TWI658690B - Method for tracking maximum power of solar cell using optimized assignment function domain value - Google Patents
Method for tracking maximum power of solar cell using optimized assignment function domain value Download PDFInfo
- Publication number
- TWI658690B TWI658690B TW106131816A TW106131816A TWI658690B TW I658690 B TWI658690 B TW I658690B TW 106131816 A TW106131816 A TW 106131816A TW 106131816 A TW106131816 A TW 106131816A TW I658690 B TWI658690 B TW I658690B
- Authority
- TW
- Taiwan
- Prior art keywords
- voltage
- maximum power
- power
- current
- solar cell
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/47—Mountings or tracking
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Control Of Electrical Variables (AREA)
Abstract
一種採用最佳化歸屬函數論域值之太陽能電池最大功率追蹤方法,其係利用一控制電路實現,該方法包括以下步驟:輸入太陽能電池之一目前電壓及一目前電流以運算出一目前功率;將該目前電壓與一前次電壓比較以得出一電壓差及將該目前功率與一前次功率比較以得出一功率差;依一電壓差輸入歸屬函數對該電壓差進行一第一模糊化運算以獲得一第一模糊化結果及依一功率差不對稱輸入歸屬函數對該功率差進行一第二模糊化運算以獲得一第二模糊化結果,其中,該功率差不對稱輸入歸屬函數係依一粒群演算法預先決定;依該第一模糊化結果及該第二模糊化結果映射一規則庫以產生一第三模糊化結果;依一輸出歸屬函數對該第三模糊化結果進行一解模糊化運算以得出一電壓變動量;以及依該目前電壓及該電壓變動量決定一電壓命令。 A method for tracking the maximum power of a solar cell using an optimized attribution domain value. The method is implemented using a control circuit. The method includes the following steps: inputting a current voltage and a current of the solar cell to calculate a current power; Comparing the current voltage with a previous voltage to obtain a voltage difference and comparing the current power with a previous power to obtain a power difference; inputting a assignment function to the voltage difference to perform a first fuzzy on the voltage difference Operation to obtain a first fuzzification result and to perform a second fuzzification operation on the power difference to obtain a second fuzzification result according to a power difference asymmetric input assignment function, wherein the power difference asymmetric input assignment function It is determined in advance based on a particle group algorithm; a rule base is mapped according to the first fuzzing result and the second fuzzing result to generate a third fuzzing result; the third fuzzing result is performed according to an output attribution function A fuzzing operation is performed to obtain a voltage variation amount; and a voltage command is determined according to the current voltage and the voltage variation amount.
Description
本發明係有關於一種太陽能發電系統之最大功率追蹤方法,特別是關於一種由粒群演算法預先決定功率差不對稱輸入歸屬函數之太陽能電池最大功率追蹤方法。 The invention relates to a maximum power tracking method for a solar power generation system, and more particularly, to a maximum power tracking method for a solar cell in which a particle group algorithm determines a power input asymmetric input assignment function in advance.
隨著各國的持續建設與發展,能源的消耗量與日俱增,現今石化燃料和核能約佔了全球能源市場77.9%,仍然是全球能源的主要來源。由於原油價格持續高檔,因此需尋求其他形式之替代能源。近年來由於能源持續短缺,使得化石燃料價格高漲,加上為避免溫室氣體排放造成全球暖化破壞生態環境,各國已積極開發替代傳統石化能源和核能之新能源,因而促進再生能源的發展。其中太陽能為目前最受重視之綠色能源之一,原因在於太陽能為低汙染、不需燃料成本且是取之不盡、用之不竭之能源。現今太陽能電池已到達技術門檻,發電效率較以往來的高,加上製作成本低廉,太陽能電池價格已下降且需求量已上升,因此如何有效應用太陽能能源已成為重要之課題。然而太陽能電池會受天氣及環境因素影響而有不同之輸出特性,太陽能電池之輸出電壓及電流會隨著日照和環境溫度的改變而有所不同,因此太陽能電池在某一固定的日照及溫度下均存在一個最大功率輸出點,如何擷取太陽能之最大輸出功率,使太陽能電池發揮最大效能便成為重要的議題,因此最大功率追蹤(Maximum Power Point Tracking,MPPT)法在太陽能發電系統中扮演著相當重要的角色。 With the continuous construction and development of various countries, the energy consumption is increasing day by day. Today, petrochemical fuel and nuclear energy account for about 77.9% of the global energy market and remain the main source of global energy. As crude oil prices continue to rise, other forms of alternative energy sources need to be sought. In recent years, due to the continuous shortage of energy, the price of fossil fuels has increased, and in order to avoid global warming and damage to the ecological environment caused by greenhouse gas emissions, countries have actively developed new energy sources that replace traditional petrochemical and nuclear energy, thus promoting the development of renewable energy. Among them, solar energy is one of the most valued green energy sources at present, because solar energy is low pollution, does not require fuel costs, and is an inexhaustible and inexhaustible energy source. Nowadays, solar cells have reached the technical threshold, the power generation efficiency is higher than in the past, coupled with low production costs, the price of solar cells has decreased and the demand has increased. Therefore, how to effectively apply solar energy has become an important issue. However, solar cells will have different output characteristics due to weather and environmental factors. The output voltage and current of solar cells will vary with changes in sunlight and ambient temperature. Therefore, solar cells are under a certain fixed sunlight and temperature. There is a maximum power output point. How to capture the maximum output power of solar energy to make the solar cells achieve the maximum efficiency has become an important issue. Therefore, the Maximum Power Point Tracking (MPPT) method plays a considerable role in solar power generation systems. Important role.
目前商用太陽能發電系統中最常用的最大功率追蹤法為擾動觀察法及增量電導法。其中擾動觀察法係根據前一狀態與目前狀態所獲得的功率值決定系統的控制命令值,而增量電導法則係以功率-電壓微分值決定系統的控制命令值。因此如何決定控制量的變動值便成為相當重要的議題。 At present, the most commonly used maximum power tracking methods in commercial solar power generation systems are disturbance observation methods and incremental conductance methods. The disturbance observation method determines the control command value of the system according to the power value obtained in the previous state and the current state, and the incremental conductance method determines the control command value of the system by the power-voltage differential value. Therefore, how to determine the change value of the control amount becomes a very important issue.
控制量的變動值較大時,系統中穩態追蹤到另一個穩態所需的時 間較少,但到了穩態時因為擾動所造成的功率損失將會變大;另一方面,較小的控制量變動值可以改善穩態時因擾動所造成的功率損失,但是追蹤速度將會變慢,此現象一般稱為追蹤速度-追蹤精確度之權衡問題,一般而言,使用固定步階進行擾動的最大功率追蹤方法皆會受此一問題所影響。 When the value of the control variable is large, the time required for the steady state to track to another steady state in the system There is less time, but the power loss caused by the disturbance will become larger when the steady state is reached; on the other hand, a smaller value of the control variable can improve the power loss caused by the disturbance at the steady state, but the tracking speed will be Slower, this phenomenon is generally called the tracking speed-tracking accuracy trade-off problem. Generally speaking, the maximum power tracking method using a fixed step for perturbation will be affected by this problem.
為改善此一問題,文獻中提出了許多變動步階式最大功率追蹤方法。變動步階式最大功率追蹤方法之基本精神在於當操作點遠離最大功率點(Maximum Power Point,MPP)時,系統將使用較大的控制量變動值以加快追蹤速度;當操作點接近最大功率點時,系統則將使用較小的控制量變動值以改善穩態效能。 To improve this problem, many variable step maximum power tracking methods have been proposed in the literature. The basic spirit of the variable step-type maximum power tracking method is that when the operating point is far from the Maximum Power Point (MPP), the system will use a larger control value change value to speed up the tracking speed; when the operating point is close to the maximum power point At this time, the system will use smaller control variable changes to improve steady-state performance.
文獻中所提出的各種變動步階式最大功率追蹤方法多採用太陽能電池的功率-電壓特性曲線之特性來決定擾動步階,但由於太陽能電池之特性曲線會隨操作環境改變,因此如何決定適合所有操作情況下的步階變動量就變成變動步階式最大功率追蹤法能否提升追蹤性能的關鍵。另一方面,模糊邏輯控制器(fuzzy logic control,FLC)可操作在非線性系統,且不需精確的系統參數與複雜的數學模型便可達到相當優越的控制性能。因此,以模糊邏輯控制器為基礎之最大功率追蹤法一直是大家感興趣之研究議題。 The various variable step-type maximum power tracking methods proposed in the literature mostly use the characteristics of the power-voltage characteristic curve of the solar cell to determine the perturbation step, but because the characteristic curve of the solar cell will change with the operating environment, how to determine the suitable for all The amount of step change under operating conditions becomes the key to whether the variable step maximum power tracking method can improve the tracking performance. On the other hand, fuzzy logic control (FLC) can operate in a non-linear system, and does not require precise system parameters and complex mathematical models to achieve quite superior control performance. Therefore, the maximum power tracking method based on fuzzy logic controller has always been an interesting research topic.
文獻中已提出許多不同類型的以模糊邏輯控制器為基礎之最大功率追蹤法,在輸入變數的選擇上,傳統模糊邏輯控制最大功率追蹤法會選擇太陽能電池之輸出功率、電壓、或電流的誤差和誤差的變化量作為輸入變數。然而,這些方法需要用到除法運算子,會增加數位控制器的運算複雜度。另外,使用微分運算時亦會將量測雜訊放大,使用差分近似則會導致運算精確度問題。 Many different types of maximum power tracking methods based on fuzzy logic controllers have been proposed in the literature. In the selection of input variables, traditional fuzzy logic control maximum power tracking methods will select the error of the output power, voltage, or current of the solar cell. The amount of change in the sum error is used as the input variable. However, these methods require a division operator, which increases the computational complexity of the digital controller. In addition, the measurement noise will be amplified when using differential calculations, and the use of differential approximation will cause calculation accuracy problems.
因此,有文獻提出以功率變化量ΔPpv及電壓的變化量ΔVpv或電流的變化量ΔIpv當作輸入變數,可避免定點運算之數位控制器因為進行除法而產生的溢位和數值精確度的問題,並且降低運算複雜度。有文獻提出以dPPV/dIPV及error(t)=PMPP-Ppv作為輸入變數(其中PMPP為最大功率點之功率值),或提出以error(t)及derror(t)/dt作為輸入變數,然而上述方法需要預先得知 最大功率點的資訊,因此並不適合用於實際系統中。 Therefore, some literatures have proposed to use the power change amount ΔPpv and the voltage change amount ΔVpv or the current change amount ΔIpv as input variables, which can avoid the problems of overflow and numerical accuracy caused by the digital controller of fixed-point operations due to division. And reduce the computational complexity. Some literatures have proposed to use dPPV / dIPV and error (t) = PMPP-Ppv as input variables (where PMPP is the power value of the maximum power point), or put error (t) and derror (t) / dt as input variables. However, The above method needs to be known in advance Maximum power point information, so it is not suitable for practical systems.
另一方面,模糊邏輯控制器的輸入/輸出歸屬函數設定值是影響模糊邏輯控制器性能的關鍵因素之一,文獻也提出使用基因演算法(Genetic Algorithm,GA)、粒群演算法(Particle Swarm Optimization,PSO)以及直接搜尋法來找到最佳之模糊邏輯歸屬函數。 On the other hand, the set value of the input / output attribution function of the fuzzy logic controller is one of the key factors affecting the performance of the fuzzy logic controller. The literature also proposed the use of Genetic Algorithm (GA) and Particle Swarm Algorithm (Particle Swarm). Optimization (PSO) and direct search method to find the best fuzzy logic assignment function.
