201243394 六、發明說明: 【發明所屬之技術領域】 本發明的實施例係有關於-種用於立體影像顯示裝置 及-種用於利職等鮮標記之立體影像顯示裝置的對準方法與系、統。 【先前技術】 立體影像顯示裝置係利用立體技術或自動立體技術來顯示犯 此 立體技術憑著介於左、右眼之間的視差、以及可用或可不崎殊眼鏡,以 得到3D效果。當利用特殊眼鏡時’由於直接射出型顯示裝置或投影機 殊眼鏡的極化方⑽變或以-分時方式來顯示出左右影像,觀看^透過極 化眼鏡或快門眼鏡觀看3D影像。以不為眼鏡之光學零件,例如,一視差屏 障(parallax barrier)或雙凸鏡片(lenticular iens)設置在顯示螢幕的前方或後 方’藉以將左影像與右影像的光軸予以離析出來。 一 在採用極化眼鏡的3D影像實施中,一極化分離元件(p〇larizati〇n 哪arati〇nelement),例如,-圖案相位差膜(retafder)必須附接於顯示面板 上。而該圖案相位麵使得顯示在顯示面板的左眼影像與右眼影像的極化 互為不相同。當利用極化眼鏡來觀看顯示於立體影像顯示裝置的3D影像 時,觀看者透過極化眼鏡的左眼濾光片感受到左眼影像極化光並透過極 化眼鏡的右眼濾光片感受到右眼影像極化光,藉此,感受出3D效果。 然而’不藉由利用極化分離元件,快門眼鏡型立體影像顯示裝置將顯 示面板上的左眼景〉像與右眼影像分別交替地顯示出,並同步於左眼影像與 右眼影像’且將快門眼鏡的左快門與右快門分別交替地予以開啟。觀看者 透過左快Η可看到左縣像’紐過右快門可看麻眼影像,藉此感受到 3D效果。僅管不需要任何極化分離元件,快門眼鏡型立體影像顯示裝置受 限於由於昂貴快門眼鏡所生的高價格。以3D影像品質觀點而言,快門眼鏡 型立體影像顯示裝置係處於劣勢,實因左眼影像與右眼影像受到以預設的 時間區間的分時所支配,相較於極化眼鏡型顯示裝置,快門眼鏡型立體影 像顯示裝置將會增加閃爍(flicker)以及3D干擾(crosstalk問題,因此,將導 致觀看疲勞感增加。該,,閃爍,,係指顯示在顯示面板上的影像的亮度在一固定 時間區間波動。該”3D干擾”係指觀看者在同一時間以單一眼睛(左眼或右眼) 201243394 感受到顯示在顯示面板上的左眼影像與右眼影像,以致於使用者感受 像部分重疊。 ~ 於快門眼鏡型立體顯示裝置,左快門與右快門的每—個必須同步於顯 示面板而電力開啟/關閉。為達此目的,快門眼鏡包含同步電路,用於將左 快門與右快⑽啟與_。關步電路包含紅外線接收電路、驅動賴切 換電路、或相_似等。據此,快門眼鏡型立體影像顯示裝置需要高價的 快門眼鏡。快門眼鏡會產生電磁輻射。 相較於决門眼鏡型立體影像顯示裝置,因為利用低價的極化眼鏡,該 極化眼鏡型立體職顯示裝置鮮有鋪,僅管需要_於顯示面板的極 化分n德魏麵立體娜齡裝置巾,錄輯與右眼影像係 同時顯示在顯示面板上,並分開成每行方式,以致於相較於藉由快門眼鏡 型顯示裝置來感受3D影像,將為較低程度的閃爍與3D干擾,如此 低觀看者所感受到的疲勞感。 圖案相位差膜可分類為眼麵案相位差臈GpRs(細pa_ 與薄膜圖案她差膜FPRs,在眼麵案她差膜GpRs卜—圖案相位差 膜形,在玻璃純上’ *在細贿她差mFpRs巾,—_相位差膜形 成在薄膜基板上。她於眼鏡圖餘位顧,薄麵案她顧具有優勢, 因為具有降低顯示面板的厚度、重量與價格的能力。因此,賴圖案相位 差膜的研發正持續不斷地進行。 在極化眼鏡型立體影像顯示裝置中,介於圖案相位差膜與顯示面板之 2對準精確度’於價格、生產率、以及3D影像品質上,具有相當大的影 響乍用。依據-種對準圖案相位差膜與顯示面板的習知方法,如第】圖所 不,對準標記ΑΜΓ至AM4’形成在顯示面板PNL上,而對準標記至 細則形成在圖案相位差媒PR上,並且顯示面板pNL附接於圖案相位差 、上同時顯示面板PNL與圖案相位差膜PR互相對準,以致沿著一垂 直方向對準標記AM1至AM4與對準標記ΑΜΓ至AM4,會合。 、需要一各別程序來製造圖案相位差膜pR,以在圖案相位差膜pR上形 成對準標記AM1至AM4。 、、,S圖案相位差膜PR的基板(或薄膜)保持固定時,對準標記^丨至八^ 必須形成,而圖案相位差膜PR的製造程序不能連續地予以實施,如此,將 201243394 導致程序時間的延遲。 為了將左眼影像與右眼影像之極化特性予以區分,圖案與對準桿圮 AM1至AM4 _起形成在圖案相位差膜PR上,並相對於顯示面板&的 像素。介於圖案相位差膜PR圖案與對準標記AM〗至之間會發生未 對準的情況。於此種情況之下,即使當圖案相位差膜!^的對準標記八]^^ 至AM4由於介於對準標記am〗至以及圖案相位差臈pR圖"案之間的 對準誤差而與顯示面板PNL的對準標記ΑΜΓ至AM4,精準對準,在圖案 相位差膜PR的圖案與顯示面板PNL的像素之間產生的對準誤差將結束。、 【發明内容】201243394 VI. Description of the Invention: [Technical Field] The embodiments of the present invention relate to an alignment method and system for a stereoscopic image display device and a stereoscopic image display device for a fresh mark such as a job System. [Prior Art] The stereoscopic image display device uses a stereoscopic technique or an autostereoscopic technique to display a stereoscopic technique with a parallax between the left and right eyes, and available or non-stable glasses to obtain a 3D effect. When special glasses are used, 'the left and right images are displayed due to the polarization (10) of the direct injection type display device or the projector lens, or the 3D image is viewed through the polarized glasses or the shutter glasses. Optical components that are not glasses, for example, a parallax barrier or lenticular iens are placed in front of or behind the display screen to isolate the optical axes of the left and right images. In a 3D image implementation using polarized glasses, a polarization separation element, for example, a pattern retarder (retafder) must be attached to the display panel. The phase plane of the pattern is such that the polarizations of the left eye image and the right eye image displayed on the display panel are different from each other. When the polarized glasses are used to view the 3D image displayed on the stereoscopic image display device, the viewer perceives the polarized light of the left eye image through the left eye filter of the polarized glasses and feels through the right eye filter of the polarized glasses. The polarized light is imaged to the right eye, thereby experiencing a 3D effect. However, 'by the use of the polarization separation element, the shutter glasses type stereoscopic image display device alternately displays the left eye view image and the right eye image on the display panel, respectively, and is synchronized with the left eye image and the right eye image' and The left shutter and the right shutter of the shutter glasses are alternately opened. The viewer can see the left-handed image through the left-handed ’. The shutter glass type stereoscopic image display device is limited to a high price due to expensive shutter glasses, although it does not require any polarization separation elements. From the viewpoint of 3D image quality, the shutter glasses type stereoscopic image display device is in a disadvantage, because the left eye image and the right eye image are subject to the time division of the preset time interval, compared to the polarized glasses type display device. The shutter glasses type stereoscopic image display device will increase flicker and 3D interference (crosstalk problem, and therefore, the viewing fatigue will increase. This, flicker, refers to the brightness of the image displayed on the display panel. Fixed time interval fluctuation. The “3D interference” means that the viewer perceives the left eye image and the right eye image displayed on the display panel with a single eye (left eye or right eye) 201243394 at the same time, so that the user feels like Partially overlapping. ~ For shutter glasses type stereoscopic display devices, each of the left and right shutters must be synchronized to the display panel and the power is turned on/off. For this purpose, the shutter glasses contain a synchronization circuit for the left shutter and the right Fast (10) and _. The step circuit includes an infrared receiving circuit, a driving circuit, or the like. According to this, the shutter glasses type stereo image The display device requires high-priced shutter glasses. The shutter glasses generate electromagnetic radiation. Compared with the stereoscopic image display device, the polarized glasses type stereo display device is rarely spread, because only low-cost polarized glasses are used. The tube needs to be _ the polarizing of the display panel is divided into n-dimensional surface three-dimensional nano-age device towel, and the recording and right-eye image are simultaneously displayed on the display panel, and are separated into each line so as to be compared with the shutter glasses. The type of display device to sense 3D images will have a lower degree of flicker and 3D interference, so that the fatigue felt by the viewer is low. The pattern retardation film can be classified into the eye surface phase difference 臈GpRs (fine pa_ and film pattern she The poor film FPRs, in the case of the eye, her poor film GpRs - pattern retardation film shape, in the glass pure '* in the fine bribe her poor mFpRs towel, - _ phase difference film formed on the film substrate. She in the glasses In her case, she has an advantage because she has the ability to reduce the thickness, weight and price of the display panel. Therefore, the development of the retardation film of the Lai pattern is continuously carried out. In the display device, the alignment accuracy between the pattern retardation film and the display panel has a considerable influence on the price, productivity, and 3D image quality. According to the pattern alignment film and display A conventional method of the panel, as shown in the figure, the alignment marks ΑΜΓ to AM4' are formed on the display panel PNL, and the alignment marks to the rule are formed on the pattern phase difference PR, and the display panel pNL is attached to the pattern The phase difference, the upper simultaneous display panel PNL and the pattern retardation film PR are aligned with each other such that the marks AM1 to AM4 and the alignment marks ΑΜΓ to AM4 are aligned along a vertical direction. A separate program is required to fabricate the pattern phase. The differential film pR is formed to form the alignment marks AM1 to AM4 on the pattern retardation film pR. When the substrate (or film) of the S pattern retardation film PR is kept fixed, the alignment marks must be formed, The manufacturing procedure of the pattern retardation film PR cannot be continuously performed, and thus, 201243394 causes a delay in the program time. In order to distinguish the polarization characteristics of the left-eye image from the right-eye image, the pattern and the alignment bars 圮AM1 to AM4_ are formed on the pattern phase difference film PR with respect to the pixels of the display panel & A misalignment may occur between the pattern retardation film PR pattern and the alignment mark AM. In this case, even when the pattern is out of phase with the film! ^ Alignment mark 八] ^ ^ to AM4 due to the alignment error between the alignment mark am and the pattern phase difference 臈pR map " alignment mark with the display panel PNL AM to AM4, accurate In alignment, an alignment error generated between the pattern of the pattern phase difference film PR and the pixels of the display panel PNL will end. [Content of the invention]
本發明的實施例提供用於立體影像顯示裝置的對準標記,其能、減少介 於圖案相位差膜與顯示面板之間的對準誤差,以及提供一種利用該^二 標記的對準方法與系統。 X 依據本發_-實施例,-對準標記包括形成在顯示面板的中左部分 的第一對準標記、以及形成在顯示面板的中右部分的第二對準標記。°刀 、該第-解標記_第二鱗標記的每_她含—麵圖案、 以及自該一個或多個左圖案偏移安置的一個或多個右圖案。 該第-對準標記和該第二解_與基於糊案她差膜之極化 圖案的一參考線對準。 依據本發明的一實施例,一種用於立體影像顯示裝置的對準方法包括. 尋找出_她紐的-參考線,該參考線與形成在細案她差膜的上 端與了端的多餘(dummy)圖案的其中之一相隔一預設距離;將圖案相位差 膜的該參考線與齡面板的第-解標記和第二對準標記對準;以及當該 圖案相位麵的該參考線與鶴示面板的該第—解標記與該第二對準找 記在-容許對準誤差範關對準時,將該圖案相位差膜附接於該顯示面^ 依據本發明的—實施例’―種驗立體影像顯示裝置的對準系統包括. 對準臺’支樓—_相位差膜’該_相位差膜包含形成在上 =下端的多餘圖案、以及形成在該等多餘圖案之間的—第—極化選擇圖 、二-第二極化選擇圖案;-第—影像系統’用於捕捉該圖案相位差膜的任 可個邊等多餘圖案、以及捕捉介於位在該圖案相位差膜之中央的該第一 201243394 極化選擇_與該第二極化選擇酸的—參考線;—第二對準臺,用於支撐 形成在一顯示面板的中左部分的一第一對準標記、以及形成在該顯示面板 的中右部分的-第二對準標記;―第二影像线,麟捕捉該顯示面板的該 第一對準標記與該第二對準標記的影像;一鼓(drum) ,用於接收來自該第一 對準臺的該酸她魏’並且當該圖案相位差賴該參考線與該顯示面 板的該第一對準標記和該第二對準標記在一容許對準誤差範圍内對準時, 在该第二對準臺上附接該圖案相位差膜至該顯示面板上; 以及一控制電 腦,用於分析來自該第一影像系統與該第二影像系統的影像,並且控制該 第一對準臺與該第二對準臺至少之一的啟動以及該鼓的啟動,致使該圖案 相位差膜的該參考線在該容許誤差範圍内與該顯示面板的該第一準標記和 該第二對準標記對準。 【實施方式】 現在參考本發明的具體實施例,並參考所附圖式作出詳細說明。無論 如何,相似的附圖標記在這裏用於代表相同或相似的組成部分。需要注意 的疋,如果碟定現有技術的描述可導致誤解本發明,將省略對現有技術的 5羊細描述。 第2圖為概要說明依據一實施例之立體影像顯示裝置的示意圖。 ^參照第2圖,依據一實施例的立體影像顯示裝置包括顯示面板PNL、 薄獏圖案相位差膜FPR、以及極化眼鏡PGLS。 顯示面板PNL可實際為平面顯示裝置的顯示面板,而該平面顯示裝置 例如可為場發射顯示器FED(field emission display)、電聚顯示面板PDP、有 機發光二極體OLED、或電泳顯示EPD器。 在一 2D模式中,顯示面板PNL在像素陣列上顯示出2D影像視訊資 料。在一 3D模式中,顯示面板PNL在像素陣列中的每行上分隔出互相的 左眼影像與右眼影像,並同時顯示出該左眼影像與該右眼影像。 薄膜圖案相位差膜FPR附接至顯示面板PNL上。在薄膜圖案相位差獏 FpR中’第一極化選擇圖案PR1的光軸垂直於第二極化選擇圖案PR2的光 軸。在薄膜圖案相位差膜FPR中,第一極化選擇圖案pR1與第二極化選擇 圖案PR2交替安置。第一極化選擇圖案PR1延遲顯示在顯示面板PNL之奇 201243394 數線的左眼影像(或右眼影像)的光線,並傳送第一極化光的光線。第二極化 選擇圖案PR2延遲顯示在顯示面板PNL之偶數線的右眼影像(或左眼影像) 的光線,並將傳送第二極化光的光線。第一極化光為圓極化(circularly polarized)光或線性極化(linearly polarized)光,而第二極化光為圓極化光或線 性極化光,第二極化光的光軸係垂直於第一極化光的光軸。 極化眼鏡PGLS包含左眼濾光片與右眼濾光片。左眼濾光片具有與薄 膜圖案相位差膜FPR之第一極化選擇圖案PR1的光軸為相同的光軸。右眼 濾光片具有與薄膜圖案相位差膜FPR之第二極化選擇圖案PR2的光軸為相 同的光軸。因此,觀看者透過極化眼鏡PGLS的左眼濾光片僅看到顯示在 左眼影像的像素,並且透過極化眼鏡PGLS的右眼濾光片僅看到顯示在右 眼影像的像素,致使產生雙眼視差(binocularparallax),因而,使得觀看者 感受到3D效果。 第3圖為說明依據一實施例之對準立體影像顯示裝置的方法。 依據於第3圖所說明的方法,不具有對準標記的薄膜圖案相位差膜FpR 將以對準標記AK1至AK6與顯示面板PNL對準。多個對準標記可被稱為 對準記號(align marking)。 如第4圖所示,薄膜圖案相位差膜FPR包含第一極化選擇圖案pR1與 第二極化選擇圖案PR2,用於互相分開左眼影像的極化光(亦可視為“左眼 影像極化光),以及分開右眼影像的極化光(亦可視為“右眼影像極化光,,)。 第一極化選擇圖案PR1與第二極化選擇圖案PR2面對顯示面板pNL的像素 陣列。顯示面板PNL的像素陣列包含具有顯示2D或3D影像之像素的顯示 區域。 ”〆 第-極化選擇圖案PR1與第二極化選擇圖案pR2互相具有不同的光 軸’藉由-預設相位值鱗遲人射光_位,並料相位延遲的光線作為 極化光’極化光的光祕互相垂直,gj此,使得左眼影像與右眼影像在極 化特性上互相不同。舉例言之’第―極化選擇圖案pR1具有第一光轴,並 面對顯示破PNL之像鱗觸奇麟,簡來自輕叙雜極化光的 相位延遲波長,麟_摊樣_為第—極化光的魏(或右眼)光 線。第二極化選擇圖案PR2具有垂直於第—光轴的第二光轴,並面對顯示 面板PNL讀料躺偶錄,靖來自輪線之線雜化光的相位延遲 201243394 1/4波長,並傳送顯示在偶數線作為第二極化光的右眼(或左眼)光線。 ,據本發明的-實關,當齡面板PNL之像素陣列巾的線數量為 ’是-偶數)時,藉由加上第—極化選擇圖案pR1與第二極化選擇圖案 PR2二者’於薄膜圖案相位差膜FpR的線數量可為N。依據本發明的一實 施例,第一極化選擇圖案PR1或第二極化選擇圖案pR2的數量是抑2。 依據本發_[實酬’當顯示面板肌之⑽_的線數量為N 時,藉由加上第一極化選擇圖案PR1與第二極化選擇圖案pR2二者,於薄 膜圖案FPR的線數可為N+1。於此情況,第一極化選擇圖案观與第二極 化獅圖案PR2的數量,其一可為N/2,而另一則為N/2+1。舉例而言,第 極化選擇圖案PR1的數量為N/2加上〖’而第二極化選擇圖案pR2的數 量則為N/2。可選地’第二極化選擇圖案pR2的數量為N/2加上卜而第一 極化選擇圖案PR1的數量則為N/2。 *薄膜贿相位差臈FPR進—步包含上衫餘區域以及下面多餘區域。 薄膜圖案她聽FPR的該上面?餘區域與鮮面多餘區域至少之一包含 多餘圖案DUM1與DUM2。當將薄賴案相位差膜FPR與顯示面板肌 對準時,多餘圖案DUM1與DUM2作為參考圖案,用於識別薄膜圖案相位 差膜fPR2的上面多餘區域與下面錄區域。多餘贿腿^與〇觀2面 對顯示面板PNL之像素陣列區域以外的非顯示區域巧而,多餘圖案Dum 與DUM2不會面對像素陣列中的像素。 多餘圖案DUM!與DUM2分別形成在薄膜圖案相位細FpR的上面 多餘區域與下面多餘區域。多餘圖卽麵與·^的每—個具有相同於 第-極化選擇圖案PR1與第二極化選擇_pR2的每—個的寬度的寬度, 或具有不同於第-極化選擇圖案PR1與第二極化選擇圖案pR2的每一個的 寬度的寬度,細驗胃區別贿於顯示面板之像鱗顺域的第一極化 選擇圖案PR1與第二極化選擇圖案PR2。 第4圖為說明多餘圖案DUM1與DUM2的寬度大於極化選擇圖案pRi 與PR2的寬度的-實施例。然而’本發明的該等實施例並非僅限於此。舉 例而言丄多餘圖案DUM1與0而2的每一個可具有一個或多個圖案,而所 具有的母-個圖案具有相同於第—極化選擇圓案pR1與第二極化選擇 PR2的寬度的寬度。依據本發明的—實施例,多餘圖案〇υΜι與腺^分 201243394 別具有大於如第4圖所示之第—極化 PR2的每—個的寬度的寬度A與A,案Pf與第二極化選擇圖案 分別具有小於第-極化選擇圓荦pR1 H,夕餘圖案D刪與〇麵 寬度的寬度A與A,極化選擇贿阳的每一個的 荦PR2 Μ第化選擇聽PR1與第二極化選擇圖 二:「t而第二多餘圖案_2形成在薄膜圖案相位 PR? ^ ί ί案f刪與D〇M2並非藉由與用於製造極化選擇圖案PR1與 ^的製造程序分開的製造程序來形成。然,多餘圖案麵】與〇画藉 =如同於極化選擇圖案PR1與PR2的製造方法財法與極化選擇圖案pRi 、PR2 -起形成。因此,依據本發明的該等實施例,藉由檢查薄膜圖案相 位差膜FPR的多餘_ DUM1與D職,可㈣識別出極化選擇圖案咖 與PR2之對準偏移的程度。 為易於區別出薄膜圖案相位差膜FPR的上面多餘區域與下面多餘區 域,第-多餘圖案DUM1的極化特性可相同於或不同於第二多餘圖案 DUM1的極化特性。因此’本發明的一實施例可認出介於多餘圖案汉侃卜 DUM2以及極化選擇圖案PIU、PR2之間的極化及/或寬度的差異,以識別 出多餘圖案DUM卜DUM2與極化選擇圖案PR1、PR2的不同。 依據本發明的一實施例,為了易於區別薄膜圖案相位差膜FpR的上面 多餘區域與下面多餘區域,形成在圖案相位差膜FPR上端的第一多餘圖案 DUM1的寬度A可設為不同於形成在圖案相位差膜FPR下端的第二多餘圖 案DUM2的寬度A’。舉例言之’第一多餘圖案DUM1的寬度A可大於或 小於第二多餘圖案DUM2的寬度A’。因此,藉由確認出介於多餘圖案 DUM1、DUM2與極化選擇圖案PIU、PR2之間的極化及/或寬度的不同, 多餘圖案DUM卜DUM2與極化選擇圖案PR1、PR2可予以區別出來。 在薄膜圖案相位差膜FPR中,介於多餘圖案DUM1或DUM2與參考 線CTL之間的距離預設為用於設計薄膜圖案相位差膜FPR的因素。