world, followed by Italy, the Czech Republic, and Japan. In the United States, the top five markets together account for 79% of the world. In 2011, the global solar power generation capacity was 21.2GW. It is estimated that the global installed capacity of solar power generation will reach 30GW in 2014. Taiwan is located in the subtropical zone and is often exposed to sunshine throughout the year. The use of solar power should be a consideration.

因此,本發明之第一目的,即在提供一種能迅 速輸出一根據光電轉換輸出的電能中,產生最大輸出功率的電壓的太陽能發電裝置。Therefore, the first object of the present invention is to provide a kind of fast The speed output is a solar power generation device that generates a voltage of maximum output power according to the electric energy output by the photoelectric conversion.

於是,本發明太陽能發電裝置,包含:一太陽能板模組,將太陽光進行光電轉換以產生一輸出電壓;一最大功率追蹤模組,包括:一控制力產生器,電連接該太陽能板模組以偵測該輸出電壓及相關該輸出電壓的一輸出電流,且計算該輸出電壓的一電壓誤差量及一功率誤差量,並代入一模糊規則庫運算以得到一控制訊號,該模糊規則庫的公式為: Therefore, the solar power generation device of the present invention comprises: a solar panel module for photoelectrically converting sunlight to generate an output voltage; and a maximum power tracking module comprising: a control force generator electrically connecting the solar panel module Detecting the output voltage and an output current related to the output voltage, and calculating a voltage error amount and a power error amount of the output voltage, and substituting a fuzzy rule base operation to obtain a control signal, the fuzzy rule base The formula is:

其中,UFN 表示該控制訊號,xi 表示該電壓誤差量、功率誤差量,fAli (xi )表示xi 的歸屬函數,w表示補償該輸出電壓的一電壓增量,w1 表示該電壓增量的歸屬函數之重心,表示fAli (xi )之最大值對應到橫軸的值,表示調變fAli (xi )的斜率之參數,及一脈寬調變器,電連接該控制力產生器以接收該控制訊號,並經由調變輸出一責任週期正比於該控制訊號的一脈寬調變控制訊號;及一直流轉換器,電連接該太陽能板模組及該脈寬調變器以接收該輸出電壓、該脈寬調變控制訊號,且根據該脈寬調變控制訊號之責任週期來將該輸出電壓進行轉換以產生一轉換電壓。Wherein, U FN represents the control signal, x i represents the voltage error amount, the power error amount, f Ali (x i ) represents a attribution function of x i , w represents a voltage increment for compensating the output voltage, and w 1 represents the The center of gravity of the attribution function of the voltage increment, Indicates that the maximum value of f Ali (x i ) corresponds to the value of the horizontal axis. a parameter indicating a slope of the modulation f Ali (x i ), and a pulse width modulator electrically connected to the control force generator to receive the control signal, and outputting a duty cycle proportional to the control signal via the modulation output a pulse width modulation control signal; and a DC converter electrically connecting the solar panel module and the pulse width modulator to receive the output voltage, the pulse width modulation control signal, and adjusting the control signal according to the pulse width The duty cycle is to convert the output voltage to produce a conversion voltage.

本發明之第二目的,即在提供一種能迅速輸出一根據光電轉換輸出的電能中,產生最大輸出功率的電壓的太陽能發電方法。A second object of the present invention is to provide a solar power generation method capable of rapidly outputting a voltage which generates a maximum output power from electric energy output according to photoelectric conversion.

於是,本發明太陽能發電方法,包含:(A)利用一太陽能板模組將太陽光進行光電轉換以產生一輸出電壓;(B)利用一最大功率追蹤模組偵測該輸出電壓及相關該輸出電壓的一輸出電流;(C)利用該最大功率追蹤模組計算該輸出電壓的一電壓誤差量及一功率誤差量,並代入一模糊規則庫運算以得到一控制訊號,該模糊規則庫的公式為: Therefore, the solar power generation method of the present invention comprises: (A) photoelectrically converting sunlight to generate an output voltage by using a solar panel module; (B) detecting the output voltage and correlating the output by using a maximum power tracking module. An output current of the voltage; (C) calculating a voltage error amount and a power error amount of the output voltage by using the maximum power tracking module, and substituting into a fuzzy rule base operation to obtain a control signal, the formula of the fuzzy rule base for:

其中,UFN 表示該控制訊號,xi 表示該電壓誤差量、功率誤差量,fAli (xi )表示xi 的歸屬函數,w表示補償該輸出電壓的一電壓增量,w1 表示該電壓增量的歸屬函數之重心,表示fAli (xi )之最大值對應到橫軸的值,表示調變fAli (xi )的斜率之參數;(D)利用該最大功率追蹤模組接收該控制訊號,並經由調變輸出一責任週期正比於該控制訊號的一脈寬調變控制訊號;及(E)利用一直流轉換器接收該輸出電壓、該脈寬調變控制訊號,且根據該脈寬調變控制訊號之責任週期來將該輸出電壓進行轉換以產生一轉換電壓。Wherein, U FN represents the control signal, x i represents the voltage error amount, the power error amount, f Ali (x i ) represents a attribution function of x i , w represents a voltage increment for compensating the output voltage, and w 1 represents the The center of gravity of the attribution function of the voltage increment, Indicates that the maximum value of f Ali (x i ) corresponds to the value of the horizontal axis. Represents the slope of the modulation parameter f Ali (x i) of; (D) using the maximum power point tracking module receiving the control signal, and outputs a duty cycle proportional to a PWM control signal via the control signal modulation And (E) receiving the output voltage, the pulse width modulation control signal by using a DC converter, and converting the output voltage according to a duty cycle of the pulse width modulation control signal to generate a conversion voltage.

本發明之第三目的,即在提供一種能迅速追蹤到,光電轉換中產生最大輸出功率的電壓的最大功率追蹤模組。A third object of the present invention is to provide a maximum power tracking module that can quickly track the voltage that produces the maximum output power in photoelectric conversion.

於是,本發明最大功率追蹤模組,包含:一控制力產生器,偵測來自一太陽能板模組的一輸出電壓及相關該輸出電壓的一輸出電流,且計算該輸出電壓的一電壓誤差量及一功率誤差量,並代入一模糊規則庫運算以得到一控制訊號,該模糊規則庫的公式為: Therefore, the maximum power tracking module of the present invention comprises: a control force generator for detecting an output voltage from a solar panel module and an output current associated with the output voltage, and calculating a voltage error amount of the output voltage And a power error amount, and substituted into a fuzzy rule base operation to obtain a control signal, the formula of the fuzzy rule base is:

其中,UFN 表示該控制訊號,xi 表示該電壓誤差量、功率誤差量,fAli (xi )表示xi 的歸屬函數,w表示補償該輸出電壓的一電壓增量,w1 表示該電壓增量的歸屬函數之重心,表示fAli (xi )之最大值對應到橫軸的值,表示調變fAli (xi )的斜率之參數;及一脈寬調變器,電連接該控制力產生器以接收該控制訊號,並經由調變輸出一責任週期正比於該控制訊號的一脈寬調變控制訊號。Wherein, U FN represents the control signal, x i represents the voltage error amount, the power error amount, f Ali (x i ) represents a attribution function of x i , w represents a voltage increment for compensating the output voltage, and w 1 represents the The center of gravity of the attribution function of the voltage increment, Indicates that the maximum value of f Ali (x i ) corresponds to the value of the horizontal axis. a parameter indicating a slope of the modulation f Ali (x i ); and a pulse width modulator electrically connected to the control force generator to receive the control signal, and outputting a duty cycle proportional to the control signal via the modulation output Pulse width modulation control signal.