其中,粒群演算法具有簡單和容易實現的特點,且針對找尋模糊邏輯控制器之較佳歸屬函數設定值問題而言,撰寫粒群演算法比基因演算法來的容易。關於模糊邏輯控制器之架構,一般文獻均使用雙輸入的架構,規則庫的數量則取決於輸入歸屬函數之語意變數的數量,通常有9~49條規則。也有文獻提出三輸入的架構。 Among them, the particle swarm optimization algorithm is simple and easy to implement, and it is easier to write a particle swarm optimization algorithm than a genetic algorithm for finding a better assignment function of a fuzzy logic controller. Regarding the architecture of fuzzy logic controllers, the general literature uses a two-input architecture, and the number of rule bases depends on the number of semantic variables of the input attribution function. There are usually 9 to 49 rules. There are also literatures suggesting a three-input architecture.
另有文獻提出類神經網路(Artificial Neural Network,ANN),係以太陽日照和太陽能板的溫度作為輸入變數,然而因其需要大量的訓練資料以獲得更精確的輸出而限制應用範圍;亦有文獻提出以模糊認知網路(Fuzzy Cognitive Networks,FCN)和Takagi-Sugeno(T-S)模糊技術來提升模糊邏輯控制器的追蹤速度,然而上述方法的運算複雜度較高,不易以低成本的微控制器來實現。 Other literatures have proposed Artificial Neural Network (ANN), which takes the temperature of solar insolation and solar panels as input variables. However, it requires a large amount of training data to obtain more accurate output, which limits the scope of application; there are also The literature proposes to use Fuzzy Cognitive Networks (FCN) and Takagi-Sugeno (TS) fuzzy technologies to improve the tracking speed of fuzzy logic controllers. However, the above method has high computational complexity and is not easy to control with low cost. Device to achieve.
因此本領域亟需一新穎的採用最佳化歸屬函數論域值設定之太陽能電池最大功率追蹤方法。 Therefore, there is an urgent need in the art for a novel method for tracking the maximum power of a solar cell using an optimized assignment function domain value setting.
本發明之一目的在於揭露一種採用最佳化歸屬函數論域值之太陽能電池最大功率追蹤方法,其係藉由一非對稱型式之功率差輸入歸屬函數以配合不同操作區間之功率變化,使追蹤電壓步距命令能隨著功率的斜率變化而改變,從而有效改善追蹤速度及追蹤精確度,及解決對稱型在低照度或照度變化時無法追到最大功率點的問題。 One object of the present invention is to disclose a method for tracking the maximum power of a solar cell using an optimized assignment function domain value. The method uses an asymmetric type of power difference to input the assignment function to match the power changes in different operation intervals to enable tracking. The voltage step command can be changed with the slope of the power, thereby effectively improving the tracking speed and tracking accuracy, and solving the problem that the symmetrical type cannot track the maximum power point when the illumination is low or the illumination changes.
本發明之另一目的在於揭露一種採用最佳化歸屬函數論域值之太陽能電池最大功率追蹤方法,其係採用粒群演算法運算出一功率差之最佳化輸入歸屬函數論域值,以改善非對稱型模糊控制最大功率追蹤的性能。 Another object of the present invention is to disclose a method for tracing the maximum power of a solar cell using an optimized assignment function domain value, which uses a particle swarm algorithm to calculate an optimal input assignment function domain value of a power difference. Improve the performance of asymmetric fuzzy control maximum power tracking.
本發明之又一目的在於揭露一種採用最佳化歸屬函數論域值之太陽能電池最大功率追蹤方法,其係藉由一三角形型式之功率差輸入歸屬函數以達到一運算簡單而能以低成本的微控制器來實現之目的。 Yet another object of the present invention is to disclose a method for tracing maximum power of a solar cell using an optimized assignment function domain value. The method uses a triangular type power difference to input the assignment function to achieve a simple operation and low cost. Microcontroller to achieve this.
本發明之再一目的在於揭露一種採用最佳化歸屬函數論域值之太陽能電池最大功率追蹤方法,其中該粒群演算法之慣量參數為一變數值,用以加快收斂的速度。 Another object of the present invention is to disclose a method for tracing the maximum power of a solar cell using an optimized assignment function domain value. The inertia parameter of the particle swarm algorithm is a variable value to accelerate the speed of convergence.
為達前述目的,一種採用最佳化歸屬函數論域值之太陽能電池最大功率追蹤方法乃被提出,其係利用一控制電路實現,該方法包括以下步驟:輸入太陽能電池之一目前電壓及一目前電流以運算出一目前功率;將該目前電壓與一前次電壓比較以得出一電壓差及將該目前功率與一前次功率比較以得出一功率差;依一電壓差輸入歸屬函數對該電壓差進行一第一模糊化運算以獲得一第一模糊化結果及依一功率差不對稱輸入歸屬函數對該功率差進行一第二模糊化運算以獲得一第二模糊化結果,其中,該功率差不對稱輸入歸屬函數係依一粒群演算法預先決定;依該第一模糊化結果及該第二模糊化結果映射一規則庫以產生一第三模糊化結果;依一輸出歸屬函數對該第三模糊化結果進行一解模糊化運算以得出一電壓變動量;以及依該目前電壓及該電壓變動量決定一電壓命令。 In order to achieve the aforementioned purpose, a method for tracing the maximum power of a solar cell using an optimized assignment function domain value is proposed, which is implemented using a control circuit. The method includes the following steps: inputting a current voltage of the solar cell and a current The current is used to calculate a current power; the current voltage is compared with a previous voltage to obtain a voltage difference; and the current power is compared to a previous power to obtain a power difference; the assignment function pair is input according to a voltage difference. A first fuzzification operation is performed on the voltage difference to obtain a first fuzzification result, and a second fuzzification operation is performed on the power difference to obtain a second fuzzification result according to an asymmetric input assignment function of the power difference. The power difference asymmetric input assignment function is determined in advance by a particle group algorithm; a rule base is mapped according to the first fuzzification result and the second fuzzification result to generate a third fuzzification result; and the output function is output according to one Perform a defuzzification operation on the third fuzzing result to obtain a voltage variation amount; and determine a voltage variation according to the current voltage and the voltage variation amount Pressure command.
在一實施例中,該粒群演算法係使用一均勻亂數分配方式進行初始化。 In one embodiment, the particle swarm algorithm is initialized using a uniform random number allocation method.
在一實施例中,該控制電路包括:一升壓轉換器,具有一輸入端、一控制端及一輸出端,該輸入端係用以與一太陽能電池系統耦接,該控制端係用以接收一脈衝寬度調變信號,且該輸出端係用以與一負載耦接;以及一微控制器,用以產生該電壓命令及依該電壓命令提供該脈衝寬度調變信號。 In an embodiment, the control circuit includes: a boost converter having an input terminal, a control terminal, and an output terminal, the input terminal is used for coupling with a solar cell system, and the control terminal is used for A pulse width modulation signal is received, and the output terminal is used for coupling with a load; and a microcontroller is used to generate the voltage command and provide the pulse width modulation signal according to the voltage command.
在一實施例中,該微控制器具有一數位訊號處理器,用以對該目前電壓及該目前電流分別進行一類比至數位轉換運算及一數位濾波運算,及依該電壓命令執行一比例-積分控制運算及一脈衝寬度調變運算以輸出該脈衝寬度調變信號。 In one embodiment, the microcontroller has a digital signal processor for performing an analog-to-digital conversion operation and a digital filtering operation on the current voltage and the current, respectively, and performing a proportional-integral operation according to the voltage command. A control operation and a pulse width modulation operation are performed to output the pulse width modulation signal.
為使 貴審查委員能進一步瞭解本發明之結構、特徵及其目的,茲附以圖式及較佳具體實施例之詳細說明如後。 In order to enable your reviewers to further understand the structure, characteristics, and purpose of the present invention, drawings and detailed descriptions of the preferred embodiments are attached below.
100‧‧‧太陽能電池系統 100‧‧‧solar battery system
200‧‧‧升壓式轉換器 200‧‧‧Boost Converter
300‧‧‧微控制器 300‧‧‧Microcontroller
400‧‧‧負載 400‧‧‧ load
步驟a‧‧‧算出一目前功率 Step a‧‧‧Calculate a current power
步驟b‧‧‧算出一電壓差及一功率差 Step b‧‧‧ calculate a voltage difference and a power difference
步驟c‧‧‧依一電壓差輸入歸屬函數對該電壓差進行一第一模糊化運算及依一功率差不對稱輸入歸屬函數對該功率差進行一第二模糊化運算 Step c‧‧‧ performs a first fuzzification operation on the voltage difference according to a voltage difference input assignment function and a second fuzzification operation on the power difference according to an asymmetric power input assignment function on the power difference
步驟d‧‧‧依該第一模糊化運算之一第一模糊化結果及該第二模糊化運算之一第二模糊化結果映射一規則庫以產生一第三模糊化結果 Step d‧‧‧ maps a rule base to generate a third fuzzy result according to a first fuzzy result of one of the first fuzzy operations and a second fuzzy result of the second fuzzy operation
步驟e‧‧‧依一輸出歸屬函數對該第三模糊化結果進行一解模糊化運算以得出一電壓變動量 Step e‧‧‧ performs a deblurring operation on the third fuzzy result according to an output attribution function to obtain a voltage variation amount
步驟f‧‧‧依該目前電壓及該電壓變動量決定一電壓命令 Step f‧‧‧ determines a voltage command according to the current voltage and the voltage variation
圖1繪示本本發明之採用最佳化歸屬函數論域值之太陽能電池最大功率追蹤方法之一實施例步驟流程圖。 FIG. 1 is a flowchart of steps in an embodiment of a method for tracking maximum power of a solar cell according to the present invention using an optimized assignment function domain value.
圖2繪示太陽能電池之單二極體等效電路圖。 FIG. 2 shows a single diode equivalent circuit diagram of a solar cell.
圖3a繪示太陽能電池在不同照度下電流-電壓曲線 Figure 3a shows the current-voltage curves of solar cells under different illumination
圖3b繪示太陽能電池在不同照度下功率-電壓曲線。 FIG. 3b shows the power-voltage curves of the solar cell under different illumination levels.
圖4a繪示太陽能電池在不同溫度下電流-電壓曲線 Figure 4a shows the current-voltage curves of solar cells at different temperatures
圖4b繪示太陽能電池在不同溫度下功率-電壓曲線。 Figure 4b shows the power-voltage curves of the solar cell at different temperatures.
圖5繪示本發明所採之控制系統架構示意圖。 FIG. 5 is a schematic diagram of a control system architecture adopted by the present invention.
圖6繪示本發明所採之對稱型歸屬函數設定值最大功率追蹤控制法的系統架構。 FIG. 6 illustrates a system architecture of the symmetric attribution function set value maximum power tracking control method adopted by the present invention.
圖7繪示太陽能電池在標準測試條件下之電壓-功率曲線。 Figure 7 shows the voltage-power curve of a solar cell under standard test conditions.
圖8繪示太陽能電池之P-V曲線之斜率變化示意圖。 FIG. 8 is a schematic diagram showing a slope change of a P-V curve of a solar cell.
圖9繪示模糊控制最大功率追蹤操作示意圖。 FIG. 9 is a schematic diagram of the maximum power tracking operation of the fuzzy control.
圖10繪示圖9之功率-電壓曲線走勢圖。 FIG. 10 is a graph showing a power-voltage curve of FIG. 9.
圖11繪示本發明系統化推導之輸入歸屬函數ΔPpv的論域設定值。 FIG. 11 illustrates the set value of the domain of the input attribution function ΔP pv systematically derived by the present invention.
圖12繪示待決定四個語意變數(dP_PB,dP_PS,dP_NS,dP_NB)的論域設定值。 FIG. 12 shows the universe setting values of four semantic variables (dP_PB, dP_PS, dP_NS, dP_NB) to be determined.
圖13繪示本發明之性能評估參數之定義示意圖。 FIG. 13 is a schematic diagram illustrating the definition of performance evaluation parameters of the present invention.
圖14繪示台灣2014年3月15日的日照分佈圖。 Figure 14 shows the distribution of sunshine in Taiwan on March 15, 2014.
圖15繪示本發明之粒群演算法收斂曲線。 FIG. 15 illustrates the convergence curve of the particle swarm optimization algorithm of the present invention.
圖16繪示本發明應用粒群演算法所找到的輸入歸屬函數ΔPpv最佳的論域設定值。 FIG. 16 shows the optimal universe setting value of the input attribution function ΔP pv found by applying the particle swarm optimization algorithm of the present invention.
圖17a繪示五種不同最大功率追蹤方法的最大功率追蹤過程(左半面啟動、200W/m2、25℃)之模擬結果。 Fig. 17a shows the simulation results of the maximum power tracking process (starting on the left half, 200W / m 2 , 25 ° C) of five different maximum power tracking methods.
圖17b繪示五種不同最大功率追蹤方法的最大功率追蹤過程(左半面啟動、200W/m2、25℃)之實驗結果。 FIG. 17b shows the experimental results of the maximum power tracking process (starting at the left half, 200 W / m 2 , 25 ° C.) of five different maximum power tracking methods.
圖18a繪示五種不同最大功率追蹤方法的最大功率追蹤過程(右半面啟動、200W/m2、25℃)之模擬結果。 FIG. 18a shows the simulation results of the maximum power tracking process (starting on the right half, 200 W / m 2 , 25 ° C.) of five different maximum power tracking methods.
圖18b繪示五種不同最大功率追蹤方法的最大功率追蹤過程(右半面啟動、200W/m2、25℃)之實驗結果。 FIG. 18b shows the experimental results of the maximum power tracking process (right-side startup, 200 W / m 2 , 25 ° C.) of five different maximum power tracking methods.
圖19a繪示五種不同最大功率追蹤方法的最大功率追蹤過程(左半面啟動、600W/m2、25℃)之模擬結果。 Figure 19a shows the simulation results of the maximum power tracking process (starting on the left half, 600 W / m 2 , 25 ° C) of five different maximum power tracking methods.
圖19b繪示五種不同最大功率追蹤方法的最大功率追蹤過程(左半面啟動、600W/m2、25℃)之實驗結果。 Figure 19b shows the experimental results of the maximum power tracking process (starting on the left half, 600 W / m 2 , 25 ° C) of five different maximum power tracking methods.
圖20a繪示五種不同最大功率追蹤方法的最大功率追蹤過程(右半面啟動、600W/m2、25℃)之模擬結果。 Figure 20a shows the simulation results of the maximum power tracking process (starting on the right half, 600 W / m 2 , 25 ° C) of five different maximum power tracking methods.
圖20b繪示五種不同最大功率追蹤方法的最大功率追蹤過程(右半面啟動、600W/m2、25℃)之實驗結果。 FIG. 20b shows the experimental results of the maximum power tracking process (starting on the right half, 600 W / m 2 , 25 ° C.) of five different maximum power tracking methods.
圖21a繪示五種不同最大功率追蹤方法的最大功率追蹤過程(左半面啟動、1000W/m2、25℃)之模擬結果。 Figure 21a shows the simulation results of the maximum power tracking process (starting on the left half, 1000W / m 2 , 25 ° C) of five different maximum power tracking methods.
圖21b繪示五種不同最大功率追蹤方法的最大功率追蹤過程(左半面啟動、1000W/m2、25℃)之實驗結果。 Figure 21b shows the experimental results of the maximum power tracking process (starting on the left half, 1000 W / m 2 , 25 ° C) of five different maximum power tracking methods.
圖21c繪示五種不同最大功率追蹤方法的最大功率追蹤過程(左半面啟動、1000W/m2、25℃)之實驗結果放大圖(15~20s)。 Figure 21c shows the enlarged results (15-20s) of the experimental results of the maximum power tracking process (starting on the left half, 1000W / m 2 , 25 ° C) of five different maximum power tracking methods.
圖22a繪示五種不同最大功率追蹤方法的最大功率追蹤過程(右半面啟動、1000W/m2、25℃)之模擬結果。 Figure 22a shows the simulation results of the maximum power tracking process (right-side startup, 1000 W / m 2 , 25 ° C) for five different maximum power tracking methods.
圖22b繪示五種不同最大功率追蹤方法的最大功率追蹤過程(右半面啟動、1000W/m2、25℃)之實驗結果。 Fig. 22b shows the experimental results of the maximum power tracking process (right-side startup, 1000 W / m 2 , 25 ° C) of five different maximum power tracking methods.
圖23繪示Asymmetrical FLC #1照度由200W/m2變化到1000W/m2之實測波形。 Figure 23 shows the measured waveform of the Asymmetrical FLC # 1 illuminance changed from 200W / m 2 to 1000W / m 2 .
圖24繪示Asymmetrical FLC #2在照度由200W/m2變化到1000W/m2之實測波形。 FIG. 24 shows the measured waveform of Asymmetrical FLC # 2 when the illuminance is changed from 200 W / m 2 to 1000 W / m 2 .
請參照圖1,其繪示本發明之採用最佳化歸屬函數論域值之太陽能電池最大功率追蹤方法之一實施例步驟流程圖。 Please refer to FIG. 1, which illustrates a flowchart of steps in an embodiment of a solar cell maximum power tracking method using an optimized assignment function domain value.
如圖所示,本發明之採用最佳化歸屬函數論域值之太陽能電池最大功率追蹤方法,其包括以下步驟:輸入太陽能電池之一目前電壓及一目前電流以運算出一目前功率;(步驟a);將該目前電壓與一前次電壓比較以得出一電壓差及將該目前功率與一前次功率比較以得出一功率差;(步驟b);依一電壓差輸入歸屬函數對該電壓差進行一第一模糊化運算以獲得一第一模糊化結果及依一功率差不對稱輸入歸屬函數對該功率差進行一第二模糊化運算以獲得一第二模糊化結果,其中,該功率差不對稱輸入歸屬函數係依一粒群演算法預先決定;(步驟c);依該第一模糊化結果及該第二模糊化結果映射一規則庫以產生一第三模糊化結果;(步驟d);依一輸出歸屬函數對該第三模糊化結果進行一解模糊化運算以得出一電壓變動量(步驟e);以及依該目前電壓及該電壓變動量決定一電壓命令(步驟f)。 As shown in the figure, the method for tracing the maximum power of a solar cell using an optimized assignment function domain value of the present invention includes the following steps: inputting a current voltage and a current of the solar cell to calculate a current power; (step a); comparing the current voltage with a previous voltage to obtain a voltage difference and comparing the current power with a previous power to obtain a power difference; (step b); input the assignment function pair according to a voltage difference A first fuzzification operation is performed on the voltage difference to obtain a first fuzzification result, and a second fuzzification operation is performed on the power difference to obtain a second fuzzification result according to an asymmetric input assignment function of the power difference. The power difference asymmetric input assignment function is determined in advance according to a particle group algorithm; (step c); mapping a rule base to generate a third fuzzy result according to the first fuzzy result and the second fuzzy result; (Step d); performing a defuzzification operation on the third fuzzing result according to an output assignment function to obtain a voltage variation amount (step e); and determining according to the current voltage and the voltage variation amount Voltage command (step f).
其中,該粒群演算法係使用一均勻亂數分配方式進行初始化。 Among them, the particle swarm algorithm is initialized using a uniform random number allocation method.
以下將針對本發明的原理進行說明: The following will explain the principle of the present invention:
太陽能電池電氣特性:Electrical characteristics of solar cells:
請參照圖2,其繪示太陽能電池之單二極體等效電路圖。 Please refer to FIG. 2, which shows a single diode equivalent circuit diagram of a solar cell.
如圖2所示,太陽能電池之電氣特性為一非線性電源,其電壓與電流呈現一指數曲線的關係,因此當太陽能電池輸出電壓變動時,其輸出電流也會隨之變動。依據等效電路可得知太陽能電池輸出電壓與電流之關係式如方程式(1):
其中Vpv為太陽能電池輸出電壓、Ipv為太陽能電池輸出電流、Ig為光電轉換電流、IS為二極體逆向飽和電流、RS為串聯等效電阻、RP為並聯等效電阻、n為介電常數(1~2之間)、TK為絕對溫度、k為波茲曼常數(1.38065.10-23J/°K)、q為載子電荷量(1.602.10-19C)。 Where V pv is the output voltage of the solar cell, I pv is the output current of the solar cell, I g is the photoelectric conversion current, I S is the reverse saturation current of the diode, R S is the equivalent resistance in series, R P is the equivalent resistance in parallel, n is the dielectric constant (between 1 and 2), T K is the absolute temperature, k is the Bozman constant (1.38065.10 -23 J / ° K), and q is the charge amount of the carrier (1.602.10 -19 C ).
本發明使用Sanyo公司所生產的VBHN220AA01型號之太陽能電池模組。 The present invention uses a solar cell module of the VBHN220AA01 type produced by Sanyo.
請一併參照圖3a~3b,其中圖3a繪示太陽能電池在不同照度下電流-電壓曲線;圖3b繪示太陽能電池在不同照度下功率-電壓曲線。 Please refer to FIGS. 3a to 3b together, wherein FIG. 3a shows the current-voltage curve of the solar cell under different illumination; FIG. 3b shows the power-voltage curve of the solar cell under different illumination.
其中,溫度固定為25℃,不同照度分別為200W/m2、400W/m2、600W/m2、800W/m2及1000W/m2,如圖所示當照度上升時,會使得太陽能電池的開路電壓、最大輸出功率和短路電流會增加。 Among them, the temperature is fixed at 25 ° C, and the different illuminances are 200W / m 2 , 400W / m 2 , 600W / m 2 , 800W / m 2, and 1000W / m 2. As shown in the figure, when the illuminance rises, it will make the solar cell The open circuit voltage, maximum output power, and short-circuit current will increase.
請一併參照圖4a及4b,其中圖4a繪示太陽能電池在不同溫度下電流-電壓曲線;圖4b繪示太陽能電池在不同溫度下功率-電壓曲線。 Please refer to FIGS. 4a and 4b together, wherein FIG. 4a shows the current-voltage curves of the solar cell at different temperatures; and FIG. 4b shows the power-voltage curves of the solar cell at different temperatures.
其中,照度固定為1000W/m2,不同溫度分別為0℃、25℃、50℃、75℃及100℃。如圖所示當溫度減少時,太陽能電池的最大輸出功率和開路電壓增加而短路電流微幅降低。 Among them, the illuminance is fixed at 1000 W / m 2 , and the different temperatures are 0 ° C, 25 ° C, 50 ° C, 75 ° C, and 100 ° C, respectively. As shown in the figure, when the temperature decreases, the maximum output power and open circuit voltage of the solar cell increase and the short-circuit current decreases slightly.
太陽能最大功率追蹤系統硬體架構:Hardware architecture of solar maximum power tracking system:
請參照圖5,其繪示本發明所採之控制系統架構示意圖。 Please refer to FIG. 5, which illustrates a schematic diagram of a control system architecture adopted by the present invention.
如圖所示,本發明所採之控制系統架構包含太陽能電池系統100、升壓式轉換器200及微控制器300。 As shown in the figure, the control system architecture adopted by the present invention includes a solar cell system 100, a boost converter 200, and a microcontroller 300.
該升壓轉換器200具有一輸入端、一控制端及一輸出端,該輸入端係用以與該太陽能電池系統100耦接,該控制端係用以接收一脈衝寬度調變信號,且該輸出端係用以與一負載400耦接。 The boost converter 200 has an input terminal, a control terminal, and an output terminal. The input terminal is used for coupling with the solar cell system 100. The control terminal is used for receiving a pulse width modulation signal. The output terminal is used for coupling with a load 400.
該微控制器300具有一數位訊號處理器用以對該目前電壓及該目前電流分別進行一類比至數位轉換運算及一數位濾波運算,及依該電壓命令執行一比例-積分控制運算及一脈衝寬度調變運算以輸出該脈衝寬度調變信號,用以產生該電壓命令及依該電壓命令提供該脈衝寬度調變信號。 The microcontroller 300 has a digital signal processor for performing an analog-to-digital conversion operation and a digital filtering operation on the current voltage and the current, respectively, and performing a proportional-integral control operation and a pulse width according to the voltage command. The modulation operation is to output the pulse width modulation signal for generating the voltage command and providing the pulse width modulation signal according to the voltage command.
其中,該升壓式轉換器200係用以提升該太陽能電池系統100之輸出電壓;該微控制器300例如但不限為採用一低成本的數位訊號處理器來實現, 該太陽能電池系統100之輸出電壓與電流信號於該微控制器300內進行一類比至數位轉換運算及一數位濾波運算,並進行最大功率追蹤演算法之運算進而產生一電壓命令,該電壓命令經由一比例-積分控制運算及一脈衝寬度調變運算產生一責任週期用以控制該升壓式轉換器200達到最大功率追蹤之目的。 The boost converter 200 is used to increase the output voltage of the solar cell system 100. The microcontroller 300 is implemented by, for example, but not limited to, a low-cost digital signal processor. The output voltage and current signals of the solar cell system 100 are subjected to an analog-to-digital conversion operation and a digital filtering operation in the microcontroller 300, and the calculation of the maximum power tracking algorithm is performed to generate a voltage command. A proportional-integral control operation and a pulse width modulation operation generate a duty cycle for controlling the boost converter 200 to achieve the purpose of maximum power tracking.
請參照圖6,其繪示本發明系統化推導所採用之對稱型歸屬函數設定值最大功率追蹤控制法的系統架構。如圖所示,該系統架構係由模糊化輸入/輸出歸屬函數、模糊推論引擎、規則庫和解模糊化組成。 Please refer to FIG. 6, which illustrates a system architecture of a symmetric assignment function setting value maximum power tracking control method used in the systematic derivation of the present invention. As shown in the figure, the system architecture consists of fuzzy input / output attribution function, fuzzy inference engine, rule base, and defuzzification.
其中語意變數P表示正數、N表示負數、B表示大、S表示小、ZE表示零,PB表示正的大,PS表示正的小,NB表示負的大,NS表示負的小。 The semantic variables P represent positive numbers, N represents negative numbers, B represents large, S represents small, ZE represents zero, PB represents positive large, PS represents positive small, NB represents negative large, and NS represents negative small.
由於太陽能電池的功率-電壓微分曲線絕對值呈現平滑的變動,因此dPpv/dVpv適合用於決定模糊邏輯輸出變動量。因此,本發明式中分子選擇功率變動量ΔPpv及分母選擇電壓變動量ΔVpv作為模糊邏輯控制器的輸入,而模糊 邏輯控制器的輸出選擇電壓命令的變動量。 Since the absolute value of the power-voltage differential curve of the solar cell fluctuates smoothly, dP pv / dV pv is suitable for determining the fuzzy logic output fluctuation amount. Therefore, in the formula of the present invention, the numerator selection power change amount ΔPpv and the denominator selection voltage change amount ΔVpv are used as inputs of the fuzzy logic controller, and the output of the fuzzy logic controller selects the change amount of the voltage command. .
一般常用的模糊化輸入/輸出歸屬函數型式為三角形、梯形、對稱高斯函數、鐘形曲線和反曲函數型式。本發明選用三角形函數做為輸入/輸出歸屬函數型式,用以符合運算簡單且適合用低成本的微控制器來實現之需求。 The commonly used types of fuzzy input / output attribution functions are triangle, trapezoid, symmetric Gaussian function, bell curve, and inverse function. In the present invention, a triangular function is selected as the input / output attribution function type to meet the requirements of simple operation and suitable for implementation with a low-cost microcontroller.
本發明所使用之太陽能電池模組之規格參數如表1所示。 The specifications of the solar cell module used in the present invention are shown in Table 1.
利用Matlab軟體將其規格參數代入方程式(1)後,繪出在1000W/m2、25℃標準測試條件下之電壓-功率曲線,如圖7所示。 After using Matlab software to substitute its specifications into equation (1), draw the voltage-power curve under the standard test conditions of 1000W / m 2 and 25 ℃, as shown in Figure 7.
請參照圖8,其繪示太陽能電池之P-V曲線之斜率變化圖。其中,其水平軸和垂直軸分別為電壓V pv 和功率變化量的絕對值|ΔPpv|,且係將圖7以每1.5V步距移動,從0V開始移動到太陽能電池的開路電壓(Voc)為止,紀錄每次移動所產生的功率變化量絕對值|ΔPpv|數值。如圖所示,在最大功率點左半面的|ΔPpv|最大值為8.4W,而在最大功率點右半面的|ΔPpv|最大值為91.03W(ΔPpv=-91.03W)。 Please refer to FIG. 8, which illustrates a slope change diagram of a PV curve of a solar cell. Among them, the horizontal axis and the vertical axis are the absolute values of the voltage V pv and the power change amount | ΔP pv |, respectively, and FIG. 7 is moved at every 1.5 V step, starting from 0 V to the open-circuit voltage of the solar cell (Voc ), Record the absolute value of the power change amount | ΔP pv | As shown, the left half of the maximum power point | ΔP pv | 8.4W maximum value, while in the right half of the maximum power point | ΔP pv | maximum of 91.03W (ΔP pv = -91.03W).
由於輸入歸屬函數ΔPpv和ΔVpv各自對應5個語意變數(NB、NS、ZE、PS、PB),因此模糊邏輯控制器會有25條規則,基於通常知識,可以推導出如表2所示之規則庫,其中,深的顏色表示較大的數;反之,淺的顏色表示較小的數。 Since the input attribution functions ΔP pv and ΔV pv each correspond to 5 semantic variables (NB, NS, ZE, PS, PB), the fuzzy logic controller will have 25 rules. Based on common knowledge, it can be derived as shown in Table 2. Rule base, where darker colors represent larger numbers; conversely, lighter colors represent smaller numbers.
請一併參照表2及圖9,其中圖9其繪示模糊控制最大功率追蹤操作示意圖。 Please refer to Table 2 and FIG. 9 together, where FIG. 9 is a schematic diagram of a fuzzy control maximum power tracking operation.
如表2及圖9所示,將模糊控制最大功率追蹤法分成6種操作情形: As shown in Table 2 and Figure 9, the fuzzy control maximum power tracking method is divided into six operating situations:
(1)若ΔPpv/ΔV pv 大於零,顯示目前操作點位於最大功率點的左半面,若ΔV pv 大於零及ΔPpv大於零,表示目前操作點正朝著最大功率點的方向移動(圖9 中號箭頭)。在此操作條件下需要增加太陽能電池的電壓控制命令,因此 為正數(表2中區域1)。 (1) If ΔP pv / Δ V pv is greater than zero, it indicates that the current operating point is on the left half of the maximum power point. If Δ V pv is greater than zero and ΔP pv is greater than zero, it indicates that the current operating point is moving towards the maximum power point. (Figure 9 Arrow). Under this operating condition, it is necessary to increase the voltage control command of the solar cell ,therefore Is a positive number (area 1 in Table 2).
(2)若ΔPpv/ΔV pv 大於零,顯示目前操作點位於最大功率點的左半面,若ΔV pv 小於零及ΔPpv小於零,表示目前操作點正朝著最大功率點的反方向移動(圖 9中號箭頭)。在此操作條件下,需要增加太陽能電池的電壓控制命令,因 此為正數(表2中區域2)。 (2) If ΔP pv / Δ V pv is greater than zero, it indicates that the current operating point is on the left half of the maximum power point. If Δ V pv is less than zero and ΔP pv is less than zero, it indicates that the current operating point is moving in the opposite direction of the maximum power point. Move (Figure 9 Arrow). Under this operating condition, it is necessary to increase the voltage control command of the solar cell ,therefore Is a positive number (area 2 in table 2).
(3)若ΔPpv/ΔV pv 小於零,顯示目前操作點位於最大功率點的右半面,若ΔV pv 大於零及ΔPpv小於零,表示目前操作點正朝著最大功率點的反方向移動(圖 9中號箭頭)。在此操作條件下需要減少太陽能電池的電壓控制命令,因此 為負數(表2中區域3)。 (3) If ΔP pv / Δ V pv is less than zero, it indicates that the current operating point is on the right half of the maximum power point. If Δ V pv is greater than zero and ΔP pv is less than zero, it indicates that the current operating point is facing in the opposite direction of the maximum power point. Move (Figure 9 Arrow). It is necessary to reduce the voltage control command of the solar cell under this operating condition ,therefore Is a negative number (area 3 in Table 2).
(4)若ΔPpv/ΔV pv 小於零,顯示目前操作點位於最大功率點的右半面,若ΔV pv 小於零及ΔPpv大於零,表示目前操作點正朝著最大功率點的方向移動(圖9 中號箭頭)。在此操作條件下需要減少太陽能電池的電壓控制命令,因此 為負數(表2中區域4)。 (4) If ΔP pv / Δ V pv is less than zero, it indicates that the current operating point is on the right half of the maximum power point. If Δ V pv is less than zero and ΔP pv is greater than zero, it indicates that the current operation point is moving toward the maximum power point. (Figure 9 Arrow). It is necessary to reduce the voltage control command of the solar cell under this operating condition ,therefore Is a negative number (area 4 in Table 2).
(5)若ΔPpv為零,顯示目前操作點位於最大功率點(圖9中的最大功 率點Mpp1或Mpp2)。在此操作條件下需要維持太陽能電池的電壓控制命令, 因此為零(表2中區域5)。 (5) If ΔP pv is zero, it indicates that the current operating point is at the maximum power point (the maximum power point Mpp1 or Mpp2 in FIG. 9). It is necessary to maintain the voltage control command of the solar cell under this operating condition So Zero (area 5 in Table 2).
(6)若ΔV pv 為零但是ΔPpv不為零,顯示目前發生照度改變(圖9中 號箭頭)。在此操作條件下需要增加或減少太陽能電池的電壓控制命令,因此 為正數或負數(表2中區域6)。 (6) If Δ V pv is zero but ΔP pv is not zero, it indicates that the current illumination change has occurred (Figure 9 Arrow). It is necessary to increase or decrease the voltage control command of the solar cell under this operating condition ,therefore It is positive or negative (area 6 in Table 2).
在圖9中,A或B操作點的位置離最大功率點很遠,因此需要較 大的加快追蹤速度;反之,C或D操作點的位置靠近最大功率點,因此需 要較小的以減少穩態的功率振盪,因此,|ΔPpv/ΔVpv|可以決定模糊邏輯輸出語意變數的大小。 In Figure 9, the position of the A or B operating point is far from the maximum power point, so a larger Faster tracking speed; conversely, the position of the C or D operating point is close to the maximum power point, so a smaller In order to reduce steady state power oscillations, | ΔP pv / ΔV pv | can determine the size of the semantic variables of fuzzy logic output.
若選用最大功率點右半面的|ΔPpv|最大值為91.03W(ΔPpv=-91.03W)做為ΔPpv歸屬函數之語意變數正的大(PB)及負的大(NB)的設定值,對於操作點位於最大功率點的左半面的|ΔPpv|最大值為8.4W而言相對太大,所以模糊邏輯控制 器輸出電壓命令變動量會是正的小(PS),則最大功率點的左半面的操作點會以小步階朝向最大功率點移動,使得追蹤時間過長或是甚至有不會移動的情形,所以此處選擇以8.4W及-8.4W做為ΔPpv歸屬函數之PB及NB的設定值。 If the selection of the right half of the maximum power point | ΔP pv | maximum of 91.03W (ΔP pv = -91.03W) as semantic variables ΔP pv membership function of a positive large (PB) and a large negative (NB) set value , For the operating point located on the left half of the maximum power point | ΔP pv | the maximum value is 8.4W is relatively too large, so the fuzzy logic controller output voltage command fluctuation Will be positive small (PS), then the left half of the maximum power point of the operating point will move in small steps towards the maximum power point, so that the tracking time is too long or may not move, so choose here to 8.4 W and -8.4W are set as PB and NB of the ΔP pv assignment function.