因此, 藉由識別出多餘圖案DUM1與DUM2的位置,可得知位於離開多餘圖案 DUM1與DUM2 —預設距離的參考線CTL的位置。當薄膜圖案相位差膜 201243394 FPR與顯示面板PNL對準時,參考線ctl為介於在薄膜圖案相位差膜FpR 之中央的第一極化選擇圖案PR1與第二極化選擇圖案pR2與位於在顯示面 板PNL之中央的對準標記AK2、AK5之間的分界線。薄膜圖案相位差臈 FPR的參考線CTL並非藉由與極化選擇圖案PR1與PR2的製造程序分開的 另一程序來形成,而是與極化選擇圖案PR1與?112 一起形成。 當薄膜圖案相位差膜FPR與顯示面板PML對準時,薄膜圖案相位差膜 FPR的參考線CTL對準於顯示面板pnl的對準標記AK1至AK6。因而, 無須在薄膜圖案相位差膜FPR形成分隔對準標記。 參照第3圖與第5圖,顯示面板PNL包含顯示2D/3D影像的像素陣列、 以及在像素陣列之外的周圍部分的遮光屏(bezel)區域。遮光屏區域為不具有 像素的非顯示區域,並包含黑色矩陣BM(BlackMatrixes)。遮光屏區域^含 在顯不面板之二個相對側面的上面、十央、以及下面部分的六個位置的對 準標記AK1至AK6。依據本發明的一實施例,上面與下面對準標記(亦即, Αία、AK3、AK4、與AK6)可從對準標記AK1至AK6中予以省略。 形成在顯示面板PNL的左遮光屏區域的左對準標記八尺丨至ak3、以 及形成在顯示面板PNL的右遮光屏區域的右對準標記至設計為 具有不同圖案形狀,以致左側與右側可直覺並易於識別出來。對準標記八^】 至ΑΚ6包含與像素陣列中之黑色矩陣圖案同時予以圖案化的對準圖案,並 且如第6Α圖至第W圖所示’可形成具有不同圖案的對準圖案。於本發明 的實施例中,一面板參考線CTL_PNL藉由一虛線予以表示出來。 第6A圖與第6B圖為說明依據實施例的一些對準標記的放大平面圖, 其中’第6A圖顯示第二對準標記AK2 ’而第圖則顯示第五對準七己 ΑΚ5。左㈣轉記ΑΚ1 ^ ΑΚ3的每—個具有實質上鮮二解標^船 相同的圖案。右側解標記ΑΚ4至ΑΚ6的每一個具有實質上五 記ΑΚ5相同的圖案。 』千細 包含左側對準圖案51與 參照第6Α圖與第6Β圖,第二對準標記ακ〗 右側對準圖案52。 左側對準圖案51包含用於指出與橫過顯示面板pNL中央部分之 考線CTL—PNL的距離的記號。左側對準圖㈣包含2一記號、以及 記號,該20μιη記號係用於指出離面板參考線CTL一pNL的距離為2〇叫^的 201243394 位置,而該40μηι記號係用於指出離面板參考線CTL_pNL的距離為4〇^m 的位置。面板參考、線CTL—PNL並非形成在對準標記趣至鳩内。面板 參考線CTL_PNL以-_電腦料㈣先調置賴能被贿出來,並當薄 賴案相位舰FPR _示雜pnl解時,可在與控制電腦連接的監視 器上與由影像系統所捕捉的對準標記的影像一起被顯示出來。 右側對準随52包含自左順相案5丨之記號以預設麟而予以離 開或偏移的記號。右側對準圖案52包含10μπι記號、3〇μιη記號、以及5〇μιη 記號,該ιομιη記號係用於指出離面板參考線CTL一pNL的距離為1〇μιη的 位置,該30μιη記號係用於指出離面板參考線CTL pNL的距離為3〇μιη的 位置,而該50μηι記號係用以指出離面板參考線CTL—pNL的距離為 的位置。 第五對準標記AK5 _案雜直對稱於第二對轉記術的圖案。對 準標記AK5包含左側對準圖案54與右側對準圖案53。 〃 左側對準圖案54包含用於指出離面板參考線CTL_PNL的距離的記 號。左側對準圖案54包含ΙΟμιη記號、3〇μηι記號、以及5〇μιη記號,該 ΙΟμπι記麟帛純麟φ板參考線CTL—隱的距離為丨㈣的位置該 3〇μιη記號係用於指出離面板參考線CTL—pNL的距離為3〇μιη的位置,而 該50μΐη記號係用於指出離面板參考線CTL pNL的距離為5〇醉的位置。 右侧對準圖案53包含自左側對準圖案54之記號以預設距離而予以離 開或偏移的記號。右側對準_ 53包含2(¥m記號、以及卿m記號,該 2〇μηι記號係用於指出離面板參考線CTL_pNL的距離為2〇gm的位置而 40μηι記號則用於指出離面板參考線cTL_PNL的距離為4〇μιη的位置。 如第6Α圖與第6Β圖所示,緊鄰著各個標記八]^至八尺6的對準圖案 51、52、53、54的記號,可標示出用於指出離面板參考線CTL_PNL之距 離的數字與單位。如第6A圖與第6B圖所示,在對準圖案5卜52或53、 54以ΙΟμιή間隔提供的情形下’當將薄膜圖案相位差膜FpR與顯示面板肌 對準時’對準的誤差可得知為每10帅。對準圖案51、52、53、與54的記 號並非限疋為如第6Α圖與第6Β圖所示。舉例而言,左對準圖案5ι、% 與右對準圖案52、53可以5μηι間隔予以形成,或如第7Α圖與第7Β圖所 不,以30μπι間隔予以形成。於其他實施例中,可以其他間隔距離來實施。 11 201243394 如第8A圖與第SB圖所示’當薄麵案相位差膜FpR的參考線c几 與面板參考線CTL—PNL會合時,齡面板pNL縣賴_ 膜FPR對準。 左 可允許-對準邊緣,對於3D影像而言,可保障影像品質高於所預定的 水準。對準邊緣可設定缺—料解黯細AMR 0,為使帛者不會感 夂到低於預设級別之3D影像品質降低之可允許的範圍。實驗上,容許對^ 誤差範圍AMR包含離理想對準情況為+3_或_3〇卿的一區域。因此:當 薄膜圖案她細FPR的解線CTL於容許解誤絲圍顯對準時田 可決定出條細®案相位絲舰與麻面板肌之_對準情況是良 好的。 第7A圖與第7B圖為說明依據實施例的一些對準標記的展開平面圖, 其中,第7A圖顯示第二對準標記能2,以及第7B圖顯示第五對準標記 AK5。左側對準標記AK1至Ak3的每—個具有實質上相同於第二對準卜己 AK2的圖案。右側對準標記AK4至施的每一個具有實質上相同於第^對 準標記AK5的圖案。 參照第7A圖與第7Βϋ,第二對票記編包含左側對準圖案61與 右側對準圖案62。 ' “左側對準圖案Μ包含一單一圖案。左側對準圖案的寬度(或厚度) 係^自面板參考線CTL_PNL聽許對準誤差範圍AMR最上端的距離。舉 例言之,左側對準圖案61的寬度為距面板參考線cTL_PNL+3(^m。 右側對準圖案62包含-單-圖案,該單—圖案的水平軸係偏移自左側 對準圖案61的水平軸。右側對準圖t &的寬度(或厚度)係為自面板參考線 CTL—PNL到谷許對準誤差範圍amr最下端的距離。舉例言之,右側對準 圖案62的寬度為距面板參考線ctljpj^ ·3〇μηι。 第五對準圖案ΑΚ5的圖案係垂直對稱於第二對準標記从2的圖案。第 五對準圖案ΑΚ5包含左鑛準圖案64、錢右靖準圖案63。 左側對準圖案64包含一單一圖案。左側對準圖案Μ的寬度(或厚度) 係為自面板參考線CTL_PNL到容許對準誤差範圍最下端的距離。舉 例言之,左側對準圖案64的寬度為距面板參考線cTL_pNL _3〇μπι。 12 201243394 右側對準圖案63包含—單一圖案’該單一圖案 對準圖案64的水平軸。右側對準„ 63的寬度(或 = CTL—P動__差細AMR最烟輯。 圖案63的寬度為距面板參考線CTL—pNL +3〇陣。 如第10Α圖與第10Β圖所示,當面板參考線CTL—隱會合薄膜圖案 相位差膜FPR的參树CTLa$,齡硫肌㈣ ^ 理想地對準。如第7A與第7B圖所示,當左側對準圖案61、w右側 對準圖案62、63的每-個係戦為-單—_時,於左崎準標記紹 至ΑΚ3、以及糊解敎趣至編的每-财直覺並級確定是否 f-對準錯誤介於_圖案相位魏FPR與齡面板肌之間。舉例而 言,當薄膜圖案相位差膜FPR的參考線CTL自任一個第二對準標記似 的左側對準圖案61、第五對準標記湯的左側對準圖案64、以及第二對 準標記Ak2的賴鮮圖# 62、紅解標記奶的右靖箱案:偏 離時,可確定的是薄膜圖案相位差膜FPR與顯示面板肌縣良好對準。 反之’當薄膜圖案相位差膜FPR的參考線CTL並未自任一個第二對準广己 的左側對準圖案61、第五對準標記从5的左側對準圖案⑽、以及 二對準標記Ak2的右側對準圖案62、第五對準標記船的右側對準圖案 63偏離時,可確定的是薄膜圖案相位差膜FPR與顯示面板PNL &好對準。 依據本發明的一實施例,多餘圖案DUM1與DUM2其中之一的位置被 確定,而薄顚案她魏FPR的參考線CTL的位置係取決於離多餘圖案 DUM1、DUM2的距離,該距離為介於多餘圖案DUM卜DUM2與薄膜圖 案相位差膜FPR的參考線CTL之間的距離。依據本發_ —實施例',薄膜 圖案相位« FPR的參考線ctl係與職在齡雜PNL的中央部分之 二個對立側的第二對準圖案AK2、第五對準圖案AK5對準,藉此,使薄膜 圖案相位差膜FPR與顯示面板pnl對準。 依據本發明的一實施例,薄膜圖案相位差膜FPR的多餘圖案DUMl與 DUM2係作為用於評估薄膜圖案相位差膜FpR之參考線所需的參考圖案了 因此,無須將位在顯示面板PNL的最上與最下周圍部分的對準標記八丨以、 AK3、AK4、以及AK6與薄膜圖案相位差膜FPR的多餘圖案DUM1、DUM2 正確地對準。依據本發明的一實施例,在安置薄膜圖案相位差膜FpR的參 13 201243394 考線CTL及顧示雜PNL時,使得_麵目位魏舰的參考線ctl ,在^對準;^ 5己編與第五對準標記船的中央,而薄膜 FPR與顯示面板PNL對準,並互相連接在一起。Embodiments of the present invention provide an alignment mark for a stereoscopic image display device capable of reducing alignment errors between a pattern retardation film and a display panel, and providing an alignment method using the same system. X According to the present invention, the -alignment mark includes a first alignment mark formed at a middle left portion of the display panel, and a second alignment mark formed at a middle right portion of the display panel. The knives, the first-de-marker_the second scale mark each _the face-and-face pattern, and one or more right patterns disposed offset from the one or more left patterns. The first alignment mark and the second solution are aligned with a reference line based on the polarization pattern of the differential film of the paste. According to an embodiment of the present invention, an alignment method for a stereoscopic image display device includes: finding a _ her-new-reference line, and the reference line and the upper end of the thin film formed on the thin film are redundant (dummy One of the patterns is separated by a predetermined distance; the reference line of the pattern retardation film is aligned with the first and second alignment marks of the age panel; and the reference line and the crane when the pattern phase plane The first solution mark of the display panel and the second alignment mark are attached to the display surface when the alignment error tolerance is aligned. According to the embodiment of the present invention The alignment system of the stereoscopic image display device includes: an alignment table 'a branch--phase difference film'. The retardation film includes an extra pattern formed at the upper=lower end, and a pattern formed between the redundant patterns. a polarization selection map, a second-second polarization selection pattern; a first-image system for capturing an unnecessary pattern such as any side of the pattern retardation film, and capturing a phase difference film in the pattern Central's first 201243394 polarization selection _ with a second polarization selecting acid-reference line; a second alignment stage for supporting a first alignment mark formed in a middle left portion of the display panel, and a middle right portion formed in the display panel - a second alignment mark; a second image line, the image capturing the first alignment mark and the second alignment mark of the display panel; a drum for receiving the first alignment stage The acid and the pattern are different when the reference line is aligned with the first alignment mark and the second alignment mark of the display panel within an allowable alignment error range, in the second pair Attaching the pattern retardation film to the display panel on the stage; and a control computer for analyzing images from the first image system and the second image system, and controlling the first alignment stage and the first The activation of at least one of the two alignment stages and the activation of the drum, such that the reference line of the pattern retardation film is aligned with the first alignment mark and the second alignment mark of the display panel within the tolerance range . [Embodiment] Reference will now be made in detail to the preferred embodiments embodiments In any event, similar reference numbers are used herein to refer to the same or similar components. It should be noted that if the description of the prior art can lead to misunderstanding of the present invention, a detailed description of the prior art will be omitted. FIG. 2 is a schematic view schematically showing a stereoscopic image display device according to an embodiment. Referring to FIG. 2, a stereoscopic image display device according to an embodiment includes a display panel PNL, a thin patterned retardation film FPR, and polarized glasses PGLS. The display panel PNL may be actually a display panel of a flat display device, and the flat display device may be, for example, a field emission display (FED), an electro-polymer display panel (PDP), an organic light-emitting diode OLED, or an electrophoretic display EPD. In a 2D mode, the display panel PNL displays 2D videovisual data on the pixel array. In a 3D mode, the display panel PNL separates each other's left eye image and right eye image on each line in the pixel array, and simultaneously displays the left eye image and the right eye image. The thin film pattern retardation film FPR is attached to the display panel PNL. In the film pattern phase difference 貘 FpR, the optical axis of the first polarization selection pattern PR1 is perpendicular to the optical axis of the second polarization selection pattern PR2. In the thin film pattern phase difference film FPR, the first polarization selection pattern pR1 and the second polarization selection pattern PR2 are alternately disposed. The first polarization selection pattern PR1 delays the light of the left eye image (or the right eye image) displayed on the odd line 201243394 of the display panel PNL, and transmits the light of the first polarized light. The second polarization selection pattern PR2 delays the light of the right eye image (or the left eye image) displayed on the even line of the display panel PNL, and transmits the light of the second polarized light. The first polarized light is circularly polarized light or linearly polarized light, and the second polarized light is circularly polarized light or linearly polarized light, and the optical axis of the second polarized light It is perpendicular to the optical axis of the first polarized light. The polarized glasses PGLS include a left eye filter and a right eye filter. The left-eye filter has the same optical axis as the optical axis of the first polarization selection pattern PR1 of the film pattern phase difference film FPR. The right eye filter has the same optical axis as the optical axis of the second polarization selection pattern PR2 of the thin film pattern phase difference film FPR. Therefore, the viewer sees only the pixels displayed in the left-eye image through the left-eye filter of the polarized glasses PGLS, and the right-eye filter that passes through the polarized glasses PGLS sees only the pixels displayed in the right-eye image, resulting in A binocular parallax is generated, thus making the viewer feel the 3D effect. FIG. 3 is a diagram illustrating a method of aligning a stereoscopic image display device in accordance with an embodiment. According to the method illustrated in Fig. 3, the thin film pattern phase difference film FpR having no alignment mark will be aligned with the display panel PNL with the alignment marks AK1 to AK6. Multiple alignment marks can be referred to as align markings. As shown in FIG. 4, the thin film pattern retardation film FPR includes a first polarization selection pattern pR1 and a second polarization selection pattern PR2 for separating polarized light of the left eye image from each other (it can also be regarded as "left eye image pole" Light, as well as polarized light that separates the image of the right eye (can also be considered as "right-lens image polarized light,"). The first polarization selection pattern PR1 and the second polarization selection pattern PR2 face the pixel array of the display panel pNL. The pixel array of the display panel PNL includes a display area having pixels displaying 2D or 3D images. The first polarization-selective pattern PR1 and the second polarization selection pattern pR2 have different optical axes from each other' by the preset phase value, and the phase-delayed light is used as the polarized light. The light of the light is perpendicular to each other, so that the left eye image and the right eye image are different in polarization characteristics. For example, the 'first polarization selection pattern pR1 has a first optical axis and faces the display broken PNL. Like the scales of Qilin, Jane comes from the phase delay wavelength of the light-polarized light, and the __sample is the Wei (or right eye) ray of the first-polarized light. The second polarization selection pattern PR2 has a perpendicular The second optical axis of the optical axis, and facing the display panel PNL reading material lying, the phase of the hybrid light from the line of the line is delayed by 201243394 1/4 wavelength, and transmitted in the even line as the second pole The right eye (or left eye) light of the light, according to the present invention, when the number of lines of the pixel array towel of the age panel PNL is 'yes-even number', by adding the first polarization selection pattern The number of lines of both the pR1 and the second polarization selection pattern PR2 in the thin film pattern phase difference film FpR may be N. According to an embodiment of the present invention, the number of the first polarization selection pattern PR1 or the second polarization selection pattern pR2 is YES. According to the present invention, when the number of lines of the display panel muscle (10)_ is N, By adding both the first polarization selection pattern PR1 and the second polarization