本發明之第四目的,即在提供一種能迅速追蹤到,光電轉換中產生最大輸出功率的電壓的最大功率追蹤控制方法。A fourth object of the present invention is to provide a maximum power tracking control method that can quickly trace the voltage that produces the maximum output power in photoelectric conversion.

於是,本發明最大功率追蹤控制方法,包含:(A)利用一控制力產生器偵測來自一太陽能板模組的一輸出電壓及相關該輸出電壓的一輸出電流; (B)利用該控制力產生器計算該輸出電壓的一電壓誤差量及一功率誤差量,並代入一模糊規則庫運算以得到一控制訊號,該模糊規則庫的公式為: Therefore, the maximum power tracking control method of the present invention comprises: (A) detecting, by a control force generator, an output voltage from a solar panel module and an output current related to the output voltage; (B) utilizing the control force The generator calculates a voltage error amount and a power error amount of the output voltage, and substitutes a fuzzy rule base operation to obtain a control signal. The formula of the fuzzy rule base is:

其中,UFN 表示該控制訊號,xi 表示該電壓誤差量、功率誤差量,fAli (xi )表示xi 的歸屬函數,w表示補償該輸出電壓的一電壓增量,w1 表示該電壓增量的歸屬函數之重心,表示fAli (xi )之最大值對應到橫軸的值,表示調變fAli (xi )的斜率之參數;及(C)利用一脈寬調變器接收該控制訊號,並經由調變輸出一責任週期正比於該控制訊號的一脈寬調變控制訊號。Wherein, U FN represents the control signal, x i represents the voltage error amount, the power error amount, f Ali (x i ) represents a attribution function of x i , w represents a voltage increment for compensating the output voltage, and w 1 represents the The center of gravity of the attribution function of the voltage increment, Indicates that the maximum value of f Ali (x i ) corresponds to the value of the horizontal axis. a parameter indicating a slope of the modulation f Ali (x i ); and (C) receiving the control signal by using a pulse width modulator, and outputting a duty cycle proportional to the pulse width modulation control of the control signal via the modulation output Signal.

1‧‧‧太陽能板模組1‧‧‧ solar panel module

2‧‧‧最大功率追蹤模組2‧‧‧Maximum power tracking module

21‧‧‧控制力產生器21‧‧‧Control force generator

22‧‧‧脈寬調變器22‧‧‧ Pulse Width Modulator

3‧‧‧直流轉換器3‧‧‧DC Converter

4‧‧‧負載4‧‧‧ load

P‧‧‧輸出功率P‧‧‧output power

VS ‧‧‧輸出電壓Output voltage V S ‧‧‧

IS ‧‧‧輸出電流I S ‧‧‧Output current

eV (k)‧‧‧電壓誤差量e V (k)‧‧‧Voltage error

eP (k)‧‧‧功率誤差量e P (k)‧‧‧ power error

△V(k)‧‧‧電壓增量△V(k)‧‧‧voltage increment

UFN ‧‧‧控制訊號U FN ‧‧‧Control signal

Vo ‧‧‧轉換電壓V o ‧‧‧Switching voltage

A‧‧‧光電轉換步驟A‧‧‧ photoelectric conversion steps

B‧‧‧偵測步驟B‧‧‧Detection steps

C‧‧‧運算步驟C‧‧‧Operation steps

D‧‧‧調變步驟D‧‧‧Transformation steps

E‧‧‧產生輸出步驟E‧‧‧Generation steps

本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是一方塊圖,說明本發明太陽能發電裝置之較佳實施例;圖2是一量測圖,說明使用不同的光源照度照射該較佳實施例的一太陽能板模組,產生的功率與對應的電壓變化;圖3是一示意圖,說明在該較佳實施例中,如何從一電壓誤差量與一功率誤差量判斷一電壓增量;及圖4是一流程圖,說明本發明太陽能發電方法之較佳 實施例。Other features and advantages of the present invention will be apparent from the embodiments of the present invention. FIG. 1 is a block diagram illustrating a preferred embodiment of the solar power generating apparatus of the present invention; FIG. 2 is a measurement diagram. , illustrating the use of different light source illumination to illuminate a solar panel module of the preferred embodiment, the generated power and corresponding voltage changes; FIG. 3 is a schematic diagram illustrating how the voltage error amount is from the preferred embodiment. Determining a voltage increment with a power error amount; and FIG. 4 is a flow chart illustrating the preferred method of the solar power generation method of the present invention Example.

參閱圖1,本發明太陽能發電裝置之較佳實施例將太陽光進行光電轉換成電能並供電給一負載4,且包含一太陽能板模組1、一最大功率追蹤模組2,及一直流轉換器3。Referring to FIG. 1, a preferred embodiment of a solar power generation device of the present invention photoelectrically converts sunlight into electrical energy and supplies power to a load 4, and includes a solar panel module 1, a maximum power tracking module 2, and a continuous current conversion. Device 3.

該太陽能板模組1用以將太陽光進行光電轉換以產生一輸出電壓VSThe solar panel module 1 is used for photoelectrically converting sunlight to generate an output voltage V S .

參閱圖2,本實施例使用20W的太陽能板模組1,當使用光源照度分別為276、731、1212、1585W/m2 照射該太陽能板模組1時,量測每一光源照度轉換成電能的輸出功率P與分別對應的輸出電壓VS ,則該太陽能板模組1在不同的光源照度時,量測到不同的最大功率點,分別對應到不同的輸出電壓VSReferring to FIG. 2, in this embodiment, a 20W solar panel module 1 is used. When the solar panel module 1 is irradiated with illuminances of 276, 731, 1212, and 1585 W/m 2 respectively, the illumination of each source is measured and converted into electric energy. The output power P and the corresponding output voltage V S respectively , the solar panel module 1 measure different maximum power points when different light source illuminations, respectively corresponding to different output voltages V S .

參閱圖1與圖3,該最大功率追蹤模組2包括一控制力產生器21,及一脈寬調變器(Pulse-Width Modulation,PWM)22。該控制力產生器21電連接該太陽能板模組1。該脈寬調變器22電連接該控制力產生器21。Referring to FIG. 1 and FIG. 3, the maximum power tracking module 2 includes a control force generator 21 and a Pulse-Width Modulation (PWM) 22. The control force generator 21 is electrically connected to the solar panel module 1. The pulse width modulator 22 is electrically connected to the control force generator 21.

