TWI489150B - A method and apparatus for simultaneous displaying 2D and 3D images - Google Patents

A method and apparatus for simultaneous displaying 2D and 3D images Download PDF

Info

Publication number
TWI489150B
TWI489150B TW102131310A TW102131310A TWI489150B TW I489150 B TWI489150 B TW I489150B TW 102131310 A TW102131310 A TW 102131310A TW 102131310 A TW102131310 A TW 102131310A TW I489150 B TWI489150 B TW I489150B
Authority
TW
Taiwan
Prior art keywords
image
light source
images
image surface
printing
Prior art date
Application number
TW102131310A
Other languages
Chinese (zh)
Other versions
TW201506448A (en
Inventor
Ming Yen Lin
Kan Ju Lee
Shou Lun Chin
Chun Sheng Chang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to TW102131310A priority Critical patent/TWI489150B/en
Priority to CN201410336642.9A priority patent/CN104423054B/en
Publication of TW201506448A publication Critical patent/TW201506448A/en
Application granted granted Critical
Publication of TWI489150B publication Critical patent/TWI489150B/en

Links

Description

一種可同時顯示2D與3D影像之方法與裝置Method and device for simultaneously displaying 2D and 3D images

對於習知3D廣告燈箱(3D Advertising Lighting Box,以下簡稱3D燈箱),一般是使用Lenticular方式,以顯示一裸視之3D靜態影像,達到提供3D專用燈箱之目的。對於該3D專用燈箱,本發明提出一種可同時顯示2D與3D影像之方法與裝置,以增加習知3D燈箱影像顯示之功能,達到大幅提升廣告之效益。For the 3D Advertising Lighting Box (hereinafter referred to as 3D light box), the Lenticular method is generally used to display a 3D still image of a naked eye to achieve the purpose of providing a 3D dedicated light box. For the 3D dedicated light box, the present invention provides a method and a device for simultaneously displaying 2D and 3D images, so as to increase the function of the conventional 3D light box image display, thereby greatly improving the effectiveness of the advertisement.

如圖1~2所示,係習知3D燈箱構成與3D靜態影像顯示之示意圖。該習知3D燈箱1,主要係由一Lenticular 10、一多視景3D合成影像20、與一背光源30所構成。如圖2所示,該Lenticular 10,係由一具薄片狀之透明塑膠材料所構成,其中一面,稱為3D結構面11,係具有複數個柱狀形透鏡之結構;而另一面,則稱為印刷面12,係透過平版印刷之製程,將該多視景3D合成影像(Multi-View Combined 3D Image)20,印裝於該印刷面12之上。該多視景3D合成影像20,係由n個單一視景(Single View Image)VK 所合成之影像所構成,其中,n為總視景數、k為視景編號數,且0≦k≦n-1。As shown in FIGS. 1 and 2, a schematic diagram of a conventional 3D light box configuration and a 3D still image display is shown. The conventional 3D light box 1 is mainly composed of a Lenticular 10, a multi-view 3D composite image 20, and a backlight 30. As shown in FIG. 2, the Lenticular 10 is composed of a sheet-like transparent plastic material, one side of which is referred to as a 3D structural surface 11 and has a structure of a plurality of cylindrical lenses; and the other side is called For the printing surface 12, the multi-view combined 3D image 20 is printed on the printing surface 12 by a process of lithography. The multi-view 3D composite image 20 is composed of n single view images V K , wherein n is the total number of views, k is the number of view numbers, and 0≦k ≦n-1.

如圖2所示,對於該多視景3D合成影像20,藉由該背光源30之照明與該Lenticular 10的視景分離之作用,可於最佳觀賞距離Z0 (Optimum Viewing Distance,OVD)上之n個最佳視點(Optimum Viewin Point,OVP)Pk 處,個別呈現單一視景影像VkAs shown in FIG. 2, for the multi-view 3D composite image 20, the illumination of the backlight 30 and the view separation of the Lenticular 10 can be used for optimal viewing distance Z 0 (Optimum Viewing Distance, OVD). on the n best viewpoints (optimum Viewin Point, OVP) P k , the individual presenting single view image V k.

對於左眼L、右眼R個別位於該最佳視點Pk 、Pk+1 上之觀賞者而言,該觀賞者之左眼L、右眼R,係可個別觀看到一對具有視差之單一視景影像Vk 、Vk+1 。是以,該觀賞者可觀看到一3D影像。此處,為清楚呈現上述各顯示結構與觀賞相關位置之關係,設定一座標系XYZ,並令該X軸係設定於水平方向、Y軸設定於垂直 方向、Z軸則以垂直於該3D結構面11而設定、且令Z=0係設定於該3D結構面11上。是以,該上述相關觀賞位置,係位於Z>0之區域。For the viewer whose left eye L and right eye R are located on the optimal viewpoints P k , P k+1 , the viewer's left eye L and right eye R can individually view a pair of parallaxes. Single view images V k , V k+1 . Therefore, the viewer can view a 3D image. Here, in order to clearly show the relationship between each display structure and the viewing-related position, a calibration system XYZ is set, and the X-axis system is set in the horizontal direction, the Y-axis is set in the vertical direction, and the Z-axis is perpendicular to the 3D structure. The surface 11 is set, and Z=0 is set on the 3D structural surface 11. Therefore, the related viewing position is located in the area of Z>0.

然而,現有裸視之技術,即Auto-Stereoscopic之技術,不論是採用Lentuclar、或是視差光柵(Parallax Barrier)之方法,皆存在觀賞自由度(Viewing Freedom)受限之問題,亦即,如圖3所示,對於任一最佳視點處Pk ,存在一單一可視區13,於該有限區域內(如菱形所示之區域),觀賞者可觀看到一較佳之3D影像。所謂較佳之3D影像,係指於該單一可視區13內,觀賞者所觀看到該單一視景影像Vk 中,其所具有的鬼影(Cross-talk)程度較低。一般,鬼影比率低於10%時,觀賞者不易察覺其存在,是以可觀看到一較佳之3D影像。因此,利用裸視之技術,以作為3D燈箱之應用時,由於存在有限觀賞自由度之缺失,會嚴重降低廣告之效益。However, the existing technology of naked vision, that is, the technology of Auto-Stereoscopic, whether using Lentuclar or Parallel Barrier, has the problem of limited viewing freedom (Viewing Freedom), that is, as shown in the figure. As shown in Fig. 3, for any optimal viewpoint P k , there is a single viewable area 13 in which the viewer can view a better 3D image in the limited area (such as the area shown by the diamond). Preferably, the so-called 3D image, means in the visible region within a single 13, the viewer views the single view image V k in which it has a ghost (Cross-talk) to a lesser extent. Generally, when the ghost ratio is less than 10%, the viewer is not aware of its existence, so that a better 3D image can be viewed. Therefore, the use of the technology of naked vision, as a 3D light box application, due to the lack of limited viewing freedom, will seriously reduce the effectiveness of advertising.

針對上述之缺失,本發明本發明提出一種可同時顯示2D與3D影像之方法與裝置,可增加3D燈箱影像顯示之功能,大幅提升廣告之效益。In view of the above-mentioned deficiencies, the present invention provides a method and apparatus for simultaneously displaying 2D and 3D images, which can increase the function of 3D light box image display and greatly improve the effectiveness of advertising.

該方法主要是利用一第一光源、一第一影像面、一第二影像面、與一第二光源,透過同時以該第一光源、與該第二光源,個別照明該第一影像面、與該第二影像面,用以同時顯示一2D與一3D影像。The method mainly uses a first light source, a first image surface, a second image surface, and a second light source, and simultaneously illuminates the first image surface with the first light source and the second light source. And the second image surface for simultaneously displaying a 2D image and a 3D image.

該裝置則主要是利用一第一光源、一第一影像面、一透明基材、一第二影像面、與一第二光源,其中,該第一影像面上,主要裝置有一視差光柵結構、一2D影像、與複數個位置參考結構,該第二影像面上,主要裝置有一多視景3D合成影像、與複數個位置參考結構,透過精密加工、對位、與數位印刷之技術,可將該第一影像面與該第二影像面,個別裝置於該透明基材之兩面上。透過上述該方法之操作,即同時以該第一光源、與該第二光源,個別照明該第一影像面、與該第二影像面之方法,該裝置可達到同時顯示一2D與一3D影像之目的。The device mainly uses a first light source, a first image surface, a transparent substrate, a second image surface, and a second light source. The first image surface has a parallax barrier structure. a 2D image and a plurality of position reference structures, the second image surface has a multi-view 3D composite image and a plurality of position reference structures, through precision processing, alignment, and digital printing technology. The first image surface and the second image surface are individually mounted on both sides of the transparent substrate. Through the operation of the above method, that is, the first light source and the second light source are separately illuminating the first image surface and the second image surface, the device can simultaneously display a 2D image and a 3D image. The purpose.

對於位於採用本方法與裝置所構成之3D燈箱前之觀看者而言,可於任意之位置,觀到該2D影像,而於最佳觀賞距離上,則可觀看到由該多視景3D合成影像所構成之3D影像。是以,當觀看者站在最佳觀賞距離上時,即可同時觀看到2D與3D影像。For the viewer in front of the 3D light box formed by the method and the device, the 2D image can be viewed at any position, and at the optimal viewing distance, the multi-view 3D can be viewed. A 3D image of the image. Therefore, when the viewer is standing at the best viewing distance, 2D and 3D images can be viewed simultaneously.

綜上所述,透過採用本方法與裝置所構成之3D廣告燈箱,除了可提供3D燈箱之功效外,亦保留原有2D燈箱之功能。是以,除了達到前所未有的視覺效果之外,亦可創造出無限廣告之效益。In summary, the 3D advertising light box formed by using the method and the device not only provides the function of the 3D light box, but also retains the function of the original 2D light box. Therefore, in addition to achieving unprecedented visual effects, it can also create the benefits of unlimited advertising.

1‧‧‧3D燈箱1‧‧‧3D light box

10‧‧‧Lenticular10‧‧‧Lenticular

11‧‧‧3D結構面11‧‧‧3D structural surface

12‧‧‧印刷面12‧‧‧Printed surface

13‧‧‧單一可視區13‧‧‧Single viewable area

20‧‧‧多視景3D合成影像20‧‧‧Multi-view 3D synthetic image

30‧‧‧背光源30‧‧‧ Backlight

100‧‧‧本發明實施例之構成100‧‧‧Composition of an embodiment of the invention

110‧‧‧第一光源110‧‧‧First light source

120‧‧‧第一影像面120‧‧‧ first image surface

121‧‧‧視差光柵之結構121‧‧‧Structure of parallax grating

122‧‧‧垂直條狀結構122‧‧‧Vertical strip structure

123‧‧‧傾斜條狀結構123‧‧‧Slanted strip structure

122a、123a‧‧‧遮光元件122a, 123a‧‧‧ shading elements

122b、123b‧‧‧透光元件122b, 123b‧‧‧Lighting components

126‧‧‧2D影像126‧‧2D image

126a‧‧‧印刷區126a‧‧‧Printing area

126b‧‧‧非印刷區126b‧‧‧Non-printing area

130‧‧‧透明基材130‧‧‧Transparent substrate

131‧‧‧透明基材之第一面131‧‧‧The first side of the transparent substrate

132‧‧‧透明基材之第二面132‧‧‧Second side of transparent substrate

133‧‧‧位置參考結構133‧‧‧Location Reference Structure

140‧‧‧第二影像面140‧‧‧second image surface

141‧‧‧多視景3D合成影像141‧‧‧Multi-view 3D synthetic image

150‧‧‧第二光源150‧‧‧second light source

n‧‧‧總視景數N‧‧‧ total number of views

V0 、Vk 、Vk+1 、Vn-1 ‧‧‧單一視景影像V 0 , V k , V k+1 , V n-1 ‧‧‧Single view image

k‧‧‧視景編號數K‧‧ Sight number

Z0 ‧‧‧最佳觀賞距離Z 0 ‧‧‧Best viewing distance

P0 、Pk 、Pk+1 、Pn-1 ‧‧‧最佳視點P 0 , P k , P k+1 , P n-1 ‧‧‧ best viewpoint

L‧‧‧左眼L‧‧‧Left eye

R‧‧‧右眼R‧‧‧Right eye

X、Y、Z‧‧‧座標系X, Y, Z‧‧‧ coordinate system

圖1~2所示,係習知3D燈箱構成與3D靜態影像顯示之示意圖。1 to 2 show a schematic diagram of a conventional 3D light box configuration and a 3D still image display.

圖3所示,係視景分離作用之示意圖。Figure 3 is a schematic diagram of the separation of the visual field.

圖4~5所示,係本發明實施例構成之示意圖。4 to 5 are schematic views showing the constitution of an embodiment of the present invention.

圖6所示,係視差光柵結構構成之示意圖。Figure 6 is a schematic diagram showing the structure of a parallax barrier structure.

圖7所示,係數位印刷印製視差光柵結構之示意圖。Figure 7 is a schematic diagram showing the structure of a coefficient-printed parallax barrier.

圖8~9所示,係數位印刷印製2D影像之示意圖。Figures 8-9 show a schematic diagram of the printing of 2D images by coefficient bits.

圖10所示,係數位印刷印製多視景3D合成影像之示意圖。FIG. 10 is a schematic diagram showing the printing of multi-view 3D synthetic images by coefficient bits.

圖11所示,係對位標靶結構構成之示意圖。Figure 11 is a schematic view showing the structure of a target target structure.

如圖4~5所示,係本發明實施例構成之示意圖。本發明一種可同時顯示2D與3D影像之方法與裝置100,主要是利用第一光源110、第一影像面120、一透明基材130、第二影像面140、與第二光源150,對於該第一影像面120、與第二影像面140,係透過同時以第一光源110照明第一影像面120、與以第二光源150照明第二影像140面之方法,以達到同時顯示一2D與一3D影像之目的。亦即,透過第一光源110之照明,觀賞者可於Z>0之區域,觀看到由該第一影像面120所提供之2D影像;而於最佳觀賞距離Z=Z0 上,則可觀看由該第二影像面140所提供之3D影像。4 to 5 are schematic views showing the constitution of the embodiment of the present invention. The present invention provides a method and apparatus 100 for simultaneously displaying 2D and 3D images, mainly using a first light source 110, a first image surface 120, a transparent substrate 130, a second image surface 140, and a second light source 150. The first image surface 120 and the second image surface 140 are configured to simultaneously illuminate the first image surface 120 with the first light source 110 and the second image 140 with the second light source 150 to simultaneously display a 2D and The purpose of a 3D image. That is, the first transmission-illumination light source 110, the viewer may be in the Z> 0 region, the 2D image 120 viewed provided by the first face image; and a distance Z = 0 on the Z to the optimum viewing can be The 3D image provided by the second image surface 140 is viewed.

其中,如圖5所示,該透明基材130,係由一透明平板元件所構成,該元件則可由玻璃、壓克力(PMMA)等具高透明度之材料所構成,具有均勻之厚度、與高平整度之第一面131、第二面132,該第一影像面120、與第二影像面140,係個別裝置於該一透明基 材130的第一面131、第二面132上。As shown in FIG. 5, the transparent substrate 130 is composed of a transparent flat plate member, and the element may be made of a material having high transparency such as glass or acrylic (PMMA), and has a uniform thickness and The first flat surface 131 and the second surface 132 of the high flatness, the first image surface 120 and the second image surface 140 are individually mounted on the transparent substrate The first surface 131 and the second surface 132 of the material 130 are on the first surface 131.

該第一光源110,係可由自然光源(如太陽光,無圖示)、與人造光源(如廣告看板照明燈具,無圖示)所構成,用以投射一可見光至該第一影像面120上。The first light source 110 can be composed of a natural light source (such as sunlight, not shown) and an artificial light source (such as an advertising kanban lighting fixture, not shown) for projecting a visible light onto the first image surface 120. .

如圖5所示,該第一影像面120,係裝置有一視差光柵之結構121與一2D影像126。As shown in FIG. 5, the first image surface 120 has a structure 121 of a parallax barrier and a 2D image 126.

如圖6所示,該視差光柵之結構121,係可由垂直條狀結構122、與傾斜條狀結構123所構成,其中,該結構122、123中,主要係由複數個遮光元件122a、123a與複數個透光元件122b、123b所構成。對於上述該視差光柵相關光學理論、設計,請參閱中華民國專利申請案號:98128986、101135830。As shown in FIG. 6, the structure 121 of the parallax barrier can be composed of a vertical strip structure 122 and an inclined strip structure 123. The structures 122 and 123 are mainly composed of a plurality of shading elements 122a and 123a. A plurality of light transmitting elements 122b and 123b are formed. For the optical theory and design of the parallax barrier described above, please refer to the Patent Application No. 98128986 and 101135830 of the Republic of China.

以下,借用該垂直條狀結構122,以圖示說明該第一影像面120實際裝置之方法。Hereinafter, the vertical strip structure 122 is borrowed to illustrate the method of the actual device of the first image surface 120.

如圖7所示,可藉由一對位之技術與一數位印刷之技術,並透過使用一白色之印墨,將該複數個遮光元件122a,先印製於該透明基材130之第一面131上,其中,該白色印墨係可由不透光之材料所構成。所謂數位印刷(Digital Printing),係指利用雷射或噴墨印印表機,將數位影像印製與平面之紙張、相紙(Photographic Paper)、玻璃、壓克力、金屬等材料表面,其相關之定義與技術,請參閱下列維基百科網址:http://en.wikipedia.org/wiki/Digital_printing#Digital_laser_exposure_onto_traditional_photographic_paper。As shown in FIG. 7, the plurality of shading elements 122a can be first printed on the transparent substrate 130 by a one-bit technique and a digital printing technique, and by using a white ink. On the surface 131, the white ink may be composed of a material that is opaque. Digital Printing refers to the use of laser or inkjet printers to print digital images onto flat paper, photographic paper, glass, acrylic, metal and other materials. For definitions and techniques, please refer to the following Wikipedia website: http://en.wikipedia.org/wiki/Digital_printing#Digital_laser_exposure_onto_traditional_photographic_paper.

其次,如圖8~9所示,再利用同樣的對位技術與數位印刷技術,並透過使用一彩色之印墨,再將該2D影像126(如圖8所示),印製於該複數個遮光元件122a之上(如圖9所示)。換言之,該2D影像126裝置之方法,係對於該複數個遮光元件122a所存在之位置上,印製對應於該處之該2D影像126;而對於該複數個透光元件122b所存在之位置上,則不做影像之印製。Next, as shown in FIGS. 8-9, the same alignment technique and digital printing technology are used, and the 2D image 126 (shown in FIG. 8) is printed on the plural by using a color ink. Above the shading elements 122a (as shown in Figure 9). In other words, the method of the 2D image 126 device prints the 2D image 126 corresponding to the position where the plurality of light blocking elements 122a exist; and the position where the plurality of light transmitting elements 122b exist. , then do not print the image.

是以,印製於該視差光柵結構121上之該2D影像126,係由複數個印刷區126a與複數個非印刷區126b所構成,其中,該複 數個印刷區126a,係對應於該複數個遮光元件122a,並具有與該複數個遮光元件122a同樣之結構、大小、位置、與數目。另外,該複數個非印刷區126b,係對應於該複數個透光元件122b,並與該透光元件122b具有同樣之結構、大小、位置、與數目。Therefore, the 2D image 126 printed on the parallax barrier structure 121 is composed of a plurality of printing regions 126a and a plurality of non-printing regions 126b, wherein the complex The plurality of printing areas 126a correspond to the plurality of shading elements 122a and have the same structure, size, position, and number as the plurality of shading elements 122a. In addition, the plurality of non-printing regions 126b correspond to the plurality of light transmissive elements 122b and have the same structure, size, position, and number as the light transmissive elements 122b.

另外,對於該2D影像126與該複數個遮光元件122a、該複數個透光元件122b之製作,係可先透過一般印刷技術、與數位印刷技術,並使用不透明之彩色印墨,先將該2D影像126印製於該透明基材130之第一面131上後,再利用對位技術與一具精密定位之雷射雕刻機具(無圖示),對於該2D影像126,且對應於該複數個透光元件所存在處,以挖空該處之該2D影像之作業,以完該複數個透光元件122b之製作,即可達到上述數位印刷技術同樣之效果。In addition, the 2D image 126 and the plurality of light-shielding elements 122a and the plurality of light-transmissive elements 122b can be firstly processed by a general printing technique, a digital printing technique, and an opaque color ink. After the image 126 is printed on the first surface 131 of the transparent substrate 130, the alignment technique and a precision positioning laser engraving tool (not shown) are used for the 2D image 126, and corresponds to the plural The same effect of the above-mentioned digital printing technology can be achieved by the operation of the light-transmitting element to hollow out the 2D image of the portion to complete the fabrication of the plurality of light-transmitting elements 122b.

另外,該第一光源110係照明由複數個印刷區126a所構成之該2D影像126,藉由該第一光源110對該2D影像126之反射與散射之光學作用,以顯示該2D影像。In addition, the first light source 110 illuminates the 2D image 126 composed of the plurality of printing areas 126a, and the first light source 110 optically reflects and scatters the 2D image 126 to display the 2D image.

以下,說明該第二影像面140實際裝置之方法。Hereinafter, a method of actually operating the second image plane 140 will be described.

如圖10所示,該第二影像面140上,係裝置有一多視景3D合成影像141,可藉由一對位之技術與數位印刷之技術,並透過使用一半透明彩色之印墨,將該多視景3D合成影像141,印刷於該透明基材130的第二面132之上。所謂半透明彩色印墨,係指該彩色印墨所構成之材料,可被部分之入射光穿透。As shown in FIG. 10, on the second image surface 140, the device has a multi-view 3D composite image 141, which can be processed by a pair of techniques and digital printing, and by using a semi-transparent color ink. The multi-view 3D composite image 141 is printed on the second surface 132 of the transparent substrate 130. The term "translucent color ink" refers to a material composed of the color ink, which can be penetrated by part of the incident light.

上述所謂對位之技術,如圖11所示,係指對於該第一影像面120、與該第二影像面140上,於該兩面上之同樣位置處,裝置有複數個位置參考結構133,該單一個位置參考結構133上,係由一具對稱幾何結構之對位標靶所構成,該對稱幾何結構,係可由圓形、方形、十字形等形狀所構成。令該對位標靶幾何中心之位置,即構成該數位印刷之該參考位置。以下,以圓形圖示例說明該對位標靶之製作。The technique of the above-mentioned alignment, as shown in FIG. 11 , means that the device has a plurality of position reference structures 133 at the same position on the first image surface 120 and the second image surface 140 on the two surfaces. The single position reference structure 133 is composed of a symmetrical geometrical alignment target, and the symmetrical geometric structure may be formed by a shape such as a circle, a square, or a cross. Positioning the geometric center of the alignment target, that is, the reference position of the digital printing. Hereinafter, the production of the alignment target will be described by a circular diagram.

該圓形對位標靶之製作,係可透過一特定之製作方法,並以預先處理之方式,將該對位標靶,裝置於該透明基材130上之第 一面132與第二面132之上。例如,該對位標靶製作之方法,係於該透明基材130之四角落處,先塗佈一黑色顏料後以形成一黑色區域,再使用一具精密定位之CNC加工機具、或具精密定位之雷射雕刻機具,對該黑色區域中,以挖空該黑色顏料之作業,以完成一圓形對位標靶之製作。The circular alignment target is produced by a specific manufacturing method and the device is mounted on the transparent substrate 130 in a pre-processed manner. One side 132 is above the second side 132. For example, the method for producing the alignment target is to apply a black pigment to the four corners of the transparent substrate 130 to form a black region, and then use a precision positioning CNC processing tool or precision. Positioning laser engraving machine, in the black area, to hollow out the black pigment to complete the production of a circular alignment target.

該圓形對位標靶間之相對中心位置與距離,即成為一可提供印刷對位之參考數值。是以,對於上述該視差光柵之結構121、該2D影像126、與該多視景3D合成影像141之印刷,其彼此間之對位,即可透過習知光學對位之方法,亦即,使用光學顯微取像裝置(無圖示),以辨識該複數對位標靶之複數個中心位置,並根據此位置,以進行印刷之作業。The relative center position and distance between the circular alignment targets becomes a reference value for providing print alignment. Therefore, the structure 121 of the parallax barrier, the 2D image 126, and the printing of the multi-view 3D composite image 141 are aligned with each other, that is, by a conventional optical alignment method, that is, An optical microscopy imaging device (not shown) is used to identify the plurality of center positions of the plurality of alignment targets, and based on the position, the printing operation is performed.

如圖5所示,該第二光源150,係由一白色可見光源所構成,該白色可見光源,係可採用由一習用液晶面板之背光技術,即由複數個白光LED、一導光板、複數個擴散片、與複數個增亮膜等元件所構成之光源(無圖示),以可投射一白色可見光至該第二影像面140上,以照明點亮該多視景3D合成影像141。藉由該白色可見光源150對該多視景3D合成影像141之穿透與散射之光學作用後,再經由該視差光柵結構121之視景分離之作用後,即可於最佳觀賞距離上之該最佳視點處,顯示一3D影像。As shown in FIG. 5, the second light source 150 is composed of a white visible light source, and the white visible light source can adopt a backlight technology of a conventional liquid crystal panel, that is, a plurality of white LEDs, a light guide plate, and a plurality of A light source (not shown) formed by elements such as a diffusion sheet and a plurality of brightness enhancement films can project a white visible light onto the second image surface 140 to illuminate the multi-view 3D composite image 141. After the optical effect of the white visible light source 150 on the multi-view 3D composite image 141, the optical separation of the multi-view 3D composite image 141, and then the visual separation of the parallax barrier structure 121, the optimal viewing distance can be obtained. At the best viewpoint, a 3D image is displayed.

綜上所述,本發明一種可同時顯示2D與3D影像之方法,其主要之物理特徵,係利用一第一可見光源、一具有2D影像與視差光柵結構之第一影像面、一具有多視景3D合成影像之第二影像面、與一第二白色光源,透過同時以該第一光源、與該第二光源,個別照明該第一影像面、與該第二影像面,以同時顯示一2D與一3D影像。其中,該第一可見光源係照明該2D影像,藉由該第一光源對該2D影像之反射與散射之光學作用,以顯示該2D影像。另外,該第二白色光源係照明該多視景3D合成影像,藉由該第二光源對該多視景3D合成影像之穿透與散射之光學作用後,再經由該視差光柵結構之視景分離之作用後,以顯示一3D影像。In summary, the present invention provides a method for simultaneously displaying 2D and 3D images. The main physical feature is to utilize a first visible light source, a first image surface having a 2D image and a parallax barrier structure, and a multi-view. The second image surface of the 3D composite image and the second white light source are simultaneously illuminated by the first light source and the second light source to simultaneously display the first image surface and the second image surface to simultaneously display one 2D and a 3D image. The first visible light source illuminates the 2D image, and the optical effect of the first light source on the reflection and scattering of the 2D image is displayed to display the 2D image. In addition, the second white light source illuminates the multi-view 3D composite image, and the optical effect of the second light source on the multi-view 3D synthetic image is transmitted and scattered, and then the vision of the parallax barrier structure is adopted. After the separation, a 3D image is displayed.

以上所述,僅為本發明之較佳實施例而已,當不能以之限定本發明所實施之範圍,即大凡依本發明申請專利範圍所作之均等 變化與修飾,皆應仍屬於本發明專利涵蓋之範圍內。例如,本發明實施例,該第一光源與第二光源,亦可不同之時間,個別且交替照明該第一影像面、一第二影像面,達到個別交替顯示2D影像與3D影像之功效;另外,該透明基材之個數,亦可為二件,用以個別裝置該第一影像面、與該第二影像面。另外,該第一影像面上之視差光柵結構、與2D影像之印製,係可透過數位印刷之技術與不透明之彩色印墨,可以一次噴印之製程,達到同樣之印製功效。謹請 貴審查委員明鑑,並祈惠准,是所至禱。The above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the equivalent of the scope of the patent application of the present invention. Changes and modifications are still within the scope of the invention. For example, in the embodiment of the present invention, the first light source and the second light source may separately and alternately illuminate the first image surface and the second image surface at different times to achieve the effect of alternately displaying the 2D image and the 3D image. In addition, the number of the transparent substrates may be two, for individually arranging the first image surface and the second image surface. In addition, the structure of the parallax barrier on the first image surface and the printing of the 2D image can be transmitted through the digital printing technology and the opaque color ink, and the printing process can be performed at one time to achieve the same printing effect. I would like to ask your review board member to give a clear explanation and pray for it. It is the prayer.

100‧‧‧本發明實施例之構成100‧‧‧Composition of an embodiment of the invention

110‧‧‧第一光源110‧‧‧First light source

120‧‧‧第一影像面120‧‧‧ first image surface

130‧‧‧透明基材130‧‧‧Transparent substrate

140‧‧‧第二影像面140‧‧‧second image surface

150‧‧‧第二光源150‧‧‧second light source

V0 、Vk 、Vk+1 、Vn-1 ‧‧‧單一視景影像V 0 , V k , V k+1 , V n-1 ‧‧‧Single view image

Z0 ‧‧‧最佳觀賞距離Z 0 ‧‧‧Best viewing distance

P0 、Pk 、Pk+1 、Pn-1 ‧‧‧最佳視點P 0 , P k , P k+1 , P n-1 ‧‧‧ best viewpoint

X、Y、Z‧‧‧座標系X, Y, Z‧‧‧ coordinate system

OVD‧‧‧Optimum Viewing DistanceOVD‧‧‧Optimum Viewing Distance

Claims (20)

一種可同時顯示2D與3D影像之方法,主要係利用一第一光源、一具有2D影像與視差光柵結構之第一影像面、一具有多視景3D合成影像之第二影像面、與一第二光源,透過同時以該第一光源、與該第二光源,個別照明該第一影像面、與該第二影像面,以同時顯示一2D影像與一3D影像;其中該第一影像面,係由一視差光柵結構、與一2D影像所構成,該2D影像係接收該第一光源,藉由該第一光源對該2D影像之反射與散射之光學作用後,以顯示該2D影像;其中該第二影像面,係由一多視景3D合成影像所構成,該多視景3D合成影像係接收該第二光源,藉由第二光源對該多視景3D合成影像的透射與散射之光學作用後,再經由該視差光柵結構之視景分離之作用後,以顯示一3D影像。 A method for simultaneously displaying 2D and 3D images, mainly using a first light source, a first image surface having a 2D image and a parallax barrier structure, a second image surface having a multi-view 3D composite image, and a first The two light sources respectively illuminate the first image surface and the second image surface with the first light source and the second light source to simultaneously display a 2D image and a 3D image; wherein the first image surface, The image is formed by a parallax barrier structure and a 2D image, the 2D image receiving the first light source, and the optical light of the reflection and scattering of the 2D image by the first light source is used to display the 2D image; The second image surface is composed of a multi-view 3D composite image, and the multi-view 3D composite image receives the second light source, and the second light source transmits and scatters the multi-view 3D composite image. After the optical action, the 3D image is displayed after the visual separation of the parallax barrier structure. 如申請專利範圍第1項所述之可同時顯示2D與3D影像之方法,其中該第一光源,係由一可見光源所構成,用以投射該可見光源至該第一影像面上。 The method of claim 2, wherein the first light source is formed by a visible light source for projecting the visible light source onto the first image surface. 如申請專利範圍第1項所述之可同時顯示2D與3D影像之方法,其中該第二光源,係由一白色可見光源所構成,用以投射該白色可見光至該第二影像面上。 The method of displaying 2D and 3D images at the same time as described in claim 1 , wherein the second light source is formed by a white visible light source for projecting the white visible light to the second image surface. 一種可同時顯示2D與3D影像之裝置,主要係由以下元件所構成:一透明基材,係由一透明平板元件所構成,具有均勻之厚度、與高平整度之一第一面與一第二面;一第一影像面,係裝置於該透明基材之該第一面上,該第一影像面係由一視差光柵結構、一2D影像與複數個位置參考結構所構成;一第一光源,係由一自然光源與一人造光源所構成,用以投射一可見光至該第一影像面上;一第二影像面,係裝置於該透明基材之第二面上,該第二影像 面係由一多視景3D合成影像與複數個位置參考結構所構成;以及一第二光源,係由一具白色可見光源所構成,用以投射該白色可見光至該第二影像面上。 A device capable of simultaneously displaying 2D and 3D images, mainly composed of the following components: a transparent substrate consisting of a transparent plate member having a uniform thickness and a high flatness of the first side and a first a first image surface is disposed on the first surface of the transparent substrate, the first image surface is composed of a parallax barrier structure, a 2D image and a plurality of position reference structures; The light source is composed of a natural light source and an artificial light source for projecting a visible light onto the first image surface; and a second image surface is disposed on the second surface of the transparent substrate, the second image The surface is composed of a multi-view 3D composite image and a plurality of position reference structures; and a second light source is formed by a white visible light source for projecting the white visible light onto the second image surface. 如申請專利範圍第4項所述之可同時顯示2D與3D影像之裝置,其中該自然光源,係指一太陽光。 A device capable of simultaneously displaying 2D and 3D images as described in claim 4, wherein the natural light source refers to a sunlight. 如申請專利範圍第4項所述之可同時顯示2D與3D影像之裝置,其中該人造光源,係由一廣告看板照明燈具所構成。 The apparatus for simultaneously displaying 2D and 3D images as described in claim 4, wherein the artificial light source is constituted by an advertising kanban lighting fixture. 如申請專利範圍第4項所述之可同時顯示2D與3D影像之裝置,其中該視差光柵結構,係由一垂直條狀結構、與一傾斜條狀結構所構成,其中,該垂直條狀結構、與該傾斜條狀結構,係由複數個遮光元件與複數個透光元件所構成。 The apparatus for simultaneously displaying 2D and 3D images according to the fourth aspect of the patent application, wherein the parallax barrier structure is composed of a vertical strip structure and an inclined strip structure, wherein the vertical strip structure And the inclined strip structure is composed of a plurality of light shielding elements and a plurality of light transmitting elements. 如申請專利範圍第7項所述之可同時顯示2D與3D影像之裝置,其中該複數個遮光元件之裝置方法,係利用一對位技術與一數位印刷技術,以完成該複數個遮光元件之製作,其中,該對位技術,係提供該複數個位置參考結構之複數個中心位置,該數位印刷技術則根據該些中心位置,並使用一白色之印墨,將該複數個遮光元件,印製於該透明基材之該第一面上。 The apparatus for simultaneously displaying 2D and 3D images according to claim 7 of the patent application, wherein the device method of the plurality of shading elements utilizes a one-bit technology and a digital printing technique to complete the plurality of shading elements Manufacture, wherein the alignment technique provides a plurality of center positions of the plurality of position reference structures, and the digital printing technique prints the plurality of shading elements according to the center positions and using a white ink Prepared on the first side of the transparent substrate. 如申請專利範圍第8項所述之可同時顯示2D與3D影像之裝置,其中該白色印墨,係由一不透光之材料所構成。 The apparatus for simultaneously displaying 2D and 3D images as described in claim 8 of the patent application, wherein the white ink is composed of an opaque material. 如申請專利範圍第4項所述之可同時顯示2D與3D影像之裝置,其中該2D影像,係對應於該視差光柵之結構,係由複數個印刷區、與複數個非印刷區所構成,其中,該些印刷區,係對應於複數個遮光元件,並與複數個遮光元件具有同樣之結構、大小、位置、與數目;另外,該些非印刷區,係對應於複數個透光元件,並與複數個透光元件具有同樣之結構、大小、位置、與數目。 The apparatus for simultaneously displaying 2D and 3D images according to the fourth aspect of the patent application, wherein the 2D image corresponds to the structure of the parallax barrier, and is composed of a plurality of printing areas and a plurality of non-printing areas. Wherein, the printing areas correspond to a plurality of shading elements, and have the same structure, size, position, and number as the plurality of shading elements; in addition, the non-printing areas correspond to a plurality of light transmissive elements, And has the same structure, size, position, and number as a plurality of light transmissive elements. 如申請專利範圍第10項所述之可同時顯示2D與3D影像之裝置,其中該些印刷區中所具有2D影像之裝置方法,係利用一對位技術與一數位印刷技術,以完成該些印刷區中2D影像之 製作,其中,該對位技術,係提供複數個位置參考結構之複數個中心位置,該數位印刷技術則根據該些中心位置,並使用一彩色之印墨,將該些印刷區中2D影像,印製於其所對應之該些遮光元件之上;另外,對於該些非印刷區中2D影像,則不做影像印製之處理。 The device for displaying 2D and 3D images at the same time as described in claim 10, wherein the device method for 2D images in the printing areas utilizes a pair of bit technology and a digital printing technology to complete the 2D image in the printing area Manufacture, wherein the alignment technique provides a plurality of center positions of a plurality of position reference structures, and the digital printing technique uses a color ink to image 2D images in the printing areas according to the center positions. It is printed on the corresponding shading elements; in addition, for the 2D images in the non-printing areas, no image printing is performed. 如申請專利範圍第4項所述之可同時顯示2D與3D影像之裝置,其中該多視景3D合成影像之裝置方法,係利用一對位技術與一數位印刷技術,以完成該多視景3D合成影像之製作,其中,該對位技術,係提供該複數個位置參考結構之複數個中心位置,該數位印刷技術則根據該些中心位置,並使用一半透明之彩色印墨,將該多視景3D合成影像,印製於該透明基材之該第二面上。 The apparatus for simultaneously displaying 2D and 3D images according to item 4 of the patent application scope, wherein the multi-view 3D synthetic image device method utilizes a one-bit technology and a digital printing technology to complete the multi-view 3D synthetic image production, wherein the alignment technology provides a plurality of central positions of the plurality of position reference structures, and the digital printing technology uses half of the transparent color ink according to the center positions, A visor 3D composite image is printed on the second side of the transparent substrate. 如申請專利範圍第4項所述之可同時顯示2D與3D影像之裝置,其中該複數個位置參考結構,係裝置於該第一影像面與該第二影像面上之同樣位置處,對於其中單一個位置參考結構,係由具幾何對稱形狀之對位標靶所構成,另外,透過一對位標靶之製作方法,可將複數個對位標靶,裝置於該透明基材之該第一面與該第二面之上。 The device for displaying 2D and 3D images at the same time as described in claim 4, wherein the plurality of position reference structures are disposed at the same position on the first image surface and the second image surface, A single position reference structure is composed of a geo-symmetric shape of the alignment target, and a plurality of alignment targets can be mounted on the transparent substrate through a pair of target targets. One side is above the second side. 如申請專利範圍第13項所述之可同時顯示2D與3D影像之裝置,其中該具幾何對稱形狀之對位標靶,其形狀係可由一圓形、一方形或一十字形所構成。 The device for displaying 2D and 3D images at the same time as described in claim 13 wherein the geometrically symmetrical shape of the alignment target is formed by a circular shape, a square shape or a cross shape. 如申請專利範圍第13項所述之可同時顯示2D與3D影像之裝置,其中該對位標靶之製作方法,係於該透明基材之四角落處,先塗佈一黑色顏料後以形成一黑色區域,使用一具精密定位之CNC加工機具、或一具精密定位之雷射雕刻機具,對該黑色區域中,以挖空該黑色顏料之作業,以完成該對位標靶之製作。 The device for simultaneously displaying 2D and 3D images according to claim 13 of the patent application, wherein the method for manufacturing the alignment target is at a corner of the transparent substrate, first coating a black pigment to form A black area, using a precision positioning CNC machining tool, or a precision positioning laser engraving machine, in the black area, to hollow out the black pigment to complete the production of the alignment target. 如申請專利範圍第4項所述之可同時顯示2D與3D影像之裝置,其中該白色可見光源,係由複數個白光LED、一導光板、複數個擴散片、與複數個增亮膜等元件所構成以產生之光源。 The device for displaying 2D and 3D images at the same time as described in claim 4, wherein the white visible light source is composed of a plurality of white LEDs, a light guide plate, a plurality of diffusion sheets, and a plurality of brightness enhancement films. The light source that is constructed to be produced. 如申請專利範圍第4項所述之可同時顯示2D與3D影像之裝置,其中該透明平板元件之材料,係可由一玻璃與一壓克力所構成。 The device for displaying 2D and 3D images at the same time as described in claim 4, wherein the material of the transparent plate member is composed of a glass and an acryl. 如申請專利範圍第4項所述之可同時顯示2D與3D影像之裝置,其中該第一光源與該第二光源,係以同時間之方式,個別照明該第一影像面、與該第二影像面。 The device for displaying 2D and 3D images at the same time as described in claim 4, wherein the first light source and the second light source separately illuminate the first image surface and the second portion simultaneously Image side. 如申請專利範圍第4項所述之可同時顯示2D與3D影像之裝置,其中該第一光源與該第二光源,係以不同時間之方式,個別且交替照明該第一影像面、與該第二影像面。 The apparatus for simultaneously displaying 2D and 3D images according to claim 4, wherein the first light source and the second light source separately and alternately illuminate the first image surface in different time manners The second image side. 如申請專利範圍第4項所述之可同時顯示2D與3D影像之裝置,其中該2D影像與該視差光柵結構之製作,係可先透過一般印刷技術、與數位印刷技術,並使用不透明之彩色印墨,先將該2D影像印製於該透明基材之該第一面上後,再利用一對位技術與一具精密定位之雷射雕刻機具,對於該2D影像,且對應於該第一面之複數個透光元件所存在處,以挖空該處之該2D影像以形成該些透光元件。 The apparatus for simultaneously displaying 2D and 3D images according to the fourth aspect of the patent application, wherein the 2D image and the parallax barrier structure are manufactured by using general printing technology, digital printing technology, and opaque color. Printing the ink, first printing the 2D image on the first side of the transparent substrate, and then using a pair of bit technology and a precision positioning laser engraving machine for the 2D image, and corresponding to the A plurality of light transmissive elements are present on one side to hollow out the 2D image of the portion to form the light transmissive elements.
TW102131310A 2013-08-09 2013-08-30 A method and apparatus for simultaneous displaying 2D and 3D images TWI489150B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW102131310A TWI489150B (en) 2013-08-09 2013-08-30 A method and apparatus for simultaneous displaying 2D and 3D images
CN201410336642.9A CN104423054B (en) 2013-08-30 2014-07-15 Method and device capable of simultaneously displaying 2D (two-dimensional) image and 3D image

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW102128688 2013-08-09
TW102131310A TWI489150B (en) 2013-08-09 2013-08-30 A method and apparatus for simultaneous displaying 2D and 3D images

Publications (2)

Publication Number Publication Date
TW201506448A TW201506448A (en) 2015-02-16
TWI489150B true TWI489150B (en) 2015-06-21

Family

ID=53019349

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102131310A TWI489150B (en) 2013-08-09 2013-08-30 A method and apparatus for simultaneous displaying 2D and 3D images

Country Status (1)

Country Link
TW (1) TWI489150B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM434218U (en) * 2012-02-29 2012-07-21 Tpv Display Technology Xiamen Glasses-free stereoscopic display
TW201243394A (en) * 2010-12-23 2012-11-01 Lg Display Co Ltd Align mark of stereoscopic image display, aligning method and system using the align mark
CN103123557A (en) * 2011-11-18 2013-05-29 上海中航光电子有限公司 Auxiliary display device and stereo display device
TW201326972A (en) * 2011-12-30 2013-07-01 Ind Tech Res Inst Display apparatus
CN203054398U (en) * 2012-12-11 2013-07-10 中航华东光电有限公司 Liquid crystal grating and two-dimensional (2D)/three-dimensional (3D) display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201243394A (en) * 2010-12-23 2012-11-01 Lg Display Co Ltd Align mark of stereoscopic image display, aligning method and system using the align mark
CN103123557A (en) * 2011-11-18 2013-05-29 上海中航光电子有限公司 Auxiliary display device and stereo display device
TW201326972A (en) * 2011-12-30 2013-07-01 Ind Tech Res Inst Display apparatus
TWM434218U (en) * 2012-02-29 2012-07-21 Tpv Display Technology Xiamen Glasses-free stereoscopic display
CN203054398U (en) * 2012-12-11 2013-07-10 中航华东光电有限公司 Liquid crystal grating and two-dimensional (2D)/three-dimensional (3D) display device

Also Published As

Publication number Publication date
TW201506448A (en) 2015-02-16

Similar Documents

Publication Publication Date Title
US7834944B2 (en) Method for the orientation of a parallax barrier screen on a display screen
TWI515458B (en) A device for displaying a three-dimensional image
CN102830537B (en) Color film substrate, manufacturing method thereof and display device
KR20110087189A (en) Three-dimensional video imaging device
CN101017249A (en) Three-dimensional auto-stereoscopic display device based on porous flat grating
TWI491925B (en) A super stereoscopic vision separation element
TWI491926B (en) A super stereoscopic vision separation element
CN203337990U (en) Directional backlight 3D imaging screen and naked-eye 3D projection system
TWI507735B (en) A method and apparatus for peripheral displaying 2D and 3D motion pictures
CN104423054B (en) Method and device capable of simultaneously displaying 2D (two-dimensional) image and 3D image
TWI505243B (en) A device that can display 2D and 3D images at the same time
TWI489150B (en) A method and apparatus for simultaneous displaying 2D and 3D images
CN110703459A (en) Floating 3D display device and implementation method thereof
CN104076591A (en) Naked eye 3D (Three-Dimension) projection system and projection screen thereof
CN203422540U (en) Naked eye three-dimensional liquid crystal display system
CN104076592A (en) Directional backlight naked eye 3D (three-dimension) projection system and 3D imaging screen thereof
CN203337993U (en) Raster-type 3D projection system
CN202929347U (en) 3-D image print film and display apparatus applying the 3-D image print film
KR20070083617A (en) Assembly for representing images in three dimensions
CN103412411A (en) Three-dimensional display device
CN101920627B (en) Method for drawing slit grating three-dimensional picture by mirror surface reflection
CN202735637U (en) Color film substrate and display device
CN103747235B (en) Normal signal is utilized to form television set and the manufacture craft thereof of stereoscopic visual effect
CN203311156U (en) Naked-eye 3D projection screen
JP2020038258A (en) Display device, and display method