selection pattern pR2, the number of lines in the thin film pattern FPR may be N+1. In this case, the first polarization selection pattern view and the second pole The number of the lion pattern PR2 may be N/2 and the other is N/2+1. For example, the number of polarization selection patterns PR1 is N/2 plus 〖' and the second polarization The number of selection patterns pR2 is then N/2. Alternatively, the number of second polarization selection patterns pR2 is N/2 plus and the number of first polarization selection patterns PR1 is N/2. The phase difference 臈FPR step includes the remaining area of the upper shirt and the remaining area below. The thin film pattern she listens to the top of the FPR, and at least one of the remaining area and the excess area of the fresh surface contains the redundant patterns DUM1 and DUM2. When the film FPR is aligned with the display panel muscle, the excess patterns DUM1 and DUM2 are used as reference patterns for identifying the film pattern retardation film fPR2. The excess area and the area below are recorded. The excess bribes and the view 2 face the non-display area outside the pixel array area of the display panel PNL, and the redundant patterns Dum and DUM2 do not face the pixels in the pixel array. And DUM2 are respectively formed on the upper unnecessary region of the thin film pattern phase fine FpR and the redundant region below. Each of the redundant image planes has the same color as the first polarization selection pattern PR1 and the second polarization selection pattern _pR2. The width of each width, or the width of each of the widths of the first polarization selection pattern PR1 and the second polarization selection pattern pR2, the difference between the stomach and the scale of the display panel A polarization selection pattern PR1 and a second polarization selection pattern PR2. Fig. 4 is a view showing an embodiment in which the widths of the excess patterns DUM1 and DUM2 are larger than the widths of the polarization selection patterns pRi and PR2. However, the embodiments of the invention are not limited thereto. For example, each of the redundant patterns DUM1 and 0 and 2 may have one or more patterns, and the mother-pattern has the same width as the first polarization selection circle pR1 and the second polarization selection PR2. The width. According to the embodiment of the present invention, the excess pattern 〇υΜι and the gland portion 201243394 have a width A and A greater than the width of each of the first polarization PR2 as shown in Fig. 4, the case Pf and the second pole The selection pattern has a smaller than the first polarization selection circle 荦pR1 H, the outer pattern D is deleted and the breadth width width A and A, and the polarization selects each of the 贿PR2 贿 PR2 Μ 选择 听 PR PR PR PR PR PR PR The second polarization selection diagram 2: "t and the second redundant pattern _2 is formed in the film pattern phase PR? ^ ί ί f 与 与 与 与 与 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 The program is formed by a separate manufacturing process. However, the excess pattern surface is formed as the manufacturing method and the polarization selection patterns pRi, PR2 of the polarization selection patterns PR1 and PR2. Therefore, according to the present invention In these embodiments, by checking the excess _ DUM1 and D positions of the thin film pattern retardation film FPR, (4) the degree of alignment deviation between the polarization selection pattern coffee and the PR2 can be recognized. The excess area on the upper surface of the film FPR and the excess area below, the first-excess pattern DUM1 The polarization characteristic may be the same as or different from the polarization characteristic of the second redundant pattern DUM1. Therefore, an embodiment of the present invention recognizes that between the excess pattern Hanmu DUM2 and the polarization selection patterns PIU, PR2 The difference in polarization and/or width is to identify the difference between the excess pattern DUMb DUM2 and the polarization selection patterns PR1, PR2. According to an embodiment of the present invention, in order to easily distinguish the excess area of the thin film pattern retardation film FpR The width A of the first unnecessary pattern DUM1 formed at the upper end of the pattern phase difference film FPR may be set to be different from the width A' of the second unnecessary pattern DUM2 formed at the lower end of the pattern phase difference film FPR, with the excess area below. The width A of the first redundant pattern DUM1 may be larger or smaller than the width A' of the second redundant pattern DUM2. Therefore, by confirming between the redundant patterns DUM1, DUM2 and the polarization selection patterns PIU, PR2 The difference between the polarization and/or the width, the excess pattern DUMb DUM2 and the polarization selection patterns PR1, PR2 can be distinguished. In the thin film pattern phase difference film FPR, between the excess pattern DUM1 or DUM2 and the reference line CTL distance The factor for designing the thin film pattern retardation film FPR is set. Therefore, by recognizing the positions of the excess patterns DUM1 and DUM2, the position of the reference line CTL located at a predetermined distance from the excess patterns DUM1 and DUM2 can be known. When the thin film pattern retardation film 201243394 FPR is aligned with the display panel PNL, the reference line ctl is the first polarization selection pattern PR1 and the second polarization selection pattern pR2 located at the center of the thin film pattern phase difference film FpR and is located on the display panel. The boundary between the alignment marks AK2 and AK5 at the center of the PNL. The reference line CTL of the film pattern phase difference 臈 FPR is not formed by another program separate from the manufacturing process of the polarization selection patterns PR1 and PR2, but with the polarization selection pattern PR1 and ? 112 formed together. When the thin film pattern phase difference film FPR is aligned with the display panel PML, the reference line CTL of the thin film pattern phase difference film FPR is aligned with the alignment marks AK1 to AK6 of the display panel pn1. Therefore, it is not necessary to form the separation alignment mark in the thin film pattern retardation film FPR. Referring to FIGS. 3 and 5, the display panel PNL includes a pixel array displaying 2D/3D images, and a bezel region surrounding portions of the pixel array. The blackout area is a non-display area having no pixels and includes a black matrix BM (BlackMatrixes). The shading area ^ includes alignment marks AK1 to AK6 at the six positions on the opposite sides of the panel, the tenth, and the lower portions. In accordance with an embodiment of the present invention, the upper and lower alignment marks (i.e., Αία, AK3, AK4, and AK6) may be omitted from the alignment marks AK1 to AK6. The left alignment mark formed on the left shading area of the display panel PNL is eight feet ak to ak3, and the right alignment mark formed on the right shading area of the display panel PNL is designed to have a different pattern shape, so that the left side and the right side are Intuitive and easy to identify. The alignment marks VIII to -6 include an alignment pattern which is patterned simultaneously with the black matrix pattern in the pixel array, and an alignment pattern having a different pattern can be formed as shown in Figs. 6 to W. In an embodiment of the invention, a panel reference line CTL_PNL is indicated by a dashed line. 6A and 6B are enlarged plan views illustrating some alignment marks according to an embodiment, wherein '6A shows the second alignment mark AK2' and the figure shows the fifth alignment. Each of the left (four) turn ΑΚ 1 ^ ΑΚ 3 has the same pattern as the substantially fresh two solution. Each of the right side demarcation marks ΑΚ4 to ΑΚ6 has the same pattern of substantially five ΑΚ5. 』千细 Includes the left alignment pattern 51 and the sixth and sixth diagrams, the second alignment mark ακ and the right alignment pattern 52. The left side alignment pattern 51 contains marks for indicating the distance from the test line CTL_PNL across the central portion of the display panel pNL. The left side alignment map (4) includes 2 marks and marks, which are used to indicate the distance from the panel reference line CTL-pNL to the position of the 201243394, which is used to indicate the off-screen reference line. The distance of CTL_pNL is 4〇^m. The panel reference, line CTL-PNL is not formed in the alignment mark. The panel reference line CTL_PNL can be bribed out with the -_ computer material (4), and can be captured by the imaging system on the monitor connected to the control computer when the thin-phase phase ship FPR_ indicates the pnl solution. The images of the alignment marks are displayed together. The right side alignment is marked with 52 containing the mark from the left phase of the phase to be separated or offset by the preset lining. The right alignment pattern 52 includes a 10 μπι mark, a 3〇μιη mark, and a 5〇μιη mark, which is used to indicate a position of a distance from the panel reference line CTL-pNL of 1〇μη, which is used to indicate The distance from the panel reference line CTL pNL is 3 〇 μηη, and the 50 μη ι mark is used to indicate the position of the distance from the panel reference line CTL_pNL. The fifth alignment mark AK5_ is symmetrical with respect to the pattern of the second pair of tweets. The alignment mark AK5 includes a left alignment pattern 54 and a right alignment pattern 53.左侧 The left alignment pattern 54 contains a symbol for indicating the distance from the panel reference line CTL_PNL. The left alignment pattern 54 includes a ΙΟμιη mark, a 3〇μηι mark, and a 5〇μιη mark, and the ΙΟμπι记麟帛 pure φφ plate reference line CTL—the hidden distance is the position of 丨(4). The 3〇μιη mark is used to indicate The distance from the panel reference line CTL_pNL is 3〇μηη, and the 50μΐη symbol is used to indicate the distance from the panel reference line CTL pNL to a position of 5 〇 drunk. The right alignment pattern 53 includes marks that are separated or offset from the mark of the left alignment pattern 54 by a predetermined distance. The right side alignment _ 53 contains 2 (¥m mark, and the mm mark, which is used to indicate the position of the distance from the panel reference line CTL_pNL of 2〇gm and the 40μηι mark is used to indicate the off-screen reference line. The distance of cTL_PNL is 4〇μηη. As shown in Fig. 6 and Fig. 6, the marks of the alignment patterns 51, 52, 53, 54 adjacent to each mark VIII]^ to 8 feet 6 can be marked. The number and unit indicating the distance from the panel reference line CTL_PNL. As shown in FIGS. 6A and 6B, in the case where the alignment pattern 5 52 or 53, 54 is provided at intervals of ΙΟ μή, when the film pattern is phase-difference When the film FpR is aligned with the display panel muscle, the error of alignment can be known as every 10 handsome. The marks of the alignment patterns 51, 52, 53, and 54 are not limited to those shown in Fig. 6 and Fig. 6. For example, the left alignment patterns 5, % and the right alignment patterns 52, 53 may be formed at intervals of 5 μm, or may be formed at intervals of 30 μm as in the seventh and seventh drawings. In other embodiments, other Interval distance is implemented. 11 201243394 as shown in Figure 8A and Figure SB When the reference line c of the thin surface retardation film FpR meets the panel reference line CTL-PNL, the age panel pNL county _ _ film FPR alignment. Left allowable - align the edge, for 3D images, the image is guaranteed The quality is higher than the predetermined level. The alignment edge can be set to the defect AMR 0, so that the latter will not feel the allowable range of the 3D image quality lower than the preset level. Experimentally, Allowance for the error range AMR contains a region from the ideal alignment of +3_ or _3〇. Therefore: when the film pattern of her fine FPR line CTL is allowed to be misaligned, Tian can decide The Alignment of the Phase II and the slab muscles is good. Figures 7A and 7B are expanded plan views illustrating some alignment marks according to an embodiment, wherein Figure 7A shows the second pair The quasi-marker 2, and the 7B diagram show the fifth alignment mark AK5. Each of the left alignment marks AK1 to Ak3 has a pattern substantially the same as the second alignment AK2. The right alignment mark AK4 to Shi Each of them has a pattern substantially the same as the second alignment mark AK5. A and seventh, the second pair of coupons includes a left alignment pattern 61 and a right alignment pattern 62. 'The left alignment pattern Μ includes a single pattern. The width (or thickness) of the left alignment pattern is The panel reference line CTL_PNL listens to the uppermost distance of the alignment error range AMR. For example, the width of the left alignment pattern 61 is from the panel reference line cTL_PNL+3 (^m. The right alignment pattern 62 includes a - single-pattern, The horizontal axis of the single-pattern is offset from the horizontal axis of the left alignment pattern 61. The width (or thickness) of the right alignment map t & is from the panel reference line CTL-PNL to the valley alignment error range amr The distance from the lower end. For example, the width of the right alignment pattern 62 is from the panel reference line ctljpj^ · 3〇μηι. The pattern of the fifth alignment pattern ΑΚ5 is vertically symmetrical to the pattern of the second alignment mark from 2. The fifth alignment pattern ΑΚ5 includes a left quasi-pattern 64 and a Qianyoujing pattern 63. The left alignment pattern 64 includes a single pattern. The width (or thickness) of the left alignment pattern 系 is the distance from the panel reference line CTL_PNL to the lowest end of the allowable alignment error range. For example, the width of the left side alignment pattern 64 is from the panel reference line cTL_pNL_3〇μπι. 12 201243394 The right alignment pattern 63 includes a single pattern 'the single pattern aligns the horizontal axis of the pattern 64. Align the width of „ 63 on the right side (or = CTL—P _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ When the panel reference line CTL-hidden confluence film pattern retardation film FPR ginseng CTLa$, age sulfur muscle (4) ^ is ideally aligned. As shown in Figures 7A and 7B, when the left side alignment pattern 61, w right When each of the alignment patterns 62, 63 is - single - _, in the left-handed mark to ΑΚ 3, and the misunderstanding to the editor's per-intuition level to determine whether the f-alignment error Between the pattern phase Wei FPR and the age panel muscle. For example, when the reference line CTL of the film pattern phase difference film FPR is from any one of the second alignment marks, the left alignment pattern 61, the fifth alignment mark soup The left side alignment pattern 64, the second alignment mark Ak2, and the right solution box of the red solution mark milk: when deviating, it can be determined that the film pattern retardation film FPR is good with the display panel muscle county Conversely, when the reference line CTL of the film pattern retardation film FPR is not from any of the second alignments, the left alignment pattern 61, When the five alignment marks are deviated from the left side alignment pattern (10) of 5, the right side alignment pattern 62 of the two alignment marks Ak2, and the right side alignment pattern 63 of the fifth alignment mark ship, the film pattern retardation film can be determined. The FPR is aligned with the display panel PNL & In accordance with an embodiment of the present invention, the position of one of the redundant patterns DUM1 and DUM2 is determined, and the position of the reference line CTL of the Wei FPR of the thin file is dependent on the excess The distance between the patterns DUM1, DUM2, which is the distance between the excess pattern DUMb DUM2 and the reference line CTL of the thin film pattern phase difference film FPR. According to the present invention, the reference line of the film pattern phase «FPR The ctl is aligned with the second alignment pattern AK2 and the fifth alignment pattern AK5 on the opposite sides of the central portion of the age-old PNL, whereby the thin film pattern phase difference film FPR is aligned with the display panel pn1. According to an embodiment of the present invention, the unnecessary patterns DUM1 and DUM2 of the thin film pattern phase difference film FPR are used as reference patterns required for evaluating the reference lines of the thin film pattern phase difference film FpR, and therefore, it is not necessary to be positioned on the display panel PNL. Top and most The alignment marks of the lower peripheral portion are correctly aligned with the excess patterns DUM1, DUM2 of the thin film pattern retardation film FPR, AK3, AK4, and AK6. According to an embodiment of the present invention, the film pattern retardation film is disposed. FpR's reference 13 201243394 test line CTL and Gu Shi PNL, make the _ face Wei ship's reference line ctl, in the ^ alignment; ^ 5 has been programmed with the fifth alignment mark in the center of the ship, while the film FPR and The display panels PNL are aligned and connected to each other.
當薄膜圖案相位差膜FPR與顯示面板肌互相連接,而薄膜圖案相位 差膜FPR_示面板PNL處料好對科,形絲薄顧案她差膜哪 上端的第-錄_DUM1係相對於形絲顯示面板肌上端的二相對側 的第對準標„己Akl與第四對準標記从4。形成在薄膜圖案相位差膜FpR 下端的第二多餘圖案DUM2仙對於職在顯示面板狐下频二相對側 的第三對準標記AK3與第六對準標記.ak6。 第8A圖與第8B圖為說明利用如第6A圖與第6B圖所示之對準標記 與AK5使__她顧FpR與_面板肌互相簡解的情況的 «圖。第9A圖與第9B圖為說明利用如第6A圖與第6B圖所示之對準標 A AK2與AK5使薄膜圖案相位差膜FpR與顯示面板pNL互相未對準的情 況的平面圖。 參照第8A圖與帛8B圖’對準標記皿至編的每一個形成在顯示 面板PNL之不具有黑色矩陣的遮光屏區域内。依據本發明的—實施例,基 於介於薄卿案她細FPR的參雜CTL與形絲齡面板肌的記 號的距離差異’可直覺正雜得知介於薄翻案她差膜FpR與顯示面板 PNL之間未鮮的程度。此“形成在齡面板肌的記號,,可視為形成在 對準標記AK2與AK5的記號。 當溥臈圖案相位差膜FPR與顯示面板pNL對準時。若薄膜圖案相位差 膜FPR的參考線CTL係在從每一顯示面板PNL之二相對侧起的一容許對 準誤差$圍AMR内’可確認為對準情況為良好的。如第9A圖與第9B圖 所不,當薄獏圖案相位差膜FPR的參考線CTL從任一顯示面板^之二 相對側起的料對準誤絲圍AMR偏辦,可較的是解情況是不好 的。 第10A圖與第10B圖為說明利用如第7A圖與第7B圖所示之對準標記 AK2與AK5使薄膜圖案相位差膜FpR與顯示面板pNL理想對準的平面 圖。第11A圖與第11B圖為說明利用如第7A圖與第.7B圖所示之對準標記 AK2與AK5使薄膜圖案相位差膜FpR與顯示面板pnl未對準的平面圖。 201243394 參照第10A圖與第ι〇Β圖,對準標記Ακι至从6的每一個形成在顯 示面板PNL之不具有任何黑色矩陣的遮光屏區域中。依據本發明的一實施 例’基於介於薄臈圖案相位差膜FPR之參考線CTL與形成在顯示面板pNL 之記號的距離差異,可直覺正確地得知介於薄膜圖案相位差膜FpR與顯示 面板PNL之間未對準的程度。 . 如第10A圖與第10B圖所示,當薄膜圖案相位差膜FpR與顯示面板 肌對料’絲賴_位魏FPR的參考線αχ麵純板PNL的 左側對準_61、64重疊’而參考線CTL鋪示面板PNL的右側對準圖 案62、63重疊,對準誤差係在容許對準誤差範圍AMR内,而對準情況因 而可確定為良好。當薄餘位差膜FPR與顯示面板肌鮮時,薄膜 圖案相位差膜FPR的參树CTL與齡面板隱的群標記趟至編 經由影像系統而被顯示在控制電腦的監視器上。如第· _第圖所 示’當薄膜圖案相位差膜FPR的參考線CTL與顯示面板肌的左側對準 圖案61 64重疊,而參考線CTL與顯板pnl的右側對準圖案62、63 ^時’在對準標記ΑΚ2與ΑΚ5的圖案61至64中,看不到薄關案相位 差膜FPR的參考線CTL。 如第11Α圖與第ι1Β圖所示,當薄賴案相位差膜FpR的參考線c几 既不與左㈣準酸6卜64 4疊也林棚解圖案62、63 確定對準情況是不好的。 第12A圖與第12B圖為說明依據一實施例之立體影像顯 系統的示意圖》參昭第12A圄$筮14固分从_ ^ i j打千 -對準軎^ 據—實施例的對準祕包含第 統二 =4 = 至_、第二對準臺ST2、第二影像系 統VP1至VP4、鼓DR、以及控制電腦CTRI^ 第-對準臺sn吸起並抓住薄膜圖案相位差膜卿。第 ΪΞΪΤ 'fr Uyr〇b〇t) 〇 ^ 13 * ^^^CTRL „ 控制下,切自動機器於X軸與丫軸方向移 腦CTRL的控制下’第一對準臺ST1可於 絲Π川在控制電 终調整薄膜圖案相位差膜卿,以控制薄麵案相位差膜卿 15 201243394 如第13圖所示,第-影像系統W1至德包含第一影像模組衝至 第四影像模組VR4。第-影像歡衝與第二影像歡VR2捕捉薄 案相位差臈FPR的第二多餘圖案DUM2或第一多餘圖案DUM1的1相對 侧的影像,並將所捕捉的影像傳送到控制電腦CTRL。第三影像模組, VR3與第四影像模組VR4捕捉位於薄膜圖案相位差膜FpR之令央的參考線 CTL之二相對側的影像,以及捕捉鄰接於參考線CTL之第—極化選擇圓案 PR1與第二極化選擇圖案PR2的二相對側的影像,並將所捕捉到的影像傳、 送到控制電腦CTRL。因此,第一影像系統VR1至VR4捕捉固定在第一對 準臺ST1上之薄膜圖案相位差膜FPR的四邊緣,並將所捕 读 到控制電腦CTRL。 第二對準臺ST2吸起並抓住顯示面板PNL。第二對準臺ST2連接至 一 xy自動機器。如第14圖所示,在控制電腦CTRL的控制下,該巧自 動機器於X軸與γ軸方向移動第二對準臺ST2。在控制電腦ctrl的控 制下’第二對準臺ST2可於0抽方向轉動。因而,如第14圖所示,在控 制電腦CTRL的控制下,第二對準臺ST2於χ軸、丫軸、及0軸方向 最終調整顯示面板PNL ,以控制顯示面板的對準情況。 如第14圖所示’第二影像系統,至綱包含第一影像模組州至 第四影像模組VP4。第-影賴組VP1與第二影像模組vp2捕捉形成在 顯示面板PNL的上端之二相對側的對準標記规與趣的影像,或形成 在顯示面板PNL的下敵二減綱解標記紹與娜鄉像^將 所捕捉的影像傳送到控制電腦CTRL。第三影像模組W3與第四影像模組 VP4補捉形成在顯示面板隱的巾央之二姆側賴準標記船與奶 的影像,並將所補捉的影像傳送到控制電腦CTRL。因此,第二影像系統 VP1與VP4將形成在顯示面板狐上之四個對準標 一、 準臺ST2傳送至控制電腦CTRL。 郷、·生由第一對 在第-對準臺ST1與第二對準臺ST2之間提供鼓DR。鼓弧藉由在控 制電腦的控制下的-電動機而轉動,並藉由在上下(z轴方向)方向^一線^ 導引裝置(linearguidemeans)予以移動。當位於第一對準臺STi上 案相位差膜FPR與位於第二對準臺ST2上的顯示面板舰良好對準之後, 在於控制電腦CTL的控制之下,鼓DR接收來自第一對準臺奶的薄麵 201243394 案相位差膜FPR’並將薄膜圖案相位差膜FPR附接至密封在第二對準臺ST2 上的顯示面板上。鼓DR包含具有少量黏性的黏著層或黏著薄膜,致使薄膜 圖案相位差膜FPR穩固地附著於鼓DR上。 、 控制電腦CTRL依據預先設置的程式控制對準系統之所有元件的操 作,並控制介於顯示面板PNL與薄膜圖案相位差膜FpR之間的對準的整個 過程。介於多餘圖案DUM1、DUM2與薄膜圖案相位差膜FPR的參考線CTL 之間的距離可預存在控制電腦CTRL中。 基於接收自第一影像系統VR1至VR4的第一影像模組VR1與第二影 像模組VR2的影像,控制電腦CTRL識別出多餘圖案DUMi與DUM2。^ 制電腦CTRL從多餘圖案DUM1與DUM2的位置計算薄膜圖案相位差膜二 FPR的參考線CTL的位置’並基於計算結果啟動第一對準臺sti,藉以^ 薄膜圖案相位差膜FPR的參考線CTL移動至所需的位置。 隨之’控制電腦CTRL將比對由第一影像系統VRi至呢4以及第二影 像系統VP1至VP4所獲得的影像。藉由比對所接收到的影像,控制電腦~ CTRL確定出介於薄膜圖案相位差膜FPR與顯示面板卩见之間的對準誤 差‘對準誤差超出容許對準誤差範圍AMR時,控制電腦Ctj化啟動第'一 對準臺ST1與第二對準臺ST2^y自動機器,用以調整薄膜圖案相位差膜 FPR及/或㈣錄PNL,直至齡Φ板PNL的解標記船與奶的面 板參考線CTL_PNL與薄顧案她差膜FPR的參雜CTL雜於容 準誤差範圍AMR内。 顯示出由第一影像系統所獲得的第二對準標記和第五對準標記 奶之面板參考線CTL—PNL與薄顧案相位差膜FpR之參考線CTL的一 虛擬中央線係顯示在控制電腦CTRL的監視器上。 控制電腦CTRL可控制第二對準臺ST2,以調整顯示面板肌的位置, =使虛擬巾央賴面考線ctl_PNl舒騎合。再者,控制mctrl 可調整薄賴餘位麵FPR驗置,妓細板參考線ctl肌會合 =擬中鱗’錢細_她紐FPR的參魏CTL餘於 誤差範圍AMR内。When the film pattern phase difference film FPR and the display panel muscle are connected to each other, and the film pattern phase difference film FPR_ indicates that the panel PNL is good for the branch, the shape of the wire is thin, and the upper end of the film is the first record-DUM1 system relative to The wire shows the alignment of the two opposite sides of the upper end of the muscle of the panel, and the fourth alignment mark is from 4. The second redundant pattern formed at the lower end of the film pattern retardation film FpR DUM2 is used in the display panel fox. The third alignment mark AK3 and the sixth alignment mark .ak6 on the opposite side of the lower frequency two. 8A and 8B are diagrams illustrating the use of alignment marks as shown in FIGS. 6A and 6B to make __ She takes care of the fact that the FpR and the _ panel muscles are mutually simple. The 9A and 9B are diagrams illustrating the use of the alignment marks A AK2 and AK5 as shown in Figs. 6A and 6B to make the film pattern retardation film. A plan view of a case where the FpR and the display panel pNL are misaligned with each other. Each of the alignment mark-to-codes of FIG. 8A and FIG. 8B is formed in a region of the display panel PNL that does not have a black matrix. Inventive-embodiment, based on the thin CPR and the wire-aged panel of her thin FPR The difference in the distance of the mark can be intuitively known to be between the thin film FpR and the display panel PNL. This "mark formed in the age of the panel muscle, can be seen as formed in the alignment mark AK2 A mark with AK5. When the 溥臈 pattern retardation film FPR is aligned with the display panel pNL. If the reference line CTL of the thin film pattern phase difference film FPR is within an allowable alignment error from the opposite side of each display panel PNL, it can be confirmed that the alignment is good. As shown in Fig. 9A and Fig. 9B, when the reference line CTL of the thin patterned retardation film FPR is aligned from the opposite side of any of the display panels, the material is aligned with the mislabeled AMR, which is a solution. The situation is not good. Figs. 10A and 10B are plan views for explaining the alignment of the thin film pattern retardation film FpR with the display panel pNL by the alignment marks AK2 and AK5 as shown in Figs. 7A and 7B. Figs. 11A and 11B are plan views for explaining misalignment of the thin film pattern phase difference film FpR and the display panel pn1 by the alignment marks AK2 and AK5 as shown in Figs. 7A and 7B. 201243394 Referring to Figs. 10A and ι〇Β, the alignment marks Ακι to each of 6 are formed in the blackout region of the display panel PNL which does not have any black matrix. According to an embodiment of the present invention, based on the difference in the distance between the reference line CTL of the thin patterned retardation film FPR and the mark formed on the display panel pNL, the film pattern retardation film FpR and the display can be intuitively and accurately obtained. The degree of misalignment between panel PNLs. As shown in Fig. 10A and Fig. 10B, when the film pattern retardation film FpR is aligned with the left side of the display panel muscle pair 'filament _ position Wei FPR reference line α χ pure plate PNL _61, 64' While the right side alignment patterns 62, 63 of the reference line CTL paving panel PNL overlap, the alignment error is within the allowable alignment error range AMR, and the alignment can be determined to be good. When the thin residual film FPR and the display panel are fresh, the ginseng CTL of the thin film pattern retardation film FPR and the group mark 趟 of the age panel are displayed on the monitor of the control computer via the image system. As shown in Fig. _, the reference line CTL of the thin film pattern phase difference film FPR overlaps with the left side alignment pattern 61 64 of the display panel muscle, and the reference line CTL and the right side alignment pattern of the display panel pn1 are aligned with the patterns 62, 63 ^ In the patterns 61 to 64 of the alignment marks ΑΚ2 and ΑΚ5, the reference line CTL of the thin film retardation film FPR is not seen. As shown in Fig. 11 and Fig. 1D, when the reference line c of the thin film retardation film FpR is neither overlapped with the left (four) quasi-acid 6 b 64 4 , the forest layout pattern 62, 63 determines the alignment is not Ok. 12A and 12B are schematic diagrams illustrating a stereoscopic image display system according to an embodiment. The reference point 12A圄$筮14 solid score from _ ^ ij hits thousands-aligned 軎 ^ data - the alignment of the embodiment Including the second system = 4 = to _, the second alignment stage ST2, the second imaging systems VP1 to VP4, the drum DR, and the control computer CTRI^ the first alignment stage sn sucks up and grasps the film pattern phase difference film . Dijon 'fr Uyr〇b〇t) 〇^ 13 * ^^^CTRL „ Under control, the automatic machine is moved under the control of the X-axis and the 丫-axis CTRL. The first alignment station ST1 can be used in In the control of the final adjustment of the film pattern phase difference film to control the thin film phase difference film Qing 15 201243394 as shown in Figure 13, the first image system W1 to Germany includes the first image module to the fourth image module VR4. The first image flashing and the second image VR2 capture the image of the opposite side of the second redundant pattern DUM2 of the FPR or the first redundant pattern DUM1, and transmit the captured image to the control. The computer CTRL. The third image module, the VR3 and the fourth image module VR4 capture the image on the opposite side of the reference line CTL of the center of the film pattern retardation film FpR, and capture the first pole adjacent to the reference line CTL The image of the opposite side of the round PR1 and the second polarization selection pattern PR2 is selected, and the captured image is transmitted to the control computer CTRL. Therefore, the first image systems VR1 to VR4 are captured and fixed in the first pair. Four edges of the film pattern retardation film FPR on the ST1 The control computer CTRL is read. The second alignment stage ST2 sucks up and grabs the display panel PNL. The second alignment stage ST2 is connected to an xy automatic machine. As shown in Fig. 14, under the control of the control computer CTRL, The automatic machine moves the second alignment stage ST2 in the X-axis and the γ-axis direction. Under the control of the control computer ctrl, the second alignment stage ST2 can be rotated in the 0-pulling direction. Thus, as shown in Fig. 14, the control is performed. Under the control of the computer CTRL, the second alignment stage ST2 finally adjusts the display panel PNL in the x-axis, the x-axis, and the 0-axis direction to control the alignment of the display panel. As shown in Fig. 14, the second image system, The first image module state to the fourth image module VP4 is included. The first image group VP1 and the second image module vp2 capture alignment marks formed on opposite sides of the upper end of the display panel PNL. The image, or the lower enemy's diminishing solution formed on the display panel PNL, and the Naxiang image are transferred to the control computer CTRL. The third image module W3 and the fourth image module VP4 are captured and formed. The display panel is hidden from the image of the boat and the milk. The captured image is transmitted to the control computer CTRL. Therefore, the second image systems VP1 and VP4 are formed on the display panel fox, and the alignment ST2 is transmitted to the control computer CTRL. The first pair provides a drum DR between the first alignment stage ST1 and the second alignment stage ST2. The drum arc is rotated by the motor under the control of the control computer, and is in the up and down direction (z-axis direction) ^One line ^ guide device (linear guidemeans) is moved. When the case retardation film FPR located on the first alignment stage STi is well aligned with the display panel ship located on the second alignment stage ST2, it is controlled by the control computer CTL Next, the drum DR receives the thin face 201243394 retardation film FPR' from the first aligned milk and attaches the thin film pattern retardation film FPR to the display panel sealed on the second alignment stage ST2. The drum DR contains an adhesive layer or an adhesive film having a small amount of adhesiveness, so that the film pattern retardation film FPR is firmly attached to the drum DR. The control computer CTRL controls the operation of all components of the alignment system according to a preset program, and controls the entire process of alignment between the display panel PNL and the thin film pattern retardation film FpR. The distance between the redundant patterns DUM1, DUM2 and the reference line CTL of the thin film pattern phase difference film FPR can be pre-stored in the control computer CTRL. Based on the images of the first image module VR1 and the second image module VR2 received from the first image systems VR1 to VR4, the control computer CTRL recognizes the excess patterns DUMi and DUM2. ^ The computer CTRL calculates the position of the reference line CTL of the thin film pattern phase difference film FPR from the positions of the redundant patterns DUM1 and DUM2 and activates the first alignment stage sti based on the calculation result, whereby the reference line of the thin film pattern phase difference film FPR is used The CTL moves to the desired location. The control computer CTRL will then compare the images obtained by the first image system VRI to 4 and the second image systems VP1 to VP4. By comparing the received images, the control computer ~ CTRL determines the alignment error between the film pattern phase difference film FPR and the display panel ' ' alignment error exceeds the allowable alignment error range AMR, the control computer Ctj The first alignment stage ST1 and the second alignment stage ST2^y automatic machine are used to adjust the film pattern retardation film FPR and/or (4) to record the PNL until the Φ board PNL is delabeled ship and milk panel The reference line CTL_PNL and the thin CTL of the poor film FPR are mixed in the tolerance error range AMR. A virtual central line showing the second alignment mark and the fifth alignment mark milk panel reference line CTL_PNL obtained by the first image system and the reference line CTL of the thin film phase difference film FpR is displayed in the control Computer CTRL on the monitor. The control computer CTRL can control the second alignment stage ST2 to adjust the position of the muscle of the display panel, and make the virtual towel to test the line ctl_PNl. Furthermore, the control mctrl can adjust the FPR inspection of the thin residual surface, the 妓 fine plate reference line ctl muscle convergence = the quasi-scale ’ _ fine _ her New FPR 魏 魏 CTL remaining in the error range AMR.
_相位,。R與顯L板=第係 17 201243394 圍AMR内’啟動鼓DR ’藉以將薄膜圖案相位差膜FPR朝顯示面板PNL 移動’致使薄膜圖案相位差膜FP與R顯示面板PNL連接。 依據本發明的一實施例,對準系統進一步包含一脫落(peel_〇均裝置,該 脫落裝置脫掉薄臈圖案相位差膜FPR的脫模薄膜(release fiim),以曝露薄膜 圖案相位差膜FPR的黏著層。當薄膜圖案相位差膜FPR與顯示面板pNL 對準時,藉由基於顯示面板PNL控制薄膜圖案相位差膜FPR的位置,對準 系統可調整介於薄膜圖案相位差膜FPR與顯示面板pnl之間的對準情況。 因而,第一权準疋位臺ST2用的y轴與Θ轴校準(calibration)功能可以省略, 而鼓DR可以實施,以僅在上下方向(z軸方向)移動。 一種對準顯示面板PNL與薄膜圖案相位差膜fpr的方法將相繼敘述於 如第12A圖所示,在將薄膜圖案相位差膜FpR固定在第一對準臺st】 上之後’控㈣腦CTRL透過第-影像系統衝至观識別出薄膜圖.案相 位差膜FPR的對準情況。觸電腦CTRL解析由第—影像系統观至测 所補捉之麟乡細f DUM1與DUM2的影像之__,藉以較丨 DUM1與DUM2的位置。 、八 控制電腦CTRL啟動第一對準臺如,藉以調整薄膜圖案相位差膜FpR 的位置,致使__相位差膜FPR的參考線CTL能在藉由第 彻與第四影像池观所獲得的影像上看到。控制電腦c胤輯並分 =第三與第四影像模組_與·所獲得的影像、以及 動與VP4所獲得的,藉以啟 CTL以及雜參轉案她細FPR的參考線 荦相位差it Γ 許對轉S翻鍾.當薄膜圖 i:It: ^ 好,並啟動鼓DR以,。控制電腦c皿判斷出對準情況為良 示,控制電腦CTRL將鼓DR的一】S DR。如第12_與第12(:圖所 並接著逆時針方向鶴鼓⑽^面與薄__位顏FPR^以接觸, R,藉以將薄膜圖案相位差膜FPR轉移到鼓 18 201243394 DR。繼之,控制電腦CTRL脫落附著或黏附在鼓DR上的薄膜圖案相位差 膜FPR的脫模薄膜,以曝露薄膜圖案相位差膜FPR的接著劑(adhensive)。 藉由一自動去除裝置’脫模薄膜被手動地或自動地予以脫落。 基於顯示面板PNL之對準標記AK2、AK5之透過第二影像系統VP1 至VP4的第三影像模組VP3與第四影像模組VP4所獲得的影像,控制電腦 CTRL啟動苐一對準臺ST2 ’因此能調整顯示面板pnl的對準情況。由於 當薄臈圖案相位差膜FPR與顯示面板PNL調整時,僅薄膜圖案相位差膜 FPR的位置能基於顯示面板pnl來調整,調整顯示面板pNL的位置的程序 可以省略。 控制電腦CTRL比對並分析從第一影像系統vju至VR4與第二影像系 統VP1至VP4所接收的影像,以及當介於薄膜圖案相位差膜FpR的參考線 CTL與面板參考線CTL_PNL之間的距離在容許對準誤差範圍内,控 制電腦CTRL將鼓DR朝向第二對準系統ST2移動。如第12D圖所示,當 將包繞鼓DR的薄膜圖案相位差膜FPR的接著劑麵示面板pNL的表面予 以接觸並於逆時針方向轉動鼓〇尺時,控制電腦CTRL將薄臈圖案相位差 膜FPR附接至顯示面板pNL上。 由於薄膜_相位細FPR^含分_對準標記,薄職案 膜FPR可以連續生產程序來製造。 在上述之本發明的實施例中,雖然轉動鼓DR個於作為朝顯 NL移動薄膜_相位差膜FPR或轉換之㈣ 以 =^„示面板亂接合,於本發_其他實施 =5圖為說明薄膜圖案相位差膜FPR的剖面結構的截面圖 的連續生產過程的示意圖。第17園為詳= 乃如弟16圖所不之曝光過程的示意圖。 =15 _示’薄麵案她錢FpR包含賴絲73、 圖案層74、接著劑75、以及雌薄膜76。表面處理層72开'、 保護層71 _基底73之間。 表面_ μ成在介於 201243394 表面處理層72形成在薄膜基底73上,而保護層71覆蓋表面處理層72。 圖案層74形成在薄膜層73之下,而接著劑75塗覆於圖案層%。接著劑 75則覆蓋脫模薄膜76。 薄膜基底73作用為其上形成圖案層74的基板,並選取作為三醋酸纖 維素 TAC(Tnacetyl Cellulose)薄膜、環烯烴共聚物 c〇p(Cyclo Olefin Co-Polymer)薄獏、或丙烯酸型(acrylic_base①薄膜^圖案層74包含極化選擇 ,案PIU、PR2、以及綠圖案DUM卜DUM2,麟使在左眼影像與右眼 衫像之間的極化為不同,如第3圖所示。圖案層74的圖案包含受光學對準 所支配驗晶層。賴雜71 ώ乙騎苯二猶§旨附(场 ter_tha_或與乙烯對苯二甲酸醋ΡΕτ具有類似特性的聚合物樹脂所形 成。薄臈基底73的製造過程顯示在第π圖與第17圖中。 本發明的一實施例包含在移動表面處理薄膜73時將對準薄膜77塗覆 於薄膜基底73上’如第16圖與第17圖所示,並弄乾對準薄膜77。 依據本發明的-實齡j ’塗覆於細基底73上騎準義77的前表 面暴露於45度(45。)極化料線,睛薄絲底73藉由―預設速度於一方 向移。動’然後具有紫外線暴露前表面的對準薄膜77透過光罩78利用A度 ⑷。)極化紫外線予以紫外線曝光。隨後,依據本發明的_實施例,當薄= ^底73藉由-預設速度延—方向移動時,含有細化师咖職㈣恤) 的液晶層形成在具有45度對準圖案77a與_45度對準圖案爪的對準薄膜 ϋί著紫外線照射液M,關化麟乾液晶層。_層74形成在經 ==與液晶塗覆過程的薄膜基底73上,而該圖案層%包含具有^度 ==的液晶層的第-極化選擇_ PR1、以及具有45度對準 日曰層的第二極化選擇圖案PR2。 =,依縣發_-實關,隨著義基底73勤―舰速度於— 3向移動,接著劑75塗覆在圖案層74上,然%形成在接著劑 上’並且保護層71形成在薄膜基底73上。 ^第16圖與第17圖所示,製造__目位差膜卿的過程 瞧目位差膜FPR上的對準標記,因此,當移動薄膜基底Μ而沒 上停_基底73時’如第15圖所示的不同層可連續形成在薄膜基底π 201243394 如上所述’依據本發明的實施例,圖案相位差膜與顯示面板利用極化 選擇圖案互姆準,祕練在随她差咖的左眼影賴右眼影像的 極化特性,以致於圖案相位差膜與顯示面板可正確地對準,並互相接合而 無須在圖案她細上形成分_鮮標記。另外,依據鱗實施例:由 於在製造隨相位細的過程中,並不需要分離的過程來形成對準標記, 對=圖案相位差膜而言,將可易於施行過程,而對製造®案相位差膜而言, 可喊省成本。又’依據該等實施例,在顯示面板情形成的對準標記來標 記出容許解誤差細,使之能被直覺地麵出來,致使介於圖案相位差 膜與顯示面板之間的對準誤差能直覺正確地計算出來。 依據如第18圖所示之正面模式(£_31(1111。(^1)及如第19圖所示之翻轉 模式(reverse),一立體影像顯示裝置可應用不同的組裝方法。在正面模式 中,顯示面板係以-前面態式而組裝於—主系統,而在上側與下側之間並 未翻轉。相反地’在轉模式t,顯示面板係以-反轉態式而組裝於一主 系統,其中,上側與下側相互翻轉。 在正面模式t,薄膜圖案相位差膜FpR的第一極化選擇圖案pR1傳送 顯示在顯示面板PNL之奇數顯示線上的左眼影像作為第一極化光,並且傳 送顯示在顯示面板PNL之偶數顯示線上的右眼影像作為第二極化光。依據 本發明之的實施例,在正面模式中,極化眼鏡PGLS的左眼濾光片通過經 由第一極化選擇圖案PR1入射的第一極化左眼影像光,而極化眼鏡pGLS 的右眼濾光片通過經由第一極化選擇圖案PR1入射的第二極化右眼影像 光。如同正面模式的相同方式,於翻轉模式中,薄膜圖案相位差膜FpR可 與顯示面板接合在一起。 依據本發明的一實施例,在翻轉模式中,右眼影像資料顯示在顯示面 板PNL的奇數顯示線上,且右眼影像光經由薄膜圖案相位差膜FpR的第一 極化選擇圖案PR1傳送出去,作為第一極化光。在翻轉模式中,左眼影像 資料顯示在顯示面板PNL的偶數顯示線上,且左眼影像光經由薄膜圖案相 位差膜FPR的第二極化選擇圖案PR2傳送出去,作為第二極化光。因此, 如同正面模式的相同方式,由於薄膜圖案相位差膜FPR附接至在翻轉模式 的顯示面板PNL上,而如同於正面模式的相同資料輸入至顯示面板pNL, 觀看者透過極化眼鏡PGLS的左眼濾光片看到右眼影像,並透過極化眼鏡 21 201243394 PGLS的右眼濾光片看到左眼影像,因此,觀看者感受到反立體 (pseudoscopic)影像而不是觀看一正常的3D影像。在翻轉模式中,主系統可 傳送互相相反的左眼影像與右眼影像到顯示面板PNL的驅動電路,以匹配 顯示在顯示面板P]S1L上的左眼影像與右眼影像與薄膜圖案相位差膜FPR的 圖案的極化特性。於此種情形下,用於翻轉及對準左眼影像與右眼影像的 電路與軟體可加入至主系統中。依據本發明的一實施例,以相較於正面模 式薄模圖案相位差膜FPR之翻轉模式薄模圖案相位差膜fpr 一線上移(或下 移),藉由接合薄模圖案相位差膜FPR與顯示面板,一正常3D影像可予以 實施,而無須改變輸入到顯示面板PNL之驅動電路的左眼/右眼影像資料的 排列序。 第18圖為說明依據本發明一實施例之正面模式立體影像顯示裝置的組 合情況的示意圖。第19圖為說明依據一實施例之翻轉模式立體影像顯示裝 置的組合情況的示意圖。 參考第18圖與第19圖,依據本發明的實施例,立體影像顯示裝置包 含顯示面板PNL、顯示面板驅動電路、源極(source)印刷電路板spCB、控 制印刷電路板CPCB、以及主系統的主機板SYS。顯示面板驅動電路包含一 資料驅動電路以及一閘極驅動電路。 如之前所述,顯示面板PNL可以一平板顯示器來實施,並可包含如第 6A圖、第7B圖、第22圖、以及第23圖所示之與薄膜圖案相位差臈FpR 的參考線CTL對準的對準標記。如第22圖與第23圖所示,對準標記包含 分別對應於正面模式的對準標記AK2(F)、AK5(F)、以及對應於翻轉模式的 對準標記AK2(R)、AK5(R)。資料驅動電路包含複數個源極驅動IC(SIC)。 在時序控制器的控制之下,源極驅動IC(SIC)將閂鎖從形成在控制印刷電路 板CPCB上之時序控制器輸入的數位視訊資料。源極驅動IC(SIC)將數位視 訊資料予以轉換為類比正/負gamma參考電壓,藉以產生正/負資料電壓。 自源極驅動IC(SIC)輸出的正/負資料電壓將供應到顯示面板的資料線。源極 驅動IC(SIC)藉由晶粒玻璃接合c〇G(Chip On Galss)程序或捲帶式晶粒接入 TAB(Tape Automated Bonding)程序連接至顯示面板PNL的資料線。 閘極驅動電路包含複數個閘極驅動ICs(GIC)。在時序控制器的控制之 下’閘極驅動ICs(GIC)相繼地提供閘極脈衝至閘極線。閘極驅動ICs藉由 22 201243394 一捲帶式晶粒接合TAB程序連接至顯示面板PNL的閘極線。閘極驅動ICs 的移位暫存器藉由面板閘極GIP(Gate In Panel)程序直接地形成在顯示面板 PNL的基板上。 控制電腦CTRL包含一時序控制器以及一模組電源電路。 時序控制器重新處理自主系統的主機板SYS輸入的數位視訊資料,並將 重新處理後的資料供應到源極驅動ICs。基於從主機板SYS所輸入的時序 訊號,例如,垂直同步訊號Vsync、水平同步訊號Vsync、資料致能訊號 DE、以及點時脈CLK ’時序控制器產生時序控制訊號,用於控制源極驅動 ICs與閘極控制ICs的操作時間。 模组電源電路包含一直流電源轉換器(DC_DC converter)以及穩壓器 (regulator)。模組電源電路提高一直流輸入電壓,藉以產生類比驅動電壓, 用於驅動顯示面板PNL的像素陣列。 主系統的主機板SYS連接至視訊源,例如,舉例而言,機上盒、電視 系統、電話系統、DVD播放器、藍光播放器、個人電腦、家庭劇院等等。 主機板sys包含圖案處理電路,例如,轉換器,其將自視訊源所輸入的RGB 視訊資料予以内插,致使RGB視訊資料的解析度相符於顯示面板狐的 解析度,並且一主要電源電路產生要供應至模組電源電路的直流輸入電 壓。主機板sys透過-介面’例如,低電壓差分訊號LVDS(L〇w v〇ltage Differential Signaling)介面或最小化傳輸差分訊號TM〇s(Transiti〇n Minimized Differential Signaling)介面轉換輸入影像資料、以及時序訊號 Vsync、Hsync、DE、CLK至控制電腦CTRL的時序控制器。 主機板SYS能互相轉換2D模式操作與3D模式操作:以響應透過一使 用者輸入裝置所輸入的使用者資料。使用者輸入裝置包含小型鍵盤、鍵盤' 滑鼠、螢幕上顯不器OSD(on-screendisplay)、遠端遙控器、以及觸控螢幕。 透過使用者輸入裝置,觀看者可選取扔模式或3D模式,並能選取犯模 式中的2D-3D影像轉換。 、 •經由編碼到輸入影像資料的_ 2卿識別碼,主機板奶能相互轉換 2D與3D模式操作。主機板SYS轉換一模式峨,用於變換操作模式為扣 或3D模式至時序控制器。 23 201243394 主機板SYS經由第一可撓性電纜C1以及連接器而連接至控制電腦 CTRL ’可撓性電纜C1可為’例如,可撓性扁平瘦線。控制電腦CTRL經 由第二可撓性電纜C2以及連接器而連接至源極印刷電路板31>(:3,可撓性 電纖C2可為,例如,可撓性扁平繞線。 在如第18圖所示的正面模式中,源極驅動ICs(SIC)、源極印刷電路板 SPCB、以及㈣電腦CTRL安置在顯示面板上^,而主機板SYS安置在顯 示面板PNL下方。因此’由於在正面模式中,介於控制電腦^虹與主機 板sys之間的距離係為大,而第一可撓性電纜C1的長度將增加。 在在第19圖所示的翻轉模式中,源極驅動ICs(SIC)、源極印刷電路板 SPCB、以及控制電腦CTRL安置在顯示面板下方。主機板SYS安置在顯示 面板PNL下方。因此,由於介於控制電腦CTRL|^主機板SYS之間的距離 係為小,第一可撓性電纜C1的長度相較於第18圖所示之為較短。 與第12A圖至第12D圖描述相關的實施例可適用於如第18圖與第19 圖所不之用於對準與接合顯示面板PNL與薄膜圖案相位差膜FpR的對準方 法與系統。 第20圖為詳細說明依據一實施例的薄膜圖案相位差膜的平面視意圖。 第21圖為詳細說明於正面模式與翻轉模式之介於薄膜圖案相位差膜與顯示 面板之間的理想對準情況的平面視意圖。 凊參考第2〇圖與第21目’顯示面板PNL之像素陣列的線數量為聊 為一偶數)。相反地,薄膜圖案相位差膜FpR的線數量為N+1。薄獏圖案 相位差膜包含分別形成在N+1線中的極化選擇圖案ρι到pN+卜 在正面模式中,當薄膜圖案相位差膜FPR與顯示面板PNL互相對準 時,在薄膜圖案相位差膜FPR中,從形成在第一線上的第一極化選擇圖案 P1的N極化選擇圖案到形成在第N線上的第N極化選擇圖案PN以一對一 相對應的方式,相對於顯示_PNL的N線。換言之,薄膜圖案相位差膜 FPR的N極化選擇圖案分別對應於顯示面板肌的N線。在正面模式中, 顯不面板PNL的第-線係相對於薄膜圖案相位差膜FpR的第一線。在正面 模式中,顯㈣板PNL㈣N _姆㈣麵餘位細FpR的第n 線0 24 201243394 在翻轉模式巾’當薄__位細FPR鋪示雜pNL互相對準 時,在薄膜圖案相位差膜FPR +,從形成在第二線上的第二極化選擇圖案 P2的N極化選擇_P2到形成在第N+1線上的第_極化選擇圖案ρΝ+ι 以-對-相對應的方式,相對於顯示面板PNL的N線。換言之,薄膜圖案 相位差膜FPR的N極化選擇圖案分別對應於顯示面板舰的N線。在翻 轉模式中,顯示面板PNL的第一線係相對於薄麵案相位差膜FpR的第 N+1線。在翻轉模式中,顯示面板肌的第N線係相對於薄麵案相 膜FPR的第二線。 傳送左眼(或右眼)的第一極化光之薄膜圖案相位差膜FpR的第一極化 選擇圖案為極化選擇圖案P1、P3、…、PN/2+卜、pN卜以及四+1, 其等安置在第2G圖中之薄膜圖案相位差膜FpR的奇數線。傳送右眼(或左 眼)的第二極化光之薄膜圖案相位差膜FPR的第二極化選擇圖案為極化選擇_ phase,. R and the display L plate = the first system 17 201243394 The inside of the AMR "starting drum DR" is used to move the thin film pattern retardation film FPR toward the display panel PNL" to cause the thin film pattern retardation film FP to be connected to the R display panel PNL. According to an embodiment of the invention, the alignment system further comprises a peeling device that releases the release fiim of the thin patterned retardation film FPR to expose the thin film pattern retardation film. Adhesive layer of FPR. When the film pattern retardation film FPR is aligned with the display panel pNL, the alignment system can adjust the film pattern phase difference film FPR and display by controlling the position of the film pattern phase difference film FPR based on the display panel PNL. Alignment between the panels pnl. Thus, the y-axis and Θ-axis calibration functions for the first-weight stage ST2 can be omitted, and the drum DR can be implemented only in the up-and-down direction (z-axis direction). A method of aligning the display panel PNL and the thin film pattern retardation film fpr will be described successively as shown in FIG. 12A, after the thin film pattern retardation film FpR is fixed on the first alignment stage st] The brain CTRL rushes to the image through the first-image system to identify the film pattern. The alignment of the phase difference film FPR. Touch the computer CTRL to analyze the image of the Linxiang fine f DUM1 and DUM2 captured by the first image system. __, by Compared with the position of DUM1 and DUM2, the eight control computer CTRL starts the first alignment stage, for example, to adjust the position of the film pattern retardation film FpR, so that the reference line CTL of the __ phase difference film FPR can be obtained by The image obtained by the fourth image pool view is seen on the control computer c胤 and is divided into the third and fourth image modules _ and the obtained images, as well as the VP4, to enable CTL and miscellaneous Refer to the case of her fine FPR reference line 荦 phase difference it Γ Xu turn to S turn clock. When the film diagram i: It: ^ good, and start the drum DR to. Control the computer c dish to determine the alignment is good , control computer CTRL will drum DR a] S DR. As in the 12th and 12th (: Figure and then counterclockwise crane drum (10) ^ face and thin __ position FPR ^ to contact, R, by the film The pattern retardation film FPR is transferred to the drum 18 201243394 DR. Then, the control computer CTRL peels off the release film of the film pattern retardation film FPR attached or adhered to the drum DR to expose the film pattern retardation film FPR adhesive ( Adhensive). The release film is manually or automatically removed by an automatic removal device. Based on the images obtained by the third image module VP3 and the fourth image module VP4 of the second image systems VP1 to VP4 of the alignment marks AK2 and AK5 of the display panel PNL, the control computer CTRL is activated to start the alignment station ST2'. Therefore, the alignment of the display panel pNL can be adjusted. When the thin pattern retardation film FPR and the display panel PNL are adjusted, only the position of the thin film retardation film FPR can be adjusted based on the display panel pn1, and the position of the display panel pNL is adjusted. The program can be omitted. The control computer CTRL compares and analyzes images received from the first image systems vju to VR4 and the second image systems VP1 to VP4, and when between the reference line CTL of the thin film pattern retardation film FpR and the panel reference line CTL_PNL The distance within the allowable alignment error range, the control computer CTRL moves the drum DR toward the second alignment system ST2. As shown in FIG. 12D, when the surface of the adhesive face panel pNL of the film pattern retardation film FPR surrounding the drum DR is brought into contact and the drumstick is rotated counterclockwise, the control computer CTRL will phase the thin pattern. The differential film FPR is attached to the display panel pNL. Since the film_phase fine FPR^ contains the sub-alignment mark, the thin film FPR can be manufactured by a continuous production process. In the above-described embodiment of the present invention, although the rotating drum DR is moved as a NL moving film _ retardation film FPR or converted (four) to erect the panel, the present invention _ other implementation = 5 is A schematic diagram showing the continuous production process of the cross-sectional view of the cross-sectional structure of the film pattern retardation film FPR. The 17th garden is a schematic diagram of the exposure process which is not shown in Fig. 16 = _ _ 'Thin face case her money FpR A heat sink 73, a pattern layer 74, an adhesive 75, and a female film 76 are provided. The surface treatment layer 72 is opened between the protective layer 71 and the substrate 73. The surface _ μ is formed between the surface treatment layer 72 and the film substrate at 201243394. 73, the protective layer 71 covers the surface treatment layer 72. The pattern layer 74 is formed under the film layer 73, and the adhesive 75 is applied to the pattern layer %. The adhesive 75 covers the release film 76. The film substrate 73 functions as The substrate on which the pattern layer 74 is formed is selected as a TN acetyl Cellulose film, a cycloolefin copolymer c〇p (Cyclo Olefin Co-Polymer) thin film, or an acrylic type (acrylic_base 1 film ^ pattern layer 74). Contains polarization options, case PIU, PR2 And the green pattern DUM DUM2, Lin makes the polarization between the left eye image and the right eye image different, as shown in Fig. 3. The pattern of the pattern layer 74 includes the inspection layer supported by the optical alignment.赖 71 71 骑 骑 骑 骑 骑 骑 ( ( ( ( ( ( ( ( 场 场 场 场 场 场 场 场 场 场 场 场 场 场 场 场 场 场 场 场 场 场 场 场 场 场 场 场 场 场 场 场 场 场 场In one embodiment of the present invention, an alignment film 77 is applied to the film substrate 73 when the surface treatment film 73 is moved, as shown in Figs. 16 and 17, and the alignment film 77 is dried. The present invention is applied to the fine substrate 73. The front surface of the yoke 77 is exposed to a 45 degree (45.) polarized material line, and the thin wire bottom 73 is moved in one direction by a preset speed. The alignment film 77, which has a UV-exposed front surface, is then exposed to ultraviolet light through a reticle 78 using A-degree (4). Polarized ultraviolet light is then exposed to ultraviolet light. Subsequently, according to the embodiment of the present invention, when thin = ^ bottom 73 by - When the preset speed is extended - the direction is moved, the liquid crystal layer containing the refinement teacher's (four) shirt is formed with a 45 degree pair. The alignment film of the pattern 77a and the _45 degree alignment pattern claw is affixed with the ultraviolet ray irradiation liquid M, and the liquid crystal layer is turned off. The layer 74 is formed on the film substrate 73 which is subjected to the liquid crystal coating process, and the pattern layer % a first polarization selection _PR1 including a liquid crystal layer having a degree ==, and a second polarization selection pattern PR2 having a 45-degree alignment solar layer. The 73-speed is moved in the 3-way direction, the adhesive 75 is applied on the pattern layer 74, and the % is formed on the adhesive, and the protective layer 71 is formed on the film substrate 73. ^ Figure 16 and Figure 17, the alignment mark on the FPR of the process of producing the __ 目 膜 膜 膜 膜 膜 膜 膜 膜 膜 膜 膜 膜 膜 膜 膜 膜 膜 膜 膜 膜 膜 膜 膜 膜 膜 膜 膜 膜 膜 膜 膜 膜 膜 膜 膜 膜 膜The different layers shown in Fig. 15 can be continuously formed on the film substrate π 201243394 as described above. According to the embodiment of the present invention, the pattern retardation film and the display panel are mutually aligned by the polarization selection pattern, and the secret is in the coffee. The left eye shadow depends on the polarization characteristics of the right eye image, so that the pattern retardation film and the display panel can be correctly aligned and joined to each other without forming a mark on the thin pattern of the pattern. In addition, according to the scale embodiment: since the alignment mark is formed in the process of manufacturing the phase-by-phase process, and the separation process is not required, for the pattern retardation film, the process can be easily performed, and the phase of the manufacturing method is In the case of poor film, it can save costs. In addition, according to the embodiments, the alignment mark formed on the display panel is used to mark the allowable solution error so that it can be intuitively grounded, resulting in an alignment error between the pattern retardation film and the display panel. Can be intuitively calculated correctly. According to the front mode (£_31 (1111. (1)) and the reverse mode shown in Fig. 19, a stereoscopic image display device can apply different assembly methods. In the front mode. The display panel is assembled to the main system in a front-end state, and is not flipped between the upper side and the lower side. Conversely, in the transition mode t, the display panel is assembled in a main-inverted state. The system in which the upper side and the lower side are mutually inverted. In the front mode t, the first polarization selection pattern pR1 of the thin film pattern phase difference film FpR transmits the left eye image displayed on the odd display line of the display panel PNL as the first polarized light. And transmitting a right-eye image displayed on the even-numbered display line of the display panel PNL as the second polarized light. According to an embodiment of the present invention, in the front mode, the left-eye filter of the polarized glasses PGLS passes through the first The polarization-selected pattern PR1 is incident on the first polarization left-eye image light, and the right-eye filter of the polarization glasses pGLS passes through the second polarization right-eye image light incident through the first polarization selection pattern PR1. The same way, In the flip mode, the thin film pattern retardation film FpR can be bonded to the display panel. According to an embodiment of the invention, in the flip mode, the right eye image data is displayed on the odd display line of the display panel PNL, and the right eye image light The first polarization selection pattern PR1 is transmitted as the first polarization light through the thin film pattern phase difference film FpR. In the flip mode, the left eye image data is displayed on the even display line of the display panel PNL, and the left eye image light is passed through The second polarization selection pattern PR2 of the thin film pattern phase difference film FPR is transmitted as the second polarized light. Therefore, as in the same manner as the front mode, since the thin film pattern phase difference film FPR is attached to the display panel PNL in the flip mode On the same, as the same data in the front mode is input to the display panel pNL, the viewer sees the right eye image through the left eye filter of the polarized glasses PGLS, and sees through the right eye filter of the polarized glasses 21 201243394 PGLS To the left eye image, the viewer feels a pseudoscopic image instead of viewing a normal 3D image. In flip mode, the main The driving circuit of the left eye image and the right eye image to the display panel PNL can be transmitted to match the pattern of the left eye image and the right eye image and the film pattern retardation film FPR displayed on the display panel P]S1L. In this case, circuits and software for flipping and aligning the left eye image with the right eye image can be added to the host system. According to an embodiment of the invention, the thin mode is compared to the front mode. The reverse mode of the retardation film FPR is shifted (or moved down) on the line by the thin film pattern retardation film fpr. By bonding the thin pattern retardation film FPR and the display panel, a normal 3D image can be implemented without changing the input to The arrangement of the left eye/right eye image data of the driving circuit of the display panel PNL. Fig. 18 is a view showing the combination of the front mode stereoscopic image display devices according to an embodiment of the present invention. Fig. 19 is a view showing the combination of the flip mode stereoscopic image display devices according to an embodiment. Referring to FIGS. 18 and 19, a stereoscopic image display device includes a display panel PNL, a display panel driving circuit, a source printed circuit board spCB, a control printed circuit board PCB, and a main system according to an embodiment of the present invention. Motherboard SYS. The display panel driving circuit includes a data driving circuit and a gate driving circuit. As described above, the display panel PNL can be implemented as a flat panel display, and can include a reference line CTL pair with the film pattern phase difference 臈FpR as shown in FIGS. 6A, 7B, 22, and 23. Quasi-alignment mark. As shown in FIGS. 22 and 23, the alignment marks include alignment marks AK2(F), AK5(F) corresponding to the front mode, and alignment marks AK2(R), AK5 corresponding to the flip mode ( R). The data drive circuit includes a plurality of source drive ICs (SICs). Under the control of the timing controller, the source driver IC (SIC) latches the digital video data input from the timing controller formed on the control printed circuit board PCB. The source driver IC (SIC) converts the digital video data into an analog positive/negative gamma reference voltage to generate a positive/negative data voltage. The positive/negative data voltage output from the source driver IC (SIC) is supplied to the data line of the display panel. The source driver IC (SIC) is connected to the data line of the display panel PNL by a chip glass bonding (Chip On Galss) program or a Tape Automated Bonding (TAB) program. The gate drive circuit includes a plurality of gate drive ICs (GICs). The gate drive ICs (GIC) sequentially provide gate pulses to the gate line under the control of the timing controller. The gate drive ICs are connected to the gate line of the display panel PNL by a 22-band ribbon die bonding TAB program. The shift register of the gate drive ICs is directly formed on the substrate of the display panel PNL by a panel gate GIP (Gate In Panel) program. The control computer CTRL includes a timing controller and a module power supply circuit. The timing controller reprocesses the digital video data input by the motherboard SYS of the autonomous system, and supplies the reprocessed data to the source driver ICs. Based on the timing signals input from the motherboard SYS, for example, the vertical sync signal Vsync, the horizontal sync signal Vsync, the data enable signal DE, and the point clock CLK 'sequence controller generate timing control signals for controlling the source drive ICs Operating time with gate control ICs. The module power supply circuit includes a DC_DC converter and a regulator. The module power supply circuit increases the DC input voltage to generate an analog drive voltage for driving the pixel array of the display panel PNL. The main system's motherboard SYS is connected to a video source such as, for example, a set-top box, a television system, a telephone system, a DVD player, a Blu-ray player, a personal computer, a home theater, and the like. The motherboard sys includes a pattern processing circuit, for example, a converter that interpolates the RGB video data input from the video source, so that the resolution of the RGB video data conforms to the resolution of the display panel fox, and a main power circuit generates The DC input voltage to be supplied to the module power circuit. The motherboard sys transmits the input image data and the timing signal through the interface-interface, for example, the low voltage differential signal LVDS (L〇wv〇ltage Differential Signaling) interface or the Minimized Differential SignalingTM interface (Transiti〇n Minimized Differential Signaling) interface. Vsync, Hsync, DE, CLK to the timing controller that controls the computer CTRL. The motherboard SYS can convert 2D mode operation and 3D mode operation to each other in response to user data input through a user input device. The user input device includes a small keyboard, a keyboard 'mouse', an on-screen display (OSD), a remote control, and a touch screen. Through the user input device, the viewer can select the throw mode or the 3D mode, and can select the 2D-3D image conversion in the falsification mode. • Through the _ 2 qing identification code coded to the input image data, the motherboard milk can be converted into 2D and 3D mode operations. The motherboard SYS converts a mode 峨 to change the operating mode to buckle or 3D mode to the timing controller. 23 201243394 The motherboard SYS is connected to the control computer via the first flexible cable C1 and the connector CTRL 'The flexible cable C1 can be, for example, a flexible flat thin wire. The control computer CTRL is connected to the source printed circuit board 31 via the second flexible cable C2 and the connector (: 3, the flexible fiber C2 can be, for example, a flexible flat wire. As in the 18th In the front mode shown, the source driver ICs (SIC), the source printed circuit board SPCB, and (4) the computer CTRL are placed on the display panel ^, and the motherboard SYS is placed under the display panel PNL. Therefore 'because the front side In the mode, the distance between the control computer ^虹 and the motherboard sys is large, and the length of the first flexible cable C1 is increased. In the flip mode shown in Fig. 19, the source drive ICs (SIC), source printed circuit board SPCB, and control computer CTRL are placed under the display panel. The motherboard SYS is placed under the display panel PNL. Therefore, the distance between the control computer CTRL|^ motherboard SYS is Small, the length of the first flexible cable C1 is shorter than that shown in Fig. 18. The embodiments related to the description of Figs. 12A to 12D can be applied as shown in Figs. 18 and 19. Used to align and bond the display panel PNL to the film pattern phase difference Alignment method and system of film FpR. Fig. 20 is a plan view showing the film pattern retardation film according to an embodiment in detail. Fig. 21 is a detailed description of the film pattern retardation film in the front mode and the flip mode. The planar view of the ideal alignment with the display panel. 凊 Refer to Figure 2 and Figure 21 for the number of lines of the pixel array of the display panel PNL as an even number. Conversely, the number of lines of the thin film pattern retardation film FpR is N+1. The thin pattern retardation film includes polarization selection patterns ρι to pN+ respectively formed in the N+1 line. In the front mode, when the thin film pattern retardation film FPR and the display panel PNL are aligned with each other, the film pattern retardation film is formed. In the FPR, the N-polarization selection pattern of the first polarization selection pattern P1 formed on the first line to the N-th polarization selection pattern PN formed on the N-th line corresponds in a one-to-one manner with respect to the display_ N line of PNL. In other words, the N-polarization selection patterns of the thin film pattern phase difference film FPR correspond to the N lines of the display panel muscles, respectively. In the front mode, the first line of the panel PNL is displayed with respect to the first line of the thin film pattern phase difference film FpR. In the front mode, the (four) board PNL (four) N _ m (four) surface residual fine FpR of the nth line 0 24 201243394 in the flip mode towel 'when thin __ bit fine FPR paved miscellaneous pNL are aligned with each other, in the film pattern retardation film FPR +, from the N polarization selection _P2 of the second polarization selection pattern P2 formed on the second line to the _ polarization selection pattern ρ Ν + ι formed on the N+1th line in a manner of -to-correspond Relative to the N line of the display panel PNL. In other words, the N-polarization selection patterns of the thin film pattern phase difference film FPR correspond to the N lines of the display panel ship, respectively. In the flip mode, the first line of the display panel PNL is relative to the (N+1)th line of the thin film retardation film FpR. In the flip mode, the Nth line of the display panel muscle is relative to the second line of the thin film phase film FPR. The first polarization selection pattern of the thin film pattern phase difference film FpR of the first polarized light that transmits the left eye (or the right eye) is the polarization selection patterns P1, P3, ..., PN/2+, pN, and four+ 1, an odd-numbered line of the thin film pattern retardation film FpR disposed in the second G diagram. The second polarization selection pattern of the film pattern retardation film FPR of the second polarized light transmitting the right eye (or the left eye) is a polarization selection
圖案P2、P4、…、PN/2、、以及pN,其等安置在第2〇圖中之薄膜圖案 相位差膜FPR的偶數線。因此,如第2〇圖所巾,在__相位差膜FpR 中的第-極化選擇圖案P卜P3、…、PN/2+卜、pN_卜與ρΝ+ι的數量 為N/2+].,而第二極化選擇圖案P2、P4、 、pN/2、、與pN的數量則 為N/2。第一極化選擇圖案P1、P3、· ·、爾2+卜、、與p朗的 光軸為N/2+1,垂直於為N/2的苐二極化選擇圖案p2、p4、 、pN/2、、 與PN的光軸。 如第20圖所示,在顯示面板PNL的正面模式中,像素陣列的第一線 L1位於上端,而第N線則位於下端。顯示面板p见的正面模式在犯模弋 中,在奇數線上顯示左眼影像,而在偶數線上則顯示右眼影像。相對於顯 示面板PNL的正面模式,在顯示面板PNL的翻轉模式中,像素陣列的第”― 線L1位於下端,而第N線則位於上端。相較於顯示面板pNL的正面模式, 顯示面板PNL的翻轉模式具有互相改變的上側與下側,因而,在3〇模式 中,在奇數線上顯示右眼影像,而在偶數線上則顯示左眼影像。 j 在正面模式的薄膜圖案相位差膜FPR中,第一極化選擇圖案ρι、p3、 …、PN/2+卜…、PN-卜與PN+卜除了第一極化圖案PN+1的第N+1線 以外,係相對於顯示面板PNL的奇數線U、L3、...、LN/2+l、 . LN γ 藉以將顯示在顯示面板PNL之奇數線LI、L3、…、LN/2+1、、與ln 1 25 201243394 上的左眼影像光轉變為第—極化光。在正面模式的__相位差膜卿 中,第二^化選擇圖案P2、P4、…、觸、、與PN係相對於顯示面板 PNL的偶麟L2、L4、·.·、LN/2、...、LN,藉以將顯示在顯示面板鳳 之偶數線L2、L4、·._、ln/2、...、與LN上的右眼影像光轉變為第二極化 光0 極化眼鏡的左眼濾光片具有相同於薄膜圖案相位差膜FPR之第一極化 選擇圖案Ph P3、...、PN/M、...、腿、刪的雜的綠。極化眼 鏡的右眼濾光片具有相同於薄膜圖案相位差膜FpR之第二極化選擇圖案 P2、P4 '…'PN/2、...、pn的光軸的光軸。因此,在正面模式中,極化眼 鏡的左眼濾光片傳送穿過薄膜圖案相位差膜FPR的第一極化選擇圖案pl、 P3 ·_· PN/2+1、... ’ PN-l,PN+1之左影像的第一極化光。極化眼鏡的右 眼濾光片傳送穿過薄膜圖案相位差膜FPR的第二極化選擇圖案p2、p4、、 PN/2、…、PN之右影像的第二極化光。 在翻轉模式的薄膜圖案相位差膜FPR中,第二極化選擇圖案p2、p4、 • ..、ΡΝ/2'_·.與PN係相對於顯示面板pnl的奇數線li、L3、...、LN/2+1、...、 LN_1 ’藉以將顯示在顯示面板PNL之奇數線LI、L3、…、LN/2+l、…、 與LN-1上的右眼影像光轉變為第二極化光。在翻轉模式的薄膜圖案相位差 膜FPR中,第一極化選擇圖案p3、…'pN/2+j、 ,pN_卜與pN+卜除 了第一線的第一極化選擇圖案P1以外,係相對於顯示面板PNL的偶數線 L2、L4、...、LN/2、…、LN ’藉以將顯示在顯示面板PNL之偶數線L2、 L4、…、LN/2、…、與LN上的左眼影像光轉變為第一極化光。 極化眼鏡的右眼濾光片具有相同於第一極化選擇圖案p3、、 PN/2+1、…、PN·〗、ρΝ+ι的光軸的光軸。極化眼鏡的右眼濾光片具有相同 於第二極化選擇圖案P2、P4、…、PN/2、…、PN的光軸的光軸。因此, 在翻轉模式中,極化眼鏡的左眼濾光片傳送穿過薄膜圖案相位差膜FPR的 第一極化選擇圖案P3、…、pn/2+I、…、PN-1、PN+1之左影像的第一極 化光。在翻轉模式中,極化眼鏡的右眼濾光片傳送穿過薄膜圖案相位差膜 FPR的第二極化選擇圖案p2、P4、…、PN/2、...、PN之右影像的第二極 化光。 26 201243394 如上所述,薄膜圖案相位差膜FPR可與正面模式顯示面板PNL接合。 藉由形成在顯示面板PNL上的像素陣列的一線寬,偏移薄膜圖案相位差膜 FPR ’而在結構上並沒有有改變,以能與翻轉模式顯示面板pNL接合。因 此’依據實施例’相同的薄膜圖案相位差膜FPR可附接於正面模式顯示面 板PNL或翻轉模式顯示面板,以致一立體影像可正常地實現,而不會有觀 看者所看到的左眼與右眼影像為互相相反的現象。 薄膜圖案相位差膜FPR進一步包含在上端與下端的多餘圖案DUM1與 DUM2。薄膜圖案相位差膜FPR的多餘圖案DUM1與〇1;1^2以及顯示面板 PNL的對準標記Akl至AK6已予敘述,因而,在此不再贅述。 薄膜圖案相位差膜FPR包含對應於正面模式的第一參考線CTU、以 及對應於翻轉模式的第二參考線CTL2。義_相位差膜FpR的參考線 CTL1與CTL2係為介於互相鄰近之第一極化選擇圖案與第二極化選擇圖案 之間的分界線’錄於義_相位細FPR的巾央,並與形成在顯示面 板PNL之中央的二相對侧的對準標記與AK5對準。 第-參考線CTL1位_第二參考線CTL2有福_她差膜FpR =-線寬(或-圖案寬度)之處。第一參考線CTU為於薄膜圖案相位差膜 Z之第-線至第N+1線中的第N/2線與第Ν/2+ι線之間的分界線。第二 參考線CTL2為介於薄膜圓案相位差膜FpR之第一至第_線中的第 N/2+1線與第N/2+2線之間的分界線。 轉模第2^魏珊胁正賴式晴轉記、从對應於翻 2=1 顯示面板肌的平面示意圖。第22圖與第 第五對標記為形成在顯示峨中央之二相對側㈣二對準標記與 與第23圖’顯示面板PNL的對準標記的每-個可如第6 圖或第7圖所;^:之形狀予以實施 記AK2(F)、ΑΚ5〇〇、以及#心匕3對應於正面模式的對準標 轉赋崎轉記处2.〇 的第一2(F)、卿)與_案相位差膜™ 二 27 201243394 正面模式與翻轉模式對應的對準標記AK2(F)、AK5(F)與對準標記 AK2(R)、AK5(R)互相可具有不同的形狀,以致左側與右側可易於識別出 來’例如,JL賴式_侧式對觸鮮標記可設計成互相鱗稱的。 對準標記的每_個可包含記號、特,時等。依據本發明的—實施例,—些 特性可正常地形成在正面模式對應的對準標記^2(巧、AK5(F),而其他特 性可反方向地形成在翻轉模式對應的對準標記不像是正 面模式顯示面板,由於在翻轉模式顯示面板pNL中,上側與下側為互相反 向’若相關於正面模式姿態’特性為上下顛倒印㈤,當顯示面板隱嶺倒 配合於翻轉模式時,該等特性可正常地予以察看。 依據本發明的一實施例,將薄膜圖案相位差膜FPR偏移其一線寬(或一 圖案寬度)’翻轉模式顯示面板PNL可與薄臈圖案相位差膜FPR對準。 如上所述,依據該等實施例,當極化選擇圖案之一線被加到薄膜圖案 相位差膜FPR,而薄膜圖案相位差膜1?1>11與翻轉模式顯示面板對準,薄臈 圖案相位差膜將向上偏移或向下偏移一線寬(或一圖案寬度)。結果,該等實 施例允許薄膜圖案相位差膜具有可兼容應用於正面與翻轉模式顯示面板的 相同結構,致使正常3D影像可施行於正面與翻轉模式,而無須改變互相輸 入到顯示面板驅動電路的左眼/右眼影像資料。 依據本發明的一實施例,薄膜圖案相位差膜FPR可用玻璃圖案相位差 膜來取代。因此,將注意的是,依據該等實施例的對準系統與方法,亦可 適用於對準玻璃圖案相位差膜與顯示面板,而無須限定於對準顯示面板與 薄膜圖案相位差膜。 ^ 儘管參考許多說明的實施例已描述了實施例,可以理解地是本領域的 技術人員在不脫離本發明的精神或範圍下,可以對本發明作出各種修改及 變換。特別地,可以意識到本發明涵蓋在所附申請專利範圍及其等同物的 範圍内所提供的本發明的修改及變換。除了元件及配置的變化及修改外, 替換利用亦為本領域的技術人員顯而易見的。 本申請案主張於2010年12月23日提交的韓國專利申請第 10-2010-0133412號、於2010年12月29曰提交的韓國專利申請第 10-2010-0138249號以及於2011年4月13日提交的韓國專利申請第 10-2011-0034422號的權益,該等專利申請在此全部引用作為參考。 28 201243394 【圖式簡單說明】 所附圖式’其巾提供關於本發_進—步理解並且 部份,娜侧f罐⑽ 圖式中: 第1圖為說明依據習知技術於圖案相位麵與顯示面板的每—個上 ,對準標記、以及基於對準標記互相對準輯她差膜與顯示面板的示意 圖; 第2圖為概要說明依據一實施例的立體影像顯示裝置的示 ^ Ξ明依據—實施例之對準立體影_讀置 第4圖為_細說明依據—實施_薄_案相 第5圖為說明於第3圖所示之顯示面板的對準標記的平^^意圖, =6A圖與第6B圖為說明依據一實施例之對準標記的放大平面示意圖; _第7B _制雜實補之解標記的展開平 宰相IT說明利用第从圖與第6B圖的對準標記使薄膜圖 桨相位差媒與顯不面板互相理想對準的情況的展開平面示魚圖 窣相與猫第9B圖為說明利用第6A圖與第6B圖的對狗票記使薄膜圖 案相位差麟顯7F面板互相未解的情況的展開平面示意圖; 第1GA圖鄕圖為說明利用第7A圖 ^對 圖案相位差膜理想地與顯示面板對準的情況的平面示意圖;使賴 第11B圖為說明利用第7Α圖與第7Β圖的對準標記使薄膜 圖案相位差膜與顯示面板未對準的情況的平面示意圖; 料j 12Α圖至第12D圖為說明依據一實施例之用於立體影像顯示裝置的 對準系統的示意圖; 第13圖為說_案她麵與第—影像线的透視圖; 第14圖為說明顯示面板與第二影像系統的透視圖; 苐15圖為說明薄膜圖案相位差膜的剖面的截 面圖; 第16圖為說明薄_案相位差膜的連續生產過程的示意圓; 第】7圖為抽說明如第16圖所示的曝光過程的示意圖; 29 201243394 的示圖為說日肢據-實補的正賴式立體影像顯轉置的組合情況 的示圖為_依據—實施例_轉模式立體影像裝置的組合情況 第20圖為詳細說明依據一實施例的薄麵案相位差膜的平面視意圖; 第21圖為綱在正賴式與轉模式中介於賴圖案她差膜與顯示 面板之間的理想對準情況的平面示意圖;以及 第22圖與第23圖為說明對應於正面模式的對準標記、以及對應於翻 轉模式的鮮標記共同形成在顯示面板上的平面示意圖。 【主要元件符號說明】 51、54、61、 64左側對準圖案 52、53、62、 63右側對準圖案 71 保護薄膜 72 表面處理層 73 薄膜基底 74 圖案層 75 接著劑 76 脫模薄膜 77、77a、77b對準圖案 78 ‘光罩 AM1 〜AM4 、ΑΜΓ 〜AM4, AMR 容許對準誤差範圍 Akl 〜Ak6 對準標記 BM 黑色矩陣 CTL 參考線 CTL1 第一參考線 CTL2 第二參考線 CTL—PNL 面板參考線 CTRL 控制電腦 對準標記 201243394 DR 鼓 DUM1、DUM2多餘圖案 PNL 顯示面板 FPR 薄膜圖案相位差膜 PGLS 極化眼鏡 PR 薄膜圖案相位差膜 PR1 第一極化選擇圖案 PR2 第二極化選擇圖案 ST1 第一對準臺 ST2 第二對準臺 VR1 〜VR4 第一影像系統 VP1 〜VP4 第二影像系統 31The patterns P2, P4, ..., PN/2, and pN are disposed in the even-numbered lines of the thin film pattern phase difference film FPR in the second drawing. Therefore, as shown in Fig. 2, the number of the first polarization selection patterns P, P3, ..., PN/2+, pN_b, and ρΝ+ι in the __ phase difference film FpR is N/2. +]., and the number of second polarization selection patterns P2, P4, , pN/2, and pN is N/2. The first polarization selection patterns P1, P3, ···, er 2+, and the optical axis of p 朗 are N/2+1, perpendicular to the 苐 dipolarization selection pattern p2, p4, pN/2, and the optical axis of the PN. As shown in Fig. 20, in the front mode of the display panel PNL, the first line L1 of the pixel array is located at the upper end, and the Nth line is located at the lower end. The front mode seen by the display panel p shows the left eye image on the odd line and the right eye image on the even line in the model. With respect to the front mode of the display panel PNL, in the flip mode of the display panel PNL, the first "line L1 of the pixel array is located at the lower end, and the Nth line is located at the upper end. Compared to the front mode of the display panel pNL, the display panel PNL The flip mode has upper and lower sides that change from each other, and thus, in the 3〇 mode, the right eye image is displayed on the odd line, and the left eye image is displayed on the even line. j In the front mode thin film pattern retardation film FPR The first polarization selection patterns ρι, p3, ..., PN/2+, ..., PN-b and PN+ are in addition to the (N+1)th line of the first polarization pattern PN+1, relative to the display panel PNL The odd lines U, L3, ..., LN/2+l, .LN γ are used to display the odd lines LI, L3, ..., LN/2+1, and ln 1 25 201243394 on the display panel PNL. The ocular image light is converted into the first-polarized light. In the __phase difference film of the front mode, the second selection pattern P2, P4, ..., touch, and PN are relative to the display panel PNL. , L4, ···, LN/2,..., LN, which will be displayed on the display panel phoenix even lines L2, L4, ·._, ln/2 ..., and the right-eye image light on the LN is converted into the second-polarized light. The left-eye filter of the polarized glasses has the same polarization selection pattern Ph P3, which is the same as the film pattern retardation film FPR. ., PN/M, ..., leg, deleted green. The right eye filter of the polarized glasses has the second polarization selection pattern P2, P4 '...'PN identical to the film pattern retardation film FpR The optical axis of the optical axis of /2, ..., pn. Therefore, in the front mode, the left-eye filter of the polarized glasses is transmitted through the first polarization selection patterns pl, P3 of the thin film pattern phase difference film FPR. ·_· PN/2+1,... 'PN-l, the first polarized light of the left image of PN+1. The right-eye filter of the polarized glasses is transmitted through the thin film pattern retardation film FPR The second polarized light of the right image of the polarization selection pattern p2, p4, PN/2, ..., PN. In the thin film pattern phase difference film FPR of the flip mode, the second polarization selection pattern p2, p4, • .., ΡΝ/2'_·. and the PN line with respect to the odd-numbered lines li, L3, ..., LN/2+1, ..., LN_1 ' of the display panel pnl to be displayed on the display panel PNL odd number Lines LI, L3, ..., LN/2+l, ..., and LN-1 The right eye image light is converted into the second polarized light. In the flip mode thin film pattern retardation film FPR, the first polarization selection patterns p3, ... 'pN/2+j, , pN_b and pN+ In addition to the first polarization selection pattern P1 of the line, the even lines L2, L4, LN/2, ..., LN' of the display panel PNL are displayed on the even lines L2, L4 of the display panel PNL. , ..., LN/2, ..., and the left-eye image light on the LN are converted into the first polarized light. The right eye filter of the polarized glasses has optical axes identical to the optical axes of the first polarization selection patterns p3, PN/2+1, ..., PN·, and ρΝ+. The right eye filter of the polarized glasses has optical axes identical to the optical axes of the second polarization selection patterns P2, P4, ..., PN/2, ..., PN. Therefore, in the flip mode, the left-eye filter of the polarized glasses is transmitted through the first polarization selection patterns P3, . . . , pn/2+I, . . . , PN-1, PN+ of the thin film pattern phase difference film FPR. The first polarized light of the left image of 1. In the flip mode, the right-eye filter of the polarized glasses is transmitted through the second image of the second polarization selection patterns p2, P4, . . . , PN/2, . . . , PN of the thin film pattern retardation film FPR. Polarized light. 26 201243394 As described above, the thin film pattern retardation film FPR can be bonded to the front mode display panel PNL. The film pattern phase difference film FPR' is offset by the line width of the pixel array formed on the display panel PNL, and there is no change in structure to be able to be bonded to the flip mode display panel pNL. Therefore, the same thin film pattern retardation film FPR according to the embodiment can be attached to the front mode display panel PNL or the flip mode display panel, so that a stereoscopic image can be realized normally without the left eye seen by the viewer. The image with the right eye is opposite to each other. The thin film pattern retardation film FPR further includes excess patterns DUM1 and DUM2 at the upper end and the lower end. The excess patterns DUM1 of the thin film pattern retardation film FPR and the alignment marks Ak1 to AK6 of the display panel PNL have been described, and thus will not be described herein. The thin film pattern phase difference film FPR includes a first reference line CTU corresponding to the front mode, and a second reference line CTL2 corresponding to the flip mode. The reference lines CTL1 and CTL2 of the phase difference film FpR are defined as a boundary line between the first polarization selection pattern and the second polarization selection pattern adjacent to each other, and are recorded in the center of the phase-precision FPR. The alignment marks on the opposite sides of the center formed on the display panel PNL are aligned with the AK5. The first reference line CTL1 bit_the second reference line CTL2 is blessed _ her poor film FpR = - line width (or - pattern width). The first reference line CTU is a boundary line between the N/2th line and the Ν/2 + ι line in the first to N+1th lines of the thin film pattern phase difference film Z. The second reference line CTL2 is a boundary line between the N/2+1th line and the N/2+2 line in the first to _th lines of the film case retardation film FpR. The second model of the model is the 2nd Weishan threatening Lai Qingdi, and the plane diagram corresponding to the panel muscle is displayed from the corresponding 2=1. Figure 22 and the fifth pair are marked as two opposite sides of the display 峨 center (four) two alignment marks and the alignment mark of the display panel PNL of Fig. 23 can be as shown in Fig. 6 or Fig. 7 The shape of the ^^ is implemented. The AK2(F), ΑΚ5〇〇, and #心匕3 correspond to the frontal pattern of the alignment to the Osaki turntable. 2. The first 2 (F), Qing) Θ2(F), AK5(F) and alignment marks AK2(R), AK5(R) may have different shapes from each other, and the alignment marks AK2(F) and AK5(R) corresponding to the flip mode may be different from each other. The left and right sides are easily identifiable 'for example, the JL Lai _ side-to-touch markers can be designed to scale to each other. Each _ of the alignment mark may include a mark, a special, a time, and the like. According to the embodiment of the present invention, some of the characteristics can be normally formed in the front mode corresponding to the alignment mark ^2 (巧, AK5 (F), while other characteristics can be formed in the reverse direction corresponding to the alignment mark For example, in the front mode display panel, since the upper side and the lower side are opposite each other in the flip mode display panel pNL, if the feature related to the front mode posture is reversed (five), when the display panel is hidden in the flip mode, According to an embodiment of the present invention, the thin film pattern retardation film FPR is offset by a line width (or a pattern width) of the flip mode display panel PNL and the thin pattern retardation film. FPR alignment. As described above, according to the embodiments, when one line of the polarization selection pattern is applied to the thin film pattern retardation film FPR, and the thin film pattern retardation film 1?1>11 is aligned with the flip mode display panel, The thin patterned retardation film will be offset upward or downward by a line width (or a pattern width). As a result, these embodiments allow the thin film pattern retardation film to be compatible for use in front and flip The same structure of the mode display panel enables normal 3D images to be performed in the front and flip modes without changing the left eye/right eye image data input to the display panel driving circuit. According to an embodiment of the present invention, the film pattern phase difference The film FPR may be replaced by a glass pattern retardation film. Therefore, it should be noted that the alignment system and method according to the embodiments may also be applied to the alignment of the glass pattern retardation film and the display panel without limitation to the pair. The quasi-display panel and the film pattern retardation film. ^ While the embodiments have been described with reference to a number of illustrated embodiments, it will be understood by those skilled in the art that various modifications of the invention can be made without departing from the spirit or scope of the invention. In particular, it is to be understood that the modifications and variations of the present invention are intended to be included within the scope of the appended claims and equivalents. It is obvious to those skilled in the art. This application claims Korean patent application filed on December 23, 2010. Korean Patent Application No. 10-2010-0138249, filed on Dec. 29, 2010, and Korean Patent Application No. 10-2011-0034422, filed on Apr. 13, 2011, These patent applications are hereby incorporated by reference in their entirety. 28 201243394 [Simplified description of the drawings] The drawings of the drawings are provided with respect to the present invention, and the parts are partially understood, and the side is the canister (10). The figure shows a schematic diagram of the alignment mark and the alignment mark based on each other on the pattern phase surface and the display panel according to the prior art; FIG. 2 is a schematic diagram based on one DESCRIPTION OF THE CIRCULAR IMAGE DISPLAY DEVICE OF THE PREFERRED EMBODIMENT According to the embodiment, the aligning stereo image_reading FIG. 4 is a detailed description of the basis - the implementation _ thin _ case phase 5 is illustrated in FIG. The flatness of the alignment mark of the display panel, the Fig. 6A and Fig. 6B are enlarged plan views illustrating the alignment mark according to an embodiment; _ the 7B _ 杂 杂 补 补 补The IT description uses the alignment marks of the second and sixth images to make a thin film pattern. The unfolding plane of the paddle phase difference and the display panel are ideally aligned with each other. Figure 9B shows the phase difference of the film pattern using the 6A and 6B pictures. FIG. 1G is a schematic plan view showing a case where the pattern retardation film is ideally aligned with the display panel by using FIG. 7A; and FIG. 7: FIG. 7 is a plan view showing a state in which the alignment mark of the film pattern is misaligned with the display panel; the materials from 12 to 12D are for explaining a stereoscopic image display device according to an embodiment. Schematic diagram of the alignment system; Figure 13 is a perspective view of the face and the image line; Figure 14 is a perspective view illustrating the display panel and the second image system; 苐 15 is a film pattern retardation film FIG. 16 is a schematic view showing a continuous production process of a thin film retardation film; FIG. 7 is a schematic view showing an exposure process as shown in FIG. 16; 29 201243394 is a diagram Said the Japanese limbs - A diagram of the combination of the positive complementary stereoscopic image transposition is based on the combination of the embodiment_transition mode stereoscopic image device. FIG. 20 is a detailed description of the thin surface retardation film according to an embodiment. Plan view; FIG. 21 is a plan view schematically showing the ideal alignment between the film and the display panel in the positive mode and the transition mode; and FIG. 22 and FIG. 23 are diagrams corresponding to the front side The alignment marks of the mode, and the fresh marks corresponding to the flip mode, are collectively formed on a plane of the display panel. [Main component symbol description] 51, 54, 61, 64 left side alignment pattern 52, 53, 62, 63 right side alignment pattern 71 protective film 72 surface treatment layer 73 film substrate 74 pattern layer 75 subsequent agent 76 release film 77, 77a, 77b alignment pattern 78 'mask AM1 ~ AM4, ΑΜΓ ~ AM4, AMR tolerance error range Ak1 ~ Ak6 alignment mark BM black matrix CTL reference line CTL1 first reference line CTL2 second reference line CTL - PNL panel Reference line CTRL Control computer alignment mark 201243394 DR Drum DUM1, DUM2 redundant pattern PNL Display panel FPR Thin film pattern phase difference film PGLS Polarized glasses PR Thin film pattern phase difference film PR1 First polarization selection pattern PR2 Second polarization selection pattern ST1 First alignment stage ST2 second alignment stage VR1 ~VR4 first image system VP1 VP4 VP4 second image system 31