本發明採用非對稱型以配合不同操作區間之功率變化:The present invention adopts an asymmetric type to match the power change in different operation intervals:
請參照圖10,其繪示圖9之功率-電壓曲線走勢圖。 Please refer to FIG. 10, which illustrates a power-voltage curve trend diagram of FIG. 9.
如圖所示,若以最大功率點Mpp為分界,以固定之電壓命令變化量將操作點於功率-電壓曲線上移動並觀測其功率變化情形,則左半平面功率變化較為平緩而右半平面變化較為劇烈,因此,若針對功率差ΔPpv輸入歸屬函數之設計值進行研究,應該將ΔPpv歸屬函數的形狀設定成非對稱型式以配合不同操作區間之功率變化,如此可進一步提升模糊控制器之最大功率追蹤性能。 As shown in the figure, if the maximum power point Mpp is used as the boundary, the operating point is moved on the power-voltage curve with a fixed voltage command change amount and the power change situation is observed, the power change in the left half plane is relatively gentle and the right half plane The change is quite drastic. Therefore, if the design value of the input function of the power difference ΔP pv is studied, the shape of the ΔP pv assignment function should be set to an asymmetric pattern to match the power change in different operation intervals, which can further improve the fuzzy controller. Maximum power tracking performance.
由圖8可知,若以|ΔPpv|在最大功率點左半面的最大值為8.4W及|ΔPpv|在最大功率點右半面的最大值為91.03W的比例值來決定輸入歸屬函數ΔPpv語意變數之論域值,則dP_NB的比值應該設定為10.8(=91.03/8.4)倍的dP_PB比值。 8 shows that, if the | ΔP pv | maximum value of the maximum power point and the left half of 8.4W | ΔP pv | maximum power point in the right half of the maximum scale value is determined to 91.03W input membership function ΔP pv The value of the universe of semantic variables, the dP_NB ratio should be set to 10.8 (= 91.03 / 8.4) times the dP_PB ratio.
請參照圖11,其繪示本發明系統化推導之輸入歸屬函數ΔPpv的論域設定值。由於對稱型模糊控制器之ΔPpv歸屬函數的PB及NB設定值為8.4W及-8.4W,因此,此處設計輸入歸屬函數ΔPpv的語意變數dP_NB之論域值保留原本對稱型設定值-8.4W,而語意變數dP_PB的論域設定值是將8.4W除上比例值10.8為0.78W。因為此系統化方法僅能決定dP_NB及dP_PB語意變數值,而其他歸屬函數之語意變數的論域值,本案設定為dP_NS=(dP_NB/2)=-4.2W及dP_PS=(dP_PB/2)=0.39W。 Please refer to FIG. 11, which illustrates the set value of the input domain function ΔP pv of the system derivation of the present invention. Because the PB and NB set values of the ΔP pv attribution function of the symmetric fuzzy controller are 8.4W and -8.4W, here, the value of the semantic variable dP_NB of the input function ΔP pv is designed to retain the original symmetric set value- 8.4W, and the set value of the semantic variable dP_PB is 0.78W divided by 8.4W by the proportional value 10.8. Because this systematic method can only determine the values of dP_NB and dP_PB semantic variables, and the domain value of the semantic variables of other attribution functions, this case is set to dP_NS = (dP_NB / 2) =-4.2W and dP_PS = (dP_PB / 2) = 0.39W.
本發明採用粒群演算法來最佳化輸入歸屬函數ΔPThe present invention uses a particle swarm optimization algorithm to optimize the input attribution function ΔP pvpv 的論域設定值:Set value of the discourse:
雖然系統化方法可以快速簡單的決定輸入歸屬函數ΔPpv的論域設定值,並且能夠滿足系統在標準測試環境下的追蹤性能要求,但是無法保證在不同的測試環境可以滿足系統的性能需求。因此,本案提出粒群演算法來最佳化輸入歸屬函數ΔPpv的論域設定值,以進一步改善非對稱型模糊控制最大功率追蹤的性能,以及克服對稱型模糊控制最大功率追蹤在低照度時無法追到最大功率點之問題。 Although the systematic method can quickly and simply determine the set value of the input attribution function ΔP pv , and can meet the tracking performance requirements of the system in a standard test environment, it cannot guarantee that the performance requirements of the system can be met in different test environments. Therefore, this case proposes a particle swarm optimization algorithm to optimize the set value of the input attribution function ΔP pv to further improve the performance of the asymmetric fuzzy control maximum power tracking, and to overcome the symmetrical fuzzy control maximum power tracking at low illumination. The problem of not being able to track the maximum power point.
輸入歸屬函數ΔPpv的四個語意變數(dP_PB,dP_PS,dP_NS and dP_NB)的論域設定值為待決定之變數,而dP_ZE=0,如圖11所示。 The four semantic variables (dP_PB, dP_PS, dP_NS and dP_NB) of the input attribution function ΔP pv are set to be the variables to be determined, and dP_ZE = 0, as shown in FIG. 11.
若以網格搜尋法決定輸入歸屬函數ΔPpv的設定值,將每個語意變數劃分成100個等分,則此問題的可能解總共有1004種,這需要花費許多的時間方能決定輸入歸屬函數ΔPpv的最佳設定值。因此,本發明使用具有簡單及易於實現特色之智慧型粒群最佳化演算法來搜尋最佳的輸入歸屬函數ΔPpv設定值。 If the set value of the input attribution function ΔP pv is determined by the grid search method, and each semantic variable is divided into 100 equal parts, there are 100 4 possible solutions to this problem, which requires a lot of time to determine the input. Optimal setting of the attribution function ΔP pv . Therefore, the present invention uses a smart particle swarm optimization algorithm with simple and easy-to-implement features to search for the best set value of the input attribution function ΔP pv .
粒群演算法在1995年由Kennedy與Eberhart兩位學者提出,Kennedy與Eberhart透過觀察魚群與鳥群覓食過程得到啟發,當有一條魚或一隻鳥發現食物的所在位置,則會將資訊分享給其他同伴,最後全體都會往食物方向集中。若將每顆粒子當成鳥群或魚群中的個體,一開始所有粒子將隨機散佈於解空間中,透過比較各粒子的適應(fitness)值來決定全域最佳解位置。這些粒子基本上根據以下兩個準則移動:(1)跟隨表現最佳的粒子,(2)每個粒子會朝向自己最佳的位置移動。 The particle swarm algorithm was proposed by two scholars, Kennedy and Eberhart, in 1995. Kennedy and Eberhart were inspired by observing the fish and bird foraging process. When a fish or a bird finds the location of food, it will share information To other companions, and finally everyone will concentrate in the direction of food. If each particle is regarded as an individual in a flock of birds or fish, all particles will be randomly scattered in the solution space at first, and the best solution position in the whole world will be determined by comparing the fitness values of the particles. These particles basically move according to the following two criteria: (1) follow the best performing particles, and (2) each particle will move towards its best position.
透過這樣的方法,每個粒子最終會趨近最佳解或接近最佳解。其速度運算方式表示為方程式(2),位置更新運算方式表示為方程式(3):v i (k+1)=wv i (k)+c i r 1(p best,i -x i (k))+c 2 r 2(g best -x i (k)) (2) In this way, each particle will eventually approach the optimal solution or approach the optimal solution. The speed calculation method is expressed as equation (2), and the position update calculation method is expressed as equation (3): v i ( k +1) = wv i ( k ) + c i r 1 ( p best, i - x i ( k )) + c 2 r 2 ( g best - x i ( k )) (2)
x i (k+1)=x i (k)+v i (k+1) (3) x i ( k +1) = x i ( k ) + v i ( k +1) (3)
其中,x i 和v i 表示第i個粒子的位置和速度、k為疊代的次數、w表示為慣量、r 1,r 2為介於[0,1]間的亂數值、c 1,c 2表示學習係數,通常介於0~2之間、變數p best,i 儲存第i個粒子走過的最佳位置、變數g best 儲存所有粒子中最佳的位置。 Where x i and v i represent the position and velocity of the i- th particle, k is the number of iterations, w is the inertia, r 1 , r 2 are random values between [0,1], c 1 , c 2 represents the learning coefficient, usually between 0 ~ 2, the variable p best, i stores the best position that the i- th particle walks through, and the variable g best stores the best position among all particles.
以粒群演算法搜尋最佳化輸入歸屬函數ΔPpv的論域設定值問題,此問題主要是調整模糊控制器的ΔPpv歸屬函數的四個參數dP_PB、dP_PS、dP_NS及dP_NB之論域值以獲得最好的適應值(Fitness value),其問題可描述如不等式(4)所示:Maximize FLC_Fit_value(dP_PB,dP_PS,dP_NS,dP_NB) Subject to dP_PB>dP_PS>0,0>dP_NS>dP_NB dP_PB<POS max and dP_NB>NEG max (4) A particle swarm algorithm is used to search for the set value of the optimal input assignment function ΔP pv . The problem is mainly to adjust the four parameters dP_PB, dP_PS, dP_NS, and dP_NB of the fuzzy controller's ΔP pv assignment function. Get the best fitness value. The problem can be described as shown in inequality (4): Maximize FLC_Fit_value ( dP_PB , dP_PS , dP_NS , dP_NB ) Subject to dP_PB > dP_PS >0,0> dP_NS > dP_NB dP_PB < POS max and dP_NB > NEG max (4)
其中dP_PB、dP_PS、dP_NS及dP_NB四個參數有各自的限制條件及上下限值。 Among them, dP_PB, dP_PS, dP_NS and dP_NB four parameters have their own restrictions and upper and lower limits.
粒群演算法實現步驟如下: The particle swarm algorithm implementation steps are as follows:
步驟1:選擇參數Step 1: Select parameters
由圖12中可知,藉由改變四個語意參數的論域值可以改變歸屬函數之形狀與被觸發的斜率值。因此,本案所使用之粒子包含四個元素dP_PB,dP_PS,dP_NS和dP_NB,這些粒子的內容會持續被更新直到搜尋到最佳的參數值,並且這些參數值應該滿足不等式(4)的限制。 It can be seen from FIG. 12 that the shape of the attribution function and the value of the triggered slope can be changed by changing the value of the universe of the four semantic parameters. Therefore, the particles used in this case contain four elements dP_PB, dP_PS, dP_NS, and dP_NB. The content of these particles will be continuously updated until the optimal parameter value is found, and these parameter values should meet the limit of inequality (4).
由圖8可知,功率-電壓曲線的功率變化量ΔP pv 最大值為91.03W,因此,本發明將這些參數的最大(POSmax)和最小(NEGmax)邊界值分別設定成100W和-100W。在粒群演算法中,增加粒子的數量可以搜尋到較佳的結果,但是粒子數量太多則需花費更多的運算時間。由於最佳化歸屬函數的問題為一離線(off-line)最佳化問題,不需要即時的運算出問題的最佳解,因此,本案選擇典型值N=50的粒子數量。 As can be seen from FIG. 8, the maximum power change amount Δ P pv of the power-voltage curve is 91.03W. Therefore, the present invention sets the maximum (POS max ) and minimum (NEG max ) boundary values of these parameters to 100W and −100W, respectively. . In the particle swarm optimization algorithm, increasing the number of particles can search for better results, but too many particles will take more computing time. Since the problem of optimizing the assignment function is an off-line optimization problem, it is not necessary to calculate the optimal solution of the problem immediately. Therefore, the number of particles with a typical value of N = 50 is selected in this case.
步驟2:初始化粒群演算法Step 2: Initialize the particle swarm algorithm
在粒群演算法的初始化階段,粒群會被分配於固定的位置或是透過亂數的方式放置於搜尋的解空間中。為了公平的處理具有未知特性的解空間,本案使用最常用之均勻亂數分配的方式進行初始化。 In the initialization phase of the particle swarm algorithm, the particle swarm is allocated to a fixed position or placed in a searched solution space by random numbers. In order to deal with the solution space with unknown characteristics fairly, this case uses the most commonly used uniform random number allocation method for initialization.
步驟3:執行模擬程式Step 3: Run the simulation
模擬程式在每次執行粒群演算法時,根據粒子目前的歸屬函數論域的設定值,分別執行200W/m2、400W/m2、600W/m2、800W/m2和1000W/m2照度等級的模糊控制最大功率追蹤法。另為了考慮各種追蹤的可能性,模擬使用了兩個初始條件,一為初始電壓命令等於10%的開路電壓V oc (表示從功率-電壓曲線的左邊開始往右邊追蹤最大功率點的情況)和二為初始電壓命令等於95%的開路電壓V oc (表示從功率-電壓曲線的右邊開始往左邊追蹤最大功率點的情況)。針對這十種情形進行模擬,記錄每次追蹤的過程並且運算適應值。 Each time the simulation program executes the particle swarm algorithm, it executes 200W / m 2 , 400W / m 2 , 600W / m 2 , 800W / m 2, and 1000W / m 2 according to the current set value of the domain of the particle's belonging function. Illumination level fuzzy control maximum power tracking method. In addition, in order to consider the possibility of various tracking, the simulation uses two initial conditions, one is the initial voltage command equal to 10% of the open-circuit voltage V oc (indicating the case of tracking the maximum power point from the left to the right of the power-voltage curve) The second is the initial voltage command equal to 95% of the open-circuit voltage V oc (indicating that the maximum power point is traced from the right to the left of the power-voltage curve). For these ten situations, simulation is performed, the process of each tracking is recorded, and the adaptive value is calculated.
步驟4:運算適應值Step 4: Calculate the fitness value
本案所提出的最大功率追蹤演算法之目的為最大化太陽能電池的輸出功率和最小化追蹤到最大功率點的時間。因此,其性能評估比例定義如方程式(5)所示,其由30%的暫態響應和70%穩態響應組成。 The purpose of the maximum power tracking algorithm proposed in this case is to maximize the output power of the solar cell and minimize the time to track to the maximum power point. Therefore, the performance evaluation ratio is defined as shown in equation (5), which is composed of 30% transient response and 70% steady state response.
請參照圖13,其繪示本發明之性能評估參數之定義示意圖,暫態響應定義為上升時間t r 佔總測試時間t f 的百分比例,上升時間的定義為輸出功率達到90%的最大輸出功率所需要的時間。另外,穩態響應定義為從上升時間t r 到總測試時間t f 的時間內追蹤精確度總和,其中縮短上升時間及提高追蹤精確度有助於得到更高的暫態響應分數。 Please refer to FIG. 13, which is a schematic diagram showing the definition of the performance evaluation parameters of the present invention. The transient response is defined as a percentage of the rise time t r to the total test time t f . The rise time is defined as the maximum output when the output power reaches 90%. The time required for power. In addition, the steady-state response is defined as the sum of the tracking accuracy in the time from the rise time t r to the total test time t f . Among them, shortening the rise time and improving the tracking accuracy help to obtain a higher transient response score.
在大多數的文獻中,評估最大功率追蹤方法僅有考慮標準測試條件的追蹤性能。本發明為了更貼近實際太陽能發電系統的操作情況,考慮了五 種不同的照度等級200W/m2、400W/m2、600W/m2、800W/m2、1000W/m2以評估最大功率追蹤演算法的性能表現。 In most literatures, the evaluation of maximum power tracking methods only considers the tracking performance of standard test conditions. In order to get closer to the operation of the actual solar power generation system, the present invention considers five different illumination levels of 200W / m 2 , 400W / m 2 , 600W / m 2 , 800W / m 2 , and 1000W / m 2 to evaluate the maximum power tracking. Algorithm performance.
請參照圖14,其繪示2014年3月15日台北(經度:121°30' 24〞E、緯度:25°02' 23〞N)的日照分佈圖,資料來源為氣象資訊站。 Please refer to FIG. 14, which shows the sunshine distribution map of Taipei (longitude: 121 ° 30 '24 ″ E, latitude: 25 ° 02' 23 ″ N) on March 15, 2014 in Taipei. The data source is the weather information station.
由圖所示,不同照度等級之日照時間不盡相同,所以其重要性也不一樣。因此,本發明將五種不同的照度等級之性能評估值乘上各自對應的權重值ω j 然後將結果加總定義為適應值,如方程式(6)所示。 As shown in the figure, the sunshine duration is different for different illumination levels, so its importance is also different. Therefore, the present invention multiplies the performance evaluation values of five different illuminance levels by their respective weight values ω j, and then sums the results to define the adaptive values, as shown in equation (6).
Fit_value=Σω j C j ,j=200,400,600,800,1000W/m2 (6) Fit_value = Σ ω j C j , j = 200,400,600,800,1000W / m 2 (6)
本發明中採取了五種不同的照度等級200W/m2(照度為0~200W/m2)、400W/m2(照度為200~400W/m2)、600W/m2(照度為400~600W/m2)、800W/m2(照度為600~800W/m2)、1000W/m2(照度為800~1000W/m2)。權重值ω j 定義為五種不同照度等級分別在一天內所產生的功率除以一天日照產生的總功率之百分比例。 In the present invention, five different illumination levels of 200 W / m 2 (illumination of 0 to 200 W / m 2 ), 400 W / m 2 (illumination of 200 to 400 W / m 2 ), and 600 W / m 2 (illumination of 400 to 600W / m 2 ), 800W / m 2 (illumination is 600 ~ 800W / m 2 ), 1000W / m 2 (illumination is 800 ~ 1000W / m 2 ). The weight value ω j is defined as a percentage of the power generated by five different illumination levels in one day divided by the total power generated by one day of sunlight.
本發明使用之Sanyo公司出品的VBHN220AA01太陽能電池作為標準累積每個日照等級的輸出功率,分別運算五種不同照度等級的權重值ω j ,其中ω200=0.054、ω400=0.112、ω600=0.273、ω800=0.344、ω1000=0.217,因此,適應值越高代表最大功率追蹤演算法的性能越好。 The VBHN220AA01 solar cell produced by Sanyo company is used as a standard to accumulate the output power of each sunlight level, and calculate the weight values ω j of five different illumination levels, respectively, where ω 200 = 0.054, ω 400 = 0.112, ω 600 = 0.273 , Ω 800 = 0.344, ω 1000 = 0.217, therefore, the higher the fitness value, the better the performance of the maximum power tracking algorithm.
步驟5:更新區域和全域最佳適應值Step 5: Update regional and global best fit values
若第i個粒子目前的適應值比前一次的適應值更好,將更新區域適應值p best,i 為目前的適應值。所有粒子中最好的適應值為全域適應值g best 。 If the current fitness value of the i-th particle is better than the previous fitness value, the regional fitness value p best is updated , and i is the current fitness value. The best fitness value among all particles is the global fitness value g best .
步驟6:更新每個粒子的速度和位置Step 6: Update the speed and position of each particle
在粒群演算法執行完所有的粒子後,每個粒子需要更新下一次速度和位置。傳統粒群演算法中使用方程式(2)和方程式(3)更新速度和位置,其中慣量w為參數、c 1 和c 2 為常數。 After the particle swarm algorithm has performed all the particles, each particle needs to update its next speed and position. In the traditional particle swarm optimization algorithm, equations (2) and (3) are used to update the speed and position, where the inertia w is a parameter and c 1 and c 2 are constants.
為了加快收斂的速度,本發明將方程式(2)中慣量w改成變數,如方程式(7)所示。 In order to accelerate the speed of convergence, the present invention changes the inertia w in the equation (2) into a variable, as shown in the equation (7).
v i (k+1)=w(k)v i (k)+c 1 r 1(p best,i -x i (k))+c 2 r 2(g best -x i (k)) (7) v i ( k +1) = w ( k ) v i ( k ) + c 1 r 1 ( p best, i - x i ( k )) + c 2 r 2 ( g best - x i ( k )) ( 7)
其中,等式右邊第一項w(k)v i (k)用來維持粒子本身前進的方向,因此會主導粒群演算法的收斂性,為了加快收斂速度,慣量應該要能夠隨著演算法執行的次數將其對速度v i (k)的影響力降低,所以慣量w(k)要逐漸減少。 Among them, the first term on the right side of the equation w ( k ) v i ( k ) is used to maintain the direction of the particle itself, so it will dominate the convergence of the particle swarm algorithm. In order to accelerate the convergence speed, the inertia should be able to follow the algorithm. The number of executions reduces its influence on the speed v i ( k ), so the inertia w ( k ) is gradually reduced.
一般在初始化參數時,會將慣量設定成較大的值,此能夠增加粒子在解空間的搜尋能力,然後隨著執行次數增加逐步減少慣量值以加快收斂的速度,這樣可以提升粒群演算法的性能。本發明用線性減少的方式逐次減低慣量w(k),如方程式(8)所示。 Generally, when the parameters are initialized, the inertia is set to a larger value. This can increase the search ability of the particles in the solution space, and then gradually reduce the inertia value to increase the speed of convergence as the number of executions increases. This can improve the particle swarm calculation. Method performance. The present invention successively reduces the inertia w ( k ) in a linear reduction manner, as shown in equation (8).
其中w min和w max為慣量w(k)的下限值和上限值、k MAX 為最大的疊代次數。為了提高粒群演算法在解空間的搜尋性能,選擇參數w min=0.1、w max=1.0、k MAX =300、c 1=1、c 2=2。 Where w min and w max are the lower and upper limits of the inertia w ( k ), and k MAX is the maximum number of iterations. In order to improve the search performance of the particle swarm optimization algorithm in the solution space, parameters w min = 0.1, w max = 1.0, k MAX = 300, c 1 = 1, and c 2 = 2 are selected.
步驟7:粒群演算法的收斂條件Step 7: Convergence conditions of the particle swarm optimization algorithm
每次執行完粒群演算法,會運算適應值和檢查收斂條件,在此使用兩個收斂的條件,如果每個粒子的速度比門檻值(Threshold)小或是當最大的疊代次數達到上限值,則停止粒群演算法並輸出最好的全域適應值g best 。 Each time the particle swarm algorithm is executed, the adaptive value is calculated and the convergence conditions are checked. Two convergence conditions are used here. If the speed of each particle is less than the threshold value or the maximum iteration number is reached, Limit, the particle swarm algorithm is stopped and the best global fitness value g best is output.
請參照圖15,其繪示本發明之粒群演算法收斂曲線。如圖所示,本發明疊代次數的上限容許值設定為300次,如果達到收斂條件,粒群演算法的程序將被終止,否則疊代次數累加1次並且前往步驟3。由圖中可知,粒群演算法經過175次疊代運算,可以收斂到最佳解附近。 Please refer to FIG. 15, which illustrates the convergence curve of the particle swarm optimization algorithm of the present invention. As shown in the figure, the upper limit allowable value of the number of iterations of the present invention is set to 300 times. If the convergence condition is reached, the program of the particle swarm algorithm will be terminated, otherwise the number of iterations will be accumulated once and go to step 3. As can be seen from the figure, after 175 iterations of the particle swarm optimization algorithm, it can converge to the vicinity of the optimal solution.
請參照圖16,其繪示本發明應用粒群演算法所找到的輸入歸屬函數ΔPpv最佳的論域設定值。如圖所示,歸屬函數呈現為斜率不同之非對稱的三角形。 Please refer to FIG. 16, which illustrates the optimal universe setting value of the input attribution function ΔP pv found by applying the particle swarm optimization algorithm of the present invention. As shown, the attribution function appears as an asymmetric triangle with different slopes.
模擬與實驗結果:Simulation and experimental results:
以下將針對傳統的擾動觀察法、對稱型模糊控制、非對稱型模糊控制以及本發明(最佳化歸屬函數論域值之最大功率追蹤演算法)進行模擬和實驗。其中,模擬部分係以Matlab軟體撰寫模糊邏輯太陽能發電系統最大功率追蹤的模擬程式;實驗部分係以太陽能模擬機(TerraSAS DCS80-15)模擬太陽能電池作為功率源輸入,加上由300W升壓式轉換器、電子負載以及微處理器dsPIC33FJ16GS502電路所構成的太陽能發電系統完成最大功率追蹤的實驗。最後,將模擬和實驗得到的結果與數據進行分析與比較。為了驗證本案所提出的模糊控制最大功率追蹤演算法的性能,分別以模擬結果及實驗結果相驗證。 In the following, simulations and experiments will be performed for the traditional disturbance observation method, symmetric fuzzy control, asymmetric fuzzy control, and the present invention (the maximum power tracking algorithm to optimize the domain value of the assignment function). Among them, the simulation part uses Matlab software to write a simulation program for the maximum power tracking of fuzzy logic solar power generation systems; the experimental part uses a solar simulator (TerraSAS DCS80-15) to simulate a solar cell as a power source input, plus a 300W boost conversion The solar power generation system composed of the dsPIC33FJ16GS502 circuit of the electronic load, the microprocessor and the microprocessor completes the experiment of maximum power tracking. Finally, the results and data obtained from simulations and experiments are analyzed and compared. In order to verify the performance of the fuzzy control maximum power tracking algorithm proposed in this case, the simulation results and experimental results are used to verify the performance.
此處分別比較了五種最大功率追蹤方法,分別為擾動觀察法(步階為0.5V以及3.5V)、對稱型模糊控制最大功率追蹤法、非對稱型模糊控制最大功率追蹤法以及本發明,將上述最大功率追蹤法的名稱分別定義為P&O(0.5V)、P&O(3.5V)、Symmetrical FLC、AsymmetricalFLC#1及AsymmetricalFLC#2(本發明)。 Here we compare five kinds of maximum power tracking methods: disturbance observation method (in steps of 0.5V and 3.5V), symmetrical fuzzy control maximum power tracking method, asymmetric fuzzy control maximum power tracking method, and the present invention. The names of the above-mentioned maximum power tracking method are defined as P & O (0.5V), P & O (3.5V), Symmetrical FLC, AsymmetricalFLC # 1, and AsymmetricalFLC # 2 (the present invention).
所有的測試都使用相同的功率電路進行,實驗平台使用低成本的dsPIC33FJ16GS502微控制器作為核心,來實現五種太陽能最大功率追蹤方法。模擬和實驗條件均為溫度25℃,照度分別為200W/m2、600W/m2和1000W/m2時,另為了考慮各種追蹤的可能性,使用了兩個初始條件: 初始電壓命令等於10%的開路電壓V oc (表示從功率-電壓曲線的左邊開始往右邊追蹤最大功率點的情況)。 All tests are performed using the same power circuit. The experimental platform uses a low-cost dsPIC33FJ16GS502 microcontroller as the core to achieve five solar maximum power tracking methods. The simulation and experimental conditions are at a temperature of 25 ° C, and the illuminances are 200W / m 2 , 600W / m 2, and 1000W / m 2. In addition, in order to consider the possibility of various tracking, two initial conditions are used: The initial voltage command is equal to 10 % Open-circuit voltage V oc (indicates a case where the maximum power point is tracked from the left to the right of the power-voltage curve).
初始電壓命令等於95%的開路電壓V oc (表示從功率-電壓曲線的右邊開始往左邊追蹤最大功率點的情況)。 The initial voltage command is equal to 95% of the open-circuit voltage V oc (indicating a case where the maximum power point is traced from the right to the left of the power-voltage curve).
針對上述6種條件進行模擬及實驗,首先使用太陽能模擬機具有記錄數據功能之內建人機介面,可以紀錄追蹤過程的實驗數據,以每0.05秒紀錄1次數據,紀錄時間的長度為60秒,總共有1200點數據。 The simulation and experiments are performed for the above 6 conditions. First, the built-in human-machine interface of the solar simulator with the function of recording data can be used to record the experimental data of the tracking process. The data is recorded every 0.05 seconds, and the length of the recording time is 60 seconds. There are a total of 1200 points of data.
請一併參照圖17a~圖22b,其中圖17a其繪示五種不同最大功率追蹤方法的最大功率追蹤過程(左半面啟動、200W/m2、25℃)之模擬結果;圖17b其繪示五種不同最大功率追蹤方法的最大功率追蹤過程(左半面啟動、200W/m2、25℃)之實驗結果;圖18a其繪示五種不同最大功率追蹤方法的最大功率追蹤過 程(右半面啟動、200W/m2、25℃)之模擬結果;圖18b其繪示五種不同最大功率追蹤演算法的最大功率追蹤過程(右半面啟動、200W/m2、25℃)之實驗結果;圖19a其繪示五種不同最大功率追蹤方法的最大功率追蹤過程(左半面啟動、600W/m2、25℃)之模擬結果;圖19b其繪示五種不同最大功率追蹤方法的最大功率追蹤過程(左半面啟動、600W/m2、25℃)之實驗結果;圖20a其繪示五種不同最大功率追蹤方法的最大功率追蹤過程(右半面啟動、600W/m2、25℃)之模擬結果;圖20b其繪示五種不同最大功率追蹤方法的最大功率追蹤過程(右半面啟動、600W/m2、25℃)之實驗結果;圖21a其繪示五種不同最大功率追蹤方法的最大功率追蹤過程(左半面啟動、1000W/m2、25℃)之模擬結果;圖21b其繪示五種不同最大功率追蹤方法的最大功率追蹤過程(左半面啟動、1000W/m2、25℃)之實驗結果;圖21c其繪示五種不同最大功率追蹤方法的最大功率追蹤過程(左半面啟動、1000W/m2、25℃)之實驗結果放大圖(15~20s);圖22a其繪示五種不同最大功率追蹤方法的最大功率追蹤過程(右半面啟動、1000W/m2、25℃)之模擬結果;圖22b其繪示五種不同最大功率追蹤方法的最大功率追蹤過程(右半面啟動、1000W/m2、25℃)之實驗結果。 Please also refer to FIG. FIG. 17a ~ 22b, wherein FIG. 17a which shows five different methods MPPT maximum power point tracking process (left half start, 200W / m 2, 25 ℃ ) the simulation results; Figure 17b which illustrates Experimental results of the maximum power tracking process (starting on the left half, 200W / m 2 , 25 ° C) of five different maximum power tracking methods; Figure 18a shows the maximum power tracking process of five different maximum power tracking methods (starting on the right half) , 200W / m 2 , 25 ℃); Figure 18b shows the experimental results of the maximum power tracking process (right-side startup, 200W / m 2 , 25 ℃) of five different maximum power tracking algorithms; Figure 19a It shows the simulation results of the maximum power tracking process (starting on the left side, 600W / m 2 , 25 ° C) of five different maximum power tracking methods. Figure 19b shows the maximum power tracking process of five different maximum power tracking methods ( Left-half start, 600W / m 2 , 25 ° C) experimental results; Figure 20a shows the simulation results of the maximum power tracking process of five different maximum power tracking methods (right-half start, 600W / m 2 , 25 ° C); Figure 20b shows five different Process MPPT power tracking method (the right half start, 600W / m 2, 25 ℃ ) of experimental results; FIG. 21a which shows five different methods MPPT maximum power point tracking process (left half start, 1000W / m 2 , 25 ℃); Figure 21b shows the experimental results of the maximum power tracking process (starting on the left half, 1000W / m 2 , 25 ℃) of five different maximum power tracking methods; Figure 21c shows five An enlarged view of the experimental results of the maximum power tracking process (starting on the left side, 1000W / m 2 , 25 ° C) of different maximum power tracking methods (15-20s); Figure 22a shows the maximum power of five different maximum power tracking methods Tracking process (right half start, 1000W / m 2 , 25 ° C) simulation results; Figure 22b shows the maximum power tracking process for five different maximum power tracking methods (right half start, 1000W / m 2 , 25 ° C). Experimental results.
如圖所示,其中第一筆資料為初始電壓命令10%的開路電壓V oc 和95%的開路電壓V oc 所對應到的太陽能電池輸出功率。 As shown in the figure, the first data is the output power of the solar cell corresponding to the initial voltage command of 10% of the open circuit voltage V oc and 95% of the open circuit voltage V oc .
追蹤時間定義為追到90%的最大功率點所需要的時間,而平均穩態輸出功率定義為方程式(9)及追蹤精確度定義為程式(10)
其中,Vpv為太陽能電壓、Ipv為太陽能電流、tf為總共的量測時間、tr為追蹤時間,PMPP為太陽能電池最大功率。 Among them, V pv is the solar voltage, I pv is the solar current, t f is the total measurement time, t r is the tracking time, and P MPP is the maximum power of the solar cell.
利用圖17a~22b五種最大功率追蹤方法之最大功率追蹤過程之實驗數據,運算出平均穩態輸出功率、追蹤精確度及追蹤時間並整理於表3~表8。 Using the experimental data of the maximum power tracking process of the five maximum power tracking methods of Figs. 17a to 22b, the average steady-state output power, tracking accuracy and tracking time are calculated and arranged in Tables 3 to 8.
由圖可知P&O(3.5V)有快速的動態響應,但是會出現穩態功率振盪造成低的追蹤精確度。相對的P&O(0.5V)可以改善穩態追蹤精確度,但是會降低追蹤的速度。Asymmetrical FLC #1及Asymmetrical FLC #2可以解決這樣的現象,雖然此方法的追蹤時間比P&O(3.5V)較長,但是可以減少在最大功率附近之點振盪情形。由照度1000W/m2分別從右半面及左半面開始追蹤最大功率點的模擬及實驗結果可看出Symmetrical FLC、Asymmetrical FLC #1及Asymmetrical FLC #2(本發明)的追蹤速度介於P&O(3.5V)及P&O(0.5V)之間。 It can be seen from the figure that P & O (3.5V) has a fast dynamic response, but a steady-state power oscillation will cause a low tracking accuracy. Relative P & O (0.5V) can improve the accuracy of steady-state tracking, but it will reduce the speed of tracking. Asymmetrical FLC # 1 and Asymmetrical FLC # 2 can solve this phenomenon. Although the tracking time of this method is longer than P & O (3.5V), it can reduce the oscillation situation near the maximum power. From the simulation and experimental results of tracking the maximum power point from the right half and the left half respectively at an illumination of 1000W / m 2 , it can be seen that the tracking speed of Symmetrical FLC, Asymmetrical FLC # 1 and Asymmetrical FLC # 2 (the present invention) is between P & O (3.5 V) and P & O (0.5V).
將圖21c放大來檢視五種最大功率追蹤法到達穩態時功率振盪的情形,可以觀察到功率振盪由小到大為P&O(0.5V)、Asymmetrical FLC #2、 Symmetrical FLC、Asymmetrical FLC #1、P&O(3.5V)。雖然Symmetrical FLC穩態功率振盪小,但是離最大功率點仍有一點差距,另外Asymmetrical FLC #1的穩態功率會呈現向下凹的波形,模擬與實作最主要的差異為實際系統必須使用電流及電壓感測器來量測太陽能的電壓及電流,因為感測器會有最小解析度的限制以及微控制器為16位元能表示的數值有限,所以實務系統存在的限制造成Asymmetrical FLC #1在穩態功率會有向下凹的波形。 Zoom in Figure 21c to see the power oscillations when the five maximum power tracking methods reach steady state. It can be observed that the power oscillations range from small to large P & O (0.5V), Asymmetrical FLC # 2, Symmetrical FLC, Asymmetrical FLC # 1, P & O (3.5V). Although Symmetrical FLC's steady-state power oscillation is small, there is still a little gap from the maximum power point. In addition, the steady-state power of Asymmetrical FLC # 1 will show a downward concave waveform. The main difference between simulation and implementation is that the actual system must use current. And voltage sensor to measure the voltage and current of solar energy, because the sensor has the limitation of minimum resolution and the microcontroller can represent a limited value of 16 bits, so the limitation of the practical system causes Asymmetrical FLC # 1 At steady state power there will be a downward sag.
請一併參照圖23~圖24,其中圖23其繪示Asymmetrical FLC #1照度由200W/m2變化到1000W/m2之實測波形(CH1:20V/div,CH2:5A/div,Math:100W/div,Time:1s);圖24其繪示Asymmetrical FLC #2在照度由200W/m2變化到1000W/m2之實測波形(CH1:20V/div,CH2:5A/div,Math:100W/div,Time:1s)。如圖所示,Asymmetrical FLC #1照度由200W/m2變化到1000W/m2實際量測追蹤時間為4.4秒及追蹤精確度為98.56%,而Asymmetrical FLC #2,實際量測追蹤時間為2.6秒及追蹤精確度為99.2%,綜合上面實驗數據,可以得知Asymmetrical FLC #2(本發明)在追蹤時間上快了1.8秒及追蹤精確度多了為0.64%。 Please refer to FIG. 23 to FIG. 24 together, wherein FIG. 23 shows the measured waveforms (CH1: 20V / div, CH2: 5A / div, Math: Asymmetrical FLC # 1 illuminance changed from 200W / m 2 to 1000W / m 2) : 100W / div, Time: 1s); Figure 24 shows the measured waveform of Asymmetrical FLC # 2 when the illuminance changes from 200W / m 2 to 1000W / m 2 (CH1: 20V / div, CH2: 5A / div, Math: 100W / div, Time: 1s). As shown in the figure, the illumination of Asymmetrical FLC # 1 changes from 200W / m 2 to 1000W / m 2. The actual measurement tracking time is 4.4 seconds and the tracking accuracy is 98.56%. For Asymmetrical FLC # 2, the actual measurement tracking time is 2.6. The second and tracking accuracy is 99.2%. Based on the above experimental data, it can be known that Asymmetrical FLC # 2 (the present invention) is 1.8 seconds faster in tracking time and 0.64% in tracking accuracy.
最後,以方程式(6)運算出來的適應值作為五種最大功率追蹤法之性能評估,將評估的結果列於表9中。 Finally, the adaptive value calculated by equation (6) is used as the performance evaluation of the five maximum power tracking methods. The evaluation results are listed in Table 9.
其中Symmetrical FLC因為在低照度的操作條件會有追蹤不到最大功率點的情形,所以Symmetrical FLC是五種最大功率追蹤法中適應值最低的,而Asymmetrical FLC #1的適應值為次高,可以驗證系統化方法能夠快速而且簡單 的設計ΔPpv的歸屬函數,並提升以模糊邏輯控制器為基礎之最大功率追蹤法的性能,最後,Asymmetrical FLC #2(本發明)是五種最大功率追蹤法中適應值最高的,可以驗證粒群演算法能夠成功的應用在搜尋最佳的ΔPpv的歸屬函數設計,並提升以模糊邏輯控制器為基礎之最大功率追蹤法的性能。 Among them, Symmetrical FLC may not be able to track the maximum power point in low light operating conditions. Therefore, Symmetrical FLC is the lowest of the five maximum power tracking methods, and the adaptive value of Asymmetrical FLC # 1 is the next highest. It is verified that the systematic method can quickly and simply design the assignment function of ΔP pv and improve the performance of the maximum power tracking method based on the fuzzy logic controller. Finally, Asymmetrical FLC # 2 (the present invention) is five maximum power tracking methods The one with the highest fitness value can verify that the particle swarm optimization algorithm can be successfully applied to the search of the best ΔP pv assignment function design, and improve the performance of the maximum power tracking method based on fuzzy logic controllers.
藉由前述所揭露的設計,本發明乃具有以下的優點: With the design disclosed above, the present invention has the following advantages:
1.本發明揭露一種採用最佳化歸屬函數論域值之太陽能電池最大功率追蹤方法,該功率差之最佳化輸入歸屬函數為非對稱型式,用以配合不同操作區間之功率變化,使追蹤電壓步距命令能隨著功率的斜率變化而改變,藉以有效改善追蹤速度及追蹤精確度,及解決對稱型在低照度或照度變化時無法追到最大功率點的問題。 1. The present invention discloses a method for tracking the maximum power of a solar cell using an optimized assignment function domain value. The optimized input assignment function of the power difference is an asymmetric type, which is used to match the power changes in different operating intervals to enable tracking. The voltage step command can be changed with the slope of the power, thereby effectively improving the tracking speed and tracking accuracy, and solving the problem that the symmetrical type cannot track the maximum power point when the illumination is low or the illumination changes.
2.本發明揭露一種採用最佳化歸屬函數論域值之太陽能電池最大功率追蹤方法,係採用粒群方法運算出該功率差之最佳化輸入歸屬函數論域值,用以改善非對稱型模糊控制最大功率追蹤的性能。 2. The present invention discloses a method for tracing the maximum power of a solar cell using an optimized assignment function domain value, which uses a particle swarm method to calculate an optimized input assignment function domain value of the power difference to improve the asymmetric type. Fuzzy control for maximum power tracking performance.
3.本發明揭露一種採用最佳化歸屬函數論域值之太陽能電池最大功率追蹤方法,該功率差之最佳化輸入歸屬函數之型式為一三角形型式,用以達到一運算簡單而能以低成本的微控制器來實現之目的。 3. The present invention discloses a method for tracing the maximum power of a solar cell using an optimized attribution domain value. The type of the optimized input attribution function for the power difference is a triangular shape to achieve a simple operation and a low Costs a microcontroller to achieve this.
4.本發明揭露一種採用最佳化歸屬函數論域值之太陽能電池最大功率追蹤方法,該粒群方法之慣量參數為一變數值,用以加快收斂的速度。 4. The present invention discloses a method for tracing the maximum power of a solar cell using an optimized assignment function domain value. The inertia parameter of the particle swarm method is a variable value to accelerate the speed of convergence.
本案所揭示者,乃較佳實施例,舉凡局部之變更或修飾而源於本案之技術思想而為熟習該項技藝之人所易於推知者,俱不脫本案之專利權範疇。 What is disclosed in this case is a preferred embodiment. For example, those who have partial changes or modifications that are derived from the technical ideas of this case and are easily inferred by those skilled in the art, do not depart from the scope of patent rights in this case.
綜上所陳,本案無論就目的、手段與功效,在在顯示其迥異於習知之技術特徵,且其首先發明合於實用,亦在在符合發明之專利要件,懇請 貴審查委員明察,並祈早日賜予專利,俾嘉惠社會,實感德便。 To sum up, regardless of the purpose, method and effect, this case is showing its technical characteristics that are quite different from the conventional ones, and its first invention is practical, and it is also in line with the patent requirements of the invention. Granting patents at an early date will benefit society and feel good.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106131816A TWI658690B (en) | 2017-09-15 | 2017-09-15 | Method for tracking maximum power of solar cell using optimized assignment function domain value |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106131816A TWI658690B (en) | 2017-09-15 | 2017-09-15 | Method for tracking maximum power of solar cell using optimized assignment function domain value |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201916578A TW201916578A (en) | 2019-04-16 |
TWI658690B true TWI658690B (en) | 2019-05-01 |
Family
ID=66992292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106131816A TWI658690B (en) | 2017-09-15 | 2017-09-15 | Method for tracking maximum power of solar cell using optimized assignment function domain value |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI658690B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110257835B (en) * | 2019-07-31 | 2020-04-28 | 承德前潮慧创科技有限公司 | Cathodic protection feed experiment box |
TWI804942B (en) * | 2021-08-02 | 2023-06-11 | 崑山科技大學 | Method for establishing a power generation prediction model of a dual-axis solar tracking system |
TWI848813B (en) * | 2023-09-07 | 2024-07-11 | 國立勤益科技大學 | Global maximum power point tracking method for photovoltaic module array and tracking system thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102707619A (en) * | 2012-05-25 | 2012-10-03 | 深圳市中兴昆腾有限公司 | Fuzzy controller and method for tracking maximum solar power points |
TW201537330A (en) * | 2014-03-20 | 2015-10-01 | Univ Kun Shan | Solar energy generating device, solar energy generating method, maximum power tracking module, and maximum power tracking and controlling method |
CN105867514A (en) * | 2016-04-15 | 2016-08-17 | 浙江大学 | Method and system for multi-peak maximum power tracking of photovoltaic system |
CN107069775A (en) * | 2017-04-11 | 2017-08-18 | 华北水利水电大学 | A kind of isolated island micro-capacitance sensor frequency control method based on random accelerated particle group's algorithm |
-
2017
- 2017-09-15 TW TW106131816A patent/TWI658690B/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102707619A (en) * | 2012-05-25 | 2012-10-03 | 深圳市中兴昆腾有限公司 | Fuzzy controller and method for tracking maximum solar power points |
TW201537330A (en) * | 2014-03-20 | 2015-10-01 | Univ Kun Shan | Solar energy generating device, solar energy generating method, maximum power tracking module, and maximum power tracking and controlling method |
CN105867514A (en) * | 2016-04-15 | 2016-08-17 | 浙江大学 | Method and system for multi-peak maximum power tracking of photovoltaic system |
CN107069775A (en) * | 2017-04-11 | 2017-08-18 | 华北水利水电大学 | A kind of isolated island micro-capacitance sensor frequency control method based on random accelerated particle group's algorithm |
Also Published As
Publication number | Publication date |
---|---|
TW201916578A (en) | 2019-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lasheen et al. | Maximum power point tracking using Hill Climbing and ANFIS techniques for PV applications: A review and a novel hybrid approach | |
Li et al. | A novel beta parameter based fuzzy-logic controller for photovoltaic MPPT application | |
Chaibi et al. | Annual performance analysis of different maximum power point tracking techniques used in photovoltaic systems | |
Kchaou et al. | Second order sliding mode-based MPPT control for photovoltaic applications | |
Xia et al. | Application of a new information priority accumulated grey model with time power to predict short-term wind turbine capacity | |
Ou et al. | Dynamic operation and control of microgrid hybrid power systems | |
Mao et al. | A hybrid intelligent GMPPT algorithm for partial shading PV system | |
You et al. | A review on artificial intelligence for grid stability assessment | |
Saon et al. | Development of optimum controller based on MPPT for photovoltaic system during shading condition | |
Benlahbib et al. | A fuzzy logic controller based on maximum power point tracking algorithm for partially shaded PV array-experimental validation | |
TWI658690B (en) | Method for tracking maximum power of solar cell using optimized assignment function domain value | |
Panda et al. | Fuzzy intelligent controller for the maximum power point tracking of a photovoltaic module at varying atmospheric conditions | |
Ballaji et al. | Design & development of MPPT using PSO with predefined search space based on fuzzy fokker planck solution | |
Chin et al. | Fuzzy logic based MPPT for PV array under partially shaded conditions | |
Yang et al. | Analysis of improved PSO and perturb & observe global MPPT algorithm for PV array under partial shading condition | |
CN110007710B (en) | Improved MPPT control strategy method based on conductance incremental method | |
Merchaoui et al. | Fuzzy logic adaptive particle swarm optimisation based MPPT controller for photovoltaic systems | |
Saxena et al. | Maximum power extraction from solar PV systems using intelligent based soft computing strategies: A critical review and comprehensive performance analysis | |
Chen et al. | A comparative study on MPPT for photovoltaic generation systems | |
CN115543004A (en) | MPPT control method and system based on improved particle swarm optimization algorithm | |
Yahiaoui et al. | Experimental validation and intelligent control of a stand-alone solar energy conversion system using dSPACE platform | |
CN108803771A (en) | Maximum power point tracing method based on Adaptive Fuzzy Control | |
Bendib et al. | Fuzzy-logic-based approach for organic solar cell parameters extraction | |
Priyadarshi et al. | A particle swarm optimization based fuzzy logic control for photovoltaic system | |
Cuzco et al. | Comparative analysis of the performance of maximum power point tracking algorithms in photovoltaic systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |