TWI474624B - Dual-loop phase lock loop - Google Patents

Dual-loop phase lock loop Download PDF

Info

Publication number
TWI474624B
TWI474624B TW100104382A TW100104382A TWI474624B TW I474624 B TWI474624 B TW I474624B TW 100104382 A TW100104382 A TW 100104382A TW 100104382 A TW100104382 A TW 100104382A TW I474624 B TWI474624 B TW I474624B
Authority
TW
Taiwan
Prior art keywords
voltage
coupled
charge pump
receiving
trimming
Prior art date
Application number
TW100104382A
Other languages
Chinese (zh)
Other versions
TW201206085A (en
Inventor
Wei Chuan Cheng
Jiann-Chyi Sam Shieh
Original Assignee
Etron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Etron Technology Inc filed Critical Etron Technology Inc
Priority to US13/177,568 priority Critical patent/US8373473B2/en
Publication of TW201206085A publication Critical patent/TW201206085A/en
Application granted granted Critical
Publication of TWI474624B publication Critical patent/TWI474624B/en

Links

Description

雙迴路控制的鎖相迴路Dual-loop controlled phase-locked loop

本發明係有關於一種雙迴路控制的鎖相迴路,尤指一種根據不同電流源的電流,產生粗調控制電壓與微調控制電壓,以調整回授時脈的雙迴路控制的鎖相迴路。The invention relates to a two-loop controlled phase-locked loop, in particular to a phase-locked loop for generating a coarse control voltage and a fine-tuning control voltage according to currents of different current sources to adjust the dual-loop control of the feedback clock.

請參照第1圖,第1圖係為先前技術說明應用於雙迴路鎖相迴路100的示意圖。雙迴路鎖相迴路100利用具有大振盪器增益的粗調迴圈去調整因為製成、電壓及溫度變異所造成的振盪器頻率的漂移,以及利用具有小振盪器增益的微調迴圈去調整雙迴路鎖相迴路效能的參數,例如相位雜訊(phase noise)、隨機抖動(random jitter)及迴路頻寬(loop band-width)。因此,比起單迴圈鎖相迴路,雙迴路鎖相迴路100具有更低的相位雜訊和隨機抖動。Please refer to FIG. 1 , which is a schematic diagram of the prior art description applied to the dual loop phase locked loop 100 . The dual-loop phase-locked loop 100 utilizes a coarse loop with large oscillator gain to adjust the drift of the oscillator frequency due to fabrication, voltage and temperature variations, and to adjust the double using a fine-tuned loop with small oscillator gain. Parameters of loop-locked loop performance, such as phase noise, random jitter, and loop band-width. Therefore, the dual loop phase locked loop 100 has lower phase noise and random jitter than the single loop phase locked loop.

然而,如第1圖所示,在雙迴路鎖相迴路100中,為了提供一個穩定的零點(zero),電容C2 必須為一大電容。另外,雙迴路鎖相迴路100的粗調/微調迴圈係分別利用不同的控制電壓進行調整,以及雙迴路鎖相迴路100具有很複雜的濾波器。因此,上述缺點對於設計者而言,並非可以很輕易地克服。However, as shown in FIG. 1, in the dual-loop phase-locked loop 100, in order to provide a stable zero (zero), the capacitor C 2 must be a large capacitor. In addition, the coarse/fine tuning loops of the dual-loop phase-locked loop 100 are respectively adjusted with different control voltages, and the dual-loop phase-locked loop 100 has a very complicated filter. Therefore, the above disadvantages are not easily overcome by the designer.

本發明的一實施例提供一種雙迴路控制的鎖相迴路。該鎖相迴路包含一相位頻率偵測電路、一第一電荷幫浦、一第二電荷幫浦、一第一電容、一濾波器、一第一加法器、一電壓控制延遲電路及一除頻器。該相位頻率偵測電路係用以根據一參考時脈及一除頻回授時脈的差異,以產生一開關訊號,該相位頻率偵測電路具有一第一輸入端,用以接收該參考時脈,一第二輸入端,用以接收該除頻回授時脈,一輸出端,用以輸出該開關訊號;該第一電荷幫浦係用以根據該開關訊號,產生一粗調控制電壓,該第一電荷幫浦具有一第一端,耦接於該相位頻率偵測電路的輸出端,用以接收該開關訊號,一第二端,用以接收該第一電壓,及一第三端,用以輸出該粗調控制電壓;該第二電荷幫浦係用以根據該開關訊號,產生一預微調電壓,該第二電荷幫浦具有一第一端,該相位頻率偵測電路的輸出端,用以接收該開關訊號,一第二端,用以接收該第一電壓,及一第三端,用以輸出該預微調電壓;該第一電容具有一第一端,耦接於該第一電荷幫浦的第三端,及一第二端,耦接於一地端;該濾波器係用以濾除該預微調電壓的高頻部分,具有一第一端,耦接於該第二電荷幫浦的第三端,及一第二端,耦接於該地端;該第一加法器係用以根據該預微調電壓和該粗調控制電壓,產生一微調控制電壓,該第一加法器具有一第一端,耦接於該第一電荷幫浦的第三端,用以接收該粗調控制電壓,一第二端,耦接於該第二電荷幫浦的第三端,用以接收該預微調電壓,及一第三端,用以輸出該微調控制電壓;該電壓控制延遲電路(voltage control delay line)具有一第一輸入端,耦接於該第一電荷幫浦的第三端,用以接收該粗調控制電壓,一第二輸入端,耦接於該第一加法器的第三端,用以接收該微調控制電壓,及一輸出端,用以輸出一回授時脈;及該除頻器係耦接於該電壓控制延遲電路和該相位頻率偵測電路,用以對該回授時脈除頻,以輸出該除頻回授時脈。An embodiment of the invention provides a two-loop controlled phase-locked loop. The phase locked loop includes a phase frequency detecting circuit, a first charge pump, a second charge pump, a first capacitor, a filter, a first adder, a voltage control delay circuit, and a frequency division Device. The phase frequency detecting circuit is configured to generate a switching signal according to a difference between a reference clock and a frequency-dividing feedback clock, the phase frequency detecting circuit having a first input terminal for receiving the reference clock a second input terminal for receiving the frequency division feedback clock, and an output terminal for outputting the switch signal; the first charge pump is configured to generate a coarse control voltage according to the switch signal, The first charge pump has a first end coupled to the output end of the phase frequency detecting circuit for receiving the switching signal, a second end for receiving the first voltage, and a third end, The second charge pump is configured to generate a pre-trimming voltage according to the switching signal, the second charge pump has a first end, and the output end of the phase frequency detecting circuit For receiving the switch signal, a second end for receiving the first voltage, and a third end for outputting the pre-trim voltage; the first capacitor has a first end coupled to the first a third end of a charge pump, and a second end The filter is coupled to the high-frequency portion of the pre-trimming voltage, and has a first end coupled to the third end of the second charge pump and a second end. The first adder is configured to generate a trimming control voltage according to the pre-trimming voltage and the coarse control voltage, the first adder having a first end coupled to the first charge The third end of the pump is configured to receive the coarse control voltage, and a second end is coupled to the third end of the second charge pump for receiving the pre-trim voltage and a third end The voltage control delay line has a first input end coupled to the third end of the first charge pump for receiving the coarse control voltage, a second input end coupled to the third end of the first adder for receiving the trimming control voltage, and an output end for outputting a feedback clock; and the frequency divider is coupled to the voltage control a delay circuit and the phase frequency detecting circuit for dividing the feedback clock to In addition to the frequency of the feedback clock.

本發明提供的一種雙迴路控制的鎖相迴路。該鎖相迴路利用一第一電流源和一第二電流源,以放大一第一電容的等效電容值,其中該第一電容係提供該鎖相迴路一穩定的零點和一粗調控制電壓。另外,該鎖相迴路藉由並聯的一第二電容、一電阻以及該粗調控制電壓,產生一微調控制電壓。如此,本發明具有下述優點:第一、本發明不需一數位校正電路、一電感電容槽(LC tank);第二、本發明的第一電容的面積比傳統類比雙迴路控制的鎖相迴路內的電容的面積小;第三、本發明具有一簡單設計的濾波器,且因為本發明的粗調電壓控制單元和微調電壓控制單元有相同的控制電壓,所以可減低除錯或測試的複雜度;第四、由於微調電壓控制單元的前饋增益較小,因而從晶體振盪器產生的低頻相位雜訊不會被放大,而達成低雜訊抖動的要求。The invention provides a double loop controlled phase locked loop. The phase-locked loop utilizes a first current source and a second current source to amplify an equivalent capacitance value of a first capacitor, wherein the first capacitor provides a stable zero point and a coarse control voltage of the phase-locked loop . In addition, the phase-locked loop generates a trimming control voltage by a second capacitor, a resistor, and the coarse control voltage connected in parallel. Thus, the present invention has the following advantages: First, the present invention does not require a digital correction circuit, an LC tank; second, the area of the first capacitor of the present invention is more phase-locked than the conventional analog dual loop control. The area of the capacitor in the loop is small; thirdly, the present invention has a filter of a simple design, and since the coarse voltage control unit and the trimming voltage control unit of the present invention have the same control voltage, the debugging or the test can be reduced. Complexity; Fourth, because the feedforward gain of the trimming voltage control unit is small, the low frequency phase noise generated from the crystal oscillator is not amplified, and the requirement for low noise jitter is achieved.

請參照第2圖,第2圖係為本發明的一實施例說明雙迴路控制的鎖相迴路200的示意圖。鎖相迴路200包含一相位頻率偵測電路202、一第一電荷幫浦204、一第二電荷幫浦206、一第一電容208、一濾波器210、一第一加法器212、一電壓控制延遲電路(voltage controlled delay line)214及一除頻器216。相位頻率偵測電路202具有一第一輸入端,用以接收參考時脈REF,一第二輸入端,用以接收除頻回授時脈DFC,一輸出端,用以輸出開關訊號S。相位頻率偵測電路202係用以根據參考時脈REF及除頻回授時脈DFC的差異,以產生開關訊號S。第一電荷幫浦204具有一第一端,耦接於相位頻率偵測電路202的輸出端,用以接收開關訊號S,一第二端,用以接收第一電壓VDD,及一第三端,用以輸出一粗調控制電壓Vcoarse。第二電荷幫浦206具有一第一端,耦接於相位頻率偵測電路202的輸出端,用以接收開關訊號S,一第二端,用以接收第一電壓VDD,及一第三端,用以輸出一預微調電壓Vpre-fine。第一電容208具有一第一端,耦接於第一電荷幫浦204的第三端,及一第二端,耦接於一地端。濾波器210係用以濾除預微調電壓Vpre-fine的高頻部分,而濾波器210具有一第一端,耦接於第二電荷幫浦206的第三端,及一第二端,耦接於地端。第一加法器212具有一第一端,耦接於第一電荷幫浦204的第三端,用以接收粗調控制電壓Vcoarse,一第二端,耦接於第二電荷幫浦206的第三端,用以接收預微調電壓Vpre-fine,及一第三端,用以輸出微調控制電壓Vfine。電壓控制延遲電路214,具有一第一輸入端,耦接於第一電荷幫浦204的第三端,用以接收粗調控制電壓Vcoarse,一第二輸入端,耦接於第一加法器212的第三端,用以接收微調控制電壓Vfine,及一輸出端,用以輸出一回授時脈FC,其中回授時脈FC係為一差動時脈。電壓控制延遲電路214包含一粗調電壓控制單元2142、一微調電壓控制單元2144及一第二加法器2146。粗調電壓控制單元2142具有一粗調增益函數(gr*Kvco)/s,用以根據粗調控制電壓Vcoarse,產生一粗調時脈控制訊號CLKcoarse;微調電壓控制單元2144具有一微調增益函數Kvco/s,用以根據微調控制電壓Vfine,產生一微調時脈控制訊號CLKfine;第二加法器2146將粗調時脈控制訊號CLKcoarse和微調時脈控制訊號CLKfine相加,而電壓控制延遲電路214根據第二加法器2146輸出的結果,產生回授時脈FC,其中粗調增益函數(gr*Kvco)/s係為微調增益函數Kvco/s的一第一預定倍數(gr),其中gr遠大於1。除頻器216耦接於電壓控制延遲電路214和相位頻率偵測電路202,用以對回授時脈FC除頻,以輸出除頻回授時脈DFC。Please refer to FIG. 2, which is a schematic diagram of a phase-locked loop 200 for dual-loop control according to an embodiment of the present invention. The phase-locked loop circuit 200 includes a phase frequency detecting circuit 202, a first charge pump 204, a second charge pump 206, a first capacitor 208, a filter 210, a first adder 212, and a voltage control circuit. A voltage controlled delay line 214 and a frequency divider 216. The phase frequency detecting circuit 202 has a first input terminal for receiving the reference clock REF, a second input terminal for receiving the frequency-receiving clock pulse DFC, and an output terminal for outputting the switching signal S. The phase frequency detecting circuit 202 is configured to generate the switching signal S according to the difference between the reference clock REF and the frequency-dividing clock DFC. The first charge pump 204 has a first end coupled to the output of the phase frequency detecting circuit 202 for receiving the switching signal S, a second end for receiving the first voltage VDD, and a third end For outputting a coarse control voltage Vcoarse. The second charge pump 206 has a first end coupled to the output end of the phase frequency detecting circuit 202 for receiving the switching signal S, a second end for receiving the first voltage VDD, and a third end For outputting a pre-fine voltage Vpre-fine. The first capacitor 208 has a first end coupled to the third end of the first charge pump 204 and a second end coupled to a ground end. The filter 210 is configured to filter the high frequency portion of the pre-fine voltage Vpre-fine, and the filter 210 has a first end coupled to the third end of the second charge pump 206, and a second end coupled Connected to the ground. The first adder 212 has a first end coupled to the third end of the first charge pump 204 for receiving the coarse control voltage Vcoarse, and a second end coupled to the second charge pump 206 The three ends are configured to receive a pre-fine voltage Vpre-fine and a third end for outputting a trimming control voltage Vfine. The voltage control delay circuit 214 has a first input end coupled to the third end of the first charge pump 204 for receiving the coarse control voltage Vcoarse, and a second input coupled to the first adder 212. The third end is configured to receive the fine adjustment control voltage Vfine, and an output end for outputting a feedback clock FC, wherein the feedback clock FC is a differential clock. The voltage control delay circuit 214 includes a coarse voltage control unit 2142, a trim voltage control unit 2144, and a second adder 2146. The coarse voltage control unit 2142 has a coarse gain function (gr*Kvco)/s for generating a coarse clock control signal CLKcoarse according to the coarse control voltage Vcoarse; the trim voltage control unit 2144 has a fine adjustment gain function Kvco /s, for generating a fine-tuned clock control signal CLKfine according to the fine-tuning control voltage Vfine; the second adder 2146 adds the coarse-tuned clock control signal CLKcoarse and the fine-tuned clock control signal CLKfine, and the voltage-controlled delay circuit 214 is The result of the second adder 2146 outputs a feedback clock FC, wherein the coarse adjustment gain function (gr*Kvco)/s is a first predetermined multiple (gr) of the fine adjustment gain function Kvco/s, where gr is much larger than 1 . The frequency divider 216 is coupled to the voltage control delay circuit 214 and the phase frequency detection circuit 202 for frequency division of the feedback clock FC to output a frequency division feedback clock DFC.

第一電荷幫浦204包含一第一電流源2042及一第一開關2044。第一電流源2042具有一第一端,耦接於第一電荷幫浦204的第二端,及一第二端;第一開關2044具有一第一端,耦接於第一電荷幫浦204的第一端,一第二端,耦接於第一電流源2042的第二端,及一第三端,耦接於第一電荷幫浦204的第三端。當第一電荷幫浦204接收開關訊號S時,第一電流源2042根據第一電流B*IP,對第一電容208充電,以決定粗調控制電壓Vcoarse,其中粗調控制電壓Vcoarse係根據式(1)決定: The first charge pump 204 includes a first current source 2042 and a first switch 2044. The first current source 2042 has a first end coupled to the second end of the first charge pump 204 and a second end. The first switch 2044 has a first end coupled to the first charge pump 204. The first end, the second end, is coupled to the second end of the first current source 2042, and the third end is coupled to the third end of the first charge pump 204. When the first charge pump 204 receives the switching signal S, the first current source 2042 charges the first capacitor 208 according to the first current B*IP to determine the coarse control voltage Vcoarse, wherein the coarse control voltage Vcoarse is according to the formula (1) Decide:

其中Cz係為第一電容208的電容值。Where Cz is the capacitance value of the first capacitor 208.

第二電荷幫浦206包含一第二電流源2062及一第二開關2064。第二電流源2062具有一第一端,耦接於第二電荷幫浦206的第二端,及一第二端;第二開關2064具有一第一端,耦接於第二電荷幫浦206的第一端,一第二端,耦接於第二電流源2062的第二端,及一第三端,耦接於第二電荷幫浦206的第三端。濾波器210包含一第二電容2102及一電阻2104。第二電容2102具有一第一端,耦接於濾波器210的第一端,及一第二端,耦接於地端;電阻2104具有一第一端,耦接於濾波器210的第一端,及一第二端,耦接於地端。當第二電荷幫浦206接收開關訊號S時,第二電流源2062根據第二電流IP,對第一電容208充電,以決定預微調電壓Vpre-fine,其中預微調電壓Vpre-fine係根據式(2)決定: The second charge pump 206 includes a second current source 2062 and a second switch 2064. The second current source 2062 has a first end coupled to the second end of the second charge pump 206 and a second end. The second switch 2064 has a first end coupled to the second charge pump 206. The first end, the second end is coupled to the second end of the second current source 2062, and the third end is coupled to the third end of the second charge pump 206. The filter 210 includes a second capacitor 2102 and a resistor 2104. The second capacitor 2102 has a first end coupled to the first end of the filter 210 and a second end coupled to the ground end. The resistor 2104 has a first end coupled to the first end of the filter 210. The end, and a second end, are coupled to the ground end. When the second charge pump 206 receives the switching signal S, the second current source 2062 charges the first capacitor 208 according to the second current IP to determine the pre-fine voltage Vpre-fine, wherein the pre-fine voltage Vpre-fine is according to the formula (2) Decide:

其中Cp係為第二電容2102的電容值,Rp係為電阻2104的電阻值,其中第一電容208的電容值Cz係遠大於第二電容2102的電容值Cp。Wherein Cp is the capacitance value of the second capacitor 2102, and Rp is the resistance value of the resistor 2104, wherein the capacitance value Cz of the first capacitor 208 is much larger than the capacitance value Cp of the second capacitor 2102.

第一加法器212接收粗調控制電壓Vcoarse和預微調電壓Vpre-fine後,根據粗調控制電壓Vcoarse和預微調電壓Vpre-fine,產生並輸出微調控制電壓Vfine,其中微調控制電壓Vfine係根據式(3)決定:After receiving the coarse control voltage Vcoarse and the pre-fine voltage Vpre-fine, the first adder 212 generates and outputs a trimming control voltage Vfine according to the coarse control voltage Vcoarse and the pre-fine voltage Vpre-fine, wherein the fine-tuning control voltage Vfine is according to the formula (3) Decide:

其中B係為第一電流B*IP與第二電流源2062的比值,亦即第一電流B*IP係為第二電流IP的一第二預定倍數(亦即B倍),其中第二預定倍數B遠小於1,且第二預定倍數B和第一預定倍數gr互為倒數。Where B is the ratio of the first current B*IP to the second current source 2062, that is, the first current B*IP is a second predetermined multiple (ie, B times) of the second current IP, wherein the second predetermined The multiple B is much smaller than 1, and the second predetermined multiple B and the first predetermined multiple gr are reciprocal to each other.

因此,電壓控制延遲電路214的粗調電壓控制單元2142可根據粗調控制電壓Vcoarse和粗調增益函數(gr*Kvco)/s,產生一第一開迴路增益(open-loop gain)A1,其中第一開迴路增益A1係根據式(4)決定:Therefore, the coarse voltage control unit 2142 of the voltage control delay circuit 214 can generate a first open-loop gain A1 according to the coarse control voltage Vcoarse and the coarse gain function (gr*Kvco)/s, wherein The first open loop gain A1 is determined according to equation (4):

電壓控制延遲電路214的微調電壓控制單元2144可根據微調控制電壓Vfine和微調增益函數Kvco/s,產生一第二開迴路增益A2,其中第二開迴路增益A2係根據式(5)決定:The trimming voltage control unit 2144 of the voltage control delay circuit 214 can generate a second open loop gain A2 according to the trimming control voltage Vfine and the trimming gain function Kvco/s, wherein the second open loop gain A2 is determined according to the formula (5):

鎖相迴路200的開迴路增益A係為第一開迴路增益A1和第二開迴路增益A2的和。因此,電壓控制延遲電路214的開迴路增益A係根據式(6)決定:The open loop gain A of the phase locked loop 200 is the sum of the first open loop gain A1 and the second open loop gain A2. Therefore, the open loop gain A of the voltage control delay circuit 214 is determined according to equation (6):

根據式(6)、式(7)和式(8),可得鎖相迴路200的三個極點(pole)P1、P2、P3和零點(zero)Z1:According to equations (6), (7) and (8), three poles P1, P2, P3 and zero Z1 of the phase-locked loop 200 are obtained:

因為,第一預定倍數gr係遠大於1且和第二預定倍數B互為倒數,以及第一電容208的電容值Cz係遠大於第二電容2102的電容值Cp,所以式(8)可被簡化成式(9):Because the first predetermined multiple gr is much larger than 1 and the second predetermined multiple B is reciprocal, and the capacitance Cz of the first capacitor 208 is much larger than the capacitance Cp of the second capacitor 2102, the equation (8) can be Simplified into (9):

請參照第3圖,第3圖係為說明鎖相迴路200的開迴路增益A的波德圖的示意圖,其中開迴路增益A的波德圖的縱軸係為相對應於開迴路增益A的對數值,橫軸係為ω(鎖相迴路200的回授時脈FC的頻率)。如第3圖所示,因為零點Z1在零對數增益點G0(開迴路增益A的對數值為零)的左邊,且極點P3在零對數增益點G0的右邊,所以零對數增益點G0係在-20dB/十倍(-20dB/dec)的線段上,導致鎖相迴路200處於穩定狀態。另外,因為極點P3和零點Z1分別由式(7)和式(9)所決定,所以可藉由控制第一電容208的電容值Cz和第二電容2102的電容值Cp,改變極點P3和零點Z1在第3圖上的位置。Referring to FIG. 3, FIG. 3 is a schematic diagram illustrating a Bode diagram of the open loop gain A of the phase locked loop 200, wherein the longitudinal axis of the Bode diagram of the open loop gain A is corresponding to the open loop gain A. For the logarithmic value, the horizontal axis is ω (the frequency of the feedback clock FC of the phase-locked loop 200). As shown in Fig. 3, since the zero point Z1 is to the left of the zero logarithmic gain point G0 (the logarithm of the open loop gain A is zero), and the pole P3 is to the right of the zero logarithmic gain point G0, the zero logarithmic gain point G0 is On the line segment of -20dB/ten times (-20dB/dec), the phase-locked loop 200 is in a stable state. In addition, since the pole P3 and the zero point Z1 are determined by the equations (7) and (9), respectively, the pole P3 and the zero point can be changed by controlling the capacitance value Cz of the first capacitor 208 and the capacitance value Cp of the second capacitor 2102. The position of Z1 on the third figure.

請參照第4圖,第4圖係為說明粗調控制電壓Vcoarse與微調控制電壓Vfine的關係的示意圖。如第4圖所示,為了使粗調電壓控制單元2142的粗調控制電壓Vcoarse與微調電壓控制單元2144的微調控制電壓Vfine相等,粗調電壓控制單元2142的電路架構係和微調電壓控制單元2144的電路架構相同,但粗調電壓控制單元2142內的元件尺寸和微調電壓控制單元2144內的元件尺寸不同。因此,如第4圖所示,粗調控制電壓Vcoarse曲線的斜率係為微調控制電壓Vfine曲線的斜率的第一預定倍數gr倍。另外,第一預定倍數gr可隨鎖相迴路200的設計而改變。Please refer to FIG. 4, which is a schematic diagram illustrating the relationship between the coarse control voltage Vcoarse and the trimming control voltage Vfine. As shown in FIG. 4, in order to make the coarse control voltage Vcoarse of the coarse adjustment voltage control unit 2142 equal to the fine adjustment control voltage Vfine of the trimming voltage control unit 2144, the circuit architecture of the coarse adjustment voltage control unit 2142 and the trimming voltage control unit 2144 The circuit architecture is the same, but the component size within the coarse voltage control unit 2142 and the component size within the trim voltage control unit 2144 are different. Therefore, as shown in FIG. 4, the slope of the coarse control voltage Vcoarse curve is a first predetermined multiple gr times the slope of the fine adjustment control voltage Vfine curve. Additionally, the first predetermined multiple gr may vary with the design of the phase locked loop 200.

綜上所述,本發明所提供的雙迴路控制的鎖相迴路係利用第一電流源和第二電流源,以放大第一電容的等效電容值,其中第一電容係提供鎖相迴路一個穩定的零點和粗調控制電壓。另外,雙迴路控制的鎖相迴路藉由並聯的第二電容、電阻以及粗調控制電壓,產生微調控制電壓。如此,本發明具有下述優點:第一、本發明不需數位校正電路、電感電容槽(LC tank);第二、本發明的第一電容的面積比傳統類比雙迴路控制的鎖相迴路內的電容的面積小;第三、本發明具有簡單設計的濾波器,且因為粗調電壓控制單元和微調電壓控制單元有相同的控制電壓,所以可減低除錯或測試的複雜度;第四、由於微調電壓控制單元的前饋增益較小,因而從晶體振盪器產生的低頻相位雜訊不會被放大,而達成低雜訊抖動的要求。In summary, the dual-loop controlled phase-locked loop provided by the present invention utilizes a first current source and a second current source to amplify an equivalent capacitance value of the first capacitor, wherein the first capacitor provides a phase-locked loop. Stable zero and coarse control voltage. In addition, the dual-loop controlled phase-locked loop generates a trimming control voltage by a parallel second capacitor, a resistor, and a coarse control voltage. As such, the present invention has the following advantages: First, the present invention does not require a digital correction circuit, an LC tank; and second, the area of the first capacitor of the present invention is smaller than that of a conventional analog-loop dual-loop controlled phase-locked loop. The area of the capacitor is small; thirdly, the invention has a filter with a simple design, and since the coarse voltage control unit and the trimming voltage control unit have the same control voltage, the complexity of debugging or testing can be reduced; Since the feedforward gain of the trimming voltage control unit is small, the low frequency phase noise generated from the crystal oscillator is not amplified, and the low noise jitter is required.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

200...鎖相迴路200. . . Phase-locked loop

202...相位頻率偵測電路202. . . Phase frequency detection circuit

204...第一電荷幫浦204. . . First charge pump

206...第二電荷幫浦206. . . Second charge pump

208...第一電容208. . . First capacitor

210...濾波器210. . . filter

212...第一加法器212. . . First adder

214...電壓控制延遲電路214. . . Voltage controlled delay circuit

216...除頻器216. . . Frequency divider

2042...第一電流源2042. . . First current source

2044...第一開關2044. . . First switch

2062...第二電流源2062. . . Second current source

2064...第二開關2064. . . Second switch

2102...第二電容2102. . . Second capacitor

2104...電阻2104. . . resistance

2142...粗調電壓控制單元2142. . . Coarse voltage control unit

2144...細調電壓控制單元2144. . . Fine voltage control unit

2146...第二加法器2146. . . Second adder

B*IP...第一電流B*IP. . . First current

IP...第二電流IP. . . Second current

S...開關訊號S. . . Switch signal

Vcoarse...粗調控制電壓Vcoarse. . . Coarse control voltage

Vpre-fine...預微調電壓Vpre-fine. . . Pre-trim voltage

Vfine...微調控制電壓Vfine. . . Fine-tuning the control voltage

CLKcoarse...粗調時脈控制訊號CLKcoarse. . . Coarse clock control signal

CLKfine...微調時脈控制訊號CLKfine. . . Fine-tuning the clock control signal

FC...回授時脈FC. . . Feedback clock

DFC...除頻回授時脈DFC. . . Frequency-receiving clock

REF...參考時脈REF. . . Reference clock

Z1...零點Z1. . . Zero point

G0...零對數增益點G0. . . Zero logarithmic gain point

P3...極點P3. . . pole

第1圖係為先前技術說明應用於雙迴路鎖相迴路的示意圖。Figure 1 is a schematic diagram of the prior art description applied to a dual loop phase locked loop.

第2圖係為本發明的一實施例說明雙迴路控制的鎖相迴路的示意圖。Fig. 2 is a schematic view showing a phase locked loop of a dual loop control according to an embodiment of the present invention.

第3圖係為說明鎖相迴路的開迴路增益的波德圖的示意圖。Figure 3 is a schematic diagram showing the Bode diagram of the open loop gain of the phase locked loop.

第4圖係為說明粗調控制電壓與微調控制電壓的關係的示意圖。Figure 4 is a schematic diagram showing the relationship between the coarse control voltage and the fine control voltage.

200...鎖相迴路200. . . Phase-locked loop

202...相位頻率偵測電路202. . . Phase frequency detection circuit

204...第一電荷幫浦204. . . First charge pump

206...第二電荷幫浦206. . . Second charge pump

208...第一電容208. . . First capacitor

210...濾波器210. . . filter

212...第一加法器212. . . First adder

214...電壓控制延遲電路214. . . Voltage controlled delay circuit

216...除頻器216. . . Frequency divider

2042...第一電流源2042. . . First current source

2044...第一開關2044. . . First switch

2062...第二電流源2062. . . Second current source

2064...第二開關2064. . . Second switch

2102...第二電容2102. . . Second capacitor

2104...電阻2104. . . resistance

2142...粗調電壓控制單元2142. . . Coarse voltage control unit

2144...細調電壓控制單元2144. . . Fine voltage control unit

2146...第二加法器2146. . . Second adder

B*IP...第一電流B*IP. . . First current

IP...第二電流IP. . . Second current

S...開關訊號S. . . Switch signal

Vcoarse...粗調控制電壓Vcoarse. . . Coarse control voltage

Vpre-fine...預微調電壓Vpre-fine. . . Pre-trim voltage

Vfine...微調控制電壓Vfine. . . Fine-tuning the control voltage

CLKcoarse...粗調時脈控制訊號CLKcoarse. . . Coarse clock control signal

CLKfine...微調時脈控制訊號CLKfine. . . Fine-tuning the clock control signal

FC...回授時脈FC. . . Feedback clock

DFC...除頻回授時脈DFC. . . Frequency-receiving clock

REF...參考時脈REF. . . Reference clock

Claims (10)

一種雙迴路控制的鎖相迴路,包含:一相位頻率偵測電路,用以根據一參考時脈及一除頻回授時脈的差異,以產生一開關訊號,該相位頻率偵測電路具有一第一輸入端,用以接收該參考時脈,一第二輸入端,用以接收該除頻回授時脈,一輸出端,用以輸出該開關訊號;一第一電荷幫浦,具有一第一端,耦接於該相位頻率偵測電路的輸出端,用以接收該開關訊號,一第二端,用以接收一第一電壓,及一第三端,用以輸出一粗調控制電壓;一第二電荷幫浦,具有一第一端,耦接於該相位頻率偵測電路的輸出端,用以接收該開關訊號,一第二端,用以接收該第一電壓,及一第三端,用以輸出一預微調電壓;一第一電容,具有一第一端,耦接於該第一電荷幫浦的第三端,及一第二端,耦接於一地端;一濾波器,用以濾除該預微調電壓的高頻部分,具有一第一端,耦接於該第二電荷幫浦的第三端,及一第二端,耦接於該地端,其中該濾波器並不根據該粗調控制電壓,產生該預微調電壓;一第一加法器,用以直接加總該預微調電壓和該粗調控制電壓以產生一微調控制電壓,該第一加法器具有一第一端,耦接於該第一電荷幫浦的第三端,用以接收該粗調控制電壓,一第二端,耦接於該第二電荷幫浦的第三端,用以接 收該預微調電壓,及一第三端,用以輸出該微調控制電壓;一電壓控制延遲電路(voltage control delay line),具有一第一輸入端,耦接於該第一電荷幫浦的第三端,用以接收該粗調控制電壓,一第二輸入端,耦接於該第一加法器的第三端,用以接收該微調控制電壓,及一輸出端,用以輸出一回授時脈;及一除頻器,耦接於該電壓控制延遲電路和該相位頻率偵測電路,用以對該回授時脈除頻,以輸出該除頻回授時脈。 A dual-loop controlled phase-locked loop includes: a phase frequency detecting circuit for generating a switching signal according to a difference between a reference clock and a frequency-repeating clock, the phase frequency detecting circuit has a first An input terminal for receiving the reference clock, a second input terminal for receiving the frequency division feedback clock, and an output terminal for outputting the switching signal; a first charge pump having a first The end is coupled to the output end of the phase frequency detecting circuit for receiving the switching signal, a second end for receiving a first voltage, and a third end for outputting a coarse control voltage; a second charge pump having a first end coupled to the output of the phase frequency detecting circuit for receiving the switching signal, a second end for receiving the first voltage, and a third The first capacitor has a first end coupled to the third end of the first charge pump, and a second end coupled to a ground end; a filter For filtering the high frequency portion of the pre-trimming voltage, having a first The second end of the second charge pump is coupled to the second end, and the second end is coupled to the ground end, wherein the filter does not generate the pre-trim voltage according to the coarse control voltage; An adder for directly summing the pre-trimming voltage and the coarse control voltage to generate a trimming control voltage, the first adder having a first end coupled to the third end of the first charge pump The second end is coupled to the third end of the second charge pump for receiving the coarse control voltage. Receiving the pre-trimming voltage, and a third terminal for outputting the trimming control voltage; a voltage control delay line having a first input coupled to the first charge pump a third end for receiving the coarse control voltage, a second input coupled to the third end of the first adder for receiving the trim control voltage, and an output for outputting a feedback And a frequency divider coupled to the voltage control delay circuit and the phase frequency detection circuit for frequency division of the feedback clock to output the frequency division feedback clock. 如請求項1所述之鎖相迴路,其中該電壓控制延遲電路包含:一粗調電壓控制單元,具有一粗調增益函數,用以根據該粗調控制電壓,產生一粗調時脈控制訊號;及一微調電壓控制單元,具有一微調增益函數,用以根據該微調控制電壓,產生一微調時脈控制訊號;其中該粗調增益函數係為該微調增益函數的一第一預定倍數。 The phase-locked loop of claim 1, wherein the voltage-controlled delay circuit comprises: a coarse-tuning voltage control unit having a coarse-tuning gain function for generating a coarse-tuned clock control signal according to the coarse-tuning control voltage And a trimming voltage control unit having a trimming gain function for generating a trimming clock control signal according to the trimming control voltage; wherein the coarse tuning gain function is a first predetermined multiple of the trimming gain function. 如請求項1所述之鎖相迴路,其中該濾波器包含:一第二電容,具有一第一端,耦接於該濾波器的第一端,及一第二端,耦接於該地端;及一電阻,具有一第一端,耦接於該濾波器的第一端,及一第二端,耦接於該地端。 The phase-locked loop of claim 1, wherein the filter comprises: a second capacitor having a first end coupled to the first end of the filter and a second end coupled to the ground And a first end coupled to the first end of the filter and a second end coupled to the ground end. 如請求項1所述之鎖相迴路,其中該第一電荷幫浦包含: 一第一電流源,具有一第一端,耦接於該第一電荷幫浦的第二端,及一第二端;及一第一開關,具有一第一端,耦接於該第一電荷幫浦的第一端,一第二端,耦接於該第一電流源的第二端,及一第三端,耦接於該第一電荷幫浦的第三端。 The phase locked loop of claim 1, wherein the first charge pump comprises: a first current source having a first end coupled to the second end of the first charge pump and a second end; and a first switch having a first end coupled to the first end The first end of the charge pump is coupled to the second end of the first current source, and the third end is coupled to the third end of the first charge pump. 如請求項1所述之鎖相迴路,其中該第二電荷幫浦包含:一第二電流源,具有一第一端,耦接於該第二電荷幫浦的第二端,及一第二端;及一第二開關,具有一第一端,耦接於該第二電荷幫浦的第一端,一第二端,耦接於該第二電流源的第二端,及一第三端,耦接於該第二電荷幫浦的第三端。 The phase-locked loop of claim 1, wherein the second charge pump comprises: a second current source having a first end coupled to the second end of the second charge pump, and a second And a second switch having a first end coupled to the first end of the second charge pump, a second end coupled to the second end of the second current source, and a third The end is coupled to the third end of the second charge pump. 一種雙迴路控制的鎖相迴路,包含:一相位頻率偵測電路,用以根據一參考時脈及一除頻回授時脈的差異,以產生一開關訊號,該相位頻率偵測電路具有一第一輸入端,用以接收該參考時脈,一第二輸入端,用以接收該除頻回授時脈,一輸出端,用以輸出該開關訊號;一第一電荷幫浦,具有一第一端,耦接於該相位頻率偵測電路的輸出端,用以接收該開關訊號,一第二端,用以接收該第一電壓,及一第三端,用以輸出一粗調控制電壓;一第二電荷幫浦,具有一第一端,耦接於該相位頻率偵測電路的輸出端,用以接收該開關訊號,一第二端,用以接收該 第一電壓,及一第三端,用以輸出一預微調電壓;一第一電容,具有一第一端,耦接於該第一電荷幫浦的第三端,及一第二端,耦接於一地端;一濾波器,用以濾除該預微調電壓的高頻部分,具有一第一端,耦接於該第二電荷幫浦的第三端,及一第二端,耦接於該地端;一第一加法器,用以根據該預微調電壓和該粗調控制電壓,產生一微調控制電壓,該第一加法器具有一第一端,耦接於該第一電荷幫浦的第三端,用以接收該粗調控制電壓,一第二端,耦接於該第二電荷幫浦的第三端,用以接收該預微調電壓,及一第三端,用以輸出該微調控制電壓;一電壓控制延遲電路,具有一第一輸入端,耦接於該第一電荷幫浦的第三端,用以接收該粗調控制電壓,一第二輸入端,耦接於該第一加法器的第三端,用以接收該微調控制電壓,及一輸出端,用以輸出一回授時脈,該電壓控制延遲電路包含:一粗調電壓控制單元,具有一粗調增益函數,用以根據該粗調控制電壓,產生一粗調時脈控制訊號;及一微調電壓控制單元,具有一微調增益函數,用以根據該微調控制電壓,產生一微調時脈控制訊號;及其中該粗調增益函數係為該微調增益函數的一第一預定倍數;一除頻器,耦接於該電壓控制延遲電路和該相位頻率偵測電 路,用以對該回授時脈除頻,以輸出該除頻回授時脈;其中該第一電荷幫浦內第一電流源提供的一第一電流係為該第二電荷幫浦內第二電流源提供的一第二電流的一第二預定倍數,該第二預定倍數係遠小於一,且該第一預定倍數和該第二預定倍數互為倒數。 A dual-loop controlled phase-locked loop includes: a phase frequency detecting circuit for generating a switching signal according to a difference between a reference clock and a frequency-repeating clock, the phase frequency detecting circuit has a first An input terminal for receiving the reference clock, a second input terminal for receiving the frequency division feedback clock, and an output terminal for outputting the switching signal; a first charge pump having a first The end is coupled to the output end of the phase frequency detecting circuit for receiving the switching signal, a second end for receiving the first voltage, and a third end for outputting a coarse control voltage; a second charge pump having a first end coupled to the output of the phase frequency detecting circuit for receiving the switching signal, and a second end for receiving the a first voltage, and a third end, for outputting a pre-trimming voltage; a first capacitor having a first end coupled to the third end of the first charge pump, and a second end coupled Connected to a ground end; a filter for filtering the high frequency portion of the pre-trimming voltage, having a first end coupled to the third end of the second charge pump, and a second end coupled Connected to the ground; a first adder for generating a trimming control voltage according to the pre-trimming voltage and the coarse control voltage, the first adder having a first end coupled to the first charge The third end of the pump is configured to receive the coarse control voltage, and a second end is coupled to the third end of the second charge pump for receiving the pre-trim voltage and a third end for Outputting the trimming control voltage; a voltage control delay circuit having a first input coupled to the third end of the first charge pump for receiving the coarse control voltage, a second input coupled The third end of the first adder is configured to receive the trimming control voltage, and an output terminal for outputting The voltage control delay circuit includes: a coarse voltage control unit having a coarse gain function for generating a coarse clock control signal according to the coarse control voltage; and a trimming voltage control unit, Having a trimming gain function for generating a trimming clock control signal according to the trimming control voltage; wherein the coarse tuning gain function is a first predetermined multiple of the trimming gain function; a frequency divider coupled to The voltage control delay circuit and the phase frequency detection a channel for dividing the feedback clock to output the frequency-divided feedback clock; wherein a first current provided by the first current source in the first charge pump is a second current in the second charge pump And a second predetermined multiple of a second current provided by the current source, the second predetermined multiple is far less than one, and the first predetermined multiple and the second predetermined multiple are reciprocal of each other. 如請求項3所述之鎖相迴路,其中該第一電容的電容值係遠大於該第二電容的電容值。 The phase-locked loop of claim 3, wherein the capacitance of the first capacitor is much larger than the capacitance of the second capacitor. 如請求項1所述之鎖相迴路,其中該回授時脈係為一差動時脈。 The phase-locked loop of claim 1, wherein the feedback clock system is a differential clock. 一種雙迴路控制的鎖相迴路,包含:一相位頻率偵測電路,用以根據一參考時脈及一除頻回授時脈的差異,以產生一開關訊號,該相位頻率偵測電路具有一第一輸入端,用以接收該參考時脈,一第二輸入端,用以接收該除頻回授時脈,一輸出端,用以輸出該開關訊號;一第一電荷幫浦,具有一第一端,耦接於該相位頻率偵測電路的輸出端,用以接收該開關訊號,一第二端,用以接收該第一電壓,及一第三端,用以輸出一粗調控制電壓,該第一電荷幫浦包含:一第一電流源,具有一第一端,耦接於該第一電荷幫浦的第二端,及一第二端;及一第一開關,具有一第一端,耦接於該第一電荷幫浦的第 一端,一第二端,耦接於該第一電流源的第二端,及一第三端,耦接於該第一電荷幫浦的第三端;一第二電荷幫浦,具有一第一端,耦接於該相位頻率偵測電路的輸出端,用以接收該開關訊號,一第二端,用以接收該第一電壓,及一第三端,用以輸出一預微調電壓;一第一電容,具有一第一端,耦接於該第一電荷幫浦的第三端,及一第二端,耦接於一地端;一濾波器,用以濾除該預微調電壓的高頻部分,具有一第一端,耦接於該第二電荷幫浦的第三端,及一第二端,耦接於該地端;一第一加法器,用以根據該預微調電壓和該粗調控制電壓,產生一微調控制電壓,該第一加法器具有一第一端,耦接於該第一電荷幫浦的第三端,用以接收該粗調控制電壓,一第二端,耦接於該第二電荷幫浦的第三端,用以接收該預微調電壓,及一第三端,用以輸出該微調控制電壓;一電壓控制延遲電路(voltage control delay line),具有一第一輸入端,耦接於該第一電荷幫浦的第三端,用以接收該粗調控制電壓,一第二輸入端,耦接於該第一加法器的第三端,用以接收該微調控制電壓,及一輸出端,用以輸出一回授時脈;及一除頻器,耦接於該電壓控制延遲電路和該相位頻率偵測電路,用以對該回授時脈除頻,以輸出該除頻回授時脈;其中該第一電流源提供的一第一電流係為該第二電荷幫浦內第 二電流源提供的一第二電流的一第二預定倍數,該第二預定倍數係遠小於一,且該第一預定倍數和該第二預定倍數互為倒數。 A dual-loop controlled phase-locked loop includes: a phase frequency detecting circuit for generating a switching signal according to a difference between a reference clock and a frequency-repeating clock, the phase frequency detecting circuit has a first An input terminal for receiving the reference clock, a second input terminal for receiving the frequency division feedback clock, and an output terminal for outputting the switching signal; a first charge pump having a first The end is coupled to the output end of the phase frequency detecting circuit for receiving the switching signal, a second end for receiving the first voltage, and a third end for outputting a coarse control voltage, The first charge pump includes: a first current source having a first end coupled to the second end of the first charge pump and a second end; and a first switch having a first End, coupled to the first charge pump One end, a second end, coupled to the second end of the first current source, and a third end coupled to the third end of the first charge pump; a second charge pump having a first One end is coupled to the output end of the phase frequency detecting circuit for receiving the switching signal, a second end for receiving the first voltage, and a third end for outputting a pre-trimming voltage; a first capacitor having a first end coupled to the third end of the first charge pump and a second end coupled to a ground end; a filter for filtering the pre-trimming voltage The high frequency portion has a first end coupled to the third end of the second charge pump, and a second end coupled to the ground end; a first adder for adjusting the pre-fine a voltage and the coarse control voltage to generate a trimming control voltage, the first adder having a first end coupled to the third end of the first charge pump for receiving the coarse control voltage, a second The third end of the second charge pump is coupled to receive the pre-trim voltage, and a third end is configured to output the micro a voltage control delay line having a first input terminal coupled to the third end of the first charge pump for receiving the coarse control voltage and a second input terminal And coupled to the third end of the first adder for receiving the trimming control voltage, and an output terminal for outputting a feedback clock; and a frequency divider coupled to the voltage control delay circuit and The phase frequency detecting circuit is configured to perform frequency division on the feedback clock to output the frequency-divided feedback clock; wherein a first current source is provided by the first current source as the second charge pump The second current source provides a second predetermined multiple of the second current, the second predetermined multiple is far less than one, and the first predetermined multiple and the second predetermined multiple are reciprocal of each other. 一種雙迴路控制的鎖相迴路,包含:一相位頻率偵測電路,用以根據一參考時脈及一除頻回授時脈的差異,以產生一開關訊號,該相位頻率偵測電路具有一第一輸入端,用以接收該參考時脈,一第二輸入端,用以接收該除頻回授時脈,一輸出端,用以輸出該開關訊號;一第一電荷幫浦,具有一第一端,耦接於該相位頻率偵測電路的輸出端,用以接收該開關訊號,一第二端,用以接收該第一電壓,及一第三端,用以輸出一粗調控制電壓;一第二電荷幫浦,具有一第一端,耦接於該相位頻率偵測電路的輸出端,用以接收該開關訊號,一第二端,用以接收該第一電壓,及一第三端,用以輸出一預微調電壓;一第一電容,具有一第一端,耦接於該第一電荷幫浦的第三端,及一第二端,耦接於一地端;一濾波器,用以濾除該預微調電壓的高頻部分,具有一第一端,耦接於該第二電荷幫浦的第三端,及一第二端,耦接於該地端;一第一加法器,用以根據該預微調電壓和該粗調控制電壓,產生一微調控制電壓,該第一加法器具有一第一端,耦接於該第一電荷幫浦的第三端,用以接收該粗調控制電壓,一 第二端,耦接於該第二電荷幫浦的第三端,用以接收該預微調電壓,及一第三端,用以輸出該微調控制電壓,其中當該雙迴路控制的鎖相迴路鎖相時,該粗調控制電壓和該微調控制電壓相等;一電壓控制延遲電路(voltage control delay line),具有一第一輸入端,耦接於該第一電荷幫浦的第三端,用以接收該粗調控制電壓,一第二輸入端,耦接於該第一加法器的第三端,用以接收該微調控制電壓,及一輸出端,用以輸出一回授時脈;及一除頻器,耦接於該電壓控制延遲電路和該相位頻率偵測電路,用以對該回授時脈除頻,以輸出該除頻回授時脈。A dual-loop controlled phase-locked loop includes: a phase frequency detecting circuit for generating a switching signal according to a difference between a reference clock and a frequency-repeating clock, the phase frequency detecting circuit has a first An input terminal for receiving the reference clock, a second input terminal for receiving the frequency division feedback clock, and an output terminal for outputting the switching signal; a first charge pump having a first The end is coupled to the output end of the phase frequency detecting circuit for receiving the switching signal, a second end for receiving the first voltage, and a third end for outputting a coarse control voltage; a second charge pump having a first end coupled to the output of the phase frequency detecting circuit for receiving the switching signal, a second end for receiving the first voltage, and a third The first capacitor has a first end coupled to the third end of the first charge pump, and a second end coupled to a ground end; a filter For filtering the high frequency portion of the pre-trimming voltage, having a first The first end is coupled to the third end of the second charge pump, and the second end is coupled to the ground end; a first adder is configured to generate the voltage according to the pre-trim voltage and the coarse control voltage a trimming control voltage, the first adder having a first end coupled to the third end of the first charge pump for receiving the coarse control voltage, The second end is coupled to the third end of the second charge pump for receiving the pre-trim voltage, and a third end for outputting the trim control voltage, wherein the dual-loop controlled phase-locked loop When the phase is locked, the coarse control voltage is equal to the trimming control voltage; a voltage control delay line has a first input end coupled to the third end of the first charge pump, Receiving the coarse control voltage, a second input end coupled to the third end of the first adder for receiving the trimming control voltage, and an output terminal for outputting a feedback clock; and The frequency divider is coupled to the voltage control delay circuit and the phase frequency detection circuit for frequency division of the feedback clock to output the frequency division feedback clock.
TW100104382A 2010-07-20 2011-02-10 Dual-loop phase lock loop TWI474624B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/177,568 US8373473B2 (en) 2010-07-20 2011-07-07 Dual-loop phase lock loop

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US36578210P 2010-07-20 2010-07-20

Publications (2)

Publication Number Publication Date
TW201206085A TW201206085A (en) 2012-02-01
TWI474624B true TWI474624B (en) 2015-02-21

Family

ID=44216784

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100104382A TWI474624B (en) 2010-07-20 2011-02-10 Dual-loop phase lock loop

Country Status (2)

Country Link
CN (1) CN102118163B (en)
TW (1) TWI474624B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103684427A (en) * 2012-09-05 2014-03-26 瑞昱半导体股份有限公司 Phase lock loop
US9548746B2 (en) * 2014-12-22 2017-01-17 Intel IP Corporation Coarse tuning selection for phase locked loops
CN107769769A (en) * 2017-10-18 2018-03-06 西安全志科技有限公司 The power control circuit and its control method of oscillator, integrated chip
US10848138B2 (en) * 2018-09-21 2020-11-24 Taiwan Semiconductor Manufacturing Co., Ltd. Method and apparatus for precision phase skew generation
CN112118008B (en) * 2019-06-20 2024-02-20 瑞昱半导体股份有限公司 Phase-locked loop circuit
US11736113B2 (en) 2021-07-09 2023-08-22 Taiwan Semiconductor Manufacturing Company, Ltd. Automatic hybrid oscillator gain adjustor circuit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US699330A (en) * 1902-02-17 1902-05-06 Robert A Kerr Time-controlled damper.
EP1443653A1 (en) * 2003-01-17 2004-08-04 Texas Instruments Inc. Type-II all-digital phase-locked loop (PLL)
US20090111408A1 (en) * 2007-10-29 2009-04-30 Rodal Eric Method and apparatus for providing a dual-loop phase lock loop
TW200939635A (en) * 2008-03-05 2009-09-16 Tse-Hsien Yeh Phase lock loop apparatus
TW200941950A (en) * 2008-03-27 2009-10-01 Novatek Microelectronics Corp Phase lock loop (PLL) system and phase locking method for PLL
TW201023523A (en) * 2008-12-03 2010-06-16 Mstar Semiconductor Inc Delay cell of ring oscillator and associated method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6812797B1 (en) * 2003-05-30 2004-11-02 Agere Systems Inc. Phase-locked loop with loop select signal based switching between frequency detection and phase detection
US8334725B2 (en) * 2007-04-11 2012-12-18 Mediatek Inc. Circuit and method for controlling mixed mode controlled oscillator and CDR circuit using the same
US7830212B2 (en) * 2007-07-30 2010-11-09 Mediatek Inc. Phase locked loop, voltage controlled oscillator, and phase-frequency detector
CN101674175B (en) * 2008-09-11 2013-11-27 财团法人工业技术研究院 Burst clock utilizing phase selecting technology and data recovery circuit
CN101626237B (en) * 2009-07-29 2012-05-23 钰创科技股份有限公司 Delay phase-locked loop circuit with wide-frequency locking range for avoiding phase locking error

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US699330A (en) * 1902-02-17 1902-05-06 Robert A Kerr Time-controlled damper.
EP1443653A1 (en) * 2003-01-17 2004-08-04 Texas Instruments Inc. Type-II all-digital phase-locked loop (PLL)
US20090111408A1 (en) * 2007-10-29 2009-04-30 Rodal Eric Method and apparatus for providing a dual-loop phase lock loop
TW200939635A (en) * 2008-03-05 2009-09-16 Tse-Hsien Yeh Phase lock loop apparatus
TW200941950A (en) * 2008-03-27 2009-10-01 Novatek Microelectronics Corp Phase lock loop (PLL) system and phase locking method for PLL
TW201023523A (en) * 2008-12-03 2010-06-16 Mstar Semiconductor Inc Delay cell of ring oscillator and associated method

Also Published As

Publication number Publication date
CN102118163A (en) 2011-07-06
TW201206085A (en) 2012-02-01
CN102118163B (en) 2012-11-21

Similar Documents

Publication Publication Date Title
TWI474624B (en) Dual-loop phase lock loop
US8531245B2 (en) Temperature compensation in a PLL
US8154350B2 (en) PLL with continuous and bang-bang feedback controls
EP2399339B1 (en) Symmetric load delay cell oscillator
TWI614996B (en) Charge pump calibration for dual-path phase-locked loop
US10027333B2 (en) Phase locked loops having decoupled integral and proportional paths
US9024667B1 (en) Self-biased phase lock loop
WO2014139430A1 (en) Fully integrated differential lc pll with switched capacitor loop filter
CN103297042A (en) Charge pump phase-locked loop circuit capable of performing locking fast
US8085071B2 (en) Phase-locked loop circuit and delay-locked loop circuit
US8373473B2 (en) Dual-loop phase lock loop
WO2018000530A1 (en) Calibration system and method for voltage-controlled oscillator in phase-locked loop
US8264258B1 (en) Phase lock loop circuit
JP4593669B2 (en) Variation correction method, PLL circuit, and semiconductor integrated circuit
TW201304422A (en) Phase lock loop appararus and tuning voltage providing circuit thereof
KR20150044617A (en) Apparatus for pvt varactor calibration of frequency multiplier based on injection locking system and the method thereof
US8248123B2 (en) Loop filter
TW202118234A (en) Sub-sampling phase-locked loop
JP2006211376A (en) Pll circuit and its program
WO2021180927A1 (en) Delay locked loops with calibration for external delay
KR100905444B1 (en) Wide range phase locked loop
TWI538410B (en) Pulse calibration circuit
KR101680935B1 (en) Digital phase locked loop using multi digital integral path and method of operating the same
TW201414208A (en) Phase locked loop with current compensation mechanism and method thereof
JP2013016995A (en) Pll circuit