TWI479806B - Analog-to-digital converting system - Google Patents

Analog-to-digital converting system Download PDF

Info

Publication number
TWI479806B
TWI479806B TW100103984A TW100103984A TWI479806B TW I479806 B TWI479806 B TW I479806B TW 100103984 A TW100103984 A TW 100103984A TW 100103984 A TW100103984 A TW 100103984A TW I479806 B TWI479806 B TW I479806B
Authority
TW
Taiwan
Prior art keywords
analog
digital
signal
output signal
code
Prior art date
Application number
TW100103984A
Other languages
Chinese (zh)
Other versions
TW201242260A (en
Inventor
U-Fat Chio
He-Gong Wei
Yan Zhu
Sai-Weng Sin
Seng-Pan U
Rui Paulo Da Silva Martins
Franco Maloberti
Original Assignee
Univ Macau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Macau filed Critical Univ Macau
Priority to TW100103984A priority Critical patent/TWI479806B/en
Priority to US13/198,856 priority patent/US8466823B2/en
Publication of TW201242260A publication Critical patent/TW201242260A/en
Application granted granted Critical
Publication of TWI479806B publication Critical patent/TWI479806B/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/14Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit
    • H03M1/145Conversion in steps with each step involving the same or a different conversion means and delivering more than one bit the steps being performed sequentially in series-connected stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0617Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence
    • H03M1/0675Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy
    • H03M1/069Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy by range overlap between successive stages or steps
    • H03M1/0695Continuously compensating for, or preventing, undesired influence of physical parameters characterised by the use of methods or means not specific to a particular type of detrimental influence using redundancy by range overlap between successive stages or steps using less than the maximum number of output states per stage or step, e.g. 1.5 per stage or less than 1.5 bit per stage type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/36Analogue value compared with reference values simultaneously only, i.e. parallel type
    • H03M1/361Analogue value compared with reference values simultaneously only, i.e. parallel type having a separate comparator and reference value for each quantisation level, i.e. full flash converter type
    • H03M1/362Analogue value compared with reference values simultaneously only, i.e. parallel type having a separate comparator and reference value for each quantisation level, i.e. full flash converter type the reference values being generated by a resistive voltage divider
    • H03M1/365Analogue value compared with reference values simultaneously only, i.e. parallel type having a separate comparator and reference value for each quantisation level, i.e. full flash converter type the reference values being generated by a resistive voltage divider the voltage divider being a single resistor string
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/46Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)

Description

類比至數位轉換系統Analog to digital conversion system

本發明大致關係於類比至數位轉換系統,更明確地說,關係於藉由使用快閃類比至數位轉換器與逐步逼進類比至數位轉換器之級聯的類比至數位轉換系統。The present invention is generally related to analog to digital conversion systems and, more specifically, to analog to digital conversion systems by using a cascade of flash analog to digital converters and progressively analog to digital converters.

類比至數位轉換器(ADC)具有各種架構,例如快閃類比至數位轉換器(快閃ADC)、管線類比至數位轉換器(管線ADC)、及逐步逼進類比至數位轉換器(SA ADC),這些分別具有適當之應用領域。Analog to digital converters (ADCs) have a variety of architectures, such as fast analog to digital converters (flash ADCs), pipeline analog to digital converters (pipeline ADCs), and step-by-step analog-to-digital converters (SA ADCs) These have appropriate application areas.

快閃ADC典型為最快,但具有最高實施成本。在N-位元ADC中,有2N 的可能數位數字輸出。總數2N -1邊界定義對應於該數位數字輸出的類比輸入範圍。在快閃ADC中,產生2N -1類比參考信號。輸入被同時與各個參考信號作比較。2N -1個比較器產生數位輸出信號,其係被解碼以產生想要的數位輸出數字。Flash ADCs are typically the fastest, but have the highest implementation cost. In the N-bit ADC, there are 2 N possible digital digital outputs. The total 2 N -1 boundary defines the analog input range corresponding to the digital digital output. In a flash ADC, a 2 N -1 analog reference signal is generated. The input is compared to each reference signal simultaneously. 2 N -1 comparators produce a digital output signal that is decoded to produce the desired digital output number.

因為輸入至輸出延遲包含一比較器級與後續解碼邏輯的反應時間,所以快閃ADC為最快。因為類比參考信號與比較器的數量隨著N作指數增加,所以,快閃ADC需耗用較大成本才能實施。Because the input-to-output delay includes the response time of a comparator stage and subsequent decoding logic, the flash ADC is the fastest. Because the analog reference signal and the number of comparators increase exponentially with N, flash ADCs can be implemented at a large cost.

SA ADC係遠較於快閃ADC為慢,但在具有大N時,具有相對較低之實施成本。在逐步逼進法中,在可能數位輸出數字上,執行二位元樹搜尋。二位元樹搜尋以N逼進步驟的順序進行。在各個步驟中,可能數位輸出數字被傳送至N-位元數位至類比(D/A)轉換器,其產生對應的類比值。此值係與類比輸入信號作比較。比較的結果被用以以下步驟選擇新可能數位值。The SA ADC system is much slower than a flash ADC, but has a relatively low implementation cost when it has a large N. In the progressive method, a binary tree search is performed on the possible digital output numbers. The binary tree search is performed in the order of the N-forward steps. In each step, it is possible that the digital output number is passed to an N-bit digit to an analog to analog (D/A) converter that produces a corresponding analog value. This value is compared to the analog input signal. The result of the comparison is used in the following steps to select a new possible digit value.

有關於元件,N-位元SA ADC需要一比較器、N-位元D/A轉換器及,用以指引搜尋及儲存結果的邏輯電路。轉換器及比較器可以在每步驟的搜尋中再使用。SA轉換器的速度係取決於N及比較器、D/A轉換器與邏輯電路的安頓時間而定。例如,12-位元SA ADC將需要12個分開之12-位元D/A轉換結果的12個比較步驟,而8-位元SA ADC只需要8個分開之D/A轉換結果的8個比較步驟。For components, N-bit SA ADCs require a comparator, N-bit D/A converter, and logic to direct the search and store results. The converter and comparator can be reused in the search for each step. The speed of the SA converter depends on the N and the settling time of the comparator, D/A converter and logic circuit. For example, a 12-bit SA ADC would require 12 comparison steps for 12 separate 12-bit D/A conversion results, while an 8-bit SA ADC would only require 8 separate D/A conversion results for 8 Comparison step.

先前技術之快閃ADC的主要缺點為雖然它們很快,但它們典型需要大量之元件,而佔用了大量的晶片空間並消耗了大量之功率。元件數目隨著指數增加及快閃ADC的功率消耗限制了此等轉換器可以符合經濟效益的數量。SA ADC的主要缺點雖然它們具有低元件成本並對於較高準確度較快閃ADC有經濟效益,但它們通常很慢並對於消耗的資源未能有效運用。因此,本發明之目的為提供一種新穎ADC,其係足夠快並為低複雜度的。The main disadvantage of prior art flash ADCs is that although they are very fast, they typically require a large number of components, occupying a large amount of wafer space and consuming a large amount of power. The number of components increases with the exponential increase and the power consumption of the flash ADC limits the amount of economic efficiency that these converters can achieve. The main drawbacks of SA ADCs are that they have low component cost and are economical for higher accuracy than flash ADCs, but they are usually slow and do not work effectively with the resources consumed. Accordingly, it is an object of the present invention to provide a novel ADC that is fast enough and low complexity.

因此,本發明的目的為提供一種類比至數位轉換系統,用以將類比輸入信號轉換為數位輸出信號。用以將類比輸入信號轉換為數位輸出信號的類比至數位轉換系統包含:追蹤及保持電路,用以在追蹤模式中,追蹤該輸入信號及在保持模式中,保持該被追蹤的輸入信號;參考電壓產生器,用以產生第一參考電壓及第二參考電壓;粗類比至數位轉換器,用以將該追蹤及保持電路的輸出信號轉換為第一數位碼並具有第一數位至類比轉換器,用以將該第一數位碼轉換為第一類比信號,其中該第一數位碼係相關於該類比至數位轉換系統的數位輸出信號的最高效位元;一減法器,用以將該追蹤及保持電路的該輸出信號減去該第一類比信號;一細類比至數位轉換手段,用以依據該第二參考電壓將該減法器的輸出信號轉換為第二數位碼,其中該第二數位碼係有關於該類比至數位轉換系統的數位輸出信號的最低效位元組。Accordingly, it is an object of the present invention to provide an analog to digital conversion system for converting an analog input signal to a digital output signal. An analog to digital conversion system for converting an analog input signal to a digital output signal includes: a tracking and holding circuit for tracking the input signal in a tracking mode and maintaining the tracked input signal in a hold mode; a voltage generator for generating a first reference voltage and a second reference voltage; a coarse analog to digital converter for converting the output signal of the tracking and holding circuit into a first digital code and having a first digital to analog converter The first digital code is converted into a first analog signal, wherein the first digital code is related to the most efficient bit of the digital output signal of the analog to digital conversion system; a subtractor is used for the tracking And subtracting the first analog signal from the output signal of the hold circuit; a fine analog to digital conversion means for converting the output signal of the subtractor to a second digital code according to the second reference voltage, wherein the second digital bit The code system has the least significant bit group of the digital output signal of the analog to digital conversion system.

現將對本發明之較佳實施例係詳細說明,本案實施例之例示於附圖中。於附圖中,儘可能使用相同參考元件符號來表明相同或類似元件。The preferred embodiments of the present invention will now be described in detail, and the examples of the present embodiments are illustrated in the accompanying drawings. In the drawings, the same reference numerals are used to identify the same or similar elements.

在本發明之此實施例中,類比至數位轉換(ADC)系統根據兩步驟架構採用雙區間(subranging)技術,其中粗ADC採用快閃ADC架構,而細ADC則採SA(逐步逼進)ADC架構。因此,本發明可以得到高速之取樣頻率及低功率消耗。In this embodiment of the invention, an analog to digital conversion (ADC) system employs a dual-ranging technique based on a two-step architecture where the coarse ADC uses a flash ADC architecture and the thin ADC uses a SA (step-by-step) ADC. Architecture. Therefore, the present invention can obtain a high sampling frequency and low power consumption.

參考圖1,其為依據本發明之輸出(m+n-1)-位元數位碼之ADC系統100的電路方塊圖。圖1之ADC系統100包含追蹤及保持電路(T/H電路)10、粗ADC20、減法器40、細ADC50及數位錯誤校正單元80。Referring to FIG. 1, a circuit block diagram of an ADC system 100 for outputting (m+n-1)-bit digital code in accordance with the present invention. The ADC system 100 of FIG. 1 includes a tracking and holding circuit (T/H circuit) 10, a coarse ADC 20, a subtractor 40, a fine ADC 50, and a digital error correction unit 80.

在追蹤模式期間,T/H電路10將追蹤一輸入信號。在保持模式期間,T/H電路10將保持被追蹤之輸入信號並將輸入信號傳送至後級電路(粗ADC20、減法器40及細ADC50)。During the tracking mode, the T/H circuit 10 will track an input signal. During the hold mode, the T/H circuit 10 will hold the tracked input signal and pass the input signal to the subsequent stage circuits (coarse ADC 20, subtractor 40, and fine ADC 50).

粗ADC20接收T/H電路10的輸出信號V1,進行高位元資料轉換,以產生數位碼MSB並將該數位碼MSB送至數位錯誤校正單元80。碼MSB係有關於最終結果(m+n-1)的最高效位元組MSB。粗ADC20包含m-位元快閃ADC22及m-位元數位至類比轉換器(DAC)30,連接用以決定用以決定該m-位元碼MSB並用以輸出對應於最終結果(m+n-1)-位元數位碼的MSB的類比信號V2。The coarse ADC 20 receives the output signal V1 of the T/H circuit 10, performs high bit data conversion to generate a digital code MSB, and sends the digital code MSB to the digital error correcting unit 80. The code MSB is the most efficient byte MSB for the final result (m+n-1). The coarse ADC 20 includes an m-bit flash ADC 22 and an m-bit digital to analog converter (DAC) 30, the connection is used to determine the m-bit code MSB and is used to output corresponding to the final result (m+n) -1) - Analog signal V2 of the MSB of the bit digit code.

減法器40接收來自T/H電路10的取樣類比信號V1與來自m-位元DAC30的類比信號V2,以將接收信號V1減去V2,使得類比信號Vt對應於最終結果(m+n-1)-位元數位碼之LSB。The subtractor 40 receives the sample analog signal V1 from the T/H circuit 10 and the analog signal V2 from the m-bit DAC 30 to subtract the V2 from the received signal V1 such that the analog signal Vt corresponds to the final result (m+n-1) ) - LSB of the bit digit code.

細ADC50係為n-位元逐步逼進轉換器(SA ADC),其自減法器40接收類比信號Vt。該n-位元SA ADC50然後將類比信號Vt量化為n-位元LSB碼。The fine ADC 50 is an n-bit progressive progressive converter (SA ADC) that receives the analog signal Vt from the subtractor 40. The n-bit SA ADC 50 then quantizes the analog signal Vt into an n-bit LSB code.

數位錯誤校正單元80組合碼MSB及LSB(分別由快閃ADC22與SA ADC50產生),其中產生(m+n-1)-位元數位碼的最終結果。The digital error correction unit 80 combines the codes MSB and LSB (generated by the flash ADC 22 and the SA ADC 50, respectively), in which the final result of the (m+n-1)-bit digital code is generated.

圖2顯示圖1之ADC系統100的詳細電路圖。此ADC系統100係被描述為9-位元快閃-SA雙區間ADC,其中快閃ADC22與SA ADC50係分別以5-位元架構加以實施。2 shows a detailed circuit diagram of the ADC system 100 of FIG. This ADC system 100 is described as a 9-bit flash-SA dual-interval ADC in which the flash ADC 22 and the SA ADC 50 are implemented in a 5-bit architecture, respectively.

T/H電路10取樣連續輸入信號,成為離散信號V1。該5-位元快閃ADC22包含參考梯形電路23、前置放大器24、比較器25及5-位元編碼器26,這些係被連接成為串聯架構。The T/H circuit 10 samples the continuous input signal to become the discrete signal V1. The 5-bit flash ADC 22 includes a reference ladder circuit 23, a preamplifier 24, a comparator 25, and a 5-bit encoder 26, which are connected in a series architecture.

參考梯形電路23提供適當參考電壓,其各個係被供給至前置放大器24的個別前置放大器的反相(-)輸入端。離散信號V1係被連接至各個前置放大器24的非反相(+)輸入端。比較器25然後量化前置放大器24的輸出信號,成為溫度碼(thermometer code)。該5-位元編碼器26將該溫度碼轉換為5-位元粗碼MSB,用以輸出至該數位錯誤校正單元80。The reference ladder circuit 23 provides an appropriate reference voltage, each of which is supplied to the inverting (-) input terminal of the individual preamplifier of the preamplifier 24. The discrete signal V1 is coupled to the non-inverting (+) input of each preamplifier 24. The comparator 25 then quantizes the output signal of the preamplifier 24 to become a thermometer code. The 5-bit encoder 26 converts the temperature code into a 5-bit coarse code MSB for output to the digital error correcting unit 80.

如所示,5-位元DAC30藉由由5-位元編碼器26的電容性切換5-位元粗碼MSB,產生類比電壓V2。減法器40自T/H電路10接收取樣類比信號V1及自m-位元DAC30接收類比信號V2並輸出類比信號Vt。As shown, the 5-bit DAC 30 generates an analog voltage V2 by capacitively switching the 5-bit coarse code MSB by the 5-bit encoder 26. The subtracter 40 receives the sampling analog signal V1 from the T/H circuit 10 and the analog signal V2 from the m-bit DAC 30 and outputs an analog signal Vt.

SA ADC50包含比較器60、5-位元電容性DAC62及SA邏輯電路64。該5-位元電容性DAC62產生參考電壓VF。比較器60比較來自減法器52的輸出信號Vt與來自電容性DAC62的參考電壓VF,並輸出類比信號VL。SA邏輯電路64接收該類比信號VL並將其量化為5-位元細碼LSB,用以輸出至電容性DAC62及數位錯誤校正單元80。The SA ADC 50 includes a comparator 60, a 5-bit capacitive DAC 62, and an SA logic circuit 64. The 5-bit capacitive DAC 62 produces a reference voltage VF. The comparator 60 compares the output signal Vt from the subtractor 52 with the reference voltage VF from the capacitive DAC 62 and outputs an analog signal VL. The SA logic circuit 64 receives the analog signal VL and quantizes it into a 5-bit fine code LSB for output to the capacitive DAC 62 and the digital error correction unit 80.

(為快閃ADC22及SA ADC50所產生之)碼MSB及LSB的輸出在數位錯誤校正單元80中藉由重疊碼LSB的最高效位元(DL4 )及碼MSB的最低效位元(DM0 )而相加,使得整體數位輸出為9-位元(D0 -D8 )數位信號。The outputs of the codes MSB and LSB (generated for the flash ADC 22 and the SA ADC 50) are in the digital error correction unit 80 by the most efficient bit (D L4 ) of the overlapping code LSB and the least significant bit of the code MSB (D M0 ) And add up so that the overall digital output is a 9-bit (D 0 -D 8 ) digital signal.

如圖2所示,除了如圖1所示之T/H電路10、粗ADC20、細ADC50及數位錯誤校正單元80之外,本發明之ADC系統100更包含晶片上參考電壓產生器90,用以產生適當參考電壓V1P、V1N給電容性DAC30及V2P及V2N給電容性DAC62。As shown in FIG. 2, in addition to the T/H circuit 10, the coarse ADC 20, the fine ADC 50, and the digital error correction unit 80 as shown in FIG. 1, the ADC system 100 of the present invention further includes a reference voltage generator 90 on the wafer. Capacitive DACs are supplied to capacitive DACs 30 and V2P and V2N to generate appropriate reference voltages V1P, V1N.

可以為熟習於本技藝者所了解,各種修改與變化係可以在不脫離本發明之範圍與精神下加以完成。因此,本發明涵蓋所此所述落入以下之申請專利範圍及其等效範圍內。It will be appreciated by those skilled in the art that various modifications and changes can be made without departing from the scope and spirit of the invention. Accordingly, the invention is intended to be included within the scope of the appended claims

10...T/H電路10. . . T/H circuit

20...粗ADC20. . . Rough ADC

22...m-位元快閃ADCtwenty two. . . M-bit flash ADC

30...m-位元DAC30. . . M-bit DAC

40...減法器40. . . Subtractor

50...細ADC50. . . Fine ADC

80...數位錯誤校正單元80. . . Digital error correction unit

23...參考梯形電路twenty three. . . Reference ladder

24...前置放大器twenty four. . . Preamplifier

25...比較器25. . . Comparators

26...5-位元編碼器26. . . 5-bit encoder

60...比較器60. . . Comparators

62...5-位元電容性DAC62. . . 5-bit capacitive DAC

64...SA邏輯電路64. . . SA logic circuit

90...晶片上參考電壓產生器90. . . On-wafer reference voltage generator

100...ADC系統100. . . ADC system

附圖係為包含以提供對本發明作進一步的了解,並構成本說明書的一部份。這些圖顯示本發明之實施例並與發明說明一起作為解釋本發明之原理。The drawings are included to provide a further understanding of the invention and constitute a part of this specification. The drawings illustrate embodiments of the invention and together with the description of the invention

圖1為依據本發明提供之類比至數位轉換系統的方塊圖;及1 is a block diagram of an analog to digital conversion system provided in accordance with the present invention;

圖2為圖1之類比至數位轉換系統的例示電路圖。2 is an exemplary circuit diagram of the analog to digital conversion system of FIG.

10...T/H電路10. . . T/H circuit

20...粗ADC20. . . Rough ADC

22...m-位元快閃ADCtwenty two. . . M-bit flash ADC

30...m-位元DAC30. . . M-bit DAC

40...減法器40. . . Subtractor

50...細ADC50. . . Fine ADC

80...數位錯誤校正單元80. . . Digital error correction unit

100...ADC系統100. . . ADC system

Claims (4)

一種類比至數位轉換系統,用以將類比輸入信號轉換為數位輸出信號,包含:追蹤及保持電路,用以在追蹤模式中,追蹤該輸入信號及在保持模式中,保持該被追蹤的輸入信號;參考電壓產生器,用以產生第一參考電壓及第二參考電壓;快閃類比至數位轉換器,用以將該追蹤及保持電路的輸出信號轉換為第一數位碼並具有第一數位至類比轉換器,用以將該第一數位碼轉換為第一類比信號,其中該第一數位碼係相關於該類比至數位轉換系統的數位輸出信號的最高效位元組;減法器,用以將該追蹤及保持電路的該輸出信號減去該第一類比信號;逐步逼進類比至數位轉換器,用以依據該第二參考電壓將該減法器的輸出信號轉換為第二數位碼,其中該第二數位碼係有關於該類比至數位轉換系統的數位輸出信號的最低效位元組;及錯誤校正電路,用以藉由重疊該類比至數位轉換系統的該數位輸出信號的最低效位元組的最高效位元與該最高效位元組的最低效位元,來組合該最高效位元組與該最低效位元組,以產生該數位輸出信號。 An analog to digital conversion system for converting an analog input signal into a digital output signal, comprising: a tracking and holding circuit for tracking the input signal in a tracking mode and maintaining the tracked input in a hold mode a signal; a reference voltage generator for generating a first reference voltage and a second reference voltage; a flash analog to digital converter for converting the output signal of the tracking and holding circuit into a first digital code and having a first digit An analog to converter for converting the first digital code into a first analog signal, wherein the first digital code is related to a most efficient byte of the digital output signal of the analog to digital conversion system; a subtractor Subtracting the first analog signal from the output signal of the tracking and holding circuit; and progressively converting the analog to digital converter to convert the output signal of the subtractor to the second digital code according to the second reference voltage, Wherein the second digit code has a least significant bit group of the digital output signal of the analog to digital conversion system; and an error correction circuit for Combining the most efficient bit with the least significant bit of the least significant bit of the digital output signal of the digit conversion system with the least significant bit of the most efficient byte, combining the most efficient byte with the least significant byte To generate the digital output signal. 如申請專利範圍第1項所述之類比至數位轉換系統,其中該逐步逼進類比至數位轉換器包含: 第二數位至類比轉換器,用以將該第二數位碼轉換為第二類比信號;比較器,用以比較該第二類比信號與該減法器的輸出信號;及逐步逼進邏輯電路,用以將該比較器的輸出信號轉換為第二數位碼。 An analog to digital conversion system as described in claim 1 wherein the step-by-step analog to digital converter comprises: a second digit to analog converter for converting the second digit code into a second analog signal; a comparator for comparing the second analog signal with an output signal of the subtractor; and stepwise forcing the logic circuit The output signal of the comparator is converted into a second digital code. 如申請專利範圍第1項所述之類比至數位轉換系統,其中該快閃類比至數位轉換器包含:參考梯形電路,用以產生多數參考電壓;多數前置放大器,各個比較來自該參考梯形電路的參考電壓與該類比信號;及對應多數比較器。 An analog to digital conversion system as described in claim 1, wherein the flash analog to digital converter comprises: a reference ladder circuit for generating a majority of reference voltages; and a plurality of preamplifiers, each of which is derived from the reference ladder circuit The reference voltage is analogous to the analog signal; and corresponds to most comparators. 如申請專利範圍第3項所述之類比至數位轉換系統,其中該快閃A/D轉換器根據該多數比較器的比較結果,建立溫度碼。 An analog to digital conversion system as described in claim 3, wherein the flash A/D converter establishes a temperature code based on a comparison result of the plurality of comparators.
TW100103984A 2011-02-01 2011-02-01 Analog-to-digital converting system TWI479806B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW100103984A TWI479806B (en) 2011-02-01 2011-02-01 Analog-to-digital converting system
US13/198,856 US8466823B2 (en) 2011-02-01 2011-08-05 Cascade analog-to-digital converting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100103984A TWI479806B (en) 2011-02-01 2011-02-01 Analog-to-digital converting system

Publications (2)

Publication Number Publication Date
TW201242260A TW201242260A (en) 2012-10-16
TWI479806B true TWI479806B (en) 2015-04-01

Family

ID=46576904

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100103984A TWI479806B (en) 2011-02-01 2011-02-01 Analog-to-digital converting system

Country Status (2)

Country Link
US (1) US8466823B2 (en)
TW (1) TWI479806B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5589780B2 (en) 2010-11-08 2014-09-17 セイコーエプソン株式会社 A / D conversion circuit, electronic device, and A / D conversion method
JP2012227775A (en) * 2011-04-20 2012-11-15 Sony Corp Analog-digital converter and signal processing system
US20140369451A1 (en) * 2013-06-18 2014-12-18 Broadcom Corporation Direct sampling receiver with continuous-time mdac
JP2015103856A (en) * 2013-11-21 2015-06-04 株式会社東芝 Analog/digital converter and analog/digital conversion method
US9425814B1 (en) 2015-12-10 2016-08-23 Samsung Electronics Co., Ltd Redundancy scheme for flash assisted successive approximation register (SAR) analog-to-digital converter (ADC)
US10103742B1 (en) 2018-01-23 2018-10-16 Hong Kong Applied Science and Technology Research Institute Company, Limited Multi-stage hybrid analog-to-digital converter
CN109765814B (en) * 2018-11-28 2024-07-09 上海威固信息技术股份有限公司 FPGA integrated circuit chip with built-in high-speed data converter
EP3996095B1 (en) * 2020-09-24 2023-05-03 Changxin Memory Technologies, Inc. Equalization circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994806A (en) * 1987-07-22 1991-02-19 Samsung Electronics Co., Ltd. Flash-successive approximation analog-to-digital converter
US6404373B1 (en) * 2000-10-13 2002-06-11 Topic Semiconductor Corp. Comparator circuit for analog-to-digital converter
US7187317B2 (en) * 2004-10-21 2007-03-06 Nec Electronics Corporation A/D conversion apparatus
US20080143576A1 (en) * 2006-12-18 2008-06-19 Industrial Technology Research Institute Analog-to-digital converting system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4612533A (en) * 1985-06-12 1986-09-16 The United States Of America As Represented By The Secretary Of The Air Force Harmonic distortion reduction technique for data acquistion
US5581255A (en) * 1995-07-03 1996-12-03 Industrial Technology Research Institute Embedded subranging analog to digital converter
US6404374B1 (en) * 2000-10-13 2002-06-11 Topic Semiconductor Corp. Comparator circuit for analog-to-digital converter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994806A (en) * 1987-07-22 1991-02-19 Samsung Electronics Co., Ltd. Flash-successive approximation analog-to-digital converter
US6404373B1 (en) * 2000-10-13 2002-06-11 Topic Semiconductor Corp. Comparator circuit for analog-to-digital converter
US7187317B2 (en) * 2004-10-21 2007-03-06 Nec Electronics Corporation A/D conversion apparatus
US20080143576A1 (en) * 2006-12-18 2008-06-19 Industrial Technology Research Institute Analog-to-digital converting system

Also Published As

Publication number Publication date
US20120194364A1 (en) 2012-08-02
TW201242260A (en) 2012-10-16
US8466823B2 (en) 2013-06-18

Similar Documents

Publication Publication Date Title
TWI479806B (en) Analog-to-digital converting system
KR102637630B1 (en) Redundancy scheme for flash assisted successive approximation register(sar) analog-to-digital converter(adc)
TWI536748B (en) Successive approximation analog-to-digital converter and successive approximation analog-to-digital conversion method
KR102103933B1 (en) Successive approximation analog to digital converter and method of analog to digital conversion
US7233276B1 (en) Pipelined analog to digital converter with capacitor mismatch compensation
US8599059B1 (en) Successive approximation register analog-digital converter and method for operating the same
US10484000B2 (en) Analog-to-digital converters
US8570206B1 (en) Multi-bit per cycle successive approximation register ADC
EP3090488B1 (en) Combining a coarse adc and a sar adc
US9059730B2 (en) Pipelined successive approximation analog-to-digital converter
US9467161B1 (en) Low-power, high-speed successive approximation register analog-to-digital converter and conversion method using the same
US20130027232A1 (en) Analog-to-digital converters and analog-to-digital conversion methods
KR20100031831A (en) The multi-stage successive approximation register analog digital converter and analog digital converting method using the same
US9496888B1 (en) Asynchronous SAR ADC with binary scaled redundancy
US10630304B1 (en) Sub-ranging analog-to-digital converter
TWI524679B (en) Successive-approximation-register analog-to-digital converter (sar adc) and method therefor
US7821436B2 (en) System and method for reducing power dissipation in an analog to digital converter
US11711089B2 (en) SAR ADC with alternating low and high precision comparators and uneven allocation of redundancy
JP2014236373A (en) A/d conversion device
US7535399B2 (en) Reference voltage shifting technique for optimizing SNR performance in pipeline ADCs with respect to input signal
US11258454B2 (en) Analog-digital converter
Dhage et al. Design of power efficient hybrid flash-successive approximation register analog to digital converter
CN111295843B (en) Pipeline analog-to-digital converter with at least three sampling channels
KR20110090669A (en) Analog-to-digital converter with successive approximation register
KR101884114B1 (en) ADC with Reference Voltage Scaling Scheme