尋找補償該太陽能板模組的輸出電壓VS 的電壓值,設一電壓誤差量為eV (k)=Vs (k)-Vs (k-1),Vs (k-1)、Vs (k)分別表示時間先後的該輸出電壓,一功率誤差量為eP (k)=P(k)-P(k-1),P(k-1)、P(k)分別表示時間先後的該輸出功率,補償該太陽能板模組1的輸出電壓VS 的一電壓增量為△V(k),該輸出電壓VS 的輸出量為Vs (k+1)=Vs (k)+△ Vs (k)。則該輸出電壓VS 的電壓增量△V(k)有以下四種狀態:Finding a voltage value that compensates for the output voltage V S of the solar panel module, and setting a voltage error amount to e V (k)=V s (k)−V s (k-1), V s (k-1), V s (k) represents the output voltage of time series, respectively. The amount of power error is e P (k)=P(k)-P(k-1), and P(k-1) and P(k) respectively represent The output power of the time series compensates a voltage increment of the output voltage V S of the solar panel module 1 by ΔV(k), and the output of the output voltage V S is V s (k+1)=V s (k) + Δ V s (k). Then, the voltage increment ΔV(k) of the output voltage V S has the following four states:

狀態(a),當該電壓誤差量eV (k)大於零、該功率誤差量eP (k)大於零時,則該電壓增量△V(k)需大於零。State (a), when the voltage error amount e V (k) is greater than zero and the power error amount e P (k) is greater than zero, the voltage increment ΔV(k) needs to be greater than zero.

狀態(b),當該電壓誤差量eV (k)小於零、該功率誤差量eP (k)小於零時,則該電壓增量△V(k)需大於零。State (b), when the voltage error amount e V (k) is less than zero and the power error amount e P (k) is less than zero, the voltage increment ΔV(k) needs to be greater than zero.

狀態(c),當該電壓誤差量eV (k)大於零、該功率誤差量eP (k)小於零時,則該電壓增量△V(k)需小於零。State (c), when the voltage error amount e V (k) is greater than zero and the power error amount e P (k) is less than zero, the voltage increment ΔV(k) needs to be less than zero.

狀態(d),當該電壓誤差量eV (k)小於零、該功率誤差量eP (k)大於零時,則該電壓增量△V(k)需小於零。State (d), when the voltage error amount e V (k) is less than zero and the power error amount e P (k) is greater than zero, the voltage increment ΔV(k) needs to be less than zero.

則從以上四種狀態的分析得知,由該電壓誤差量eV (k)、該功率誤差量eP (k)的狀態,判斷出該電壓增量△V(k)的狀態。From the analysis of the above four states, it is known that the state of the voltage increment ΔV(k) is determined from the state of the voltage error amount e V (k) and the power error amount e P (k).

該直流轉換器3電連接該太陽能板模組1、該脈寬調變器22,及該負載4。The DC converter 3 is electrically connected to the solar panel module 1, the pulse width modulator 22, and the load 4.

參閱圖1與圖4,該太陽能發電裝置執行一種太陽能發電方法,用以提供電能可達最大功率點的電壓給該負載4,該太陽能發電方法包含以下步驟:Referring to FIGS. 1 and 4, the solar power generation apparatus performs a solar power generation method for supplying a voltage of a power up to a maximum power point to the load 4. The solar power generation method includes the following steps:

步驟A:利用該太陽能板模組1將太陽光進行光電轉換以產生該輸出電壓VSStep A: The solar panel module 1 is used to photoelectrically convert sunlight to generate the output voltage V S .

步驟B:利用該最大功率追蹤模組2偵測該輸出電壓VS 及相關該輸出電壓VS 的一輸出電流ISStep B: The maximum power point tracking module using an output current I S 2 detects the output voltage V S and the correlation of the output voltage V S.

步驟C:利用該最大功率追蹤模組2計算該輸出電壓VS 的電壓誤差量eV (k)及該功率誤差量eP (k),並代 入一模糊規則庫運算以得到一控制訊號UFN ,該模糊規則庫的公式為: Step C: Calculating the voltage error amount e V (k) of the output voltage V S and the power error amount e P (k) by using the maximum power tracking module 2, and substituting into a fuzzy rule base operation to obtain a control signal U FN , the formula of the fuzzy rule base is:

其中,在本例中,n=2,x1 表示該電壓誤差量eV (k),x2 表示該功率誤差量eP (k),fAl1 (x1 )表示x1 的歸屬函數,fAl2 (x2 )表示x2 的歸屬函數,w表示由該電壓誤差量eV (k)、該功率誤差量eP (k)的狀態判斷出的該電壓增量△V(k),w1 表示該電壓增量△V(k)的歸屬函數之重心,表示歸屬函數fAli (xi )之最大值對應到橫軸的值,表示調變歸屬函數fAli (xi )的斜率之參數,為方便計算定義P1 =fAl1 (x1 )×fAl2 (x2 )。Wherein, in this example, n=2, x 1 represents the voltage error amount e V (k), x 2 represents the power error amount e P (k), and f Al1 (x 1 ) represents a attribution function of x 1 , f Al2 (x 2 ) represents a attribution function of x 2 , and w represents the voltage increment ΔV(k) determined by the voltage error amount e V (k) and the state of the power error amount e P (k), w 1 represents the center of gravity of the attribution function of the voltage increment ΔV(k), Indicates that the maximum value of the attribution function f Ali (x i ) corresponds to the value of the horizontal axis. A parameter indicating the slope of the modulation attribution function f Ali (x i ) is defined for convenience calculation P 1 =f Al1 (x 1 )×f Al2 (x 2 ).

該步驟C的詳細作法為:參閱表1,在本例中,該模糊規則庫有25條規則,表示該電壓誤差量eV (k)、該功率誤差量eP (k)、與該電壓增量△V(k)配合產生的25種狀態。A11 為該電壓誤差量eV (k)的模糊集合。A12 為該功率誤差量eP (k)的模糊集合。B1 為該電壓增量△V(k)的模糊集合。fAl1 (xi )為模糊集合A11 的歸屬函數,fAl2 (xi )為模糊集合A12 的歸屬函數,且fAl1 (xi )、fAl2 (xi)皆為一高斯歸屬函數。w1 為模糊集合B1 的歸屬函數之重心。The detailed operation of the step C is as follows: refer to Table 1. In this example, the fuzzy rule base has 25 rules indicating the voltage error amount e V (k), the power error amount e P (k), and the voltage. The increments ΔV(k) match the 25 states produced. A 11 is a fuzzy set of the voltage error amount e V (k). A 12 is a fuzzy set of the power error amount e P (k). B 1 is a fuzzy set of the voltage increment ΔV(k). f Al1 (x i ) is the attribution function of the fuzzy set A 11 , f Al2 (x i ) is the attribution function of the fuzzy set A 12 , and f Al1 (x i ), f Al2 (xi) are all a Gaussian attribution function. w 1 is the center of gravity of the attribution function of the fuzzy set B 1 .

第一條規則:當x1 (eV )為A11 ,表示值為正且大PB1(Positive Big),x2 (ep )為A12 ,表示值為正且大PB2,則w(△V)為B1 ,表示值為正且大PB3,且P1 =fA11 (x1 )×fA12 (x2 )。The first rule: When x 1 (e V ) is A 11 , indicating a positive value and a large PB1 (Positive Big), x 2 (e p ) is A 12 , indicating a positive value and a large PB2, then w (△) V) is B 1 , indicating a value of positive and large PB3, and P 1 =f A11 (x 1 )×f A12 (x 2 ).

第二條規則:當x1 (eV )為A21 ,表示值為正且大PB1,x2 (ep )為A22 ,表示值為正且小PS2(Positive Small),則w(△V)為B2 ,表示值為正且大PB3,且P2 =fA21 (x1 )×fA22 (x2 )。The second rule: when x 1 (e V ) is A 21 , indicating a positive value and a large PB1, x 2 (e p ) is A 22 , indicating a positive value and a small PS2 (Positive Small), then w (△) V) is B 2 , indicating a value of positive and large PB3, and P 2 =f A21 (x 1 )×f A22 (x 2 ).

