TWI489529B - Integrated circuit capacitor and method - Google Patents

Integrated circuit capacitor and method Download PDF

Info

Publication number
TWI489529B
TWI489529B TW101119827A TW101119827A TWI489529B TW I489529 B TWI489529 B TW I489529B TW 101119827 A TW101119827 A TW 101119827A TW 101119827 A TW101119827 A TW 101119827A TW I489529 B TWI489529 B TW I489529B
Authority
TW
Taiwan
Prior art keywords
capacitor
ridge
electrode layer
series
substrate
Prior art date
Application number
TW101119827A
Other languages
Chinese (zh)
Other versions
TW201351484A (en
Inventor
Shih Hung Chen
Kuang Yeu Hsieh
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW101119827A priority Critical patent/TWI489529B/en
Publication of TW201351484A publication Critical patent/TW201351484A/en
Application granted granted Critical
Publication of TWI489529B publication Critical patent/TWI489529B/en

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Description

積體電路電容器及方法Integrated circuit capacitor and method

本發明係關於一種電容器技術,特別是關於一種使用於積體電路中的電容器及其製造方法。The present invention relates to a capacitor technology, and more particularly to a capacitor for use in an integrated circuit and a method of fabricating the same.

電容器是一種在兩個電極中間夾有一層絕緣材料的電子裝置。當這兩個電極之間存在有電壓差時,會在這兩個電極之間產生電場因此可以儲存電能。在一給定電壓通過這兩個電極時,此電容器中所能儲存的電能通常稱為其電容值。電極通常是不同形狀、輪廓和尺寸的平板。電容值通常是與此介電層的介電常數相關,且正比於相對電極的面積而與電極間的距離成反比。將兩個或以上的電容器並聯其整體電容值是個別電容值的總合。而將兩個或以上的電容器串聯其整體電容值將會小於任何一個的個別電容值。串聯的電容器通常是使用於高電壓的情況下因為高電壓會由這些電容器加以分割。於積體電路之外提供許多不同尺寸的電容器通常不會是一個問題,但是傳統的積體電路因為其尺寸的限制僅能提供相對較小的電容器。舉例而言,可參閱美國專利第5497016號。A capacitor is an electronic device in which a layer of insulating material is sandwiched between two electrodes. When there is a voltage difference between the two electrodes, an electric field is generated between the two electrodes so that electrical energy can be stored. When a given voltage is passed through the two electrodes, the electrical energy that can be stored in the capacitor is often referred to as its capacitance value. The electrodes are typically flat plates of different shapes, contours and sizes. The capacitance value is usually the dielectric constant of this dielectric layer Correlation, and proportional to the area of the opposing electrode, inversely proportional to the distance between the electrodes. Connecting two or more capacitors in parallel with their overall capacitance value is the sum of the individual capacitance values. Connecting two or more capacitors in series will have an overall capacitance value that is less than any of the individual capacitor values. Series capacitors are typically used in high voltage situations because high voltages are split by these capacitors. Providing many different sized capacitors outside of the integrated circuit is generally not a problem, but conventional integrated circuits can only provide relatively small capacitors due to their size limitations. See, for example, U.S. Patent No. 5,497,016.

一種電容器的範例包括一系列的山脊與溝渠,一互連區域,一彎曲堆疊平板電容器構件,以及一電性連接器。此系列的山脊與溝渠及一互連區域於一基板之上,該系列的山脊與溝渠及該互連區域具有一電容器基礎表面,其具有一彎曲的剖面輪廓於該系列的山脊與溝渠。此彎曲堆疊平 板電容器構件,包含至少兩個電性導電電極層及介電層分隔該電極層,在該電容器基礎表面處產生一個或多個電容器的一堆疊。此電性連接器自該互連區域電性連接該電極層以存取該電容器構件的該電極層。此電容器的某些範例可以包括以下的一個或多個技術特徵:該電容器基礎表面是電性導電的且構成一電極層。該互連區域是與該系列的山脊與溝渠分離。該互連區域是在該山脊或溝渠至少一者之中。該電性導體通過該互連區域中的垂直介層孔,該垂直介層孔於該電極層的接觸墊上方,該電性導體與該接觸墊電性連接。每一個該電性導體是與該電極層的一接觸墊電性連接,與該電性導體電性連接的該接觸墊是透過安排成階梯狀電性連接。該系列的該山脊是位於該基板上方且延伸遠離該基板。該系列的該山脊是位於該基板的一溝渠內。An example of a capacitor includes a series of ridges and trenches, an interconnected region, a curved stacked plate capacitor member, and an electrical connector. The series of ridges and ditches and an interconnecting region are on a substrate. The series of ridges and ditches and the interconnecting region have a capacitor base surface having a curved cross-sectional profile over the series of ridges and ditches. This curved stack is flat A plate capacitor component comprising at least two electrically conductive electrode layers and a dielectric layer separating the electrode layers, a stack of one or more capacitors being produced at the capacitor base surface. The electrical connector electrically connects the electrode layer from the interconnect region to access the electrode layer of the capacitor member. Some examples of such capacitors may include one or more of the following technical features: The capacitor base surface is electrically conductive and constitutes an electrode layer. The interconnected area is separated from the series of ridges and ditches. The interconnected area is in at least one of the ridge or ditch. The electrical conductor passes through a vertical via hole in the interconnect region, and the vertical via hole is over the contact pad of the electrode layer, and the electrical conductor is electrically connected to the contact pad. Each of the electrical conductors is electrically connected to a contact pad of the electrode layer, and the contact pads electrically connected to the electrical conductor are arranged in a stepwise electrical connection. The ridge of the series is located above the substrate and extends away from the substrate. The ridge of the series is located in a trench of the substrate.

一種形成一電容器的方法之範例可以利用以下的方式進行:形成一系列的山脊於一基板之上,該系列的山脊由溝渠所分隔。也形成一互連區域於該基板上靠近及該系列的山脊與溝渠。該系列的山脊與溝渠和互連區域具有一電容器基礎表面。該山脊形成步驟的進行使得該電容器基礎表面具有凸出及下凹結構以定義一彎曲的剖面輪廓。形成交錯的電性導電電極層及介電層分隔該電極層於該電容器基礎表面以產生至少兩個彎曲平板電容器的一堆疊。在該互連區域電性連接該電極層與該電性導體以存取該電極層。此形成一電容器的方法之某些範例可以包括以下的一個或多個技術特徵:該山脊形成步驟包含形成該系列的介電山脊於該基板上的一溝渠內。該電性連接步驟包括:自該互連區域的一部分除去材料,該材料包覆該電極層的接觸墊;沈積一介電材料於該互連區域的該部分;形成介層 孔通過該互連區域而至該接觸墊;以及在該介層孔中形成電性導體且將該電性導體與該接觸墊電性耦接。該電性連接步驟也包括產生該接觸墊的一階梯安排至與該電性導體的電性連接處。該電性連接步驟包括使用一組N個蝕刻幕罩以產生最多達2N 階層的接觸墊於該互連區域,每一個幕罩包括幕罩與蝕刻區域,N是至少為2的整數,x是該幕罩自x=0開始的序列數目,使得一幕罩x=0、另一幕罩x=1直到x=n-1;使用該幕罩以一事先選取的順序蝕刻該互連區域N次以產生接觸開口延伸至每一電極層;該蝕刻步驟包含對序列X的每個幕罩蝕刻通過2N 個電極層。每個蝕刻幕罩交互覆蓋2X 幕罩區域及裸露2X 蝕刻區域使得x=0光阻幕罩交互覆蓋20 接觸墊及裸露20 接觸墊,x=1光阻幕罩交互覆蓋21 接觸墊及裸露21 接觸墊,且x=2光阻幕罩交互覆蓋22 接觸墊及裸露22 接觸墊。該交錯的電性導電電極層及介電層形成步驟形成至少四個彎曲平板電容器的一堆疊。該介電山脊形成步驟的進行使得該山脊具有山脊高度、山脊寬度和溝渠寬度。該介電山脊形成步驟的進行使得該山脊高度的平均值與該山脊寬度的平均值之一比值是在3~20的範圍。An example of a method of forming a capacitor can be performed by forming a series of ridges on a substrate that is separated by a trench. An interconnected region is also formed on the substrate adjacent to the series of ridges and ditches. The series of ridges and ditches and interconnected areas have a capacitor base surface. The ridge forming step is performed such that the capacitor base surface has convex and concave structures to define a curved cross-sectional profile. Forming a staggered electrically conductive electrode layer and a dielectric layer separates the electrode layer from the capacitor base surface to create a stack of at least two curved plate capacitors. The electrode layer and the electrical conductor are electrically connected to the interconnect region to access the electrode layer. Some examples of the method of forming a capacitor can include one or more of the following technical features: the ridge forming step includes forming the series of dielectric ridges in a trench on the substrate. The electrically connecting step includes: removing material from a portion of the interconnect region, the material coating a contact pad of the electrode layer; depositing a dielectric material on the portion of the interconnect region; forming a via hole through the interconnect And contacting the contact pad; and forming an electrical conductor in the via hole and electrically coupling the electrical conductor to the contact pad. The electrical connection step also includes creating a step arrangement of the contact pads to an electrical connection with the electrical conductor. The electrical connection step includes using a set of N etch masks to create contact pads of up to 2 N levels in the interconnect region, each mask including a mask and an etched region, N being an integer of at least 2, x Is the number of sequences of the mask starting from x=0 such that one mask x=0 and the other mask x=1 until x=n-1; using the mask to etch the interconnection area N times in a pre-selected order The contact opening is extended to each of the electrode layers; the etching step includes etching each of the masks of the sequence X through 2 N electrode layers. Each etch interactive screen cover hood covering the curtain 2 X 2 X region and the exposed region is etched so that x = 0 photoresist interactive screen cover 20 covers the exposed contact pads and contact pads 20, x = 1 covered with the photoresist 21 interactive screen cover Contact pads and bare 2 1 contact pads, and x=2 photoresist masks cover 2 2 contact pads and bare 2 2 contact pads. The staggered electrically conductive electrode layer and dielectric layer forming step form a stack of at least four curved plate capacitors. The dielectric ridge forming step is performed such that the ridge has a ridge height, a ridge width, and a trench width. The dielectric ridge forming step is performed such that the ratio of the average of the ridge height to the average of the ridge width is in the range of 3-20.

本發明係由申請專利範圍所界定。這些和其它目的,特徵,和實施例,會在下列實施方式的章節中搭配圖式被描述,The invention is defined by the scope of the patent application. These and other objects, features, and embodiments will be described in conjunction with the drawings in the sections of the following embodiments.

本發明之某些實施例,會在下列實施方式的章節中搭配圖式被描述,其中僅顯示某些而並非全部的實施例。然而,本發明不同的實施例可以具有不同的型態且不應視為限制本發明;而是這些實施例之提供係為使本說明書之揭露滿 足專利法之要求。本領域技術人士可以理解在本發明所揭露的精神下可以有許多變化的實施方式。而不同實施例中的類似元件則通常使用類似的參考標號。Certain embodiments of the invention are described in the following description of the embodiments of the invention, in which only some, but not all, embodiments are shown. However, the various embodiments of the present invention may have different types and should not be construed as limiting the present invention; rather, these embodiments are provided so that the disclosure of the present specification is full. The requirements of the patent law. Those skilled in the art will appreciate that many variations can be made in the spirit of the invention. Similar elements in different embodiments generally use similar reference numerals.

業界已熟知電容器在電子電路中是非常有用的,但是將其用在半導體中會是十分昂貴且難以製造的。電容器可以用來幫助減少電壓的變動且可以用來幫助於例如是靜態隨機存取記憶體、動態隨機存取記憶體、快閃記憶體等記憶體中儲存資料,可以是在正常的操作中或是不預期的斷電情況下使用。雖然目前已可以在系統階級中提供如此的電容器,但是仍希望能夠在節省系統成本、電壓及可靠性等考量因素下在半導體階級也提供可用的電容器。Capacitors are well known in the art as being very useful in electronic circuits, but their use in semiconductors can be very expensive and difficult to manufacture. Capacitors can be used to help reduce voltage variations and can be used to help store data in, for example, static random access memory, dynamic random access memory, flash memory, etc., either in normal operation or It is not expected to be used in the event of a power outage. While it is now possible to provide such a capacitor in the system class, it is desirable to provide a usable capacitor in the semiconductor class while accounting for system cost, voltage and reliability considerations.

請參閱第1圖,其顯示根據本發明一範例實施例之積體電路電容器10,此種積體電路電容器10通常是積體電路的一部分。積體電路電容器10可以提供積體電路具有低成本及高密度的電容。積體電路電容器10包括一基板12,基板12的上半部具有一個以山脊狀延伸的基板表面14,這些山脊16之間則由溝渠15分隔。山脊16與基板表面14通常是由相同的材料構成,其也可以是由不同的材料構成。在某些範例中,例如第1~12圖中的某些範例,山脊16是形成於基板12的上半部之溝渠15內而其他的範例中山脊16是形成於基板12的上半部之溝渠15的上方。在第1圖的範例中,山脊16與基板12的上半部是由相同的材料構成。為了簡化起見,基板12的上半部在此說明書中通常簡稱為基板12。Referring to FIG. 1, there is shown an integrated circuit capacitor 10 in accordance with an exemplary embodiment of the present invention. Such integrated circuit capacitor 10 is typically part of an integrated circuit. The integrated circuit capacitor 10 can provide an integrated circuit with a low cost and high density of capacitance. The integrated circuit capacitor 10 includes a substrate 12 having an upper portion of the substrate 12 having a ridge-like substrate surface 14 separated by trenches 15. The ridge 16 and the substrate surface 14 are typically constructed of the same material, which may also be constructed of different materials. In some examples, such as some of the examples in FIGS. 1-12, the ridge 16 is formed in the trench 15 of the upper half of the substrate 12 and in other examples the ridge 16 is formed in the upper half of the substrate 12. Above the ditch 15. In the example of Fig. 1, the ridge 16 and the upper half of the substrate 12 are made of the same material. For the sake of simplicity, the upper half of the substrate 12 is generally referred to herein simply as the substrate 12.

將於以下描述,在其他的範例中,山脊16可以是半導體或是導體材料且與其正下方的基板12的上半部以下之積體電路主要部分基板具有某種程度的隔離。在如此的範例中,山脊16及基板12的上半部可以作為電性導電電極 層20。形成山脊16的方法包括以微影為基礎的蝕刻製程以及其他技術。形成由溝渠15分隔之山脊16的特定方法係根據許多不同的考量而決定,例如所使用的材料、溝渠的深度、溝渠的深寬比等等因素。一種減少溝渠15間的間距小於微影製程最小間距的方法是使用雙重或是四重圖案化,其某些時候稱為多重圖案化。通過此方式通常一個單一光罩可以用來產生一系列的並聯材料線於此基板上。之後可以使用不同的方法將並聯材料線轉換成多重的並聯材料線。潘曉及Bruce W.Smith等人在其論文"Analysis of Higher-Order Pitch Division for Sub-32nm Lithograph,Optical Microlithography XXII,Proc.of SPIE Vol.7274,72741Y,2009年,中揭露許多不同的方法。此多重圖案化方法也2010年12月29日所申請之在標題為"Multiple Patterning Method"的美國專利申請案12/981121中描述,其與本發明具有相同的申請人與發明人。As will be described below, in other examples, the ridge 16 may be a semiconductor or conductor material and have some degree of isolation from the main portion of the integrated circuit below the upper half of the substrate 12 directly below it. In such an example, the ridge 16 and the upper half of the substrate 12 can serve as electrically conductive electrodes. Layer 20. Methods of forming ridges 16 include lithography-based etching processes and other techniques. The particular method of forming the ridge 16 separated by the trench 15 is determined by a number of different considerations, such as the materials used, the depth of the trench, the aspect ratio of the trench, and the like. One way to reduce the spacing between the trenches 15 is less than the minimum spacing of the lithography process is to use a double or quadruple patterning, sometimes referred to as multiple patterning. In this manner, typically a single reticle can be used to create a series of parallel material lines on the substrate. Different methods can then be used to convert the parallel material lines into multiple parallel material lines. Pan Xiao and Bruce W. Smith et al. disclose many different methods in their paper "Analysis of Higher-Order Pitch Division for Sub-32 nm Lithograph, Optical Microlithography XXII, Proc. of SPIE Vol. 7274, 72741Y, 2009. This multi-patterning method is also described in the U.S. Patent Application Serial No. 12/981,121, filed on Dec. 29, 2010, which is incorporated herein by reference.

如第1圖中所示,一彎曲的平板電容器18之堆疊17形成於基板12之上且介電山脊16跟隨著此彎曲的路徑而具有凹面部分及凸面部分。堆疊17具有第一及第二彎曲的平板電容器18,每一個彎曲平板電容器包括一組電性導電電極層20且具有介電層22將此電極層20分隔。在現實中,可以使用例如四個或八個的彎曲平板電容器18。此外可以使用例如一千個或更多的山脊16。然而,為了簡化起見圖中僅顯示兩個山脊和電容器。堆疊17由介電填充層24所覆蓋。As shown in FIG. 1, a stack 17 of curved plate capacitors 18 is formed over substrate 12 and dielectric ridges 16 have concave and convex portions following this curved path. The stack 17 has first and second curved plate capacitors 18, each of which includes a set of electrically conductive electrode layers 20 and having a dielectric layer 22 separating the electrode layers 20. In reality, for example four or eight curved plate capacitors 18 can be used. Further, for example, one thousand or more ridges 16 can be used. However, for the sake of simplicity, only two ridges and capacitors are shown in the figure. Stack 17 is covered by a dielectric fill layer 24.

在第1~9圖的範例中,山脊16和基板12的上半部是介電材料。因為此種材料已經在業界廣泛使用所以最好是使用氧化矽作為山脊16。此外,也可以使用例如是氮化矽的低介電常數材料或是其他的低介電常數材料。在某些範例 中,此電容器結構使用稱為一粗造表面導體使得山脊16和基板12的上半部可以由導體構成,且因此作為電性導電電極層。通常而言,此導體可以是金屬或是複合金屬,包含鋁、銅、鎢、鈦、鈷和鎳。此導體也可以是金屬化合物,例如氮化鉭、氮化鉭及以鋁銅或是半導體化合物,例如濃摻雜的矽(使用砷、磷、硼等雜質);矽化物包括矽化鈦、矽化鈷等。此外,典型的介電材料例如氧化矽、氮化矽、氮氧化矽。然而,最好是具有介電係數大於氧化矽的高介電常數材料例如HfOx 、HfON、AlOx 、RuOx 、TiOx 。此介電材料也可以是多層介電材料,例如氧化矽/氮化矽/氧化矽(ONO),氧化矽/高介電常數材料/氧化矽(O/high k/O),其提供較高的介電常數且可以避免電容洩漏。In the examples of Figures 1-9, the ridge 16 and the upper half of the substrate 12 are dielectric materials. Since such materials have been widely used in the industry, it is preferable to use yttrium oxide as the ridge 16. Further, a low dielectric constant material such as tantalum nitride or another low dielectric constant material may also be used. In some examples, this capacitor structure uses what is referred to as a rough surface conductor such that the ridge 16 and the upper half of the substrate 12 can be constructed of a conductor and thus act as an electrically conductive electrode layer. Generally, the conductor can be a metal or a composite metal comprising aluminum, copper, tungsten, titanium, cobalt, and nickel. The conductor may also be a metal compound such as tantalum nitride, tantalum nitride, and aluminum copper or a semiconductor compound such as a heavily doped germanium (using impurities such as arsenic, phosphorus, boron, etc.); the telluride includes titanium telluride, cobalt telluride Wait. Further, typical dielectric materials are, for example, cerium oxide, cerium nitride, cerium oxynitride. However, it is preferable to have a high dielectric constant material having a dielectric constant larger than that of ruthenium oxide such as HfO x , HfON, AlO x , RuO x , TiO x . The dielectric material may also be a multilayer dielectric material such as hafnium oxide/tantalum nitride/anthracene oxide (ONO), hafnium oxide/high dielectric constant material/yttrium oxide (O/high k/O), which provides higher The dielectric constant and the leakage of the capacitor can be avoided.

第2圖是此結構的三維立體示意圖,顯示介電山脊16自基板12的表面14向外延伸且由溝渠15分隔。山脊16具有一上牆表面25及側壁表面27。山脊16由在第一方向28延伸的溝渠寬度26分隔。電性導電電極層20與介電層22的數目主要是由溝渠寬度26的尺寸決定。山脊16具有在第一方向28延伸的山脊寬度30及在第二方向34延伸的山脊高度32。山脊16具有在第三方向38延伸的山脊長度36。首先,第一方向28、第二方向34和第三方向38通常是互相垂直。當積體電路電容器10於一溝渠內形成,山脊高度32通常是相當於溝渠的深度。平均山脊高度32與平均山脊寬度30的比值最好是很大,例如100,以增加單位面積中的電容值。在目前的技術下,平均山脊高度32與平均山脊寬度30的比值通常是在3~20的範圍間。溝渠寬度26則必須是第1圖中堆疊17厚度的兩倍。2 is a three-dimensional schematic view of the structure showing dielectric ridges 16 extending outwardly from surface 14 of substrate 12 and separated by trenches 15. The ridge 16 has an upper wall surface 25 and a side wall surface 27. The ridges 16 are separated by a trench width 26 that extends in a first direction 28. The number of electrically conductive electrode layers 20 and dielectric layers 22 is primarily determined by the size of the trench width 26. The ridge 16 has a ridge width 30 that extends in the first direction 28 and a ridge height 32 that extends in the second direction 34. The ridge 16 has a ridge length 36 that extends in the third direction 38. First, the first direction 28, the second direction 34, and the third direction 38 are generally perpendicular to each other. When the integrated circuit capacitor 10 is formed in a trench, the ridge height 32 is typically equivalent to the depth of the trench. The ratio of the average ridge height 32 to the average ridge width 30 is preferably large, such as 100, to increase the capacitance value per unit area. Under current technology, the ratio of the average ridge height 32 to the average ridge width 30 is typically between 3 and 20. The trench width 26 must be twice the thickness of the stack 17 in Figure 1.

第3圖顯示第2圖的結構於順形沈積電極層20於介電 山脊16的上牆表面25及側壁表面27及裸露的基板表面14之上後的剖面圖。電極層20通常是金屬或是其他導電材料。第4圖顯示第3圖的結構於順形沈積介電層22於電極層20之上後的剖面圖。根據良率的考量電極層20最佳的平均厚度大約是10~100奈米,介電層22最佳的平均厚度則是大約10~100奈米。根據介電層22直接穿隧漏電流的考量以及電極層20導通的考量,每一層的最小厚度需大於3奈米。介電層22必須足夠厚以防止由以下式子特性化的富勒-諾德漢(FN)問題。V/t<6百萬伏特/公分,其中V是操作電壓,t是介電層厚度。舉例而言,假如V=3伏特,t>3V/(6 10^6V/cm)=當介電層是氧化矽且操作電壓是3伏特時其厚度t>5奈米。3 is a cross-sectional view showing the structure of FIG. 2 after the conformal deposited electrode layer 20 is over the upper wall surface 25 of the dielectric ridge 16 and the sidewall surface 27 and the exposed substrate surface 14. Electrode layer 20 is typically a metal or other electrically conductive material. 4 is a cross-sectional view showing the structure of FIG. 3 after the conformal deposition of the dielectric layer 22 over the electrode layer 20. According to the yield, the optimum average thickness of the electrode layer 20 is about 10 to 100 nm, and the optimum average thickness of the dielectric layer 22 is about 10 to 100 nm. According to the consideration of the leakage current of the dielectric layer 22 directly and the conduction of the electrode layer 20, the minimum thickness of each layer needs to be greater than 3 nm. The dielectric layer 22 must be thick enough to prevent the Fuller-Nordheim (FN) problem characterized by the following equation. V/t < 6 million volts/cm, where V is the operating voltage and t is the dielectric layer thickness. For example, if V = 3 volts, t > 3 V / (6 * 10 ^ 6 V / cm) = when the dielectric layer is yttrium oxide and the operating voltage is 3 volts, its thickness t > 5 nm.

此介電層22之一種合適的沈積技術為,舉例而言,原子層沈積(ALD),高密度電漿化學氣相沈積(HDCVD),低密度電漿化學氣相沈積(LDCVD)等等,其係根據所使用的材料決定。沈積電極層20和介電層22的製程繼續直到產生合適數目的彎曲的平板電容器18。溝渠寬度26的尺寸及溝渠寬度26與山脊高度32的比值通常限制了電極層20和介電層22的數目。溝渠寬度26的尺寸通常大於山脊寬度30。A suitable deposition technique for the dielectric layer 22 is, for example, atomic layer deposition (ALD), high density plasma chemical vapor deposition (HDCVD), low density plasma chemical vapor deposition (LDCVD), and the like. It is determined by the materials used. The process of depositing electrode layer 20 and dielectric layer 22 continues until a suitable number of curved plate capacitors 18 are produced. The size of the trench width 26 and the ratio of the trench width 26 to the ridge height 32 generally limits the number of electrode layers 20 and dielectric layers 22. The width of the trench 26 is typically greater than the width of the ridge 30.

第5圖顯示第4圖的結構於沈積四層電極層20與四層介電層22而產生兩個彎曲的平板電容器18堆疊17後的剖面圖。電極層20和介電層22可以繼續如圖中所示電極層延伸40和介電層延伸42至一互連區域44。在此範例中,互連區域44中的電極層延伸40和介電層延伸42具有與沈積在介電山脊16的上牆表面25之對應電極層20和介電層22相同的高度。在其他的範例中,例如當介電山脊16並不是形成於溝渠內時,互連區域44中的電極層延伸40和 介電層延伸42可以與沈積在基板表面14之對應電極層20和介電層22具有相同的高度。互連區域44也可以在一個或多個介電山脊16之上或是一個或多個溝渠15之下產生,而不是在分離的互連區域;在如此情況中,通常可以不需要電極層延伸40。Figure 5 shows a cross-sectional view of the structure of Figure 4 after deposition of four electrode layers 20 and four dielectric layers 22 to produce a stack 17 of two curved plate capacitors 18. Electrode layer 20 and dielectric layer 22 may continue with electrode layer extension 40 and dielectric layer extension 42 to an interconnect region 44 as shown. In this example, the electrode layer extension 40 and the dielectric layer extension 42 in the interconnect region 44 have the same height as the corresponding electrode layer 20 and dielectric layer 22 deposited on the upper wall surface 25 of the dielectric ridge 16. In other examples, such as when the dielectric ridge 16 is not formed within the trench, the electrode layer extends 40 in the interconnect region 44 and The dielectric layer extension 42 can have the same height as the corresponding electrode layer 20 and dielectric layer 22 deposited on the substrate surface 14. Interconnect region 44 may also be formed over one or more dielectric ridges 16 or under one or more trenches 15 rather than in separate interconnect regions; in such cases, electrode layer extension may generally not be required. 40.

在一範例中,具有並聯連接電容器18之一積體電路電容器的結合之整體電容值是至少為10pF。在如此範例中,積體電路電容器形成於1000個山脊16上具有兩層電極層20由介電層22分隔,且具有平均山脊寬度30約為200奈米,平均山脊高度32約為2微米,平均山脊長度36約為2微米及平均溝渠寬度26約為200奈米。電極層20的平均厚度約為10奈米且介電層22的平均厚度約為10奈米。In one example, the combined capacitance value of the integrated circuit capacitor having one of the parallel connected capacitors 18 is at least 10 pF. In such an example, the integrated circuit capacitor is formed on 1000 ridges 16 having two electrode layers 20 separated by a dielectric layer 22 and having an average ridge width 30 of about 200 nm and an average ridge height 32 of about 2 microns. The average ridge length 36 is about 2 microns and the average trench width 26 is about 200 nanometers. The electrode layer 20 has an average thickness of about 10 nm and the dielectric layer 22 has an average thickness of about 10 nm.

第6~9圖顯示一系列產生電性導體46的製程剖面圖,第9圖顯示互連區域44中電極層延伸40的接觸提供此堆疊平板電容器構件17之彎曲平板電容器18的電性存取路徑。在第1~5圖的範例中,顯示四層電極層20與四層介電層22,而在第6~9圖中,顯示八層電極層20與八層介電層22以更清楚地顯示產生這些彎曲平板電容器18彼此之間以及與積體電路中其他元件間互連的電性導體46之二元製程。這些不同的電極層延伸40在圖中被辨識為電極層延伸40.0到40.7,而以最上方是40.0。而與對應的電極層延伸40接觸之電性導體46在圖中標示為0到7。介電層延伸42也以類似的方式標號。當互連區域44是在一個或多個介電山脊16之上或是一個或多個溝渠15之下時,則電極導體46會直接與電極層20接觸而不需要電極層延伸40。在上述的範例中,積體電路電容器10形成於基板的溝渠內具有降低整個結構高度的優點。6 through 9 show a series of process profiles for producing electrical conductors 46, and Fig. 9 shows the contact of electrode layer extensions 40 in interconnect regions 44 to provide electrical access to curved plate capacitors 18 of the stacked plate capacitor members 17. path. In the examples of FIGS. 1 to 5, four electrode layers 20 and four dielectric layers 22 are shown, and in FIGS. 6-9, eight electrode layers 20 and eight dielectric layers 22 are shown to be more clearly A binary process is shown which produces electrical conductors 46 that interconnect these curved plate capacitors 18 with one another and with other components in the integrated circuit. These different electrode layer extensions 40 are identified in the figure as electrode layer extensions 40.0 to 40.7, and at the top is 40.0. The electrical conductors 46 that are in contact with the corresponding electrode layer extension 40 are labeled 0 through 7 in the figure. Dielectric layer extensions 42 are also numbered in a similar manner. When interconnect region 44 is above one or more dielectric ridges 16 or under one or more trenches 15, electrode conductor 46 will be in direct contact with electrode layer 20 without the need for electrode layer extension 40. In the above example, the integrated circuit capacitor 10 is formed in the trench of the substrate to have the advantage of lowering the overall structure height.

第6圖顯示一第一光阻幕罩50產生於電性導體的位置 0、2、4、6及位置7遠端處的介電層延伸42。由光阻幕罩所覆蓋的區域有時稱為幕罩區域。第一光阻幕罩50沒有覆蓋的區域,有時稱為蝕刻區域,則會蝕刻一層通過介電層延伸42及電性導體46以創造出第6圖中的結構。之後,如第7圖所示,第一光阻幕罩50被移除且隨後第二光阻幕罩54產生於第6圖中的結構之上以覆蓋電性導體的位置0、1、4、5及位置7遠端處。此結構然後將裸露區域蝕刻兩層以創造出第7圖中的結構。之後,第二光阻幕罩54被移除且隨後形成第三光阻幕罩58以覆蓋電性導體的位置0、1、2、3及位置7遠端處。此結構之裸露區域然後被蝕刻四層以創造出第8圖中所示的結構。Figure 6 shows the position of a first photoresist mask 50 produced on an electrical conductor. The dielectric layer extends at the distal ends of 0, 2, 4, 6 and position 7. The area covered by the photoresist mask is sometimes referred to as the mask area. The region of the first photoresist mask 50 that is not covered, sometimes referred to as an etched region, is etched through the dielectric layer extension 42 and the electrical conductor 46 to create the structure of FIG. Thereafter, as shown in FIG. 7, the first photoresist mask 50 is removed and then the second photoresist mask 54 is formed over the structure in FIG. 6 to cover the positions 0, 1, 4 of the electrical conductor. , 5 and 7 at the far end. This structure then etches the exposed areas two layers to create the structure in Figure 7. Thereafter, the second photoresist mask 54 is removed and a third photoresist mask 58 is subsequently formed to cover the locations 0, 1, 2, 3 of the electrical conductor and the distal end of the location 7. The exposed regions of this structure are then etched four layers to create the structure shown in FIG.

之後,第三光阻幕罩58被移除且一個選擇性的順形介電層材料可以沈積於裸露的表面,包括於此階梯狀打線墊60,以產生介電阻障層62。阻障層62係用來作為蝕刻停止層且可以是單層氮化矽。介電填充層24則沈積於此完成結構之上。然後通過介電填充層24及通過包覆每一個電極層延伸40.0到40.7的打線墊60之介電阻障層62而形成適當的介層孔。然後形成電性導體46於介層孔內以提供電極層延伸40的打線墊60之電性連接且因此與彎曲平板電容器18的電極層20之電性連接。電性導體46可以使用之同所討論過的相同電性導電材料。然而,最好是摻雜矽、鎢和銅因為業界早已熟知這些電性導電材料的化學機械研磨特性。對應於位置0~7的電性導體46辨識為46.0到46.7。Thereafter, the third photoresist mask 58 is removed and a selective conformal dielectric layer material can be deposited on the exposed surface, including the stepped wire pad 60, to create a dielectric barrier layer 62. The barrier layer 62 is used as an etch stop layer and may be a single layer of tantalum nitride. Dielectric fill layer 24 is then deposited over this completed structure. Appropriate via holes are then formed through the dielectric fill layer 24 and through the dielectric barrier layer 62 over which each of the electrode layers extends from 40.0 to 40.7. An electrical conductor 46 is then formed in the via hole to provide an electrical connection between the wire pad 60 of the electrode layer extension 40 and thus to the electrode layer 20 of the curved plate capacitor 18. The electrically conductive conductor 46 can be used with the same electrically conductive material as discussed. However, it is preferable to dope yttrium, tungsten and copper because the CMP characteristics of these electrically conductive materials have long been known in the industry. The electrical conductors 46 corresponding to positions 0-7 are identified as 46.0 to 46.7.

可以使用超過一個互連區域44以存取不同階層中的打線墊60。在不同階層中的某些或全部的打線墊60可以由相同或不同的互連區域44存取。More than one interconnect region 44 can be used to access the wire pads 60 in different levels. Some or all of the wire pads 60 in different levels may be accessed by the same or different interconnect regions 44.

產生電性導體46的製程可以被稱為二元製程,因為其根據20 、...2n-1 ,其中n是蝕刻步驟的數目。即,第一光阻 幕罩50交錯地包覆20 打線墊60及裸露20 打線墊60;第二光阻幕罩54交錯地包覆21 打線墊60及裸露21 打線墊60;第三光阻幕罩58交錯地包覆22 打線墊60及裸露22 打線墊60;以此類推。使用此二元製程,n個幕罩可以為2n 個電性導體46提供存取至2n 個打線墊60。因此,使用3個幕罩可以為8個電性導體46提供存取至8個打線墊60。使用5個幕罩可以為32個電性導體46提供存取至32個打線墊60。蝕刻步驟的順序不一定是要以n-1=0、1、2、...的順序進行。舉例而言,第一蝕刻步驟可以是n-1=2、第二蝕刻步驟可以是n-1=0而第三蝕刻步驟可以是n-1=1。此結果會與第8圖中所示的結構相同。The process of producing the electrical conductor 46 can be referred to as a binary process because it is based on 2 0 , ... 2 n-1 , where n is the number of etching steps. That is, a first photoresist mask 50 alternately curtain coating 20 bonding wires 60 and the pad 20 exposed wire pad 60; a second photoresist mask 54 alternately curtain coating 21 wire pad 60 and wire 21 exposed pad 60; The third photoresist mask 58 is alternately wrapped with the 2 2 wire pad 60 and the bare 2 2 wire pad 60; and so on. Using this binary process, n masks can provide access to 2 n wire pads 60 for 2 n electrical conductors 46. Thus, eight electrical conductors 46 can be provided with access to eight wire pads 60 using three masks. Access to 32 electrical pads 46 can be provided to 32 electrical pads 46 using five masks. The order of the etching steps is not necessarily performed in the order of n-1=0, 1, 2, . For example, the first etching step may be n-1=2, the second etching step may be n-1=0, and the third etching step may be n-1=1. This result will be the same as the structure shown in Fig. 8.

更多將電性導體46與打線墊60電性連接的類似技術及方法之訊息揭露於2011年3月16日所申請之標題為"Reduced Number of Mask for IC Device with Stacked Contact Levels"的美國專利申請案13/049303及2011年5月24日所申請之標題為"Multilayer Structure and Making Method"的美國專利申請案13/114931中描述,在此處引為參考資料,這兩篇專利申請案與本發明具有相同的申請人。A more similar technique and method for electrically connecting the electrical conductor 46 to the wire pad 60 is disclosed in the U.S. patent entitled "Reduced Number of Mask for IC Device with Stacked Contact Levels" filed on March 16, 2011. The application is described in the application Serial No. 13/ 049, 303, filed on May 24, 2011, the entire disclosure of The invention has the same applicant.

第9圖的範例中具有四個彎曲平板電容器18與電性導體46.0和46.1、46.2和46.3、46.4和46.5、46.6和46.7連接。為了形成一個大電容的電容器,在第10圖中標示為C01 、C23 、C45 、C67 各自的電容器,可以被並聯地放置。為了這樣進行,將電性導體46.0、46.2、46.4和46.6短路作為第一電極47,且將電性導體46.1、46.3、46.5和46.7短路作為第二電極48。在另一範例中,如第11圖所示,顯示將每一個電容器C01 、C23 、C45 、C67 串聯。而第11圖中範例的整體電容值CT 會小於任何一個串聯在一起的單獨電容值當使用於高電壓情況下是有用的,因為每一個電壓 器僅會看到整體電壓的一部分。第12A和12B圖顯示電容器C01 、C23 並聯且電容器C45 、C67 是分離的。第12A圖的示意圖顯示介於電性導體46.0~46.7與主要電路51間的連接。另一範例則顯示於第13圖;在此範例中,電性導體46.2和46.5與地連接使得電極層20和電極層延伸40連接的電性導體46.2和46.5作為電容器C01 和C34 以及電容器C34 和C67 間的屏障。The example of Fig. 9 has four curved plate capacitors 18 connected to the electrical conductors 46.0 and 46.1, 46.2 and 46.3, 46.4 and 46.5, 46.6 and 46.7. In order to form a capacitor having a large capacitance, capacitors denoted as C 01 , C 23 , C 45 , and C 67 in Fig. 10 may be placed in parallel. To do so, the electrical conductors 46.0, 46.2, 46.4, and 46.6 are short-circuited as the first electrode 47, and the electrical conductors 46.1, 46.3, 46.5, and 46.7 are short-circuited as the second electrode 48. In another example, as shown in Fig. 11, it is shown that each of the capacitors C 01 , C 23 , C 45 , C 67 is connected in series. The overall capacitance value C T of the example in Figure 11 will be less than any single capacitor value connected in series. It is useful when used in high voltage situations because each voltage device will only see a portion of the overall voltage. Figures 12A and 12B show capacitors C 01 , C 23 in parallel and capacitors C 45 , C 67 are separated. The schematic of Fig. 12A shows the connection between the electrical conductors 46.0~46.7 and the main circuit 51. Another example is shown in Figure 13; in this example, the electrical conductors 46.2 and 46.5 are connected to ground such that the electrical conductors 46.2 and 46.5 of the electrode layer 20 and the electrode layer extension 40 are connected as capacitors C 01 and C 34 and capacitors. A barrier between C 34 and C 67 .

積體電路電容器10可以使用於許多情況中。舉例而言,一個較大電容值的電容器可以作為一電源緩衝器。此種設計可以藉由將電源供應電壓的震盪阻尼化使得其更加平穩而減少電源穩定性的問題。被設計用來作為電源緩衝器的積體電路電容器10可以大約是與主要電路51相同的尺寸;請參閱第14和15圖。在某些情況下,如第15圖中所示,此主要電路可以是一主要晶片52的一部分而積體電路電容器可以是另一積體電路電容器晶片10a的一部分,兩者晶封裝在一共同的基板56上。然而,良率問題可以導致選擇使用兩個或更多較小的積體電路電容器10而不是一個較大的積體電路電容器,如第16和17圖中所示。在其他例如是動態隨機存取記憶體用途中的積體電路電容器10則可以是一個相對小的電容器。The integrated circuit capacitor 10 can be used in many cases. For example, a capacitor with a larger capacitance value can act as a power buffer. This design can reduce the stability of the power supply by damping the oscillation of the power supply voltage to make it smoother. The integrated circuit capacitor 10 designed to function as a power supply buffer can be approximately the same size as the main circuit 51; see Figures 14 and 15. In some cases, as shown in Fig. 15, the main circuit may be part of a main wafer 52 and the integrated circuit capacitor may be part of another integrated circuit capacitor chip 10a, both of which are packaged together in a common On the substrate 56. However, the yield problem can result in the option to use two or more smaller integrated circuit capacitors 10 instead of a larger integrated circuit capacitor, as shown in Figures 16 and 17. The integrated circuit capacitor 10 in other applications such as dynamic random access memory can then be a relatively small capacitor.

積體電路電容器10可以被設計為嵌入多重晶片之中,如第14和第16圖所示。積體電路電容器10也可以是在晶片外的設計使得僅有電容器是晶片中的一部分。請參閱第15和第17圖所示,積體電路電容器晶片10a可以放置在一多重晶片承載器上或是具有此晶片10a的多重晶片堆疊與主要電路中的其他元件藉由舉例而言打線或是覆晶或是經由穿過矽基板介層孔(TSV)等方式連接。The integrated circuit capacitor 10 can be designed to be embedded in a multi-wafer as shown in Figures 14 and 16. The integrated circuit capacitor 10 can also be external to the chip such that only the capacitor is part of the wafer. Referring to Figures 15 and 17, the integrated circuit capacitor chip 10a can be placed on a multiple wafer carrier or the multiple wafer stack with the wafer 10a and other components in the main circuit can be wired by way of example. Or flipping or connecting via a via substrate via (TSV).

於測試之後,一特定的彎曲平板電容器18或許被發現 是在正常的電容值之外。舉例而言,於測試之後,一此彎曲平板電容器18在電性導體46.6和46.7間的電容器C67 被發現具有電容值7.5pF而不是所設計的10pF。與電性導體位置6和7所對應的電極層延伸40.6和40.7放置在一個盒子中指示由相關電極層所形成的電容器並不符合規範。彎曲平板電容器18的電容器C67 則可以被打入等級較差的電容值7.5pF。但是,然而,電容器C67 若是被認為是具有瑕疵的,則被標示為壞掉的電容器而不會被使用。然而,具有壞掉電容器的次級積體電路電容器10仍可以被用成如第15和第17圖中所示的分離積體電路電容器晶片10a。或是替代地,此瑕疵電容器可以使用類似於記憶體錯誤功能的方式修復。一種此種修復的方式是解決自瑕疵電容器至一單獨電容器間的連接使用類似於第19和第20圖中所示的積體電路電容器晶片10b所產生之一組備援積體電路電容器來達成。備援積體電路電容器晶片10b可以是如第17圖中的分離安置的積體電路電容器晶片10a或是如第15圖中的嵌入積體電路電容器晶片10。通常是主要電路51一部分的控制電路可以用來控制此重新定址的功能。如此的功能可以如傳統般使用雷射切割或是電性熔絲或是嵌入式快閃記憶體(非揮發記憶體或是電阻式隨機存取記憶體)程式碼的方式達成。After testing, a particular curved plate capacitor 18 may have been found to be outside of the normal capacitance value. For example, after testing, a capacitor C 67 of a curved plate capacitor 18 between the electrical conductors 46.6 and 46.7 was found to have a capacitance value of 7.5 pF instead of the designed 10 pF. The electrode layer extensions 40.6 and 40.7 corresponding to the electrical conductor locations 6 and 7 are placed in a box indicating that the capacitor formed by the associated electrode layer does not conform to the specifications. The capacitor C 67 of the curved plate capacitor 18 can be driven into a poorly graded capacitance value of 7.5 pF. However, capacitor C 67, if considered to be defective, is labeled as a broken capacitor and will not be used. However, the secondary integrated circuit capacitor 10 having the broken capacitor can still be used as the split integrated circuit capacitor wafer 10a as shown in Figs. 15 and 17. Alternatively, the tantalum capacitor can be repaired in a manner similar to the memory error function. One such repair is accomplished by solving the connection between the tantalum capacitor and a separate capacitor using a set of spare body circuit capacitors similar to those produced by the integrated circuit capacitor chip 10b shown in Figs. 19 and 20. . The backup integrated circuit capacitor chip 10b may be the integrated circuit capacitor chip 10a disposed as shown in Fig. 17 or the integrated integrated circuit capacitor chip 10 as shown in Fig. 15. A control circuit, usually part of the main circuit 51, can be used to control this re-addressing function. Such a function can be achieved by conventionally using laser cutting or electrical fuses or embedded flash memory (non-volatile memory or resistive random access memory) code.

在一表面區域中不再是僅形成一個積體電路電容器10,許多不同的積體電路電容器10可以在相同的表面區域中產生使得任何瑕疵電容器可以減少瑕疵所造成的傷害。如此的結果顯示於第21圖中。當然此中方案仍必須在因為增加積體電路電容器10而可產生更多瑕疵的可能性之間取得平衡。In a surface area no longer only one integrated circuit capacitor 10 is formed, and many different integrated circuit capacitors 10 can be created in the same surface area such that any tantalum capacitor can reduce the damage caused by flaws. Such results are shown in Figure 21. Of course, this solution still has to strike a balance between the possibility of generating more turns due to the addition of the integrated circuit capacitor 10.

在某些半導體裝置中,此晶片中電壓實際輸入的位置與 電壓使用的位置或許是距離很遠的。如此的距離或許彙造成晶片中電壓實際輸入的位置與電壓使用的位置間的電阻是很大的足以嚴重地影響實際使用處的電壓。如此的鉅離或許也會大到造成晶片中電壓實際輸入的位置與電壓使用的位置間的傳輸時間延遲。為了幫助減少這些效應,可以對相同組的彎曲平板電容器18形成複數個互連區域44於相同晶片中圍繞著此操作元件。藉由如此的做法可以允許同時提供電壓至相同電極層20上的不同位置或是至不同的電極層20。藉由如此的做法可以減少再不同使用位置間的電壓差異且也可以減少施加此電壓至整個電極層所需要的時間。In some semiconductor devices, the actual input of the voltage in the wafer is The location where the voltage is used may be a long distance. Such a distance may be such that the resistance between the location where the voltage is actually input in the wafer and the location where the voltage is used is large enough to severely affect the voltage at the actual use. Such a large separation may also be so large as to cause a transmission time delay between the actual input of the voltage in the wafer and the position at which the voltage is used. To help reduce these effects, a plurality of interconnect regions 44 may be formed in the same set of curved plate capacitors 18 surrounding the operating element in the same wafer. By doing so, it is possible to simultaneously supply voltages to different positions on the same electrode layer 20 or to different electrode layers 20. By doing so, it is possible to reduce the voltage difference between the different use positions and also to reduce the time required to apply this voltage to the entire electrode layer.

上述的描述中使用了一些名詞例如之上、之下、頂部、底部、上方、下方等等。這些名詞僅是用來幫助理解本發明並非是限制本發明的範圍。Some terms such as top, bottom, top, bottom, top, bottom, etc. are used in the above description. These terms are only used to help the understanding of the invention and are not intended to limit the scope of the invention.

雖然本發明係已參照實施例來加以描述,然本發明創作並未受限於其詳細描述內容。替換方式及修改樣式係已於先前描述中所建議,且其他替換方式及修改樣式將為熟習此項技藝之人士所思及。特別是,所有具有實質上相同於本發明之構件結合而達成與本發明實質上相同結果者,皆不脫離本發明之精神範疇。因此,所有此等替換方式及修改樣式係意欲落在本發明於隨附申請專利範圍及其均等物所界定的範疇之中。舉例而言,第1圖中顯示溝渠寬度26的一部分係填充有介電填充層24;在其他的範例中,整個溝渠寬度26係填充有電極層和介電層20、22。Although the present invention has been described with reference to the embodiments, the present invention is not limited by the detailed description thereof. Alternatives and modifications are suggested in the foregoing description, and other alternatives and modifications will be apparent to those skilled in the art. In particular, all combinations of components that are substantially identical to the invention can achieve substantially the same results as the present invention without departing from the spirit of the invention. Therefore, all such alternatives and modifications are intended to be within the scope of the invention as defined by the appended claims and their equivalents. For example, a portion of the trench width 26 shown in FIG. 1 is filled with a dielectric fill layer 24; in other examples, the entire trench width 26 is filled with an electrode layer and dielectric layers 20, 22.

此處所提到之所有專利、專利申請以及論文均引用為參考資料。All patents, patent applications, and papers referred to herein are incorporated by reference.

10‧‧‧積體電路電容器10‧‧‧Integrated circuit capacitors

10a‧‧‧積體電路電容器晶片10a‧‧‧Integrated circuit capacitor chip

10b‧‧‧備援積體電路電容器10b‧‧‧Reserved integrated circuit capacitors

12‧‧‧基板12‧‧‧Substrate

14‧‧‧基板表面14‧‧‧Substrate surface

15‧‧‧溝渠15‧‧‧ Ditch

16‧‧‧山脊16‧‧‧ Ridge

17‧‧‧堆疊17‧‧‧Stacking

18‧‧‧彎曲的平板電容器18‧‧‧Bent plate capacitor

20‧‧‧電極層20‧‧‧electrode layer

22‧‧‧介電層22‧‧‧Dielectric layer

24‧‧‧填充層24‧‧‧Filling layer

25‧‧‧上牆表面25‧‧‧Upper wall surface

27‧‧‧側壁表面27‧‧‧ sidewall surface

28‧‧‧第一方向28‧‧‧First direction

30‧‧‧山脊寬度30‧‧‧ Ridge width

32‧‧‧山脊高度32‧‧‧ Ridge height

34‧‧‧第二方向34‧‧‧second direction

36‧‧‧山脊長度36‧‧‧ Ridge length

38‧‧‧第三方向38‧‧‧ third direction

40‧‧‧電極層延伸40‧‧‧electrode layer extension

42‧‧‧介電層延伸42‧‧‧Dielectric layer extension

44‧‧‧互連區域44‧‧‧Interconnected area

46‧‧‧電性導體46‧‧‧Electrical conductor

50‧‧‧第一光阻幕罩50‧‧‧First photoresist mask

51‧‧‧主要電路51‧‧‧ main circuit

52‧‧‧主要晶片52‧‧‧Main wafer

54‧‧‧第二光阻幕罩54‧‧‧Second photoresist mask

58‧‧‧第三光阻幕罩58‧‧‧ Third photoresist mask

60‧‧‧階梯狀打線墊60‧‧‧Stepped wire mat

62‧‧‧介電阻障層62‧‧‧ dielectric barrier

本發明係由申請專利範圍所界定。這些和其它目的,特徵,和實施例,會在下列實施方式的章節中搭配圖式被描述,其中:The invention is defined by the scope of the patent application. These and other objects, features, and embodiments are described in the following sections of the accompanying drawings, in which:

第1圖顯示根據本發明一範例實施例之積體電路電容器。Figure 1 shows an integrated circuit capacitor in accordance with an exemplary embodiment of the present invention.

第2圖顯是第1圖所示之積體電路電容器中介電山脊自基板向外延伸的三維立體示意圖。Fig. 2 is a three-dimensional schematic view showing the dielectric ridge of the integrated circuit capacitor shown in Fig. 1 extending outward from the substrate.

第3圖顯示第2圖的結構於順形沈積電極層於介電山脊的上牆表面及側壁表面及裸露的基板表面之上後的剖面圖。Figure 3 is a cross-sectional view showing the structure of Figure 2 after the conformal deposited electrode layer is over the upper wall surface and side wall surface of the dielectric ridge and over the exposed substrate surface.

第4圖顯示第3圖的結構於順形沈積介電層於電極層之上後的剖面圖。Figure 4 is a cross-sectional view showing the structure of Figure 3 after a conformal deposition of a dielectric layer over the electrode layer.

第5圖顯示第4圖的結構於沈積四層電極層與四層介電層而產生兩個彎曲的平板電容器堆疊後的剖面圖。Figure 5 shows a cross-sectional view of the structure of Figure 4 after deposition of a four-layer electrode layer and four dielectric layers to produce a stack of two curved plate capacitors.

第6~9圖顯示一系列產生電性導體於一互連區域且與電極層延伸接觸的製程剖面圖,例如是第5圖中的範例所示,以提供此彎曲平板電容器的電性存取路徑。Figures 6-9 show a series of process profiles for creating an electrical conductor in an interconnected region and extending into contact with the electrode layer, as shown, for example, in the example of Figure 5, to provide electrical access to the curved plate capacitor. path.

第10圖顯示並聯之電容器的示意圖,以提供具有較大電容的電容器。Figure 10 shows a schematic of a parallel capacitor to provide a capacitor with a larger capacitance.

第11圖顯示串聯之電容器的示意圖。Figure 11 shows a schematic of a capacitor in series.

第12和12A圖顯示一範例中的兩個電容器是並聯的而另兩個電容器是分離的。Figures 12 and 12A show that the two capacitors in one example are in parallel and the other two capacitors are separate.

第13圖顯示兩個接地的電性導體以作為相鄰電容器間的屏障之示意圖。Figure 13 shows two grounded electrical conductors as a barrier to the barrier between adjacent capacitors.

第14圖顯示一個主要電路與一個單一相對大的積體電路電容器晶片嵌入於一多層晶片之簡要示意圖。Figure 14 shows a schematic diagram of a main circuit and a single relatively large integrated circuit capacitor chip embedded in a multilayer wafer.

第15圖顯示一個晶片外設計之簡要示意圖,其係將主要電路與一個相對大的積體電路電容器晶片安置於一共同基板上。Figure 15 shows a schematic diagram of an off-chip design that places the main circuit and a relatively large integrated circuit capacitor chip on a common substrate.

第16圖顯示一個主要電路與多個相對較小的積體電路電容器晶片嵌入於一多層晶片之簡要示意圖。Figure 16 shows a schematic diagram of a main circuit and a plurality of relatively small integrated circuit capacitor chips embedded in a multilayer wafer.

第17圖顯示一個將主要電路嵌入於一個主要多層晶片且多重、較小的積體電路電容器晶片安置於此主要多層晶片上之簡要示意圖。Figure 17 shows a simplified schematic diagram of a main circuit embedded in a primary multilayer wafer with multiple, smaller integrated circuit capacitor wafers disposed on the main multilayer wafer.

第18圖建議於測試後,單獨的彎曲平板電容器可以被測試,且假如需要的話一個異常的彎曲平板電容器可以重新標示其真正的電容值。Figure 18 suggests that after testing, a separate curved plate capacitor can be tested and an abnormally curved plate capacitor can be relabeled for its true capacitance if needed.

第19和20圖建議於發現瑕疵電容器後,在一個或多個積體電路電容器之外使用一備援積體電路電容器晶片來取代此瑕疵電容器。Figures 19 and 20 suggest replacing the tantalum capacitor with a spare integrated circuit capacitor chip in addition to one or more integrated circuit capacitors after the tantalum capacitor is found.

第21圖建議於在積體電路電容器晶片區域中產生複數個積體電路電容器以減少瑕疵電容器的影響。Figure 21 suggests generating a plurality of integrated circuit capacitors in the integrated circuit capacitor wafer region to reduce the effects of the tantalum capacitor.

10‧‧‧積體電路電容器10‧‧‧Integrated circuit capacitors

12‧‧‧基板12‧‧‧Substrate

14‧‧‧基板表面14‧‧‧Substrate surface

15‧‧‧溝渠15‧‧‧ Ditch

16‧‧‧山脊16‧‧‧ Ridge

17‧‧‧堆疊17‧‧‧Stacking

18‧‧‧彎曲的平板電容器18‧‧‧Bent plate capacitor

20‧‧‧電極層20‧‧‧electrode layer

22‧‧‧介電層22‧‧‧Dielectric layer

24‧‧‧填充層24‧‧‧Filling layer

30‧‧‧山脊寬度30‧‧‧ Ridge width

Claims (12)

一種電容器,包括:一系列的山脊與溝渠及一互連區域於一基板之上,該系列的山脊與溝渠及該互連區域具有一電容器基礎表面,其具有一彎曲的剖面輪廓於該系列的山脊與溝渠;一彎曲堆疊平板電容器構件,包含至少兩個電性導電電極層及介電層分隔該電極層,在該電容器基礎表面處產生一個或多個電容器的一堆疊;以及電性導體自該互連區域電性連接該電極層以存取該電容器構件的該電極層。A capacitor comprising: a series of ridges and trenches and an interconnecting region on a substrate, the series of ridges and trenches and the interconnecting region having a capacitor base surface having a curved cross-sectional profile in the series a ridge and a trench; a curved stacked plate capacitor member comprising at least two electrically conductive electrode layers and a dielectric layer separating the electrode layer, a stack of one or more capacitors being produced at the capacitor base surface; and an electrical conductor The interconnect region is electrically connected to the electrode layer to access the electrode layer of the capacitor member. 如申請專利範圍第1項所述之電容器,其中該互連區域是與該系列的山脊與溝渠分離。The capacitor of claim 1, wherein the interconnected region is separated from the series of ridges and trenches. 如申請專利範圍第1項所述之電容器,其中該互連區域是在該山脊或溝渠至少一者之中。The capacitor of claim 1, wherein the interconnected region is in at least one of the ridge or the ditch. 如申請專利範圍第1項所述之電容器,其中該電性導體通過該互連區域中的垂直介層孔,該垂直介層孔於該電極層的接觸墊上方,該電性導體與該接觸墊電性連接。The capacitor of claim 1, wherein the electrical conductor passes through a vertical via hole in the interconnect region, the vertical via hole is over the contact pad of the electrode layer, and the electrical conductor is in contact with the contact Padded connection. 如申請專利範圍第1項所述之電容器,其中每一個該電性導體是與一電極層的一接觸墊電性連接。The capacitor of claim 1, wherein each of the electrical conductors is electrically connected to a contact pad of an electrode layer. 如申請專利範圍第1項所述之電容器,其中該系列的該山脊是位於該基板的一溝渠內。The capacitor of claim 1, wherein the ridge of the series is located in a trench of the substrate. 如申請專利範圍第1項所述之電容器,其中:該山脊具有山脊寬度,該溝渠具有溝渠寬度,該山脊寬度,該溝渠寬度在一第一方向上延伸;該山脊具有山脊高度在一第二方向上延伸,該第二方向與該第一方向垂直;該山脊具有在一第三方向上量測的山脊長度,該第三方向與該第一及第二方向垂直;該山脊具有側壁表面在該第二及第三方向上延伸;一上牆表面在該第一及第三方向上延伸;以及該基板包含一基板表面在該第一及第三方向上延伸。The capacitor of claim 1, wherein: the ridge has a ridge width, the trench has a trench width, the ridge width, the trench width extends in a first direction; the ridge has a ridge height in a second Extending in a direction perpendicular to the first direction; the ridge having a ridge length measured in a third direction, the third direction being perpendicular to the first and second directions; the ridge having a sidewall surface at the The second and third parties extend upward; an upper wall surface extends upwardly in the first and third directions; and the substrate includes a substrate surface extending in the first and third directions. 一種形成一電容器的方法,包括:形成一系列的山脊於一基板之上,該系列的山脊由溝渠所分隔,及形成一互連區域於該基板上靠近及該系列的山脊與溝渠,該系列的山脊與溝渠和互連區域具有一電容器基礎表面;該山脊形成步驟的進行使得該電容器基礎表面具有凸出及下凹結構以定義一彎曲的剖面輪廓;形成交錯的電性導電電極層及介電層分隔該電極層於該電容器基礎表面以產生至少兩個彎曲平板電容器的一堆疊;以及在該互連區域電性連接該電極層與該電性導體以存取該電極層。A method of forming a capacitor comprising: forming a series of ridges on a substrate, the series of ridges being separated by trenches, and forming an interconnected region on the substrate adjacent to the series of ridges and ditches, the series The ridge and the trench and the interconnected region have a capacitor base surface; the ridge forming step is performed such that the capacitor base surface has convex and concave structures to define a curved cross-sectional profile; forming staggered electrically conductive electrode layers and interposing An electrical layer separates the electrode layer from the capacitor base surface to create a stack of at least two curved plate capacitors; and electrically interconnecting the electrode layer and the electrical conductor to access the electrode layer in the interconnect region. 如申請專利範圍第8項所述之方法,其中該山脊形成步驟包含形成該系列的介電山脊於該基板上的一溝渠內。The method of claim 8, wherein the ridge forming step comprises forming the series of dielectric ridges in a trench on the substrate. 如申請專利範圍第8項所述之方法,其中該電性連接步驟包括: 自該互連區域的一部分除去材料,該材料包覆該電極層的接觸墊;沈積一介電材料於該互連區域的該部分;形成介層孔通過該互連區域而至該接觸墊;以及在該介層孔中形成電性導體且將該電性導體與該接觸墊電性耦接。The method of claim 8, wherein the electrical connection step comprises: Removing material from a portion of the interconnect region, the material coating a contact pad of the electrode layer; depositing a dielectric material in the portion of the interconnect region; forming a via hole through the interconnect region to the contact pad; And forming an electrical conductor in the via hole and electrically coupling the electrical conductor to the contact pad. 如申請專利範圍第8項所述之方法,其中該電性連接步驟包括:使用一組N個蝕刻幕罩以產生最多達2N 階層的接觸墊於該互連區域中,每一個幕罩包括幕罩與蝕刻區域,N是至少為2的整數,x是該幕罩自x=0開始的序列數目,使得一幕罩x=0、另一幕罩x=1直到x=n-1;使用該幕罩以一事先選取的順序蝕刻該互連區域N次以產生接觸開口延伸至每一電極層;該蝕刻步驟包含對序列X的每個幕罩蝕刻通過2N 個電極層。The method of claim 8, wherein the electrically connecting step comprises: using a set of N etch masks to create contact pads of up to 2 N levels in the interconnect region, each mask comprising The mask and the etched area, N is an integer of at least 2, and x is the number of sequences of the mask starting from x=0 such that one mask x=0 and the other mask x=1 until x=n-1; The mask etches the interconnect region N times in a pre-selected order to create a contact opening extending to each electrode layer; the etching step includes etching each mask of the sequence X through 2 N electrode layers. 如申請專利範圍第8項所述之方法,其中該交錯的電性導電電極層及介電層形成步驟形成至少四個彎曲平板電容器的一堆疊。The method of claim 8, wherein the staggered electrically conductive electrode layer and the dielectric layer forming step form a stack of at least four curved plate capacitors.
TW101119827A 2012-06-01 2012-06-01 Integrated circuit capacitor and method TWI489529B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101119827A TWI489529B (en) 2012-06-01 2012-06-01 Integrated circuit capacitor and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101119827A TWI489529B (en) 2012-06-01 2012-06-01 Integrated circuit capacitor and method

Publications (2)

Publication Number Publication Date
TW201351484A TW201351484A (en) 2013-12-16
TWI489529B true TWI489529B (en) 2015-06-21

Family

ID=50158108

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101119827A TWI489529B (en) 2012-06-01 2012-06-01 Integrated circuit capacitor and method

Country Status (1)

Country Link
TW (1) TWI489529B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI559370B (en) * 2015-01-15 2016-11-21 力晶科技股份有限公司 Method for fabricating semiconductor structure
TWI670860B (en) * 2018-05-18 2019-09-01 世界先進積體電路股份有限公司 Capacitor structures and methods for fabricating the same
EP3588560A1 (en) * 2018-06-21 2020-01-01 Murata Manufacturing Co., Ltd. Semiconductor structure enhanced for high voltage applications
US10615249B2 (en) 2018-07-19 2020-04-07 Vanguard International Semiconductor Corporation Capacitor structures and methods for fabricating the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5235187A (en) * 1991-05-14 1993-08-10 Cornell Research Foundation Methods of fabricating integrated, aligned tunneling tip pairs
TWI223870B (en) * 2003-06-27 2004-11-11 Nanya Technology Corp Method of forming capacitors having geometric deep trench
US20050239219A1 (en) * 2004-04-26 2005-10-27 Moon Bum-Ki Process for fabrication of a ferrocapacitor with a large effective area
TW200731328A (en) * 2005-11-08 2007-08-16 Nxp Bv Trench capacitor device suitable for decoupling applications in high-frequency operation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5235187A (en) * 1991-05-14 1993-08-10 Cornell Research Foundation Methods of fabricating integrated, aligned tunneling tip pairs
TWI223870B (en) * 2003-06-27 2004-11-11 Nanya Technology Corp Method of forming capacitors having geometric deep trench
US20050239219A1 (en) * 2004-04-26 2005-10-27 Moon Bum-Ki Process for fabrication of a ferrocapacitor with a large effective area
TW200731328A (en) * 2005-11-08 2007-08-16 Nxp Bv Trench capacitor device suitable for decoupling applications in high-frequency operation

Also Published As

Publication number Publication date
TW201351484A (en) 2013-12-16

Similar Documents

Publication Publication Date Title
US9048341B2 (en) Integrated circuit capacitor and method
CN101414606B (en) Stack capacitor in semiconductor device and method for fabricating the same
JP5184474B2 (en) Self-aligned double-sided vertical MIM capacitor
CN102820280B (en) For the overstepping one&#39;s bounds laminar metal level of integrated circuit
US20130161792A1 (en) Semiconductor device having trench capacitor structure integrated therein
US8927384B2 (en) Methods of fabricating a semiconductor memory device
TWI489529B (en) Integrated circuit capacitor and method
CN111029327B (en) Semiconductor structure and manufacturing method
US20100090308A1 (en) Metal-oxide-metal capacitors with bar vias
US20180130699A1 (en) Skip via structures
US8802561B1 (en) Method of inhibiting wire collapse
US6531757B2 (en) Semiconductor device fuse box with fuses of uniform depth
US11855133B2 (en) Trench pattern for trench capacitor yield improvement
TW202125701A (en) Integrated circuit, semiconductor structure and method for forming trench capacitor
CN103456497B (en) Integrated circuit capacitor and manufacturing method thereof
US7960811B2 (en) Semiconductor devices and methods of manufacture thereof
US7327011B2 (en) Multi-surfaced plate-to-plate capacitor and method of forming same
US9941153B1 (en) Pad structure and manufacturing method thereof
CN106298980A (en) Capacitor structure and manufacturing method thereof
CN111146181B (en) Semiconductor structure and manufacturing method
TWI668875B (en) On-chip capacitors with floating islands
TWI462278B (en) Semiconductor structure and manufacturing method of the same
US8748257B2 (en) Semiconductor devices and methods of manufacture thereof
TW201737372A (en) Semiconductor structure and method for manufacturing the same
TW201545184A (en) Capacitor structure and method of manufacturing the same