TWI491926B - A super stereoscopic vision separation element - Google Patents

A super stereoscopic vision separation element Download PDF

Info

Publication number
TWI491926B
TWI491926B TW102144895A TW102144895A TWI491926B TW I491926 B TWI491926 B TW I491926B TW 102144895 A TW102144895 A TW 102144895A TW 102144895 A TW102144895 A TW 102144895A TW I491926 B TWI491926 B TW I491926B
Authority
TW
Taiwan
Prior art keywords
lens
ultraviolet
light
width
parallax barrier
Prior art date
Application number
TW102144895A
Other languages
Chinese (zh)
Other versions
TW201523028A (en
Inventor
Ming Yen Lin
Kan Ju Lee
Chun Sheng Chang
Original Assignee
Zhangjiagang Kangde Xin Optronics Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhangjiagang Kangde Xin Optronics Material Co Ltd filed Critical Zhangjiagang Kangde Xin Optronics Material Co Ltd
Priority to TW102144895A priority Critical patent/TWI491926B/en
Priority to CN201410333490.7A priority patent/CN104698589B/en
Publication of TW201523028A publication Critical patent/TW201523028A/en
Application granted granted Critical
Publication of TWI491926B publication Critical patent/TWI491926B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays

Description

一種超立體視景分離元件Super stereoscopic separation element

對於習知裸視3D影像顯示之方法與技術(Auto-Stereoscopic Displaying Method and Technology),一般是透過單獨使用視差光柵元件(Parallax Barrier Component)、或者是柱狀透鏡陣列(Cylindrical Lens Array Component,以下簡稱透鏡元件)結構所構成之景分離裝置(View Separation Device),對於一多視景3D合成影像(Multi-View Combined 3D Image),提供一視景分離光學之作用,達到顯示一裸視3D影像(Glasses-Free 3D Image)之目的。其中,透過該視差光柵元件所呈現之3D影像,一般具有低鬼影(Ghost Image)、低亮度之特徵;而透過透鏡元件所呈現之3D影像,則具有高鬼影、高亮度之特徵。亦即,對於3D影像之呈現,該兩習知之裝置,係無法同時滿足低鬼影、與高亮度之需求。For the Auto-Stereoscopic Displaying Method and Technology, a Parallel Barrier Component or a Cylindrical Lens Array Component (hereinafter referred to as hereinafter) is generally used. The lens separation device (View Separation Device) provides a view separation optical function for displaying a naked-view 3D image for a multi-view combined 3D image ( The purpose of Glasses-Free 3D Image). The 3D image presented by the parallax barrier element generally has the characteristics of low ghost image (Ghost Image) and low brightness, and the 3D image displayed by the lens element has high ghost image and high brightness. That is to say, for the presentation of 3D images, the two conventional devices cannot meet the requirements of low ghosting and high brightness at the same time.

針對上述之問題,中華民國專利申請案號:102132216中,首次提出一超立體三次元影像顯示裝置(Super Auto-stereoscopic 3D Image Displaying Device)之構成。In view of the above problems, the composition of the Super Auto-stereoscopic 3D Image Display Device is proposed for the first time in the Republic of China Patent Application No. 102132216.

如圖1所示,係超立體三次元影像顯示裝置構成之示意圖。該超立體三次元影像顯示裝置40,依安裝之次序,主要係由一顯示器螢幕元件50、一視差光柵元件60、與一透鏡元件70所構成。所謂超立體三次元影像之顯示,係指使用由具有等效視景分離作用之視差光柵元件、與透鏡元件所構成之視景分離元件,以達到顯示三次元影之目的。對於上述視景分離元件之構成,以下通稱為超立體景分離元件(Super Auto-stereoscopic View Separation Component)。另外,為清楚標示各元件裝置之方向與說明,圖上所示之座標系XYZ,係對於面對該超立體三次元影像顯示裝置40之觀賞者而言,係令該X軸係設定於水平方向、Y軸設定於垂直 方向、Z軸則以垂直於該裝置40之影像顯示面而設定,且該座標系XYZ遵守右手定則(Right-Hand Rule)。As shown in FIG. 1 , it is a schematic diagram of an ultra-stereoscopic three-dimensional image display device. The super-stereoscopic three-dimensional image display device 40 is mainly composed of a display screen element 50, a parallax barrier element 60, and a lens element 70 in the order of installation. The display of the ultra-stereoscopic three-dimensional image refers to the use of a parallax barrier element having an equivalent view separation function and a view separation element formed by the lens element to achieve the purpose of displaying a three-dimensional image. The configuration of the above-described visual separation element is hereinafter collectively referred to as a Super Auto-stereoscopic View Separation Component. In addition, in order to clearly indicate the direction and description of each component device, the coordinate system XYZ shown in the figure is for the viewer facing the hyperstereoscopic three-dimensional image display device 40 to set the X-axis system at the level. Direction, Y axis set to vertical The direction and Z-axis are set perpendicular to the image display surface of the device 40, and the coordinate system XYZ follows the Right-Hand Rule.

其中,該顯示器螢幕元件50,係可由液晶、電漿、有機發光二極體(OLED)、發光二極體(LED)等習知顯示器螢幕所構成,且該螢幕所具有顏色次畫素之排列,係可由習知垂直條狀、馬賽克、三角狀與Pentile等排列所構成,係用以顯示一由n個視景影像所構成之一多視景3D合成影像(無圖示),其中,n≧2。The display screen component 50 can be composed of a conventional display screen such as a liquid crystal, a plasma, an organic light emitting diode (OLED), or a light emitting diode (LED), and the screen has a color sub-pixel arrangement. , which can be formed by a conventional vertical strip, mosaic, triangle, and Pentile arrangement, for displaying a multi-view 3D composite image (not shown) composed of n scene images, wherein n ≧ 2.

雖然,上述該專利未提及場色序法液晶顯示器(Field-Sequential-Color LCD,簡稱FSC-LCD)之應用,該顯示器螢幕元件50,亦可由一FSC-LCD所構成。該FSC-LCD(無圖示),係一種不使用彩色濾光片的液晶顯示器,透過紅、綠、藍背光源交替之照明,以連續交替顯示紅、綠、藍影像畫面之方式,於不同時間點,在視網膜上依序呈現紅、綠、藍影像畫面,再藉由視覺暫留之現象,以呈現全彩之影像。Although the above patent does not mention the application of a Field-Sequential-Color LCD (FSC-LCD), the display screen element 50 can also be composed of an FSC-LCD. The FSC-LCD (not shown) is a liquid crystal display that does not use a color filter. It alternates between red, green, and blue backlights to continuously display red, green, and blue image images. At the time point, red, green, and blue images are sequentially displayed on the retina, and then the phenomenon of persistence of vision is used to present a full-color image.

該視差光柵元件60,係由一透明基材61、一視差光柵結構62、與一透明保護膜63所構成。其中,該透明基材61,係由一平板狀結構之透明玻璃、或壓克力(PMMA)所構成,該平板狀結構則具有高度之面平整度。The parallax barrier element 60 is composed of a transparent substrate 61, a parallax barrier structure 62, and a transparent protective film 63. The transparent substrate 61 is composed of a flat glass transparent glass or acrylic (PMMA), and the flat structure has a high degree of surface flatness.

該視差光柵結構62係裝置於該透明基材61之一面上,係由複數個遮光元件62a、與複數個透光元件62b所構成。該些遮光元件62a、與該些透光元件62b,係可具有垂直條狀、或傾斜條狀結構特徵(如圖2~3所示),且個別具有、B之水平寬度,並具單元結構寬度PB ,該、B、PB 間,具有下式之關係: The parallax barrier structure 62 is disposed on one surface of the transparent substrate 61 and is composed of a plurality of light blocking elements 62a and a plurality of light transmitting elements 62b. The light-shielding elements 62a and the light-transmitting elements 62b may have vertical strip-shaped or oblique strip-like structural features (as shown in FIGS. 2 to 3), and have individual , the horizontal width of B, and the unit structure width P B , , B, P B , with the following relationship:

其中,n為視景數。 Where n is the number of views.

該視差光柵結構62,以一安裝距離LB ,裝置於該顯示器螢幕元件50前,對於該多視景合成影像,提供一視景分離光學之作用,以顯示3D影像。The parallax barrier structure 62 is disposed at a display distance L B in front of the display screen component 50 to provide a view separation optical effect for displaying the 3D image for the multi-view synthesis image.

另外,對於該視差光柵結構62之製作,係可透過光蝕刻、凸 版轉印、凹版轉印等精密製程,可將該些遮光元件62a、與該些透光元件62b,複製於該透明基材61之一面上。另外,亦可對該透明基材61之一面上,先塗佈一層非透光之薄膜(無圖示),再利用對位技術與一具精密定位之雷射雕刻機具(無圖示),對於該非透光薄膜,且對應於該複數個透光元件62b所存在處,以挖空該處之該非透光薄膜之作業,以完該複數個透光元件62b之製作,即可完成該視差光柵結構62之製作。In addition, the fabrication of the parallax barrier structure 62 is transparent to photolithography and convexity. For precision processes such as plate transfer and gravure transfer, the light-shielding elements 62a and the light-transmitting elements 62b may be copied onto one surface of the transparent substrate 61. Alternatively, a non-transparent film (not shown) may be applied to one surface of the transparent substrate 61, and a alignment technique and a precision positioning laser engraving machine (not shown) may be used. For the non-transmissive film, corresponding to the existence of the plurality of light-transmitting elements 62b, to hollow out the non-transmissive film at the place, the parallax can be completed by completing the production of the plurality of light-transmitting elements 62b. Fabrication of the grating structure 62.

之後,再對該些遮光元件62a、與該些透光元件62b,覆蓋一層透明之保護膜63,如二氧化矽(SiO2 )薄膜,以防止該些遮光元件62a、與該些透光元件62b之脫落與隔絕環境之影響,如濕度。Then, the light-shielding elements 62a and the light-transmitting elements 62b are covered with a transparent protective film 63, such as a cerium oxide (SiO 2 ) film, to prevent the light-shielding elements 62a and the light-transmitting elements. The effect of 62b shedding and isolation of the environment, such as humidity.

該透鏡元件70,係由複數個柱狀形透鏡71所構成,其中,單一個柱狀形透鏡71,係可由垂直條狀、或傾斜條狀結構(如圖4~5所示)所構成,具有一透鏡表面72、一焦距f、與一單元結構寬度PL 。另外,該透鏡表面72,係可由圓形曲面、或非圓形曲面所構成。對於該焦距f、與單元結構寬度PL ,係令其具有下式(3)~(4),以達到等效視景分離作用。The lens element 70 is composed of a plurality of lenticular lenses 71. The single lenticular lens 71 can be formed by a vertical strip or a slanted strip structure (as shown in FIGS. 4-5). There is a lens surface 72, a focal length f, and a unit structure width P L . In addition, the lens surface 72 may be formed by a circular curved surface or a non-circular curved surface. For the focal length f and the cell structure width P L , the following equations (3) to (4) are obtained to achieve the equivalent view separation effect.

f~LB (3)f~L B (3)

PL =PB (4)P L =P B (4)

其中,LB 為安裝距離,亦即該視差光柵元件60、該透鏡元件70與顯示器螢幕元件50間之距離。事實上,對於如圖1所示元件堆疊之結構,該透鏡元件70因具有些許之厚度,於實際的光學設計上,該些柱狀形透鏡之焦距f是略大於該視差光柵結構之裝距離LBWhere L B is the mounting distance, that is, the distance between the parallax barrier element 60, the lens element 70 and the display screen element 50. In fact, for the structure of the component stack shown in FIG. 1, the lens element 70 has a slight thickness. In the actual optical design, the focal length f of the lenticular lens is slightly larger than the mounting distance of the parallax barrier structure. L B .

另外,對於上述之該些遮光元件62a、與該些透光元件62b,其作用除了提供等效視景分離作用外,亦具有光圈之效果。亦即,在保持該單元結構寬度PB 不變之條件下,透過改變該些遮光元件62a、與該些透光元件62b之水平寬度、B,例如: 並令 其中,、B'係改變後該些遮光元件62a、與該些透光元件62b之水平寬度,即可達到提高該視差光柵元件60亮度之目的。另外,亦可透過以下之條件: 達到降低該透鏡元件70所產生鬼影之現象。In addition, the above-mentioned light-shielding elements 62a and the light-transmitting elements 62b have an effect of providing an aperture in addition to the equivalent view separation. That is, the horizontal width of the light-shielding elements 62a and the light-transmitting elements 62b are changed by maintaining the unit structure width P B unchanged. , B, for example: And order among them, The purpose of improving the brightness of the parallax barrier element 60 can be achieved by changing the horizontal width of the light-shielding elements 62a and the light-transmitting elements 62b. In addition, the following conditions can also be met: A phenomenon of reducing ghosting caused by the lens element 70 is achieved.

另外,對於該透鏡元件70之製作,係可透過卷對卷(Roll-to-Roll)滾印之製程、或熱壓印之製程,以製作出一單獨之元件,再透過對位貼合之製程,裝置於該視差光柵元件60上;或者透過對位之技術、與熱壓印之製程,再將該透鏡元件70,直接製作於該視差光柵元件60之透明保護膜63上。In addition, for the fabrication of the lens element 70, a roll-to-roll process or a hot stamp process can be used to fabricate a separate component, and then through the alignment. The process is mounted on the parallax barrier element 60. Alternatively, the lens element 70 is directly formed on the transparent protective film 63 of the parallax barrier element 60 by a technique of alignment and a process of thermal imprinting.

如上所述,對於該視差光柵元件60、與一透鏡元件70之製作,係透過不同之製程,以個別製作出單獨之元件後,再透過對位貼合之製程,以完成一超立體景分離元件之製作。對於上述個別且不連續之製程,因不具有生產之一貫性,無法滿足高精度、高效率、低成本量產之需求。As described above, for the production of the parallax barrier element 60 and the lens element 70, a separate component is separately manufactured through a different process, and then through a process of alignment bonding to complete an ultra-stereoscopic separation. The production of components. For the above-mentioned individual and discontinuous processes, because of the lack of consistency in production, the demand for high precision, high efficiency, and low cost mass production cannot be met.

針對上述之缺失,本發明一種超立體視景分離元件,主要係利用卷對卷的生產方式(Roll-to-Roll Manufacturing Process),透過紫外光硬化轉印(UV-Cured Imprint)之加工與凸版轉印(Flexography Imprint)之加工,可將透鏡元件與視差光柵元件,同時裝置於一軟性透明基材之兩面上,達到大量生產超立體視景分離元件之目的。In view of the above-mentioned deficiency, the super stereoscopic separation element of the present invention mainly utilizes a Roll-to-Roll Manufacturing Process, a UV-Cured Imprint process and a letterpress. The processing of the transfer (Flexography Imprint) can simultaneously mount the lens element and the parallax barrier element on both sides of a soft transparent substrate to achieve mass production of the super stereoscopic separation element.

1‧‧‧超立體視景分離元件1‧‧‧Super stereoscopic separation element

10‧‧‧透鏡元件10‧‧‧ lens elements

11‧‧‧單一個柱狀形透鏡11‧‧‧Single cylindrical lens

12‧‧‧透鏡表面12‧‧‧ lens surface

20‧‧‧軟性透明基材20‧‧‧Soft transparent substrate

30‧‧‧視差光柵元件30‧‧‧Disparity grating components

31‧‧‧遮光元件31‧‧‧ shading elements

32‧‧‧透光元件32‧‧‧Lighting components

40‧‧‧三次元影像顯示裝置40‧‧‧Three-dimensional image display device

50‧‧‧顯示器螢幕元件50‧‧‧Display screen components

60‧‧‧視差光柵元件60‧‧‧parallax grating elements

61‧‧‧透明基材61‧‧‧ Transparent substrate

62‧‧‧視差光柵結構62‧‧‧Disparity grating structure

62a‧‧‧遮光元件62a‧‧‧ shading elements

62b‧‧‧透光元件62b‧‧‧Lighting element

63‧‧‧透明保護膜63‧‧‧Transparent protective film

70‧‧‧透鏡元件70‧‧‧ lens elements

71‧‧‧柱狀形透鏡71‧‧‧ lenticular lens

72‧‧‧柱狀形透鏡圓形表面72‧‧‧ cylindrical lens round surface

100‧‧‧卷對卷的生產方式100‧‧‧Volume-to-volume production methods

101‧‧‧捲出(Unwind)101‧‧‧Out (Unwind)

102‧‧‧加工模式(Process)102‧‧‧Processing mode (Process)

103‧‧‧捲入103‧‧‧ involvement

110‧‧‧紫外光硬化轉印之加工110‧‧‧Processing of UV light hardening transfer

111‧‧‧透鏡加工滾輪111‧‧‧Lens processing roller

111a‧‧‧透鏡柱狀透鏡之凹槽結構111a‧‧‧ Groove structure of lens lenticular lens

111c‧‧‧透鏡柱狀透鏡凹槽之中心點111c‧‧‧ center point of lens cylindrical lens groove

111d‧‧‧透鏡加工滾輪之旋轉軸心111d‧‧‧Rotary axis of lens processing roller

112、113、135‧‧‧傳輸用滾輪112, 113, 135‧‧‧Transport roller

115‧‧‧塗佈元件115‧‧‧ Coating components

116‧‧‧液態紫外線樹酯116‧‧‧Liquid ultraviolet resin

116’‧‧‧液態紫外線樹酯薄膜116'‧‧‧Liquid UV resin film

117‧‧‧紫外線光源產生元件117‧‧‧Ultraviolet light source generating components

118‧‧‧紫外光118‧‧‧UV light

130‧‧‧凸版轉印之加工130‧‧‧ Processing of letterpress printing

131‧‧‧光柵加工滾輪131‧‧‧Grating processing wheel

132‧‧‧印墨滾輪132‧‧‧Ink roller

133‧‧‧黑色印墨、黑色紫外線印墨133‧‧‧black ink, black UV ink

131a‧‧‧遮光元件用凸版結構131a‧‧ ‧ embossed structure for shading elements

131b‧‧‧透光元件用凹陷結構131b‧‧‧ recessed structure for light-transmitting components

131c‧‧‧透光元件用凹陷結構之中心點131c‧‧‧The center point of the concave structure for the light-transmitting element

131d‧‧‧光柵加工滾輪之旋轉軸心131d‧‧‧Rotary axis of the grating processing roller

n‧‧‧總視景數N‧‧‧ total number of views

‧‧‧遮光元件水平寬度 , ‧‧‧shading element horizontal width

B、B'‧‧‧透光元件水平寬度B, B'‧‧‧Lighting element horizontal width

θ‧‧‧傾斜角度Θ‧‧‧ tilt angle

LB ‧‧‧安裝距離L B ‧‧‧ installation distance

PB ‧‧‧視差光柵單元結構之寬度P B ‧‧‧The width of the parallax barrier unit structure

nL ‧‧‧透鏡光學折射率n L ‧‧‧ lens optical refractive index

nS ‧‧‧軟性透明基材光學折射率n S ‧‧‧Soft transparent substrate optical refractive index

fL ‧‧‧透鏡焦距lens focal distance f L ‧‧‧

f' ‧‧‧超立體視景分離元件之光學焦距f ' ‧‧‧Optical focal length of super stereoscopic separation element

PL ‧‧‧柱狀形透鏡之寬度P L ‧‧‧The width of the lenticular lens

r‧‧‧柱狀形透鏡圓形表面之半徑r‧‧‧The radius of the circular surface of the cylindrical lens

XYZ‧‧‧座標系XYZ‧‧‧ coordinate system

圖1所示,係習知超立體三次元影像顯示裝置構成之示意圖。FIG. 1 is a schematic diagram showing the structure of a conventional ultra-stereoscopic three-dimensional image display device.

圖2所示,係習知垂直條狀視差光柵結構構成之示意圖。FIG. 2 is a schematic view showing the structure of a conventional vertical strip parallax barrier structure.

圖3所示,係習知傾斜條狀視差光柵結構構成之示意圖。FIG. 3 is a schematic view showing the structure of a conventional oblique strip parallax barrier.

圖4所示,係習知垂直條狀透鏡結構構成之示意圖。Figure 4 is a schematic view showing the structure of a conventional vertical strip lens structure.

圖5所示,係習知傾斜條狀透鏡結構構成之示意圖。Fig. 5 is a schematic view showing the structure of a conventional inclined strip lens structure.

圖6所示,係本發明超立體視景分離元件構成之示意圖。Fig. 6 is a schematic view showing the configuration of the superstereoscopic view separating element of the present invention.

圖7所示,係本發明超立體視景分離元件生產方法構成之示意圖。Fig. 7 is a schematic view showing the constitution of a production method of the superstereoscopic view separating element of the present invention.

圖8所示,係本發明加工模式構成例一之示意圖。Fig. 8 is a schematic view showing a first embodiment of the processing mode of the present invention.

圖9所示,係本發明加工模式構成例二之示意圖。Fig. 9 is a schematic view showing a second embodiment of the processing mode of the present invention.

圖10所示,係透鏡加工滾輪結構、光柵加工滾輪結構與超立體視景分離元件對應關係之示意圖。FIG. 10 is a schematic diagram showing the correspondence between the lens processing roller structure, the grating processing roller structure, and the super stereoscopic separation element.

如圖6所示,係本發明超立體視景分離元件構成之示意圖。該超立體視景分離元件1,由上而下依次係由一透鏡元件10、一軟性透明基材20、與一視差光柵元件30所構成。As shown in Fig. 6, it is a schematic diagram of the configuration of the superstereoscopic separation element of the present invention. The superstereoscopic view separating element 1 is composed of a lens element 10, a flexible transparent substrate 20, and a parallax barrier element 30 in order from top to bottom.

其中,該透鏡元件10,係由複數個垂直條狀柱狀形透鏡11所構成,其中,該單一個柱狀形透鏡11,係具一透鏡表面12、一焦距fL (無圖示)、一光學折射率nL 、與一單元結構寬度PL 。該透鏡表面12,係可由圓形曲面、或非圓形對稱曲面所構成。The lens element 10 is composed of a plurality of vertical strip-shaped lenticular lenses 11 , wherein the single lenticular lens 11 has a lens surface 12 and a focal length f L (not shown). An optical refractive index n L , and a unit structure width P L . The lens surface 12 can be formed by a circular curved surface or a non-circular symmetrical curved surface.

該視差光柵元件30,係由複數個遮光元件31、與複數個透光元件32所構成。該些遮光元件31、與該些透光元件32,係具有垂直條狀結構之特徵,且個別具有、B之水平寬度,並由、B以構成一單元結構寬度PB 。上述該透鏡元件10與該視差光柵元件30,係具有由式(1)~(7)所規範之等效視景分離作用。The parallax barrier element 30 is composed of a plurality of light shielding elements 31 and a plurality of light transmitting elements 32. The light shielding elements 31 and the light transmissive elements 32 have the characteristics of a vertical strip structure, and have individual , the horizontal width of B, and by B to form a unit structure width P B . The lens element 10 and the parallax barrier element 30 described above have an equivalent view separation function as defined by the equations (1) to (7).

該軟性透明基材20,係由一具高透光度之軟性基材所構成,並具有一光學折射率nS 。其所構成之材料,係可採用聚對苯二甲酸乙二酯(Polyethylene terephthalate,簡稱PET)、聚碳酸酯(Polycarbonate,簡稱PC)、聚甲基丙烯酸甲酯(Polymethylmethacrylate,簡稱PMMA)。透過改變nS 、與nL 間之關係,可決定最終超立體視景分離元件之光學焦距f' 。例如:當nS =nL 時,f' =fL (8)The flexible transparent substrate 20 is composed of a flexible substrate having high transparency and has an optical refractive index n S . The material of the material is polyethylene terephthalate (PET), polycarbonate (Polycarbonate, PC), and polymethylmethacrylate (PMMA). By changing the relationship between n S and n L , the optical focal length f ' of the final superstereoscopic separation element can be determined. For example: when n S =n L , f ' =f L (8)

當nS >nL 時,f' >fL (9)When n S >n L , f ' >f L (9)

當nS <nL 時,f' <fL (10)When n S <n L , f ' <f L (10)

如圖7所示,係本發明超立體視景分離元件生產方法構成之示意圖。該超立體視景分離元件之生產方法,主要係利用卷對卷的生產方式100,透過紫外光硬化轉印之加工110與凸版轉印之加工130,可將透鏡元件10與視差光柵元件30,同時裝置於一軟 性透明基材20之兩面上,達到大量生產超立體視景分離元件之目的。As shown in FIG. 7, it is a schematic diagram of the manufacturing method of the superstereoscopic view separating element of the present invention. The production method of the super-stereoscopic separation element mainly uses the roll-to-roll production method 100, and the lens element 10 and the parallax barrier element 30 can be processed by the ultraviolet light hardening transfer processing 110 and the relief transfer processing 130. Simultaneously installed in a soft On both sides of the transparent substrate 20, the purpose of mass production of the super-stereoscopic separation element is achieved.

所謂卷對卷的生產方式(Roll-to-Roll Manufacturing Process,簡稱R2R製程)100,係一種已存在多年、具高效能、低成本的連續生產方式,主要處理可繞曲薄膜的加工。該可繞曲薄膜係收納於圓筒狀的料捲(Roll),透過捲出(Unwind)101、加工模式(Process)102、捲入(Rewind)103等作業,最終,將加工完成薄膜,再收納於圓筒狀的料捲(Roll)。另外,於實際應用之需求,該加工完成薄膜,可被直接裁切(Cutting),而非收納為圓筒狀的料捲。The so-called Roll-to-Roll Manufacturing Process (R2R Process) 100 is a continuous production method that has existed for many years, with high efficiency and low cost, and mainly processes the processing of the film that can be wound. The splicable film is housed in a cylindrical roll, and is subjected to operations such as unwinding 101, processing 102, and rewind 103, and finally, the film is processed, and then the film is finished. It is housed in a cylindrical roll (Roll). In addition, for practical application, the finished film can be directly cut rather than being stored as a cylindrical roll.

於本發明中,應用上述R2R製程,以作為超立體視景分離元件之生產時,對於可繞曲薄膜,例如選用PET薄膜20,對於加工模式,則採用紫外光硬化轉印之加工110與凸版轉印之加工130,所取得之加工完成薄膜,則包含有一透鏡元件10、一PET薄膜20、一視差光柵元件30。其中,該透鏡元件10、與該視差光柵元件30,是個別裝置於該PET薄膜20之兩面上。In the present invention, the above R2R process is applied to produce the super-stereoscopic separation element, for the flexible film, for example, the PET film 20 is used, and for the processing mode, the UV-hardened transfer process 110 and the letterpress are used. The transfer processing 130 includes a lens element 10, a PET film 20, and a parallax barrier element 30. The lens element 10 and the parallax barrier element 30 are individually mounted on both sides of the PET film 20.

如圖8所示,係本發明加工模式構成之示意圖。該加工模式102,主要係由紫外光硬化轉印之加工110與凸版轉印之加工130所構成。As shown in Fig. 8, it is a schematic diagram of the processing mode of the present invention. The processing mode 102 is mainly composed of a process 110 for UV-curing transfer and a process 130 for relief transfer.

其中,該紫外光硬化轉印之加工110,係包含有一透鏡加工滾輪(Lens Roller)111、複數個傳輸用滾輪(Transfer Roller)112、113、一塗佈元件115、一液態紫外線樹酯116、一紫外線光源產生元件117、與一紫外光118。首先,透過該塗佈元件115,先將該液態紫外線樹酯116,塗佈於該PET薄膜20之一面上(如上面),以構成一液態紫外線樹酯薄膜116’,該薄膜116’再經該透鏡加工滾輪111之壓印、與該紫外光118之曝光固化後,可於該PET薄膜20之一面上,裝置該透鏡元件10。其中,該紫外光118,係由該紫外線光源產生元件117所提供。另外,該透鏡加工滾輪111之結構,如圖10所示。The ultraviolet light-hardening transfer processing 110 includes a lens processing roller (Lens Roller) 111, a plurality of transfer rollers (Transfer Roller) 112, 113, a coating member 115, a liquid ultraviolet resin 116, An ultraviolet light source generates an element 117 and an ultraviolet light 118. First, the liquid ultraviolet resin 116 is first applied to one side of the PET film 20 (such as above) through the coating member 115 to form a liquid ultraviolet resin film 116'. After the embossing of the lens processing roller 111 and the exposure and curing of the ultraviolet light 118, the lens element 10 can be mounted on one surface of the PET film 20. The ultraviolet light 118 is provided by the ultraviolet light source generating element 117. In addition, the structure of the lens processing roller 111 is as shown in FIG.

另外,該凸版轉印之加工130,係包含有一光柵加工滾輪(Barrier Roller)131、一印墨滾輪132、一黑色印墨133、一傳輸用 滾輪135。透過該印墨滾輪132,先將該黑色印墨133塗佈於該光柵加工滾輪131,再經該光柵加工滾輪131之轉印,可將視差光柵元件30裝置於該PET薄膜20之另一面上(如下面)。其中,該黑色印墨133,係為一不透明之黑色印墨,當該印墨133係由黑色紫外線印墨所構成時,如圖9所示,該凸版轉印之加工130,則需增加一紫外線光源產生元件137,以產生一紫外光138,提供該黑色紫外線印墨133固化之處理。另外,該光柵加工滾輪131,之結構,如圖10所示。In addition, the relief printing process 130 includes a raster processing roller 131, an ink roller 132, a black ink 133, and a transmission. Roller 135. The black ink 133 is first applied to the grating processing roller 131 through the ink roller 132, and then transferred by the grating processing roller 131, and the parallax barrier element 30 can be disposed on the other surface of the PET film 20. (as below). Wherein, the black ink 133 is an opaque black ink. When the ink 133 is composed of black ultraviolet ink, as shown in FIG. 9, the processing of the relief printing 130 needs to be increased by one. The ultraviolet light source generates element 137 to produce an ultraviolet light 138 that provides a cure for the black ultraviolet ink 133. In addition, the structure of the grating processing roller 131 is as shown in FIG.

如圖10所示,透鏡加工滾輪結構、光柵加工滾輪結構與超立體視景分離元件對應關係之示意圖。As shown in FIG. 10, a schematic diagram of the correspondence between the lens processing roller structure, the grating processing roller structure and the super stereoscopic separation element is shown.

該透鏡加工滾輪111之結構,係由複數個透鏡柱狀透鏡之凹槽結構111a所構成,其中,該單一個透鏡柱狀透鏡凹槽111a,具有PL之寬度,其凹槽表面係經過適當之脫模處理,讓固化後之紫外線樹酯,可順利脫離該凹槽。另外,對於該凹槽結構111a,係透過該透鏡加工滾輪111,對該液態紫外線樹酯薄膜116’之壓印,可於該凹槽結構111a中,充填該液態紫外線樹酯116,該液態紫外線樹酯116,經該紫外光118照射固化後,即形成該透鏡元件10。The structure of the lens processing roller 111 is composed of a plurality of lens cylindrical lens grooves 111a, wherein the single lens cylindrical lens groove 111a has a width of PL, and the groove surface is appropriately The mold release treatment allows the cured ultraviolet resin to be smoothly separated from the groove. In addition, for the groove structure 111a, the liquid ultraviolet resin film 116' is imprinted through the lens processing roller 111, and the liquid ultraviolet resin 116 can be filled in the groove structure 111a. The resin element 116 is formed by curing the resin 116 after the ultraviolet light 118 is cured.

該光柵加工滾輪131之結構,係由複數個可印製遮光元件之凸版結構131a所構成(以下稱為遮光元件用凸版結構),其中,該單一個遮光元件用凸版結構131a,具有之寬度,係吸附該黑色印墨133,並將該印墨133轉印至該PET薄膜20上,以形成該些遮光元件31。另外,該相鄰遮光元件用凸版結構131a間之凹陷結構131b(以下稱為透光元件用凹陷結構),具有B之寬度,因無法吸附該黑色印墨133,可形成該些透光元件32。The structure of the grating processing roller 131 is composed of a plurality of relief structures 131a of a printable light-shielding member (hereinafter referred to as a relief structure for a light-shielding member), wherein the single-shading member for the light-shielding member 131a has The width of the black ink 133 is adsorbed, and the ink 133 is transferred onto the PET film 20 to form the light shielding members 31. In addition, the recessed structure 131b (hereinafter referred to as a recessed structure for a light-transmitting element) between the adjacent light-shielding member relief structures 131a has a width B, and the light-transmitting elements 32 can be formed because the black ink 133 cannot be adsorbed. .

另外,對於R2R製程機器之組裝(未圖示),該透鏡加工滾輪111、與該光柵加工滾輪131,需做兩種高精度之對位,方能產出高效能之超立體視景分離元件1。其中之一種對位(稱旋轉軸心平行度之對位),係令該透鏡加工滾輪111之旋轉軸心111d、與該光柵加工滾輪131旋轉軸心131d平行;另一種對位(稱結構中心點 之對位),係將該透鏡柱狀透鏡凹槽111a之中心點111c、對準於該透光元件用凹陷結構131b之中心點處131c。軸心平行度之偏移,會造成該透鏡元件10、與該視差光柵元件30條狀結構間之傾斜,最終導致產生鬼影。結構中心點之偏移,則造成觀賞視點中心之偏移,最終導致觀賞不便性。In addition, for the assembly of the R2R process machine (not shown), the lens processing roller 111 and the grating processing roller 131 need to be aligned with two high precisions to produce a high-performance super stereoscopic separation element. 1. One of the alignments (referred to as the alignment of the parallelism of the rotation axis) is such that the rotation axis 111d of the lens processing roller 111 is parallel to the rotation axis 131d of the grating processing roller 131; the other alignment is called the center of the structure. point In the alignment, the center point 111c of the lens lenticular lens groove 111a is aligned with the center point 131c of the light-transmitting element recessed structure 131b. The offset of the axial parallelism causes tilting of the lens element 10 and the strip structure of the parallax barrier element 30, eventually resulting in ghosting. The offset of the center point of the structure causes the offset of the center of the viewing point, which ultimately leads to inconvenience in viewing.

以上所述,僅為本發明之較佳實施例而已,當不能以之限定本發明所實施之範圍,即大凡依本發明申請專利範圍所作之均等變化與修飾,皆應仍屬於本發明專利涵蓋之範圍內。例如,本發明所揭露之超立體視景分離元件,係提供一基本之結構,即該超立體視景分離元件,係由一透鏡元件、一軟性透明基材、與一視差光柵元件所構成,並將該透鏡元件、與該視差光柵元件,個別裝置於該軟性透明基材之兩面上。當然,亦可於該視差光柵元件上,再裝置一透明保護膜,以防止該視差光柵元件之脫落。另外,對於該凸版轉印之加工與該紫外光硬化轉印之加工中,所採用傳輸用滾輪之數目,只是用以說明所揭露生產方法之功效,並非實際機台之構成。另外,對於該液態紫外線樹酯之塗佈,亦可透過一刮刀,以控制該液態紫外線樹酯塗佈之厚度,謹請 貴審查委員明鑑,並祈惠准,是所至禱。The above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the equivalent changes and modifications made by the scope of the present invention should still be covered by the present invention. Within the scope. For example, the superstereoscopic view separating element disclosed in the present invention provides a basic structure, that is, the super stereoscopic view separating element is composed of a lens element, a soft transparent substrate, and a parallax barrier element. The lens element and the parallax barrier element are individually mounted on both sides of the flexible transparent substrate. Of course, a transparent protective film may be further disposed on the parallax barrier element to prevent the parallax barrier element from falling off. In addition, in the processing of the relief printing and the processing of the ultraviolet light-hardening transfer, the number of the conveying rollers used is only for explaining the effect of the disclosed production method, and is not the constitution of the actual machine. In addition, for the coating of the liquid ultraviolet resin, a doctor blade can also be used to control the thickness of the liquid ultraviolet resin coating. I would like to ask the reviewer to give a clear explanation and pray for it.

1‧‧‧超立體視景分離元件1‧‧‧Super stereoscopic separation element

10‧‧‧透鏡元件10‧‧‧ lens elements

11‧‧‧單一個柱狀形透鏡11‧‧‧Single cylindrical lens

12‧‧‧透鏡表面12‧‧‧ lens surface

20‧‧‧軟性透明基材20‧‧‧Soft transparent substrate

30‧‧‧視差光柵元件30‧‧‧Disparity grating components

31‧‧‧遮光元件31‧‧‧ shading elements

32‧‧‧透光元件32‧‧‧Lighting components

‧‧‧遮光元件水平寬度 ‧‧‧shading element horizontal width

B‧‧‧透光元件水平寬度B‧‧‧Lighting element horizontal width

PB ‧‧‧視差光柵單元結構之寬度P B ‧‧‧The width of the parallax barrier unit structure

PL ‧‧‧柱狀形透鏡單元結構之寬度P L ‧‧‧The width of the cylindrical lens unit structure

XYZ‧‧‧座標系XYZ‧‧‧ coordinate system

Claims (10)

一種超立體視景分離元件,依次係由一透鏡元件、一軟性透明基材、與一視差光柵元件所構成,係用來顯示一多視景3D合成影像,上述該透鏡元件,係由複數個垂直條狀柱狀形透鏡所構成,其中,該單一個柱狀形透鏡,係具一透鏡表面、一透鏡光學折射率(nL )、一透鏡焦距(fL )、與一單元結構寬度(PL ),該透鏡表面,係可由圓形曲面、或非圓形對稱曲面所構成;該軟性透明基材,係具有一光學折射率(nS ),並與該透鏡光學折射率(nL ),構成一超立體視景分離元件之光學焦距(f' );該視差光柵元件,係由複數個遮光元件、與複數個透光元件所構成,其中,該單一個遮光元件、與該單一個透光元件,係具有一垂直條狀結構,且個別具有(、B)之水平寬度,並由(、B)以構成一單元結構寬度(PB ),該軟性透明基材之兩面上,依次實施一紫外光硬化轉印之加工與一凸版轉印之加工,可將該透鏡元件與該視差光柵元件,同時裝置於該軟性透明基材之兩面上,以大量生產該超立體視景分離元件,該凸版轉印之加工,係利用一光柵加工滾輪、一印墨滾輪、一紫外線黑色印墨、一傳輸用滾輪、紫外線光源產生元件、與一紫外光所構成之加工機械與材料,透過該印墨滾輪,先將該紫外線黑色印墨塗佈於該光柵加工滾輪,再經該光柵加工滾輪之轉印、與該紫外光之曝光固化後,可將該視差光柵元件裝置於該軟性透明基材薄膜之另一面上,其中,該紫外光,係由該紫外線光源產生元件所產生提供。A super stereoscopic view separating element, which is composed of a lens element, a soft transparent substrate and a parallax barrier element, is used for displaying a multi-view 3D composite image, and the lens element is composed of a plurality of A vertical strip-shaped lenticular lens, wherein the single lenticular lens has a lens surface, a lens optical refractive index (n L ), a lens focal length (f L ), and a unit structure width ( P L ), the lens surface may be composed of a circular curved surface or a non-circular symmetrical curved surface; the soft transparent substrate has an optical refractive index (n S ) and an optical refractive index with the lens (n L The optical focal length (f ' ) of the superstereoscopic separation element; the parallax barrier element is composed of a plurality of shading elements and a plurality of light transmissive elements, wherein the single shading element and the single a light transmissive element having a vertical strip structure and having an individual , B) the horizontal width, and by ( And B) forming a unit structure width (P B ) on both sides of the flexible transparent substrate, sequentially performing an ultraviolet hardening transfer process and a relief transfer process, and the lens element and the parallax barrier are The component is simultaneously mounted on both sides of the flexible transparent substrate to mass-produce the super-stereoscopic separation element, and the processing of the relief printing utilizes a grating processing roller, an ink roller, an ultraviolet black ink, a transporting roller, an ultraviolet light source generating component, and a processing machine and material composed of an ultraviolet light, through which the ultraviolet black ink is first applied to the grating processing roller, and then the grating processing roller is After the transfer and the exposure to the ultraviolet light are cured, the parallax barrier element can be disposed on the other surface of the flexible transparent substrate film, wherein the ultraviolet light is generated by the ultraviolet light source generating element. 如申請專利範圍第1項所述之一種超立體視景分離元件,其中該透鏡元件與視差光柵元件,係具有等效視景分離作用,並具以下之關係: f~LB ;PL =PB ; 其中,為遮光元件之水平寬度、B為透光元件之水平寬度、PB 為視差光柵元件單元結構寬度、n為視景數,且n≧2、f為柱狀形透鏡之焦距、PL 為柱狀形透鏡單元結構寬度、LB 為視差光柵元件安裝距離,安裝距離為柱狀形透鏡的焦距。The super stereoscopic separation element according to claim 1, wherein the lens element and the parallax barrier element have an equivalent view separation function and have the following relationship: f~L B ; P L =P B ; The horizontal width of the shading element, B is the horizontal width of the light transmissive element, P B is the parallax barrier element unit structure width, n is the number of views, and n ≧ 2, f is the focal length of the lenticular lens, P L is the column The lens lens unit structure width, L B is the parallax barrier element mounting distance, and the mounting distance is the focal length of the lenticular lens. 如申請專利範圍第1項所述之一種超立體視景分離元件,其中該軟性透明基材,係由一聚對苯二甲酸乙二酯、一聚碳酸酯、與一聚甲基丙烯酸甲酯所構成。 The super stereoscopic separation element according to claim 1, wherein the soft transparent substrate comprises a polyethylene terephthalate, a polycarbonate, and a polymethyl methacrylate. Composition. 如申請專利範圍第1項所述之一種超立體視景分離元件,其中該紫外光硬化轉印之加工,係利用一透鏡加工滾輪、複數個傳輸用滾輪、一塗佈元件、一液態紫外線樹酯、一紫外線光源產生元件、與一紫外光所構成之加工機械與材料,首先,透過該塗佈元件,先將該液態紫外線樹酯,塗佈於該軟性透明基材薄膜之一面上,以構成一液態紫外線樹酯薄膜,該液態紫外線樹酯薄膜再經該透鏡加工滾輪之壓印、與該紫外光之曝光固化後,可於該軟性透明基材薄膜之該一面上,裝置該透鏡元件,其中,該紫外光,係由該紫外線光源產生元件所產生提供。 The super stereoscopic separation element according to claim 1, wherein the ultraviolet light hardening transfer processing uses a lens processing roller, a plurality of transfer rollers, a coating component, and a liquid ultraviolet tree. An ester, an ultraviolet light source generating component, and a processing machine and material composed of an ultraviolet light. First, the liquid ultraviolet resin is first applied to one surface of the flexible transparent substrate film through the coating member. Forming a liquid ultraviolet resin film, and the liquid ultraviolet resin film is embossed by the lens processing roller and exposed to the ultraviolet light, and the lens element is disposed on the side of the soft transparent substrate film. Wherein the ultraviolet light is provided by the ultraviolet light source generating element. 如申請專利範圍第4項所述之一種超立體視景分離元件,其中該透鏡加工滾輪,係由複數個透鏡柱狀透鏡之凹槽結構所構成,其中,該單一個透鏡柱狀透鏡凹槽,具有PL 之寬度,其凹槽表面係經過適當之脫模處理,讓固化後之紫外線樹酯,可順利脫離該凹槽,另外,對於該凹槽結構,係透過該透鏡加工滾輪對該液態紫外線樹酯薄膜之壓印,可於該凹槽結構中,充填該液態紫外線樹酯,該液態紫外線樹酯,經該紫外光照射固化後,即可於該軟性透明基材上,形成該透鏡元件。The super stereoscopic separation element according to the fourth aspect of the invention, wherein the lens processing roller is formed by a groove structure of a plurality of lens cylindrical lenses, wherein the single lens cylindrical lens groove Having a width of P L , the groove surface is subjected to a suitable release treatment, so that the cured ultraviolet resin can be smoothly separated from the groove, and the groove structure is passed through the lens processing roller The embossing of the liquid ultraviolet resin film can be filled in the groove structure, and the liquid ultraviolet resin can be formed on the soft transparent substrate after being cured by the ultraviolet light. Lens element. 如申請專利範圍第1項所述之一種超立體視景分離元件,其中該光柵加工滾輪,係由複數個可印製遮光元件之遮光元件用凸版結構所構成,其中,該單一個遮光元件凸版結構,具有()之寬度,係吸附該紫外線黑色印墨,並將該紫外線黑色印墨轉印至該軟性透明基材薄膜上,以形成該些遮光元件,另外,該相鄰凸版結構間之透光元件用凹陷結構,具有(B)之寬度, 因無法吸附該紫外線黑色印墨,可形成該些透光元件。The super stereoscopic separation element according to the first aspect of the invention, wherein the grating processing roller is formed by a plurality of shading elements of the shading element capable of printing the shading element, wherein the single shading element is Structure with The width of the ultraviolet ink is adsorbed, and the ultraviolet black ink is transferred onto the flexible transparent substrate film to form the light shielding elements, and the light transmissive elements between the adjacent relief structures are used. The recessed structure has a width of (B), and the light transmissive elements can be formed because the ultraviolet black ink cannot be adsorbed. 如申請專利範圍第5或6項所述之一種超立體視景分離元件,其中對於該透鏡加工滾輪與該光柵加工滾輪之組裝,需實施旋轉軸心平行度之對位與結構中心點之對位,其中,該旋轉軸心,係指該透鏡加工滾輪、與該光柵加工滾輪之旋轉軸心,而該結構中心點,係指該透鏡柱狀透鏡凹槽之中心點、與該透光元件用凹陷結構之中心點。 A super stereoscopic separation element according to claim 5 or 6, wherein for the assembly of the lens processing roller and the grating processing roller, the alignment of the parallelism of the rotation axis and the center point of the structure are required. Position, wherein the axis of rotation refers to the lens processing roller and the axis of rotation of the grating processing roller, and the center point of the structure refers to the center point of the lens cylindrical lens groove, and the light transmitting component Use the center point of the recessed structure. 如申請專利範圍第2項所述之一種超立體視景分離元件,其中,對於該視差光柵元件之結構寬度,在保持該單元結構寬度PB 不變之條件下,透過改變該些遮光元件、與該些透光元件之水平寬度、B,可提高該視差光柵元件之亮度,其水平寬度改變之條件,如下式表示: 並令B '>B 、且;其中,B '係分別為改變後該遮光元件、與該透光元件之水平寬度。The super-stereoscopic view separating element according to claim 2, wherein, for the structural width of the parallax barrier element, the shading elements are changed by maintaining the unit structure width P B Horizontal width with the light transmissive elements B, the brightness of the parallax barrier element can be increased, and the condition of the horizontal width is changed as follows: And let B '> B and ;among them, The B ' is the horizontal width of the light-shielding element and the light-transmitting element after the change. 如申請專利範圍第2項所述之一種超立體視景分離元件,其中,對於該視差光柵元件之結構寬度,在保持該單元結構寬度PB 不變之條件下,透過改變該些遮光元件、與該些透光元件之水平寬度、B,可降低該透鏡元件之鬼影,其水平寬度改變之條件,如下式表示: 並令B '<B 、且;其中,B '係分別為改變後該遮光元件、與該透光元件之水平寬度。The super-stereoscopic view separating element according to claim 2, wherein, for the structural width of the parallax barrier element, the shading elements are changed by maintaining the unit structure width P B Horizontal width with the light transmissive elements , B, can reduce the ghost of the lens element, the condition of the horizontal width is changed, as follows: And let B '< B and ;among them, The B ' is the horizontal width of the light-shielding element and the light-transmitting element after the change. 如申請專利範圍第1項所述之一種超立體視景分離元件,其中,對於該超立體視景分離元件之光學焦距f' ,與該透鏡焦距fL 、該柱狀形透鏡的焦距f、該透鏡光學折射率nL 、該軟性透明基材光學折射率nS 間,具有以下之關係: 當nS =nL 時,f' =f;當nS >nL 時,f' >f;當nS <nL 時,f' <f。A super stereoscopic view separating element according to claim 1, wherein an optical focal length f ' of the superstereoscopic view separating element, a focal length f L of the lens, a focal length f of the lenticular lens, the lens optical index n L, the optical refractive index between the flexible transparent substrate n S, the following relation: n S = n L when the time, f '= f; when n S> n L when, f'> f ; when n S <n L , f ' <f.
TW102144895A 2013-12-06 2013-12-06 A super stereoscopic vision separation element TWI491926B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW102144895A TWI491926B (en) 2013-12-06 2013-12-06 A super stereoscopic vision separation element
CN201410333490.7A CN104698589B (en) 2013-12-06 2014-07-14 Super-stereo visual separation element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102144895A TWI491926B (en) 2013-12-06 2013-12-06 A super stereoscopic vision separation element

Publications (2)

Publication Number Publication Date
TW201523028A TW201523028A (en) 2015-06-16
TWI491926B true TWI491926B (en) 2015-07-11

Family

ID=53345894

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102144895A TWI491926B (en) 2013-12-06 2013-12-06 A super stereoscopic vision separation element

Country Status (2)

Country Link
CN (1) CN104698589B (en)
TW (1) TWI491926B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104898291A (en) * 2015-06-29 2015-09-09 张家港康得新光电材料有限公司 View separation device and manufacturing method thereof
CN104977724A (en) * 2015-07-13 2015-10-14 深圳市华星光电技术有限公司 3d display device and manufacturing method thereof
CN108445576B (en) * 2018-03-05 2021-02-19 张家港康得新光电材料有限公司 Light guide plate, backlight module and display device
CN113703181B (en) * 2020-05-22 2023-06-20 北京芯海视界三维科技有限公司 Lens grating and manufacturing method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101507288A (en) * 2006-08-17 2009-08-12 皇家飞利浦电子股份有限公司 Display device
CN101630067A (en) * 2008-07-17 2010-01-20 夏普株式会社 Display
TW201135322A (en) * 2010-04-07 2011-10-16 J Touch Corp Structural improvement of three-dimensional image imaging device
TW201144862A (en) * 2010-06-10 2011-12-16 Ind Tech Res Inst Image display
TW201235453A (en) * 2010-12-27 2012-09-01 Dainippon Ink & Chemicals Birefringent lens material used in three-dimensional image display device and method for producing birefringent lens material used in three-dimensional image display device
TW201318805A (en) * 2011-10-14 2013-05-16 Mitsubishi Rayon Co Manufacturing method of optical sheet, manufacturing method of mold for manufacturing optical sheet, electronic display device and method of mirror finishing
TW201320717A (en) * 2011-11-08 2013-05-16 Unique Instr Co Ltd Method of displaying 3D image
TW201332175A (en) * 2011-09-28 2013-08-01 Toppan Printing Co Ltd Organic el element and method of manufacturing organic el element
CN103293689A (en) * 2013-05-31 2013-09-11 京东方科技集团股份有限公司 Method capable of switching between different display modes and display device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0500420D0 (en) * 2005-01-10 2005-02-16 Ocuity Ltd Display apparatus
CN101655609B (en) * 2009-08-10 2012-07-11 深圳超多维光电子有限公司 Full resolution stereoscopic display device
CN102253494A (en) * 2010-05-19 2011-11-23 介面光电股份有限公司 Improved structure of stereoscopic image imaging device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101507288A (en) * 2006-08-17 2009-08-12 皇家飞利浦电子股份有限公司 Display device
CN101630067A (en) * 2008-07-17 2010-01-20 夏普株式会社 Display
TW201135322A (en) * 2010-04-07 2011-10-16 J Touch Corp Structural improvement of three-dimensional image imaging device
TW201144862A (en) * 2010-06-10 2011-12-16 Ind Tech Res Inst Image display
TW201235453A (en) * 2010-12-27 2012-09-01 Dainippon Ink & Chemicals Birefringent lens material used in three-dimensional image display device and method for producing birefringent lens material used in three-dimensional image display device
TW201332175A (en) * 2011-09-28 2013-08-01 Toppan Printing Co Ltd Organic el element and method of manufacturing organic el element
TW201318805A (en) * 2011-10-14 2013-05-16 Mitsubishi Rayon Co Manufacturing method of optical sheet, manufacturing method of mold for manufacturing optical sheet, electronic display device and method of mirror finishing
TW201320717A (en) * 2011-11-08 2013-05-16 Unique Instr Co Ltd Method of displaying 3D image
CN103293689A (en) * 2013-05-31 2013-09-11 京东方科技集团股份有限公司 Method capable of switching between different display modes and display device

Also Published As

Publication number Publication date
CN104698589A (en) 2015-06-10
CN104698589B (en) 2017-10-31
TW201523028A (en) 2015-06-16

Similar Documents

Publication Publication Date Title
KR101103463B1 (en) Three-dimensional video imaging device
US7477331B2 (en) 2D/3D display and method for forming 3D image
TWI491925B (en) A super stereoscopic vision separation element
CN102830537B (en) Color film substrate, manufacturing method thereof and display device
TWI515458B (en) A device for displaying a three-dimensional image
TWI491926B (en) A super stereoscopic vision separation element
RU2606676C2 (en) Method of creating multiview images and optical film for its implementation
CN110832381A (en) Virtual and augmented reality device with structured surface
EP2759864A1 (en) Glasses-free reflective 3D color display
CN113631990A (en) Three-dimensional display device and driving method and manufacturing method thereof
US20130314779A1 (en) Parallax barrier, and stereoscopic display apparatus comprising same
CN102662247B (en) Method for manufacturing a patterned retarder
KR20120135047A (en) Polarization module and image display apparatus
WO2018040709A1 (en) Parallax barrier, display device, and manufacturing methods thereof
US20120320457A1 (en) Polarization module and image display apparatus
TWI507735B (en) A method and apparatus for peripheral displaying 2D and 3D motion pictures
TWI505243B (en) A device that can display 2D and 3D images at the same time
CN104076591A (en) Naked eye 3D (Three-Dimension) projection system and projection screen thereof
CN106019614B (en) 3D display panel and preparation method thereof, 3D display device
US7868975B2 (en) Color filter substrate and fabricating method thereof and liquid crystal display panel
CN104423054A (en) Method and device capable of simultaneously displaying 2D (two-dimensional) image and 3D image
CN104076592A (en) Directional backlight naked eye 3D (three-dimension) projection system and 3D imaging screen thereof
CN102722033B (en) Three-dimensional display device and three-dimensional display system
TWI489150B (en) A method and apparatus for simultaneous displaying 2D and 3D images
CN202929347U (en) 3-D image print film and display apparatus applying the 3-D image print film