第三條規則:當x1 (eV )為A31 ,表示值為正且大PB1,x2 (ep )為A32 ,表示值為零ZE2(Zero),則w(△V)為B3 ,表示值為正且中PM3(Positive Middle),且P3 =fA31 (x1 )×fA32 (x2 )。The third rule: when x 1 (e V ) is A 31 , indicating that the value is positive and large PB1, x 2 (e p ) is A 32 , indicating that the value is zero ZE2 (Zero), then w(△V) is B 3 represents a value of positive and medium PM3 (Positive Middle), and P 3 = f A31 (x 1 ) × f A32 (x 2 ).

第四條規則:當x1 (eV )為A41 ,表示值為正且大PB1,x2 (ep )為A42 ,表示值為負且小NS2(Negative Small),則w(△V)為B4 ,表示值為正且小PS3,且P4 =fA41 (x1 )×fA42 (x2 )。The fourth rule: when x 1 (e V ) is A 41 , indicating a positive value and a large PB1, x 2 (e p ) is A 42 , indicating a negative value and a small NS2 (Negative Small), then w (△) V) is B 4 , indicating a value of positive and small PS3, and P 4 =f A41 (x 1 )×f A42 (x 2 ).

第五條規則:當x1 (eV )為A51 ,表示值為正且大PB1,x2 (ep )為A52 ,表示值為負且大NB2(Negative Big),則w(△V)為B5 ,表示值為零ZE3,且P5 =fA51 (x1 )×fA52 (x2 )。The fifth rule: when x 1 (e V ) is A 51 , indicating a positive value and a large PB1, x 2 (e p ) is A 52 , indicating a negative value and a large NB2 (Negative Big), then w (△) V) is B 5 , indicating that the value is zero ZE3, and P 5 = f A51 (x 1 ) × f A52 (x 2 ).

第六條規則:當x1 (eV )為A61 ,表示值為正且小PS1,x2 (ep )為A62 ,表示值為正且大PB2,則w(△V)為B6 ,表示值為正且大PB3,且P6 =fA61 (x1 )×fA62 (x2 )。Rule 6: When x 1 (e V ) is A 61 , the value is positive and small PS1, x 2 (e p ) is A 62 , indicating positive value and large PB2, then w(△V) is B 6 , the value is positive and large PB3, and P 6 =f A61 (x 1 )×f A62 (x 2 ).

第七條規則:當x1 (eV )為A71 ,表示值為正且小PS1,x2 (ep )為A72 ,表示值為正且小PS2,則w(△V)為B7 ,表示值為正且中PM3,且P7 =fA71 (x1 )×fA72 (x2 )。The seventh rule: when x 1 (e V ) is A 71 , indicating that the value is positive and small PS1, x 2 (e p ) is A 72 , indicating that the value is positive and small PS2, then w(△V) is B 7 , indicating a value of positive and medium PM3, and P 7 =f A71 (x 1 )×f A72 (x 2 ).

第八條規則:當x1 (eV )為A81 ,表示值為正且小PS1,x2 (ep )為A82 ,表示值為零ZE2,則w(△V)為B8 ,表示值為正且小PS3,且P8 =fA81 (x1 )×fA82 (x2 )。The eighth rule: when x 1 (e V ) is A 81 , indicating that the value is positive and small PS1, x 2 (e p ) is A 82 , indicating that the value is zero ZE2, then w(△V) is B 8 . The value indicated is positive and small PS3, and P 8 = f A81 (x 1 ) × f A82 (x 2 ).

第九條規則:當x1 (eV )為A91 ,表示值為正且小PS1,x2 (ep )為A92 ,表示值為負且小NS2,則w(△V)為B9 ,表示值為零ZE3,且P9 =fA91 (x1 )×fA92 (x2 )。Rule 9: When x 1 (e V ) is A 91 , the value is positive and small PS1, x 2 (e p ) is A 92 , indicating that the value is negative and small NS2, then w(△V) is B 9 , indicating that the value is zero ZE3, and P 9 =f A91 (x 1 )×f A92 (x 2 ).

第十條規則:當x1 (eV )為A101 ,表示值為正且小PS1,x2 (ep )為A102 ,表示值為負且大NB2,則w(△V)為B10 ,表示值為負且小NS3,且P10 =fA101 (x1 )×fA102 (x2 )。Tenth rule: When x 1 (e V ) is A 101 , indicating that the value is positive and small PS1, x 2 (e p ) is A 102 , indicating that the value is negative and large NB2, then w(△V) is B 10 , the value is negative and small NS3, and P 10 = f A101 (x 1 ) × f A102 (x 2 ).

第十一條規則:當x1 (eV )為A111 ,表示值為零ZE1,x2 (ep )為A112 ,表示值為正且大PB2,則w(△V)為B11 ,表示值為正且中PM3,且P11 =fA111 (x1 )×fA112 (x2 )。Eleventh rule: When x 1 (e V ) is A 111 , the value is zero ZE1, and x 2 (e p ) is A 112 , indicating that the value is positive and the large PB2, then w(△V) is B 11 , indicating a value of positive and medium PM3, and P 11 =f A111 (x 1 )×f A112 (x 2 ).

第十二條規則:當x1 (eV )為A121 ,表示值為零ZE1,x2 (ep )為A122 ,表示值為正且小PS2,則w(△V)為B12 ,表示值為正且小PS3,且P12 =fA121 (x1 )×fA122 (x2 )。Rule 12: When x 1 (e V ) is A 121 , the value is zero ZE1, and x 2 (e p ) is A 122 , indicating that the value is positive and small PS2, then w(△V) is B 12 , indicates that the value is positive and small PS3, and P 12 =f A121 (x 1 )×f A122 (x 2 ).

第十三條規則:當x1 (eV )為A131 ,表示值為零ZE1,x2 (ep )為A132 ,表示值為零ZE2,則w(△V)為B13 ,表示值為零ZE3,且P13 =fA131 (x1 )×fA132 (x2 )。Rule 13: When x 1 (e V ) is A 131 , the value is zero ZE1, x 2 (e p ) is A 132 , indicating that the value is zero ZE2, then w(△V) is B 13 , indicating The value is zero ZE3, and P 13 = f A131 (x 1 ) × f A132 (x 2 ).

第十四條規則:當x1 (eV )為A141 ,表示值為零ZE1,x2 (ep )為A142 ,表示值為負且小NS2,則w(△V)為B14 ,表示值為負且小NS3,且P14 =fA141 (x1 )×fA142 (x2 )。Rule 14: When x 1 (e V ) is A 141 , the value is zero ZE1, and x 2 (e p ) is A 142 , indicating that the value is negative and small NS2, then w(△V) is B 14 , indicates that the value is negative and small NS3, and P 14 = f A141 (x 1 ) × f A142 (x 2 ).

第十五條規則:當x1 (eV )為A151 ,表示值為零ZE1,x2 (ep )為A152 ,表示值為負且大NB2,則w(△V)為B15 ,表示值為負且中NM3(Negative Middle),且P15 =fA151 (x1 )× fA152 (x2 )。Fifteenth rule: When x 1 (e V ) is A 151 , indicating that the value is zero ZE1 and x 2 (e p ) is A 152 , indicating that the value is negative and large NB2, then w(ΔV) is B 15 , indicating a value of negative and medium NM3 (Negative Middle), and P 15 =f A151 (x 1 )× f A152 (x 2 ).

第十六條規則:當x1 (eV )為A161 ,表示值為負且小NS1,x2 (ep )為A162 ,表示值為正且大PB2,則w(△V)為B16 ,表示值為正且小PS3,且P16 =fA161 (x1 )×fA162 (x2 )。Sixteenth rule: When x 1 (e V ) is A 161 , indicating that the value is negative and small NS1, x 2 (e p ) is A 162 , indicating that the value is positive and large PB2, then w(△V) is B 16 represents a value of positive and small PS3, and P 16 =f A161 (x 1 )×f A162 (x 2 ).

第十七條規則:當x1 (eV )為A171 ,表示值為負且小NS1,x2 (ep )為A172 ,表示值為正且小PS2,則w(△V)為B17 ,表示值為零ZE3,且P17 =fA171 (x1 )×fA172 (x2 )。Rule 17: When x 1 (e V ) is A 171 , indicating that the value is negative and small NS1, x 2 (e p ) is A 172 , indicating that the value is positive and small PS2, then w(△V) is B 17 represents a value of zero ZE3, and P 17 =f A171 (x 1 )×f A172 (x 2 ).

第十八條規則:當x1 (eV )為A181 ,表示值為負且小NS1,x2 (ep )為A182 ,表示值為零ZE2,則w(△V)為B18 ,表示值為負且小NS3,且P18 =fA181 (x1 )×fA182 (x2 )。Eighteenth rule: When x 1 (e V ) is A 181 , indicating that the value is negative and small NS1, x 2 (e p ) is A 182 , indicating that the value is zero ZE2, then w(△V) is B 18 , indicates that the value is negative and small NS3, and P 18 = f A181 (x 1 ) × f A182 (x 2 ).

第十九條規則:當x1 (eV )為A191 ,表示值為負且小NS1,x2 (ep )為A192 ,表示值為負且小NS2,則w(△V)為B19 ,表示值為負且中NM3,且P19 =fA191 (x1 )×fA192 (x2 )。Rule 19: When x 1 (e V ) is A 191 , the value is negative and small NS1, x 2 (e p ) is A 192 , indicating that the value is negative and small NS2, then w(△V) is B 19 represents a value of negative and medium NM3, and P 19 =f A191 (x 1 )×f A192 (x 2 ).

第二十條規則:當x1 (eV )為A201 ,表示值為負且小NS1,x2 (ep )為A202 ,表示值為負且大NB2,則w(△V)為B20 ,表示值為負且大NB3,且P20 =fA201 (x1 )×fA202 (x2 )。The twentieth rule: When x 1 (e V ) is A 201 , indicating that the value is negative and small NS1, x 2 (e p ) is A 202 , indicating that the value is negative and the large NB2, then w(△V) is B 20 , indicating that the value is negative and large NB3, and P 20 =f A201 (x 1 )×f A202 (x 2 ).

第二十一條規則:當x1 (eV )為A211 ,表示值為負且大NB1,x2 (ep )為A212 ,表示值為正且大PB2,則w(△V)為B21 ,表示值為零ZE3,且P21 =fA211 (x1 )×fA212 (x2 )。Rule 21: When x 1 (e V ) is A 211 , indicating that the value is negative and large NB1, x 2 (e p ) is A 212 , indicating positive value and large PB2, then w(△V) Is B 21 , indicating that the value is zero ZE3, and P 21 = f A211 (x 1 ) × f A212 (x 2 ).

第二十二條規則:當x1 (eV )為A221 ,表示值為負且大NB1,x2 (ep )為A222 ,表示值為正且小PS2,則w(△V)為B22 ,表示值為負且小NS3,且P22 =fA221 (x1 )×fA222 (x2 )。Twenty-second rule: When x 1 (e V ) is A 221 , indicating that the value is negative and large NB1, x 2 (e p ) is A 222 , indicating that the value is positive and small PS2, then w(△V) For B 22 , the value is negative and small NS3, and P 22 =f A221 (x 1 )×f A222 (x 2 ).

第二十三條規則:當x1 (eV )為A231 ,表示值為負且大NB1,x2 (ep )為A232 ,表示值為零ZE2,則w(△V)為 B23 ,表示值為負且中NM3,且P23 =fA231 (x1 )×fA232 (x2 )。Rule 23: When x 1 (e V ) is A 231 , the value is negative and the big NB1, x 2 (e p ) is A 232 , indicating that the value is zero ZE2, then w(△V) is B 23 , indicating a value of negative and medium NM3, and P 23 =f A231 (x 1 )×f A232 (x 2 ).

第二十四條規則:當x1 (eV )為A241 ,表示值為負且大NB1,x2 (ep )為A242 ,表示值為負且小NS2,則w(△V)為B24 ,表示值為負且大NB3,且P24 =fA241 (x1 )×fA242 (x2 )。Rule 24: When x 1 (e V ) is A 241 , the value is negative and the big NB1, x 2 (e p ) is A 242 , indicating that the value is negative and small NS2, then w(△V) For B 24 , the value is negative and large NB3, and P 24 = f A241 (x 1 ) × f A242 (x 2 ).

第二十五條規則:當x1 (eV )為A251 ,表示值為負且大NB1,x2 (ep )為A252 ,表示值為負且大NB2,則w(△V)為B25 ,表示值為負且大NB3,且P25 =fA251 (x1 )×fA252 (x2 )。Rule 25: When x 1 (e V ) is A 251 , the value is negative and the big NB1, x 2 (e p ) is A 252 , indicating that the value is negative and the big NB2 is, then w(△V) For B 25 , the value is negative and large NB3, and P 25 = f A251 (x 1 ) × f A252 (x 2 ).

參閱圖1與表1,利用該控制力產生器21持續偵測該太陽能板模組1輸出的該輸出電壓VS 及其相對應的該輸出電流IS ,計算每一輸出的電壓誤差量eV (k)及功率誤差量eP (k),並代入公式1與公式2以得到相對的每一控制訊號UFN ,使用公式1與公式2運算過程簡單、迅速,能迅速得到該控制訊號UFNReferring to FIG. 1 and Table 1, the control force generator 21 continuously detects the output voltage V S output by the solar panel module 1 and the corresponding output current I S , and calculates a voltage error amount e of each output. V (k) and the power error amount e P (k), and substituted into Equation 1 and Equation 2 to obtain each control signal U FN relative to each other. The calculation process using Equation 1 and Equation 2 is simple and rapid, and the control signal can be quickly obtained. U FN .

步驟D:參閱圖1與圖4,利用該脈寬調變器22接收該控制訊號UFN ,並經由調變輸出一責任週期正比於該控制訊號UFN 的一脈寬調變控制訊號。當該控制訊號UFN 的值越大時,該脈寬調變控制訊號的責任週期越大;當該控制訊號UFN 的值越小時,該脈寬調變控制訊號的責任週期越小。Step D: Referring to FIG. 1 and FIG. 4, the pulse width modulator 22 receives the control signal U FN and outputs a pulse width modulation control signal proportional to the control signal U FN via the modulation output. When the larger the value of the control signal U FN, the greater the duty cycle of the PWM control signal; and when the value of the control signal U FN is smaller, the smaller the duty cycle of the PWM control signals.

步驟E:利用該直流轉換器3接收該輸出電壓VS 、該脈寬調變控制訊號,且根據該脈寬調變控制訊號之責任週期來將該輸出電壓VS 進行轉換以產生一轉換電壓VO ,並輸出給該負載4。Step E: 3-DC converter with which receives the output voltage V S, the PWM control signal, and to output voltage V S according to the duty cycle of the PWM control signal of a converter converting voltage to generate V O and output to the load 4.

綜上所述,上述該較佳實施例利用該最大功率 追蹤模組2將偵測且運算出的電壓誤差量eV (k)及功率誤差量eP (k)代入該等模糊規則庫的公式(1)、(2)運算,並輸出該脈寬調變控制訊號,再利用該直流轉換器3接收該輸出電壓VS 、該脈寬調變控制訊號,據以產生該轉換電壓VO ,因運算過程簡單、迅速,能讓該負載4迅速接收能產生最大功率點的該轉換電壓VO ,故確實能達成本發明之目的。In summary, the preferred embodiment uses the maximum power tracking module 2 to substitute the detected and calculated voltage error amount e V (k) and the power error amount e P (k) into the fuzzy rule base. The equations (1) and (2) are operated, and the pulse width modulation control signal is output, and the DC converter 3 is used to receive the output voltage V S and the pulse width modulation control signal to generate the conversion voltage V O . Since the calculation process is simple and rapid, the load 4 can be quickly received by the conversion voltage V O which can generate the maximum power point, so that the object of the present invention can be achieved.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。The above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the simple equivalent changes and modifications made by the patent application scope and patent specification content of the present invention, All remain within the scope of the invention patent.

1‧‧‧太陽能板模組1‧‧‧ solar panel module

2‧‧‧最大功率追蹤模組2‧‧‧Maximum power tracking module

21‧‧‧控制力產生器21‧‧‧Control force generator

22‧‧‧脈寬調變器22‧‧‧ Pulse Width Modulator

3‧‧‧直流轉換器3‧‧‧DC Converter

4‧‧‧負載4‧‧‧ load

VS ‧‧‧輸出電壓Output voltage V S ‧‧‧

IS ‧‧‧輸出電流I S ‧‧‧Output current

UFN ‧‧‧控制訊號U FN ‧‧‧Control signal

Vo ‧‧‧轉換電壓V o ‧‧‧Switching voltage

Claims (10)

一種太陽能發電裝置,包含:一太陽能板模組,將太陽光進行光電轉換以產生一輸出電壓;一最大功率追蹤模組,包括:一控制力產生器,電連接該太陽能板模組以偵測該輸出電壓及相關該輸出電壓的一輸出電流,且計算該輸出電壓的一電壓誤差量及一功率誤差量,並代入一模糊規則庫運算以得到一控制訊號,該模糊規則庫的公式為: 其中,UFN 表示該控制訊號,xi 表示該電壓誤差量、該功率誤差量,fAli (xi )表示xi 的歸屬函數,w表示補償該輸出電壓的一電壓增量,w1 表示該電壓增量的歸屬函數之重心,表示fAli (xi )之最大值對應到橫軸的值,表示調變fAli (xi )的斜率之參數,及一脈寬調變器,電連接該控制力產生器以接收該控制訊號,並經由調變輸出一責任週期正比於該控制訊號的一脈寬調變控制訊號;及一直流轉換器,電連接該太陽能板模組及該脈寬調變器以接收該輸出電壓、該脈寬調變控制訊號,且根據該脈寬調變控制訊號之責任週期來將該輸出電壓進行 轉換以產生一轉換電壓。A solar power generation device comprising: a solar panel module for photoelectrically converting sunlight to generate an output voltage; a maximum power tracking module comprising: a control force generator electrically connected to the solar panel module for detecting The output voltage and an output current related to the output voltage, and calculating a voltage error amount and a power error amount of the output voltage, and substituting into a fuzzy rule base operation to obtain a control signal, the formula of the fuzzy rule base is: Wherein, U FN represents the control signal, x i represents the voltage error amount, the power error amount, f Ali (x i ) represents a attribution function of x i , w represents a voltage increment for compensating the output voltage, and w 1 represents The center of gravity of the attribution function of the voltage increment, Indicates that the maximum value of f Ali (x i ) corresponds to the value of the horizontal axis. a parameter indicating a slope of the modulation f Ali (x i ), and a pulse width modulator electrically connected to the control force generator to receive the control signal, and outputting a duty cycle proportional to the control signal via the modulation output a pulse width modulation control signal; and a DC converter electrically connecting the solar panel module and the pulse width modulator to receive the output voltage, the pulse width modulation control signal, and adjusting the control signal according to the pulse width The duty cycle is to convert the output voltage to produce a conversion voltage. 如請求項1所述的太陽能發電裝置,其中,該電壓誤差量、該功率誤差量的公式為:eV (k)=Vs (k)-Vs (k-1) ep (k)=P(k)-P(k-1)其中,eV (k)表示該電壓誤差量,Vs (k-1)、Vs (k)分別表示時間先後的該輸出電壓,ep (k)表示該功率誤差量,P(k-1)、P(k)分別表示時間先後的該輸出功率。The solar power generation device according to claim 1, wherein the voltage error amount and the power error amount are expressed as: e V (k)=V s (k)−V s (k-1) e p (k) =P(k)-P(k-1) where e V (k) represents the voltage error amount, and V s (k-1) and V s (k) represent the time-order output voltage, e p ( k) indicates the power error amount, and P(k-1) and P(k) represent the output power of the time series, respectively. 如請求項1所述的太陽能發電裝置,其中,該電壓誤差量、該功率誤差量,及該電壓增量有以下四種狀態:狀態一:當該電壓誤差量大於零、該功率誤差量大於零時,則該電壓增量需大於零;狀態二:當該電壓誤差量小於零、該功率誤差量小於零時,則該電壓增量需大於零;狀態三:當該電壓誤差量大於零、該功率誤差量小於零時,則該電壓增量需小於零;及狀態四:當該電壓誤差量小於零、該功率誤差量大於零時,則該電壓增量需小於零。The solar power generation device of claim 1, wherein the voltage error amount, the power error amount, and the voltage increment have the following four states: state one: when the voltage error amount is greater than zero, the power error amount is greater than Zero time, the voltage increment needs to be greater than zero; state two: when the voltage error amount is less than zero, the power error amount is less than zero, then the voltage increment needs to be greater than zero; state three: when the voltage error amount is greater than zero When the power error amount is less than zero, the voltage increment needs to be less than zero; and state four: when the voltage error amount is less than zero and the power error amount is greater than zero, the voltage increment needs to be less than zero. 一種太陽能發電方法,包含:(A)利用一太陽能板模組將太陽光進行光電轉換以產生一輸出電壓;(B)利用一最大功率追蹤模組偵測該輸出電壓及相關該輸出電壓的一輸出電流;(C)利用該最大功率追蹤模組計算該輸出電壓的一 電壓誤差量及一功率誤差量,並代入一模糊規則庫運算以得到一控制訊號,該模糊規則庫的公式為: 其中,UFN 表示該控制訊號,xi 表示該電壓誤差量、功率誤差量,fAli (xi )表示xi 的歸屬函數,w表示補償該輸出電壓的一電壓增量,w1 表示該電壓增量的歸屬函數之重心,表示fAli (xi )之最大值對應到橫軸的值,表示調變fAli (xi )的斜率之參數;(D)利用該最大功率追蹤模組接收該控制訊號,並經由調變輸出一責任週期正比於該控制訊號的一脈寬調變控制訊號;及(E)利用一直流轉換器接收該輸出電壓、該脈寬調變控制訊號,且根據該脈寬調變控制訊號之責任週期來將該輸出電壓進行轉換以產生一轉換電壓。A solar power generation method comprising: (A) photoelectrically converting sunlight to generate an output voltage using a solar panel module; and (B) detecting, by the maximum power tracking module, the output voltage and a related one of the output voltages Output current; (C) using the maximum power tracking module to calculate a voltage error amount and a power error amount of the output voltage, and substituting into a fuzzy rule base operation to obtain a control signal, the formula of the fuzzy rule base is: Wherein, U FN represents the control signal, x i represents the voltage error amount, the power error amount, f Ali (x i ) represents a attribution function of x i , w represents a voltage increment for compensating the output voltage, and w 1 represents the The center of gravity of the attribution function of the voltage increment, Indicates that the maximum value of f Ali (x i ) corresponds to the value of the horizontal axis. Represents the slope of the modulation parameter f Ali (x i) of; (D) using the maximum power point tracking module receiving the control signal, and outputs a duty cycle proportional to a PWM control signal via the control signal modulation And (E) receiving the output voltage, the pulse width modulation control signal by using a DC converter, and converting the output voltage according to a duty cycle of the pulse width modulation control signal to generate a conversion voltage. 如請求項4所述的太陽能發電方法,其中,該電壓誤差量、該功率誤差量的公式為:eV (k)=Vs (k)-Vs (k-1) ep (k)=P(k)-P(k-1)其中,eV (k)表示該電壓誤差量,Vs (k-1)、Vs (k)分別表示時間先後的該輸出電壓,ep (k)表示該功率誤差量,P(k-1)、P(k)分別表示時間先後的該輸出功率。The solar power generation method according to claim 4, wherein the voltage error amount and the power error amount are expressed as: e V (k)=V s (k)−V s (k−1) e p (k) =P(k)-P(k-1) where e V (k) represents the voltage error amount, and V s (k-1) and V s (k) represent the time-order output voltage, e p ( k) indicates the power error amount, and P(k-1) and P(k) represent the output power of the time series, respectively. 如請求項4所述的太陽能發電方法,其中,該電壓誤差 量、該功率誤差量,及該電壓增量有以下四種狀態:狀態一:當該電壓誤差量大於零、該功率誤差量大於零時,則該電壓增量需大於零;狀態二:當該電壓誤差量小於零、該功率誤差量小於零時,則該電壓增量需大於零;狀態三:當該電壓誤差量大於零、該功率誤差量小於零時,則該電壓增量需小於零;及狀態四:當該電壓誤差量小於零、該功率誤差量大於零時,則該電壓增量需小於零。The solar power generation method according to claim 4, wherein the voltage error The quantity, the amount of power error, and the voltage increment have the following four states: state one: when the voltage error amount is greater than zero, the power error amount is greater than zero, then the voltage increment needs to be greater than zero; state two: when When the voltage error amount is less than zero and the power error amount is less than zero, the voltage increment needs to be greater than zero; state three: when the voltage error amount is greater than zero, the power error amount is less than zero, then the voltage increment is less than Zero; and state four: When the voltage error amount is less than zero and the power error amount is greater than zero, the voltage increment needs to be less than zero. 一種最大功率追蹤模組,包含:一控制力產生器,偵測來自一太陽能板模組的一輸出電壓及相關該輸出電壓的一輸出電流,且計算該輸出電壓的一電壓誤差量及一功率誤差量,並代入一模糊規則庫運算以得到一控制訊號,該模糊規則庫的公式為: 其中,UFN 表示該控制訊號,xi 表示該電壓誤差量、功率誤差量,fAli (xi )表示xi 的歸屬函數,w表示補償該輸出電壓的一電壓增量,w1 表示該電壓增量的歸屬函數之重心,表示fAli (xi )之最大值對應到橫軸的值,表示調變fAli (xi )的斜率之參數;及一脈寬調變器,電連接該控制力產生器以接收該控制訊號,並經由調變輸出一責任週期正比於該控制訊號 的一脈寬調變控制訊號。A maximum power tracking module includes: a control force generator for detecting an output voltage from a solar panel module and an output current associated with the output voltage, and calculating a voltage error amount and a power of the output voltage The error amount is substituted into a fuzzy rule base operation to obtain a control signal. The formula of the fuzzy rule base is: Wherein, U FN represents the control signal, x i represents the voltage error amount, the power error amount, f Ali (x i ) represents a attribution function of x i , w represents a voltage increment for compensating the output voltage, and w 1 represents the The center of gravity of the attribution function of the voltage increment, Indicates that the maximum value of f Ali (x i ) corresponds to the value of the horizontal axis. a parameter indicating a slope of the modulation f Ali (x i ); and a pulse width modulator electrically connected to the control force generator to receive the control signal, and outputting a duty cycle proportional to the control signal via the modulation output Pulse width modulation control signal. 如請求項7所述的最大功率追蹤模組,其中,該電壓誤差量、該功率誤差量的公式為:eV (k)=Vs (k)-Vs (k-1) ep (k)=P(k)-P(k-1)其中,eV (k)表示該電壓誤差量,Vs (k-1)、Vs (k)分別表示時間先後的該輸出電壓,ep (k)表示該功率誤差量,P(k-1)、P(k)分別表示時間先後的該輸出功率。The maximum power tracking module according to claim 7, wherein the voltage error amount and the power error amount are: e V (k)=V s (k)−V s (k−1) e p ( k)=P(k)-P(k-1) where e V (k) represents the voltage error amount, and V s (k-1) and V s (k) represent the time-order output voltage, respectively. p (k) represents the power error amount, and P(k-1) and P(k) represent the output power of the time series, respectively. 如請求項7所述的最大功率追蹤模組,其中,該電壓誤差量、該功率誤差量,及該電壓增量有以下四種狀態:狀態一:當該電壓誤差量大於零、該功率誤差量大於零時,則該電壓增量需大於零;狀態二:當該電壓誤差量小於零、該功率誤差量小於零時,則該電壓增量需大於零;狀態三:當該電壓誤差量大於零、該功率誤差量小於零時,則該電壓增量需小於零;及狀態四:當該電壓誤差量小於零、該功率誤差量大於零時,則該電壓增量需小於零。The maximum power tracking module of claim 7, wherein the voltage error amount, the power error amount, and the voltage increment have the following four states: state one: when the voltage error amount is greater than zero, the power error When the quantity is greater than zero, the voltage increment needs to be greater than zero; state 2: when the voltage error amount is less than zero, the power error amount is less than zero, then the voltage increment needs to be greater than zero; state three: when the voltage error amount If the power error amount is greater than zero, the voltage increment needs to be less than zero; and state four: when the voltage error amount is less than zero and the power error amount is greater than zero, the voltage increment needs to be less than zero. 一種最大功率追蹤控制方法,包含:(A)利用一控制力產生器偵測來自一太陽能板模組的一輸出電壓及相關該輸出電壓的一輸出電流;(B)利用該控制力產生器計算該輸出電壓的一電壓誤差量及一功率誤差量,並代入一模糊規則庫運算以得到一控制訊號,該模糊規則庫的公式為: 其中,UFN 表示該控制訊號,xi 表示該電壓誤差量、功率誤差量,fAli (xi )表示xi 的歸屬函數,w表示補償該輸出電壓的一電壓增量,w1 表示該電壓增量的歸屬函數之重心,表示fAli (xi )之最大值對應到橫軸的值,表示調變fAli (xi )的斜率之參數;及(C)利用一脈寬調變器接收該控制訊號,並經由調變輸出一責任週期正比於該控制訊號的一脈寬調變控制訊號。A maximum power tracking control method comprising: (A) detecting, by a control force generator, an output voltage from a solar panel module and an output current associated with the output voltage; (B) calculating by using the control force generator A voltage error amount and a power error amount of the output voltage are substituted into a fuzzy rule base operation to obtain a control signal, and the formula of the fuzzy rule base is: Wherein, U FN represents the control signal, x i represents the voltage error amount, the power error amount, f Ali (x i ) represents a attribution function of x i , w represents a voltage increment for compensating the output voltage, and w 1 represents the The center of gravity of the attribution function of the voltage increment, Indicates that the maximum value of f Ali (x i ) corresponds to the value of the horizontal axis. a parameter indicating a slope of the modulation f Ali (x i ); and (C) receiving the control signal by using a pulse width modulator, and outputting a duty cycle proportional to the pulse width modulation control of the control signal via the modulation output Signal.
TW103110506A 2014-03-20 2014-03-20 Solar power generation devices, solar power generation methods, maximum power tracking module and maximum power tracking control method TWI493317B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103110506A TWI493317B (en) 2014-03-20 2014-03-20 Solar power generation devices, solar power generation methods, maximum power tracking module and maximum power tracking control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103110506A TWI493317B (en) 2014-03-20 2014-03-20 Solar power generation devices, solar power generation methods, maximum power tracking module and maximum power tracking control method

Publications (2)

Publication Number Publication Date
TWI493317B true TWI493317B (en) 2015-07-21
TW201537330A TW201537330A (en) 2015-10-01

Family

ID=54151615

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103110506A TWI493317B (en) 2014-03-20 2014-03-20 Solar power generation devices, solar power generation methods, maximum power tracking module and maximum power tracking control method

Country Status (1)

Country Link
TW (1) TWI493317B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109643086A (en) * 2016-08-24 2019-04-16 德国航空航天中心 The method and solar thermal power plants of control and/or regulation solar thermal power plants
TWI669589B (en) * 2018-08-29 2019-08-21 崑山科技大學 Maximum power tracking method for solar cell and system thereof suitable for real-time online environment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104199287B (en) * 2014-07-30 2017-02-15 宁波成电泰克电子信息技术发展有限公司 Fuzzy control method for visual axis stabilizing loop of photoelectric tracer
TWI658690B (en) * 2017-09-15 2019-05-01 龍華科技大學 Method for tracking maximum power of solar cell using optimized assignment function domain value

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102331808A (en) * 2011-07-19 2012-01-25 天津光电惠高电子有限公司 Solar maximum power point tracking system and method for implementing same
CN102355005A (en) * 2011-09-20 2012-02-15 浙江工业大学 Distributed photovoltaic power generation regional integrated control method
TW201231898A (en) * 2011-01-27 2012-08-01 Univ Nat Central Sun tracking method and sun tracking system
CN102707619A (en) * 2012-05-25 2012-10-03 深圳市中兴昆腾有限公司 Fuzzy controller and method for tracking maximum solar power points
TW201306435A (en) * 2011-07-21 2013-02-01 Univ Nat Cheng Kung Photovoltaic power apparatus and photovoltaic power system
CN202888869U (en) * 2012-03-30 2013-04-17 苏州经贸职业技术学院 MPPT (Maximum Power Point Tracking) photovoltaic charge and discharge controller using fuzzy algorithm

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201231898A (en) * 2011-01-27 2012-08-01 Univ Nat Central Sun tracking method and sun tracking system
CN102331808A (en) * 2011-07-19 2012-01-25 天津光电惠高电子有限公司 Solar maximum power point tracking system and method for implementing same
TW201306435A (en) * 2011-07-21 2013-02-01 Univ Nat Cheng Kung Photovoltaic power apparatus and photovoltaic power system
CN102355005A (en) * 2011-09-20 2012-02-15 浙江工业大学 Distributed photovoltaic power generation regional integrated control method
CN202888869U (en) * 2012-03-30 2013-04-17 苏州经贸职业技术学院 MPPT (Maximum Power Point Tracking) photovoltaic charge and discharge controller using fuzzy algorithm
CN102707619A (en) * 2012-05-25 2012-10-03 深圳市中兴昆腾有限公司 Fuzzy controller and method for tracking maximum solar power points

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109643086A (en) * 2016-08-24 2019-04-16 德国航空航天中心 The method and solar thermal power plants of control and/or regulation solar thermal power plants
CN109643086B (en) * 2016-08-24 2021-11-09 德国航空航天中心 Method for controlling and/or regulating a solar thermal power plant and solar thermal power plant
TWI669589B (en) * 2018-08-29 2019-08-21 崑山科技大學 Maximum power tracking method for solar cell and system thereof suitable for real-time online environment

Also Published As

Publication number Publication date
TW201537330A (en) 2015-10-01

Similar Documents

Publication Publication Date Title
TWI493317B (en) Solar power generation devices, solar power generation methods, maximum power tracking module and maximum power tracking control method
Yafaoui et al. Implementation of maximum power point tracking algorithm for residential photovoltaic systems
JP2015520592A5 (en)
ATE394727T1 (en) DEVICE FOR PRODUCING SOLAR ENERGY
Raedani et al. Design, testing and comparison of P&O, IC and VSSIR MPPT techniques
WO2011114161A3 (en) Power conditioning units
TWI461882B (en) Multipoint direct-prediction method for maximum power point tracking of photovoltaic modules system and control device of photovoltaic modules array
US9257896B1 (en) Control circuit of power converter and method for maximum power point tracking
CN108983864B (en) Tracking method and tracking device for photovoltaic maximum power point
JOP20200200A1 (en) Soiling detection apparatus and method
JPWO2017175393A1 (en) Solar power system
Binduhewa et al. Photovoltaic emulator
CN104779903A (en) Method for monitoring grounding insulation resistance of photovoltaic system
JP6607134B2 (en) DC / DC converter and solar power generation system
Vyas et al. Real time data monitoring of PV solar cell using LabVIEW
Cao et al. Modeling and analysis of grid-connected inverter for PV generation
JP2015532578A5 (en)
Walczak et al. Design and evaluation of a low-cost solar simulator and measurement system for low-power photovoltaic panels
CN104980105B (en) A kind of method for testing solar photovoltaic generation system MPPT maximum power point tracking algorithm performance
TWI419345B (en) Photovoltaic power apparatus and analog circuit for tracking maximum power thereof
JP2014235566A5 (en)
KR101690222B1 (en) Current control method for wind power generator
JP2014062800A (en) Ac voltage generation apparatus and voltage detection apparatus
Burmester et al. A comparison between temperature and current sensing in photovoltaic maximum power point tracking
CN202043061U (en) Volt-ampere property simulation power source device for photovoltaic cells

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees