TWI487618B - Laserschweissbares verbundmaterial - Google Patents
Laserschweissbares verbundmaterial Download PDFInfo
- Publication number
- TWI487618B TWI487618B TW101141270A TW101141270A TWI487618B TW I487618 B TWI487618 B TW I487618B TW 101141270 A TW101141270 A TW 101141270A TW 101141270 A TW101141270 A TW 101141270A TW I487618 B TWI487618 B TW I487618B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- composite material
- substrate
- range
- ceramic coating
- Prior art date
Links
- 239000010410 layer Substances 0.000 claims description 176
- 239000002131 composite material Substances 0.000 claims description 78
- 239000000758 substrate Substances 0.000 claims description 65
- 238000005524 ceramic coating Methods 0.000 claims description 48
- 229910052751 metal Inorganic materials 0.000 claims description 32
- 239000002184 metal Substances 0.000 claims description 32
- 229910052782 aluminium Inorganic materials 0.000 claims description 21
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 15
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 14
- 230000003287 optical effect Effects 0.000 claims description 14
- 239000011651 chromium Substances 0.000 claims description 13
- 229910052804 chromium Inorganic materials 0.000 claims description 12
- 239000000126 substance Substances 0.000 claims description 12
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 10
- 229910010038 TiAl Inorganic materials 0.000 claims description 9
- UQZIWOQVLUASCR-UHFFFAOYSA-N alumane;titanium Chemical compound [AlH3].[Ti] UQZIWOQVLUASCR-UHFFFAOYSA-N 0.000 claims description 9
- 238000010521 absorption reaction Methods 0.000 claims description 8
- 239000010936 titanium Substances 0.000 claims description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 7
- 150000004767 nitrides Chemical class 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 239000010949 copper Substances 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical group [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 239000010931 gold Substances 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 239000011733 molybdenum Substances 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 239000004332 silver Substances 0.000 claims description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims description 3
- 229910000423 chromium oxide Inorganic materials 0.000 claims description 3
- 238000003682 fluorination reaction Methods 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- 239000011247 coating layer Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 239000011159 matrix material Substances 0.000 claims description 2
- 238000004073 vulcanization Methods 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 1
- 238000002048 anodisation reaction Methods 0.000 claims 1
- 239000011248 coating agent Substances 0.000 claims 1
- 238000005121 nitriding Methods 0.000 claims 1
- 230000001590 oxidative effect Effects 0.000 claims 1
- 239000010703 silicon Substances 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 claims 1
- 239000011135 tin Substances 0.000 claims 1
- 238000000034 method Methods 0.000 description 16
- 238000003466 welding Methods 0.000 description 11
- 238000002310 reflectometry Methods 0.000 description 10
- 239000000919 ceramic Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000006096 absorbing agent Substances 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910020219 SiOw Inorganic materials 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 238000007743 anodising Methods 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- CXOWYMLTGOFURZ-UHFFFAOYSA-N azanylidynechromium Chemical compound [Cr]#N CXOWYMLTGOFURZ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D11/00—Electrolytic coating by surface reaction, i.e. forming conversion layers
- C25D11/02—Anodisation
- C25D11/04—Anodisation of aluminium or alloys based thereon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S70/00—Details of absorbing elements
- F24S70/10—Details of absorbing elements characterised by the absorbing material
- F24S70/16—Details of absorbing elements characterised by the absorbing material made of ceramic; made of concrete; made of natural stone
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S70/00—Details of absorbing elements
- F24S70/20—Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
- F24S70/225—Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Ceramic Engineering (AREA)
- Laminated Bodies (AREA)
Description
本發明涉及一種本發明涉及一種尤其是用於太陽能收集器元件的可雷射焊接的複合材料,所述複合材料包括帶狀的、由對雷射射線具有高反射性能(Reflektivität)的金屬製成的基體(Träger),所述基體具有第一面和第二面,其中,至少在第一面上具有陶瓷塗層。The invention relates to a laser weldable composite material, in particular for a solar collector element, which comprises a strip of metal made of a highly reflective property for laser radiation (Reflektivität) The base body has a first side and a second side, wherein at least the first side has a ceramic coating.
歐洲專利申請文件EP 2 239 086 A1公開過這樣一種複合材料。在該專利申請檔中記述了一種將複合材料與一工件利用雷射焊接到一起的公知方法,該方法尤其用來製造太陽能收集器元件,其中,所述複合材料包括採用對雷射射線具有高反射性能的金屬製成的帶狀基體,該帶狀基體具有第一面和第二面,且至少在第一面上具有陶瓷塗層,此外,為製成焊縫,需將雷射光束至少投射到所述基體的配置有陶瓷塗層的第一面上,而且雷射光束的定向角需呈銳角形式。另外,該專利申請檔還記述了一種用在此種方法中的可雷射焊接的複合材料。相對於在EP 2 239 086 A1所援引並推崇的EP 1 217 315 B1、US 300 591 B1、DE 38 27 297 A1以及US 4 023 005中已公開的方法,為了在保持複合材料高功能性且製造成本盡可能節省的情況下,提升焊接工藝的效率,在EP 2 239 086 A1中是這樣設計的,即,陶瓷塗層的厚度在140nm至210nm的範圍內,而且雷射光 束需以大小在2°至50°的定向角入射,從而使雷射光束的入射能量中至少有15%能夠被吸收。Such a composite material is disclosed in the European patent application EP 2 239 086 A1. A known method of laser welding a composite material to a workpiece is described in the patent application, which method is used in particular for the manufacture of solar collector elements, wherein the composite material comprises a high degree of use for laser radiation. a strip-shaped substrate made of metal having a reflective property, the strip-shaped substrate having a first side and a second side, and having a ceramic coating on at least the first side, and further, to form a weld, at least a laser beam is required Projected onto the first side of the substrate with the ceramic coating, and the orientation angle of the laser beam needs to be in the form of an acute angle. In addition, the patent application file describes a laser weldable composite material for use in such a method. The method disclosed in EP 1 217 315 B1, US Pat. No. 300 591 B1, DE 38 27 297 A1, and US Pat. No. 4,023,005, which is incorporated herein by reference in its entirety, for the purpose of maintaining high functionality and manufacture of composite materials. In the case of cost savings as much as possible, the efficiency of the welding process is increased, as is the case in EP 2 239 086 A1, ie the thickness of the ceramic coating is in the range from 140 nm to 210 nm, and the laser light The beam needs to be incident at an orientation angle of between 2 and 50 degrees so that at least 15% of the incident energy of the laser beam can be absorbed.
這裡需要注意的是,與雷射焊接時發生在複合材料的表面上的現象一樣,當光線照射到一個物體上,入射的光線會被分成反射部分、吸收部分與透射部分。為此,不僅在複合材料的第一面上,而且在第二面上均有該複合材料特有的反射率(Reflexionsgrad)(反射能力)、吸收率(Absorptionsgrad)(吸收能力)和透射率(Transmissionsgrad)(透射能力)。反射能力、吸收能力與透射能力是光學特性,對於同種材料而言,這些光學特性會根據入射光線波長的不同(例如紫外光區、可見光區、紅外光區以及熱輻射區)而具有不同的值。為確保能量的高效利用,對於此種材料而言,在雷射射線的波長範圍(典型的是1.06μm,更精確地說,1064nm)內,要求第一面上具有最大的吸收率。如果該複合材料的透射率為零,那麼其反射率與吸收率之和將是100%。因此,EP 2 239 086 A1中公開的複合材料的第一面上的反射率最小為85%。It should be noted here that, like the phenomenon that occurs on the surface of a composite material during laser welding, when light is irradiated onto an object, the incident light is divided into a reflecting portion, an absorbing portion and a transmitting portion. For this reason, the reflectivity (reflexivity), absorption rate (absorption capacity) and transmittance (Transmissionsgrad) unique to the composite material are available not only on the first side of the composite but also on the second side. ) (transmission ability). Reflectivity, absorption and transmission are optical properties. For the same material, these optical properties have different values depending on the wavelength of the incident light (eg, ultraviolet, visible, infrared, and thermal radiation). . In order to ensure efficient use of energy, for this material, the maximum absorption rate on the first side is required in the wavelength range of the laser beam (typically 1.06 μm, more precisely, 1064 nm). If the transmittance of the composite is zero, then the sum of reflectance and absorbance will be 100%. Thus, the reflectivity of the first side of the composite material disclosed in EP 2 239 086 A1 is at least 85%.
這樣,與其它的同類方法相比,雷射焊接方法已達到了較高的效率,不過該效率尚有提高的空間。對於目前實際採用的幾乎所有應用CO2 雷射系統和Nd:YAG雷射系統的方法(EP 2 239 086 A1中也描述了這一方法)來說,其雷射光束的典型波長為1.06μm,在這一波長下,市面上的未經加工的鋁以及為太陽能吸收器所用的經過鈍化的鋁僅會反射入射雷射能量的大約90%。Thus, the laser welding method has achieved higher efficiency than other similar methods, but the efficiency has room for improvement. For almost all methods currently used in the CO 2 laser system and the Nd:YAG laser system (also described in EP 2 239 086 A1), the typical wavelength of the laser beam is 1.06 μm. At this wavelength, the unprocessed aluminum on the market and the passivated aluminum used for solar absorbers reflect only about 90% of the incident laser energy.
本發明的基本目的在於提供一種本文開頭所述類型的複合材料,特別是用於太陽能收集器元件的複合材料,在利用雷射對此種複合材料進行焊接時,此種複合材料在具有更好的功能性和盡可能低的生產成本的同時,確保能夠進一步提高生產工藝的效率。The basic object of the present invention is to provide a composite material of the type mentioned at the outset, in particular a composite material for solar collector elements, which is better when welding such composite materials by means of lasers. The functionality and the lowest possible production costs ensure that the efficiency of the production process can be further increased.
根據本發明,這一目的是這樣實現的:從基體出發看去,在陶瓷塗層上具有金屬層,而且對陶瓷塗層的厚度和金屬層的厚度的大小進行設計,以使得在波長為1064nm的入射雷射光束以大小在65°到80°的入射角入射時,在基體的第一面上的按照DIN 5036第三部分確定的總反射率小於60%。According to the invention, this object is achieved in that, starting from the substrate, a metal layer is provided on the ceramic coating, and the thickness of the ceramic coating and the thickness of the metal layer are designed such that the wavelength is 1064 nm. When the incident laser beam is incident at an incident angle of 65° to 80°, the total reflectance determined in accordance with DIN 5036 Part 3 on the first side of the substrate is less than 60%.
令人驚訝的是,發明人發現與公知的複合材料相比,採用具有根據本發明的層系統的複合材料可將雷射焊接時吸收的能量提高數倍。Surprisingly, the inventors have found that a composite material having a layer system according to the invention can increase the energy absorbed during laser welding by several times compared to known composite materials.
此外,特別地,在基體的第一面上的陶瓷塗層的厚度可在20nm至135nm的範圍內,位於所述陶瓷塗層之上的金屬層的厚度可在5nm至25nm的範圍內。Furthermore, in particular, the thickness of the ceramic coating on the first side of the substrate may range from 20 nm to 135 nm, and the thickness of the metal layer above the ceramic coating may range from 5 nm to 25 nm.
如果各層的尺寸處在相應的上述範圍內,那麼波長為1064nm的雷射射線在基體的第一面上的按照DIN 5036第三部分確定的總反射率可優選小於50%,特別優選40%。這就是說,對雷射射線的吸收率至少為50%或60%,這是有益的。通過將層厚度在根據本發明的範圍內稍加改變, 則也可以在其它波長下(假如在希望採用諸如氬氣雷射器(波長488nm或515nm)或鈥-YAG雷射器(波長2123nm)等其它雷射器時需要的情況下)以同樣的方式使吸收最大化。If the dimensions of the individual layers are within the respective ranges mentioned above, the total reflectance of the laser beam having a wavelength of 1064 nm on the first side of the substrate, which is determined according to DIN 5036 part 3, may preferably be less than 50%, particularly preferably 40%. That is to say, the absorption rate of the laser beam is at least 50% or 60%, which is beneficial. By slightly varying the layer thickness within the scope of the invention, It can also be used at other wavelengths (if it is desired to use other lasers such as argon lasers (wavelength 488 nm or 515 nm) or 鈥-YAG lasers (wavelength 2123 nm)) in the same way Maximize absorption.
在優選的實施方式中可將陶瓷塗層設計成基本上由氧化鋁製成。若複合材料的基體也由鋁製成,那麼可用工藝學上有利的方式,使陶瓷塗層的氧化鋁尤其由基體上的經陽極氧化或經電解拋光且陽極氧化的鋁形成。In a preferred embodiment the ceramic coating can be designed to be made substantially of alumina. If the matrix of the composite material is also made of aluminum, the ceramically coated alumina can be formed, in particular, from anodized or electropolished and anodized aluminum on the substrate in a technically advantageous manner.
金屬層可優選包含鉻和/或鈦或者完全由這些材料製成。層的厚度可優選落在10nm至20nm的範圍內,尤其是為15nm。金屬層可以用工藝學上有利的方式,以連續的真空帶狀塗覆法施加到陶瓷塗層上。The metal layer may preferably comprise or consist entirely of chromium and/or titanium. The thickness of the layer may preferably fall within the range of 10 nm to 20 nm, especially 15 nm. The metal layer can be applied to the ceramic coating in a continuous vacuum strip coating process in a technically advantageous manner.
因此根據本發明的複合材料可構造卷材,尤其是寬度可達1600mm,而厚度在大約0.1mm至1.5mm的範圍內,優選在大約0.2至0.8mm的範圍內的卷材,並且該複合材料的所有的層均可在連續進行的工藝中輥對輥(卷對卷)地加工而成。The composite material according to the invention thus makes it possible to construct a web, in particular a web having a width of up to 1600 mm and a thickness in the range of from about 0.1 mm to 1.5 mm, preferably in the range of from about 0.2 to 0.8 mm, and the composite material All of the layers can be processed in a roll-to-roll (roll-to-roll) process in a continuous process.
此外,根據本發明的複合材料(尤其是當此複合材料要被用來製造太陽能收集器元件時)在基體的第二面上可具有光學有效的多層系統,該多層系統包括至少兩個層,優選包括至少三個層。Furthermore, the composite material according to the invention, in particular when the composite material is to be used in the manufacture of solar collector elements, can have an optically efficient multilayer system on the second side of the substrate, the multilayer system comprising at least two layers, Preferably at least three layers are included.
在基體上,可在光學多層系統之下設計中間層,該中間層一方面可確保對基體提供機械防護和防腐蝕保護,另一方面又可確保能夠與光學多層系統具有高的粘合性 (Haftung)。在這裡,中間層同樣可以是一陶瓷層,但其位於基體的第二面之上,並尤其可以與位於基體的第一面之上的陶瓷塗層一樣的方式製造而成。On the substrate, an intermediate layer can be designed under the optical multilayer system, which ensures mechanical protection and corrosion protection of the substrate on the one hand and high adhesion to the optical multilayer system on the other hand. (Haftung). Here, the intermediate layer can likewise be a ceramic layer, but it is situated above the second side of the substrate and can in particular be produced in the same manner as the ceramic coating on the first side of the substrate.
如果採用包括至少三層的光學有效的多層系統,則最上層可以是絕緣層,中部的層可以是主要起吸收可見光作用且優選含有鉻氧化物的層,而最下面的層則可用金、銀、銅、鉻、鋁和/或鉬製成。mirotherm®是公知的這樣一種在鋁質基體之上的層系統;通過本發明,能夠在不損害其極佳光學特性的同時,顯著改善其在雷射焊接方面的性能。If an optically efficient multilayer system comprising at least three layers is employed, the uppermost layer may be an insulating layer, the middle layer may be a layer that primarily absorbs visible light and preferably contains chromium oxide, while the lowermost layer may be gold or silver. Made of copper, chrome, aluminum and/or molybdenum. The mirotherm® is a well-known layer system on an aluminum substrate; by means of the invention, its performance in laser welding can be significantly improved without compromising its excellent optical properties.
為製造太陽能收集器元件或者說吸收器部件,帶有例如由鋁製成的基體材料的根據本發明的複合材料(在第一基體面上有由氧化鋁製成的陶瓷層並且金屬層)可以通過雷射焊接的方式與例如一由銅製成的管子連接在一起。此時,將形成一材料接合(stoffschlüssig)的連接,這種連接一方面通過在熔化步驟中熔化並再次變硬的鋁形成,另一方面通過鋁向銅中的遷移形成。對於焊接,可以採用例如具有足夠功率的CO2 -YAG雷射器或Nd-YAG雷射器的射線進行。In order to produce a solar collector element or an absorber component, a composite material according to the invention with a base material, for example made of aluminum (with a ceramic layer made of aluminum oxide on the first substrate surface and a metal layer) can It is connected by laser welding to, for example, a tube made of copper. In this case, a material-bonding connection is formed which is formed on the one hand by aluminum which melts in the melting step and hardens again, and on the other hand by migration of aluminum into the copper. For welding, it can be carried out using, for example, a ray having a sufficient power of a CO 2 -YAG laser or an Nd-YAG laser.
特別地,管子與吸收器部件可沿著它們的接觸位(Stoßstelle),通過在管子兩側延伸的、由脈衝焊接工藝而形成的點狀焊縫連接到一起。在這種情況下,當雷射功率和脈衝頻率確定時,需要注意的是,焊點的大小首先取決於導熱率,而且,表面溫度、照射時間、吸收器部件的厚度以及材料性質是相互影響的因素。在熔化深度與雷射 的平均功率之間存在比例關係。由於根據本發明的複合材料的吸收能力有了提升,因此與已經基本公知的方法(對此,完全可參閱EP 2 239 086 A1與EP 1 217 315 B1)相比,焊接過程中可顯著節省功率。In particular, the tube and absorber parts can be joined together along their contact locations by point welds which are formed on both sides of the tube and which are formed by a pulse welding process. In this case, when the laser power and pulse frequency are determined, it should be noted that the size of the solder joint depends first on the thermal conductivity, and the surface temperature, the irradiation time, the thickness of the absorber component, and the material properties are mutually affected. the elements of. In the depth of fusion and laser There is a proportional relationship between the average powers. Since the absorption capacity of the composite material according to the invention is improved, significant power savings can be achieved in the welding process compared to the already known methods (for this, see EP 2 239 086 A1 and EP 1 217 315 B1). .
本發明的其他有利實施方式包含在各從屬權利要求以及隨後的詳細說明中。Further advantageous embodiments of the invention are contained in the dependent claims and the subsequent detailed description.
對於後面的描述,需要強調的是:本發明並不限於這些實施例,因此也不限於所描述之特徵組合中的全部或多個特徵;實際上,任一實施例中的每一單個子特徵在與其他所有結合在一起描述的子特徵分開時,無論是單獨存在,還是與另一實施例中的任一特徵相組合,都依然具有發明意義。For the following description, it is emphasized that the invention is not limited to the embodiments, and thus is not limited to all or a plurality of features in the described combination of features; in fact, each individual sub-feature in any embodiment When separated from all other sub-features described in combination, whether alone or in combination with any of the features of another embodiment, it is still of inventive significance.
在不同附圖中,同樣的部件,或者尤其是起同樣功能的層均被配以同樣的附圖標記,因而在下文中一般只說明一次。In the different figures, the same components, or in particular layers which serve the same function, are assigned the same reference numerals and are generally only described once in the following.
首先如圖1所示,根據本發明的可雷射焊接的複合材料V(尤其可用於製造太陽能收集器元件)的第一實施例包括帶狀的金屬基體1。該基體具有第一面A和第二面B。First, as shown in Fig. 1, a first embodiment of a laser weldable composite material V (especially useful for fabricating solar collector elements) according to the present invention comprises a strip-shaped metal substrate 1. The substrate has a first side A and a second side B.
在基體1的第二面B上有可以選擇存在的中間層2和施加在該中間層2上的、可以選擇存在的光學多層系統3,所述多層系統包括至少三個層4、5、6。在該光學有效的多層系統3中,最上層4是絕緣層,中部的層5是主要起吸 收可見光作用的層,而最下層6則是一金屬紅外反射層。On the second side B of the substrate 1 there is an intermediate layer 2 which can optionally be present and an optical multilayer system 3 which can optionally be present on the intermediate layer 2, said multilayer system comprising at least three layers 4, 5, 6 . In the optically effective multi-layer system 3, the uppermost layer 4 is an insulating layer, and the middle layer 5 is mainly sucked. The layer of visible light is applied, while the lowermost layer 6 is a metallic infrared reflective layer.
最上層4尤其可以是折射率n<1.8的氧化層、氟化層、硫化層、氮化層、氧氮化層和/或碳氧氮化層(carboxynitridische Schicht)。它尤其可以是化學成分為TiOz 、SiOw 或SnOv 的鈦、矽或錫的氧化層,其中,下標v、w和z分別表示了氧化成分的化學計量或非化學計量比,並且處於以下範圍內:1<V和/或w和/或z2,優選1.9v和/或w和/或z2。可優選的是化學成分為SiOw的矽氧化層,其中下標w的值取2。最上層4的厚度D4可優選落在3nm至500nm的範圍內。The uppermost layer 4 can in particular be an oxide layer, a fluorination layer, a vulcanization layer, a nitride layer, an oxynitride layer and/or a carbon oxynitride layer having a refractive index n<1.8. It may especially be an oxide layer of titanium, tantalum or tin having a chemical composition of TiO z , SiO w or SnO v , wherein the subscripts v, w and z respectively represent stoichiometric or non-stoichiometric ratios of the oxidized component, and are Within the following range: 1<V and / or w and / or z 2, preferably 1.9 v and / or w and / or z 2. A niobium oxide layer having a chemical composition of SiOw may be preferred, wherein the value of the subscript w is 2. The thickness D4 of the uppermost layer 4 may preferably fall within the range of 3 nm to 500 nm.
中部的主要起吸收可見光作用的層5可尤其包含化學成分為CrOr 的氧化鉻和/或化學成分為CrNs 的氮化鉻和/或化學成分為CrOr Ns 的氮氧化鉻,其中下標r與s分別表示化學計量或非化學計量比,並且0<r和/或s<3。這一層5也可以選擇包含其它金屬(而不是鉻)的氟化物、硫化物、氮化物、氮氧化物和/或碳氧氮化物。它的厚度D5 尤其可以落在0.01μm至大約1μm的範圍內。The layer 5 which mainly absorbs visible light in the middle may especially comprise chromium oxide having a chemical composition of CrO r and/or chromium nitride having a chemical composition of CrN s and/or chromium oxynitride having a chemical composition of CrO r N s , wherein The labels r and s represent stoichiometric or non-stoichiometric ratios, respectively, and 0 < r and / or s < 3. This layer 5 may also be selected to contain fluorides, sulfides, nitrides, oxynitrides and/or carbon oxynitrides of other metals than chromium. Its thickness D 5 may especially fall within the range of from 0.01 μm to about 1 μm.
光學多層系統3的最下層6可優選由金、銀、銅、鉻、鋁和/或鉬製成。它尤其可具有一最小3nm,最大約500nm的厚度D6 。The lowermost layer 6 of the optical multilayer system 3 may preferably be made of gold, silver, copper, chromium, aluminum and/or molybdenum. It may in particular have a thickness D 6 of a minimum of 3 nm and a maximum of about 500 nm.
在基體1的第一面A上存在一陶瓷塗層7,根據本發明,該陶瓷塗層的厚度D7 落在20nm至135nm的範圍內,同時,在陶瓷塗層7的那一背向基體1的面(示圖中位於陶瓷塗層7的下部)上還設計有一厚度D8 在5nm至25nm 的金屬層8。On the first side A of the substrate 1, a ceramic coating 7 is present. According to the invention, the thickness D 7 of the ceramic coating falls within the range of 20 nm to 135 nm, while at the back of the ceramic coating 7 A metal layer 8 having a thickness D 8 of 5 nm to 25 nm is also designed on the face of 1 (the lower portion of the ceramic coating 7 in the drawing).
陶瓷塗層7的厚度D7 可優選落在40nm至95nm的範圍內,而金屬層8的厚度D8 則可優選在10nm至20nm的範圍內,並特別優選15nm。金屬層8可包含鉻和/或鈦或者完全由這些材料製成。The thickness D 7 of the ceramic coating layer 7 may preferably fall within the range of 40 nm to 95 nm, and the thickness D 8 of the metal layer 8 may preferably be in the range of 10 nm to 20 nm, and particularly preferably 15 nm. The metal layer 8 may comprise or be made entirely of chromium and/or titanium.
在基體1的第一面A上的陶瓷塗層7可基本上由氧化鋁製成,其中,根據本發明的複合材料V的基體1由鋁製成時。這樣,陶瓷塗層7的氧化鋁可優選由基體1的鋁經陽極氧化或經電解拋光且經陽極氧化而形成。The ceramic coating 7 on the first side A of the substrate 1 can be made substantially of alumina, wherein the substrate 1 of the composite material V according to the invention is made of aluminum. Thus, the alumina of the ceramic coating 7 can preferably be formed by anodizing or electrolytically polishing aluminum of the substrate 1 and anodizing.
位於基體1的第二面B上的中間層2也可優選是陶瓷塗層2,而且尤其可用與位於基體1的第一面A上的陶瓷塗層7一樣的方式製造而成。在前述情形下,即,在基體的第一面A上的陶瓷塗層7由氧化鋁製成,所述氧化鋁是由基體1的鋁經陽極氧化或經電解拋光且經陽極氧化而形成的,則可以在形成基體1的第一面A上的陶瓷塗層7的工序中有利地同時形成在基體1的第二面B上的陶瓷塗層2。基體1的第二面B上的陶瓷塗層2的厚度D2尤其是可小於135nm,尤其是落在3至95nm的範圍內,優選落在15nm至45nm的範圍內。The intermediate layer 2 on the second side B of the substrate 1 can also preferably be a ceramic coating 2, and can be produced in particular in the same manner as the ceramic coating 7 on the first side A of the substrate 1. In the foregoing case, that is, the ceramic coating 7 on the first face A of the substrate is made of alumina which is anodized or electropolished and anodized by aluminum of the substrate 1. The ceramic coating 2 on the second side B of the substrate 1 can advantageously be formed simultaneously in the process of forming the ceramic coating 7 on the first side A of the substrate 1. The thickness D2 of the ceramic coating 2 on the second side B of the substrate 1 can in particular be less than 135 nm, in particular in the range from 3 to 95 nm, preferably in the range from 15 nm to 45 nm.
如圖2進一步示出的那樣,根據本發明的可雷射焊接的複合材料V的第二實施例同樣包括一帶狀金屬基體1,該基體1具有一帶有陶瓷塗層7的第一面A和第二面B。根據本發明,在這裡也是這樣設計的,即,基體1的第一面A上的陶瓷塗層7的厚度D7 落在20nm至135nm的範圍內, 而且在陶瓷塗層7的那一背向基體1的面上還存在一厚度D8 在5nm至25nm的金屬層8。As further shown in Fig. 2, the second embodiment of the laser weldable composite material V according to the invention likewise comprises a strip-shaped metal substrate 1 having a first side A with a ceramic coating 7. And the second side B. According to the invention, it is also designed here that the thickness D 7 of the ceramic coating 7 on the first side A of the base body 1 falls within the range from 20 nm to 135 nm, and in the direction of the ceramic coating 7 A metal layer 8 having a thickness D 8 of 5 nm to 25 nm is also present on the face of the substrate 1.
此外,與本發明的第一實施例一樣,在基體1的第二面B上也有一陶瓷塗層2,該陶瓷塗層尤其形成中間層2,而且在該中間層之上,在基體1的第二面B上存在一光學有效的多層系統3,不過該多層系統僅由至少兩個層4、5形成。Furthermore, as with the first embodiment of the invention, there is also a ceramic coating 2 on the second side B of the base body 1, which in particular forms the intermediate layer 2, and above which the intermediate layer An optically effective multilayer system 3 is present on the second side B, although the multilayer system is formed only by at least two layers 4, 5.
該多層系統同樣涉及一上部層4與一位於該上部層之下的主要起吸收可見光作用的層5,所述上部層4可以是折射率n<1.8的氧化層、氟化層、硫化層、氮化層、氧氮化層和/或碳氧氮化層,而所述層5在本例中形成最下層。這一層5尤其可含有鈦鋁混合氧化物(Mischoxid)TiAlq Ox 和/或鈦鋁混合氮化物(Mischnitrid)TiAlq Ny 和/或鈦鋁混合氮氧化物(Mischoxynitrid)TiAlq Ox Ny ,其中,下標q、x和y分別表示化學計量或非化學計量比,且處於以下範圍內:0<q和/或x和/或y<3。使複合材料帶有這樣的層,如使之帶有按照本發明第一實施例所述的含鉻的層5,將使複合材料特別適用於太陽能吸收器,其出眾之處在於製造簡便,而且具有較高的光譜選擇性。The multi-layer system also relates to an upper layer 4 and a layer 5 mainly absorbing visible light under the upper layer, and the upper layer 4 may be an oxide layer, a fluorination layer, a vulcanized layer having a refractive index n<1.8, A nitride layer, an oxynitride layer and/or a carbon oxynitride layer, and the layer 5 forms the lowermost layer in this example. This layer 5 may in particular comprise a titanium-aluminum mixed oxide (Mischoxid) TiAl q O x and/or a titanium-aluminum mixed nitride (Mischnitrid) TiAl q N y and/or a titanium-aluminum mixed nitrogen oxide (Mischoxynitrid) TiAl q O x N y , wherein the subscripts q, x and y represent stoichiometric or non-stoichiometric ratios, respectively, and are in the range of 0 < q and / or x and / or y < 3. Having the composite with such a layer, such as with the chromium-containing layer 5 according to the first embodiment of the invention, will make the composite particularly suitable for use in solar absorbers, which are distinguished by ease of manufacture and Has a high spectral selectivity.
在兩個實施例中,基體1的第一面A上的金屬層8以及在另一基體面B上的光學多層系統3的所有層均可優選為濺射層,尤其是通過反應濺射法形成的層,化學氣相沉積層(CVD層)或等離子體增強化學氣相沉積層(PECVD層)或者通過蒸發,尤其是通過用電子轟擊或用熱源所導 致的蒸發而形成的層,並且優選在真空狀態(Vakuumfolge)下以連續的工藝形成並尤其施加到陶瓷塗層2、7之上。金屬鈦/鉻(Ti/Cr)層8的施加例如可優選通過使用最多兩個平板狀磁控管來實現。In both embodiments, the metal layer 8 on the first face A of the substrate 1 and all the layers of the optical multilayer system 3 on the other substrate face B may preferably be sputtered layers, in particular by reactive sputtering. The formed layer, chemical vapor deposited layer (CVD layer) or plasma enhanced chemical vapor deposited layer (PECVD layer) or by evaporation, especially by bombardment with electrons or by heat source The resulting layer which is formed by evaporation is preferably formed in a continuous process and applied to the ceramic coatings 2, 7 in a vacuum state (Vakuumfolge). The application of the metallic titanium/chromium (Ti/Cr) layer 8 can be preferably achieved, for example, by using up to two flat magnetrons.
對於同樣本發明第二實施例中的在基體1與光學有效的多層系統3之間存在的中間層2需特別強調的是:當該中間層2位於一鋁質基體之上且由氧化鋁製成時,那麼不管下方的光吸收層5是否包含鈦鋁混合氧化物TiAlq Ox 和/或鈦鋁混合氮化物TiAlq Ny 和/或鈦鋁混合氮氧化物TiAlq Ox Ny ,也不管上方的層是否是化學成分為TiOz、SiOw或SnOv的鈦、矽或錫的氧化層,中間層的厚度D2應不大於30nm,這一特徵是很重要的。在這裡,上層只需是折射係數小於1.7的絕緣層就足夠了。當然,上層的折射係數也可以更大,例如對於氧化鋅層而言,其可以是大約1.9,或者對於二氧化鈦層,則可以為2.55(銳鈦礦)或2.75(金紅石)。For the intermediate layer 2 which is also present between the substrate 1 and the optically effective multilayer system 3 in the second embodiment of the invention, it is particularly emphasized that when the intermediate layer 2 is placed on an aluminum substrate and made of alumina In time, then whether the underlying light absorbing layer 5 comprises titanium aluminum mixed oxide TiAl q O x and/or titanium aluminum mixed nitride TiAl q N y and/or titanium aluminum mixed nitrogen oxide TiAl q O x N y , It is also important that the upper layer is an oxide layer of titanium, tantalum or tin having a chemical composition of TiOz, SiOw or SnOv, and the thickness D2 of the intermediate layer is not more than 30 nm. Here, it suffices that the upper layer only needs to have an insulating layer having a refractive index of less than 1.7. Of course, the refractive index of the upper layer can also be larger, for example, for the zinc oxide layer, it can be about 1.9, or for the titanium dioxide layer, it can be 2.55 (anatase) or 2.75 (rutile).
令人吃驚的是,當中間層2用氧化鋁製成,且該氧化鋁層僅具有極小的厚度,即其厚度落在不大於30nm的範圍內,尤其是落在至少3nm的範圍內,優選落在15nm至25nm的範圍內時,該中間層不但能夠起到為基體1提供公知的機械保護和抗腐蝕防護的作用,能夠確保將置於其上的光學多層系統3很好地粘合住,而且由此還將使該中間層2與基體1本身也變得光學有效。這樣,中間層2有利地擁有了高的透射能力,而且基體1也擁有高的、因該中間層2 的透射而變得有效的反射能力,因而可以省去第一實施例的光學多層系統3的最下層的金屬層6,而不會使效率受損。這樣,一方面節省了用於塗抹一個層的工藝步驟,另一方面又節約了材料,尤其是節約了最下側金屬層優選採用的、眾所周知的貴金屬金和銀以及同樣成本不菲的鉬。Surprisingly, when the intermediate layer 2 is made of alumina, and the aluminum oxide layer has only a very small thickness, that is, its thickness falls within a range of not more than 30 nm, particularly falling within a range of at least 3 nm, preferably When falling within the range of 15 nm to 25 nm, the intermediate layer not only functions to provide the substrate 1 with known mechanical protection and corrosion protection, but also ensures that the optical multilayer system 3 placed thereon is well bonded. And thus also the intermediate layer 2 and the substrate 1 itself are also optically effective. Thus, the intermediate layer 2 advantageously has a high transmission capacity, and the substrate 1 also has a high, due to the intermediate layer 2 The transmission becomes effective in the reflection ability, and thus the lowermost metal layer 6 of the optical multilayer system 3 of the first embodiment can be omitted without impairing the efficiency. In this way, on the one hand, the process steps for applying a layer are saved, and on the other hand, the material is saved, in particular the well-known precious metals such as gold and silver and the likewise cost-effective molybdenum which are preferably used for the lowermost metal layer are saved.
例如,利用光學有效的多層系統3的上述兩個實施例就可以製造出根據本發明的複合材料V,在這一複合材料中,基體1的第二面B上的按照DIN5036第三部分確定的吸收率在約300至2500nm的波長範圍內具有最大值且該最大值大於90%,並在大於2500nm的波長範圍內具有最小值且該最小值小於15%。在光學多層系統3的第二面B上,按照DIN 5036第三部分所確定的光線總反射率小於5%。For example, the composite material V according to the invention can be produced using the above two embodiments of the optically effective multilayer system 3, in which the second side B of the substrate 1 is determined in accordance with DIN 5036 Part 3 The absorbance has a maximum in the wavelength range of about 300 to 2500 nm and the maximum is greater than 90%, and has a minimum in the wavelength range of more than 2500 nm and the minimum is less than 15%. On the second side B of the optical multilayer system 3, the total light reflectance determined in accordance with DIN 5036 Part 3 is less than 5%.
圖3和4中示出的圖表反映出了根據本發明的可雷射焊接的複合材料V的第三和第四實施例的反射率R與入射光線L的波長之間的關係,作為參照,圖中還示出了一種公知的、並非根據本發明的比較材料的反射率與入射光線的波長之間的關係,在圖中,曲線RV表示根據本發明的複合材料V的反射率R,而曲線R0則表示所述比較材料的反射率R。The graphs shown in Figures 3 and 4 reflect the relationship between the reflectivity R of the third and fourth embodiments of the laser weldable composite material V according to the present invention and the wavelength of the incident ray L, as a reference, Also shown is a relationship between the reflectance of a known comparative material not according to the present invention and the wavelength of incident light. In the figure, the curve RV represents the reflectance R of the composite material V according to the present invention, and Curve R0 represents the reflectance R of the comparative material.
根據本發明的複合材料V的第三實施例涉及這樣一種複合材料,即在鋁制基體1的第一面A上沉積有一成分為Al2 O3 且厚度D7 為95nm的陶瓷塗層7,而且在該陶瓷塗層7上直接沉積有一成分為鉻且厚度D8 為10nm的金屬層8。而根據本發明的複合材料V的第四實施例則涉及這樣一種 複合材料,即在鋁制基體1的第一面A上沉積有一成分為Al2 O3 且厚度D7 為40nm的陶瓷塗層7,而且在該陶瓷塗層7上直接沉積有一成分為鉻且厚度D8 為20nm的金屬層8。在比較材料中,鋁制基體1的第一面A上沉積有成分為Al2 O3 且厚度D7 為95nm的陶瓷塗層7。A third embodiment of the composite material V according to the invention relates to a composite material in which a ceramic coating 7 having a composition of Al 2 O 3 and a thickness D 7 of 95 nm is deposited on the first side A of the aluminum substrate 1 Further, a metal layer 8 having a composition of chromium and a thickness D 8 of 10 nm is directly deposited on the ceramic coating 7. The fourth embodiment of the composite material V according to the invention relates to a composite material in which a ceramic coating having a composition of Al 2 O 3 and a thickness D 7 of 40 nm is deposited on the first side A of the aluminum substrate 1. 7. A metal layer 8 having a composition of chromium and a thickness D 8 of 20 nm is deposited directly on the ceramic coating 7. In the comparative material, a ceramic coating 7 having a composition of Al 2 O 3 and a thickness D 7 of 95 nm was deposited on the first face A of the aluminum substrate 1.
從繪製的示圖中可知,入射光線L的入射角α被測定為由雷射光束L與在基體1的表面上作出的鉛垂線,亦即法向量N的夾角α。在各個例子中,雷射光束L的入射角α均為75°。As can be seen from the plotted diagram, the incident angle α of the incident ray L is determined as the angle α between the laser beam L and the vertical line made on the surface of the substrate 1, that is, the normal vector N. In each of the examples, the incident angle α of the laser beam L is 75°.
可以看出,對於圖3所示之根據本發明的複合材料V來說,當雷射射線L的波長λ為1064nm時,其基體1的第一面A上的按照DIN5036第三部分確定的總反射率R小於50%,且尤其約為40%。而在同樣的條件下,比較材料的反射率R要高出約50%,大約為90%。如圖3所示,在波長λ的整個試驗範圍內,根據本發明的複合材料V的反射率R在約48%(波長為500nm時)與42%(波長約為1200nm時)之間變動,其中,大約在波長λ為1000nm時,反射率R達到其最小值,即40%。It can be seen that for the composite material V according to the invention shown in FIG. 3, when the wavelength λ of the laser beam L is 1064 nm, the total area determined on the first side A of the substrate 1 according to the third part of DIN 5036 The reflectance R is less than 50%, and especially about 40%. Under the same conditions, the reflectivity R of the comparative material is about 50% higher, about 90%. As shown in FIG. 3, the reflectance R of the composite material V according to the present invention varies between about 48% (at a wavelength of 500 nm) and 42% (at a wavelength of about 1200 nm) over the entire test range of the wavelength λ. Among them, when the wavelength λ is 1000 nm, the reflectance R reaches its minimum value, that is, 40%.
對於圖4中示出的根據本發明的複合材料V來說,在雷射射線的波長λ為1064nm時,其基體1的第一面A上的按照DIN5036第三部分確定的總反射率R同樣小於50%,但是,在500nm至1200nm的波長λ範圍內,圖4所示的複合材料的總反射率R平均要比圖3所示之複合材料的總反射率R高出約5%至8%。For the composite material V according to the invention shown in FIG. 4, the total reflectance R determined on the first side A of the substrate 1 according to the third part of DIN 5036 is the same when the wavelength λ of the laser beam is 1064 nm. Less than 50%, however, in the range of wavelength λ of 500 nm to 1200 nm, the total reflectance R of the composite material shown in Fig. 4 is on average about 5% to 8 higher than the total reflectance R of the composite material shown in Fig. 3. %.
圖5示出了根據本發明的可雷射焊接的複合材料V的第三實施例的反射率R與入射的雷射光束L的入射角α之間的關係,圖中示出的關係是在波長λ為1064nm的情況下確定得出的。因此,圖5中用圓圈標識的反射率R的值與圖3中用同樣方式標識的值相同。當角α在65°至80°的範圍內變化時,反射率R從大約30%開始連續升高,直至大約40%。就角度關聯性而言,圖4中示出的試驗顯示出了同樣的特性,在這裡,反射率R的值(就像前文提到的那樣)向上推移約不到10%。Figure 5 shows the relationship between the reflectivity R of the third embodiment of the laser weldable composite material V according to the invention and the incident angle a of the incident laser beam L, the relationship shown in the figure is The wavelength λ is determined to be 1064 nm. Therefore, the value of the reflectance R identified by a circle in FIG. 5 is the same as the value identified in the same manner in FIG. When the angle α is varied in the range of 65° to 80°, the reflectance R continuously increases from about 30% up to about 40%. In terms of angular correlation, the experiment shown in Figure 4 shows the same characteristics, where the value of the reflectance R (as mentioned above) goes up by less than about 10%.
本發明不限於所描述的實施例,而是包括所有在本發明的意義上具有相同作用的方式和措施。例如,中間層2的陶瓷塗層也可以不用氧化鋁,而用其它材料製成。對於在根據本發明的複合材料V所涉及的在本發明的範圍內的光學多層系統3的可能有利構造與理想工藝學方法,其具體細節可完全參考專利申請文件EP 1 217 394 B1、EP 1 217 315 B1、EP 2 239 086 A1、EP 2 336 811以及WO 2011/076448 A1。The invention is not limited to the described embodiments, but includes all manner and measures that have the same effect in the sense of the invention. For example, the ceramic coating of the intermediate layer 2 can also be made of other materials without using alumina. For a possible advantageous configuration and an ideal process method for the optical multilayer system 3 which is within the scope of the invention, which is involved in the composite material V according to the invention, the specific details of which can be fully referred to the patent application EP 1 217 394 B1, EP 1 217 315 B1, EP 2 239 086 A1, EP 2 336 811 and WO 2011/076448 A1.
另外,本發明也不限於在權利要求1中限定的特徵組合,其也可以被定義為由已全部公開的單個特徵中的一定特徵組合而成的任何其他組合。這意味著,原則上並在實踐中,權利要求1中所述的每一個單個特徵都可以刪去,或者說,權利要求1中所述的每一個單個特徵都可以被在本申請中其他地方所公開的至少一個單個特徵所取代。尤其對在根據本發明的複合材料中存在的層來說,其作為範 例闡述的層序(在所描述的層序中,各層彼此直接鄰接並用相同的材料製成)並不排除如下可能性,即,在層系統中可以繼續設置另外的中間層、上層和/或下層,或者說,基體1的第一面A上的層和/或子層,尤其是金屬層8以及基體1的第二面B上的紅外反射層4和主要起吸收可見光之用的層5本身亦被構造成多層。就此而言,權利要求1只可被理解為對於一個發明的一種最初表述嘗試。Furthermore, the invention is not limited to the combination of features defined in claim 1, which may also be defined as any other combination of certain features from a single feature that has been fully disclosed. This means that, in principle and in practice, each individual feature recited in claim 1 can be deleted, or that each individual feature recited in claim 1 can be used elsewhere in this application. At least one individual feature disclosed is substituted. Especially for the layers present in the composite material according to the invention, The sequence illustrated (in the described sequence, the layers are directly adjacent to one another and made of the same material) does not exclude the possibility of continuing to provide additional intermediate layers, upper layers and/or layers in the layer system. The lower layer, or the layer and/or the sub-layer on the first side A of the substrate 1, in particular the metal layer 8 and the infrared reflecting layer 4 on the second side B of the substrate 1 and the layer 5 for absorbing visible light It is also constructed in multiple layers. In this regard, claim 1 can only be understood as an initial expression attempt for an invention.
1‧‧‧基體1‧‧‧ base
2‧‧‧基體1上的中間層,面B上的陶瓷層2‧‧‧Intermediate layer on substrate 1, ceramic layer on face B
3‧‧‧光學有效的多層系統3‧‧‧Optically effective multi-layer system
4‧‧‧多層系統3的紅外反射層4‧‧‧Infrared reflective layer of multi-layer system 3
5‧‧‧多層系統3的起吸收可見光作用的層5‧‧‧ Layers of multi-layer system 3 that absorb visible light
6‧‧‧多層系統3的上層6‧‧‧Upper level of multi-layer system 3
7‧‧‧基體1(面A)上的陶瓷層7‧‧‧Ceramic layer on base 1 (face A)
8‧‧‧陶瓷層7(面A)上的金屬層8‧‧‧Metal layer on ceramic layer 7 (face A)
A‧‧‧基體1的第一面(帶有陶瓷層7,金屬層8)A‧‧‧ The first side of the substrate 1 (with ceramic layer 7, metal layer 8)
B‧‧‧基體1的第二面(帶有中間層2,多層系統3)B‧‧‧ second side of the substrate 1 (with intermediate layer 2, multilayer system 3)
D‧‧‧複合材料V的(總)厚度D‧‧‧ (total) thickness of composite material V
D1 ‧‧‧基體1的厚度D 1 ‧‧‧ Thickness of substrate 1
D2 ‧‧‧中間層2的厚度D 2 ‧‧‧The thickness of the intermediate layer 2
D3 ‧‧‧多層系統3的厚度D 3 ‧‧‧ Thickness of multilayer system 3
D4 ‧‧‧紅外反射層4的厚度D 4 ‧‧‧ Thickness of infrared reflective layer 4
D5 ‧‧‧起吸收可見光作用的層5的厚度D 5 ‧‧‧ Thickness of layer 5 for absorbing visible light
D6 ‧‧‧上層6的厚度D 6 ‧‧‧ thickness of upper layer 6
D7 ‧‧‧陶瓷層7的厚度D 7 ‧‧‧Thickness of ceramic layer 7
D8 ‧‧‧金屬層8的厚度D 8 ‧‧‧Thickness of metal layer 8
L‧‧‧雷射光束L‧‧‧Laser beam
N‧‧‧複合材料V的法向量N‧‧‧French vector of composite material V
R‧‧‧反射率R‧‧‧reflectance
R0‧‧‧比較材料的反射率R的曲線R0‧‧‧Comparative material's reflectance R curve
RV‧‧‧複合材料V的反射率R的曲線Curve of reflectivity R of RV‧‧‧ composite material V
V‧‧‧複合材料V‧‧‧Composite
α‧‧‧射角Α‧‧‧射角
λ‧‧‧波長Λ‧‧‧wavelength
下面,通過在附圖示出的兩個實施例對本發明作詳細闡述。其中:圖1是根據本發明的可雷射焊接的複合材料的第一實施例的原理剖視圖;圖2是根據本發明的可雷射焊接的複合材料的第二實施例的原理剖視圖;圖3示出了根據本發明的可雷射焊接的複合材料的第三實施例的反射率與入射光線的波長之間的關聯性,並且還示出了一公知的(非根據本發明的)比較材料的反射率與入射光線之間的關聯性作為參照;圖4示出了根據本發明的可雷射焊接的複合材料的第四實施例的反射率與入射光線的波長之間的關聯性,並且還示出了一公知的(非根據本發明的)比較材料的反射率與入射光線之間的關聯性作為參照;圖5示出了根據本發明的可雷射焊接的複合材料的第 三實施例的反射率與入射光線的入射角之間的關聯性。In the following, the invention will be explained in more detail by means of two embodiments shown in the figures. 1 is a schematic cross-sectional view of a first embodiment of a laser weldable composite material in accordance with the present invention; and FIG. 2 is a schematic cross-sectional view of a second embodiment of a laser weldable composite material in accordance with the present invention; The correlation between the reflectivity of the third embodiment of the laser weldable composite material according to the invention and the wavelength of the incident ray is shown, and a well-known (non-according to the invention) comparative material is also shown Correlation between the reflectivity and the incident ray as a reference; FIG. 4 shows the correlation between the reflectance of the fourth embodiment of the laser-weldable composite material according to the present invention and the wavelength of the incident ray, and Also shown is the correlation between the reflectance of a known (not according to the invention) comparative material and incident light as a reference; FIG. 5 shows the first of the laser weldable composite according to the present invention. The correlation between the reflectivity of the three embodiments and the incident angle of incident light.
Claims (24)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE202011051927U DE202011051927U1 (en) | 2011-11-10 | 2011-11-10 | Laser weldable composite material |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201328862A TW201328862A (en) | 2013-07-16 |
TWI487618B true TWI487618B (en) | 2015-06-11 |
Family
ID=47878888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101141270A TWI487618B (en) | 2011-11-10 | 2012-11-07 | Laserschweissbares verbundmaterial |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN103101249B (en) |
DE (2) | DE202011051927U1 (en) |
TW (1) | TWI487618B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI781750B (en) * | 2021-09-03 | 2022-10-21 | 李子介 | Method of welding ceramic with target material by laser reduction firing |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015114095A1 (en) * | 2015-08-25 | 2017-03-02 | Alanod Gmbh & Co. Kg | Reflecting composite material with an aluminum support and with a silver reflection layer |
DE102017115798A1 (en) * | 2017-07-13 | 2019-01-17 | Alanod Gmbh & Co. Kg | Reflective composite material, in particular for surface-mounted components (SMD), and light-emitting device with such a composite material |
DE102018101770A1 (en) * | 2018-01-26 | 2019-08-01 | Alanod Gmbh & Co. Kg | Composite material for a solar collector |
US20210191001A1 (en) * | 2018-05-21 | 2021-06-24 | Corning Incorporated | Structures for laser bonding and liquid lenses comprising such structures |
CN111434436A (en) * | 2019-01-11 | 2020-07-21 | 泰科电子科技(苏州工业园区)有限公司 | Laser welding method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010029975A1 (en) * | 1997-12-26 | 2001-10-18 | Yoshifumi Takeyama | Method of producing photovoltaic element module |
US20020073988A1 (en) * | 2000-12-20 | 2002-06-20 | Werner Reichert | Solar collector element |
US20100261011A1 (en) * | 2009-04-09 | 2010-10-14 | Alanod Aluminum-Veredlung Gmbh & Co. Kg | Method for the laser welding of a composite material to a component, and laser-weldable composite material for such a method |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US300591A (en) | 1884-06-17 | Thomas p | ||
US4023005A (en) | 1975-04-21 | 1977-05-10 | Raytheon Company | Laser welding high reflectivity metals |
DE3827297A1 (en) | 1988-08-11 | 1990-02-15 | Fraunhofer Ges Forschung | Apparatus and method of joining workpieces with laser radiation |
DE20021657U1 (en) * | 2000-12-20 | 2002-05-02 | Alanod Aluminium Veredlung Gmb | Cover part for a light source |
DE20021660U1 (en) * | 2000-12-20 | 2002-05-02 | Alanod Aluminium Veredlung Gmb | composite material |
ES2316321B2 (en) * | 2008-10-20 | 2010-12-14 | Abengoa Solar New Technologies, S.A. | SOLAR SELECTIVE ABSORBENT COATING AND MANUFACTURING METHOD. |
EP2336811B2 (en) | 2009-12-21 | 2024-08-07 | ALANOD GmbH & Co. KG | Composite material |
-
2011
- 2011-11-10 DE DE202011051927U patent/DE202011051927U1/en not_active Expired - Lifetime
-
2012
- 2012-11-05 DE DE102012110565.0A patent/DE102012110565B9/en active Active
- 2012-11-07 TW TW101141270A patent/TWI487618B/en not_active IP Right Cessation
- 2012-11-12 CN CN201210451018.4A patent/CN103101249B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010029975A1 (en) * | 1997-12-26 | 2001-10-18 | Yoshifumi Takeyama | Method of producing photovoltaic element module |
US20020073988A1 (en) * | 2000-12-20 | 2002-06-20 | Werner Reichert | Solar collector element |
US20100261011A1 (en) * | 2009-04-09 | 2010-10-14 | Alanod Aluminum-Veredlung Gmbh & Co. Kg | Method for the laser welding of a composite material to a component, and laser-weldable composite material for such a method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI781750B (en) * | 2021-09-03 | 2022-10-21 | 李子介 | Method of welding ceramic with target material by laser reduction firing |
Also Published As
Publication number | Publication date |
---|---|
CN103101249B (en) | 2015-11-11 |
DE202011051927U1 (en) | 2013-02-11 |
TW201328862A (en) | 2013-07-16 |
DE102012110565B4 (en) | 2020-03-19 |
CN103101249A (en) | 2013-05-15 |
DE102012110565A1 (en) | 2013-05-16 |
DE102012110565B9 (en) | 2020-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI487618B (en) | Laserschweissbares verbundmaterial | |
JP3577034B2 (en) | Composite material | |
TWI589448B (en) | Temperature and corrosion stable surface reflector | |
JP5352267B2 (en) | Radiation selective absorption coating, absorption tube, and method of manufacturing absorption tube | |
JP5229075B2 (en) | Broadband reflector | |
TWI603043B (en) | Optisch wirksames mehrschichtsystem fuer solare absorption | |
US11143800B2 (en) | Extending the reflection bandwith of silver coating stacks for highly reflective mirrors | |
JP2007065232A (en) | Ultraviolet and heat-ray reflection multilayer film | |
WO2008065962A1 (en) | Visible light transparent and heat reflective sheet | |
KR20120107090A (en) | Composite material | |
JP2003302520A (en) | Reflection mirror for infrared laser and method for manufacturing the same | |
FR2968090A1 (en) | ABSORBENT MATERIAL AND SOLAR PANEL USING SUCH MATERIAL. | |
JP2019532905A (en) | Multi-layer glazing | |
TW562912B (en) | Cover part for a light source | |
TWI438166B (en) | Separated functional layer stack and titanium nitride layer for achieving solar control | |
CN105929471B (en) | A kind of low-cost solar film reflecting mirror material | |
KR20170105904A (en) | Low-emissivity glass | |
JPS63116102A (en) | Multi-layer dielectric mirror, especially for co2 laser and intermediate infrared rays | |
CN106679202A (en) | Tower-type heat collector light-thermal conversion coating and preparation method thereof | |
JP2000034557A (en) | Reflection enhancing film for near infrared rays and production of the same | |
CN205941960U (en) | Low -cost solar thin film speculum material | |
JP2519511B2 (en) | Sheet | |
KR102485862B1 (en) | Transpatent substrate having multilayer thin film coating | |
TW200821271A (en) | Separated gray metal and titanium nitride solar control members | |
KR101224616B1 (en) | Low-emissivity glass, preparing method and apparauts thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |