TWI473095B - Semiconductor device and control method thereof - Google Patents
Semiconductor device and control method thereof Download PDFInfo
- Publication number
- TWI473095B TWI473095B TW97147293A TW97147293A TWI473095B TW I473095 B TWI473095 B TW I473095B TW 97147293 A TW97147293 A TW 97147293A TW 97147293 A TW97147293 A TW 97147293A TW I473095 B TWI473095 B TW I473095B
- Authority
- TW
- Taiwan
- Prior art keywords
- memory cell
- threshold
- reference memory
- data
- memory cells
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/26—Sensing or reading circuits; Data output circuits
- G11C16/28—Sensing or reading circuits; Data output circuits using differential sensing or reference cells, e.g. dummy cells
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/04—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
- G11C16/0466—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells with charge storage in an insulating layer, e.g. metal-nitride-oxide-silicon [MNOS], silicon-oxide-nitride-oxide-silicon [SONOS]
- G11C16/0475—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells with charge storage in an insulating layer, e.g. metal-nitride-oxide-silicon [MNOS], silicon-oxide-nitride-oxide-silicon [SONOS] comprising two or more independent storage sites which store independent data
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/04—Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
- G11C16/0491—Virtual ground arrays
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/34—Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
- G11C16/3418—Disturbance prevention or evaluation; Refreshing of disturbed memory data
- G11C16/3431—Circuits or methods to detect disturbed nonvolatile memory cells, e.g. which still read as programmed but with threshold less than the program verify threshold or read as erased but with threshold greater than the erase verify threshold, and to reverse the disturbance via a refreshing programming or erasing step
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C16/00—Erasable programmable read-only memories
- G11C16/02—Erasable programmable read-only memories electrically programmable
- G11C16/06—Auxiliary circuits, e.g. for writing into memory
- G11C16/34—Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
- G11C16/3436—Arrangements for verifying correct programming or erasure
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Read Only Memory (AREA)
Description
本發明係關於半導體裝置,而尤係關於具有非揮發性記憶胞能夠於一個記憶胞中儲存二位元資料之半導體裝置。The present invention relates to semiconductor devices, and more particularly to semiconductor devices having non-volatile memory cells capable of storing binary data in a memory cell.
於最近幾年,已經推動安置於半導體裝置中之大容量之非揮發性半導體裝置的發展。當其中一個方法使得容量較大,已經發展能夠於一個記憶胞中儲存二位元資料之非揮發性記憶胞。再者,已經發展一種採用藉由比較記憶胞之臨限電壓(threshold voltage)與創造自相關該記憶胞之二個參考記憶胞之參考臨限電壓用來讀取資料之方法(後文中稱之為“動態參考方法”dynamic reference method)之半導體裝置。In recent years, the development of large-capacity non-volatile semiconductor devices disposed in semiconductor devices has been promoted. When one of the methods results in a large capacity, a non-volatile memory cell capable of storing two-dimensional data in one memory cell has been developed. Furthermore, a method has been developed for reading data by comparing the threshold voltage of the memory cell with the reference threshold voltage of the two reference memory cells that create the autocorrelation memory cell (hereinafter referred to as A semiconductor device that is a "dynamic reference method".
WO2004-097839 A1揭示一種相關技術中具有改善資料讀取之用於動態參考方法之非揮發性記憶體。日本專利申請案公開第JP-A-2002-334589號揭示一種非揮發性記憶體,其設有檢查記憶胞用來檢查當讀取資料時要作為參考之參考記憶胞之臨限電壓。日本專利申請案公開第JP-A-2003-257188號揭示一種組構,於動態參考方法中於非揮發性記憶體中,依照第一參考記憶胞之臨限值設定第二參考記憶胞之臨限值。WO2004-097839 A1 discloses a non-volatile memory for dynamic reference methods with improved data reading in the related art. Japanese Patent Application Publication No. JP-A-2002-334589 discloses a non-volatile memory having a threshold voltage for inspecting a memory cell for checking a reference memory cell to be used as a reference when reading data. Japanese Patent Application Publication No. JP-A-2003-257188 discloses a configuration in which a second reference memory cell is set in accordance with a threshold value of a first reference memory cell in a non-volatile memory in a dynamic reference method. Limit.
於非揮發性記憶體中於一個記憶胞中能夠儲存二位元之資料,有一個問題是,當用相關技術動態參考方法讀取資料時,在參考記憶胞與記憶胞之間也許發生臨限電壓不匹配,造成資料讀取不穩定性。In non-volatile memory, it is possible to store two-bit data in one memory cell. One problem is that when reading data using the related technology dynamic reference method, a threshold may occur between the reference memory cell and the memory cell. The voltage does not match, resulting in data reading instability.
為了解決上述問題,本發明之目的係提供一種半導體裝置其消除記憶胞與參考記憶胞之間臨限電壓之不匹配,藉此改善資料讀取穩定性,以及提供控制該半導體裝置之方法。In order to solve the above problems, an object of the present invention is to provide a semiconductor device which eliminates a mismatch in threshold voltage between a memory cell and a reference memory cell, thereby improving data reading stability, and providing a method of controlling the semiconductor device.
依照本發明之一種態樣,提供一種半導體裝置具有複數個記憶胞,藉由獨立地儲存資料於記憶胞中隔離之儲存區域中而儲存二位元之資料;第一參考記憶胞,對應於儲存區域之抹除狀態並由複數個記憶胞所共用;第二參考記憶胞,對應於儲存區域之程式化狀態並由複數個記憶胞所共用;以及控制部,藉由從第一參考記憶胞和第二參考記憶胞之臨限值創造參考臨限值以及藉由比較於複數個記憶胞中要讀取資料之儲存區域之臨限值與當讀取資料時之參考臨限值而施行資料讀取操作,當程式化該第二參考記憶胞時用第一臨限值程式化以驗證,當更新該第二參考記憶胞時用低於該第一臨限值之第二臨限值更新以驗證,以及當程式化該複數個記憶胞時在具有第二參考記憶胞之臨限值之複數個記憶胞中要程式化以程式化至少一個或多個記憶胞以驗證,和在具有第二參考記憶胞之臨限值之複數個記憶胞中要更新以更新記憶胞以驗證。According to an aspect of the present invention, a semiconductor device has a plurality of memory cells, and stores data of two bits by independently storing data in a storage area isolated in a memory cell; the first reference memory cell corresponds to storing The erasing state of the region is shared by the plurality of memory cells; the second reference memory cell corresponds to the stylized state of the storage region and is shared by the plurality of memory cells; and the control portion is configured by the first reference memory cell The threshold of the second reference memory cell creates a reference threshold and performs data reading by comparing the threshold of the storage area in which the data is to be read in a plurality of memory cells with the reference threshold when reading the data. a fetching operation to verify that the second reference memory cell is programmed with a first threshold to verify that the second reference memory cell is updated with a second threshold value lower than the first threshold value when updating the second reference memory cell Verifying, and when stylizing the plurality of memory cells, in a plurality of memory cells having a threshold value of the second reference memory cell to be programmed to program at least one or more memory cells for verification, and having A plurality of memory cells of the second reference threshold value of the memory cell to be updated to the memory cell to verify the update.
依照本發明之另一態樣,提供一種用來控制半導體裝置之方法,該半導體裝置設有複數個記憶胞,藉由獨立地儲存資料於一個記憶胞中隔離之區域中而儲存二位元之資料於記憶胞中,第一參考記憶胞對應於複數個記憶胞之抹除狀態,第二參考記憶胞對應於複數個記憶胞之程式化狀態,具有下列步驟:從該第一參考記憶胞和該第二參考記憶胞之臨限值創造參考臨限值;藉由比較於該複數個記憶胞中要讀取資料之儲存區域之臨限值與參考臨限值而讀取資料;用第一臨限值程式化該第二參考記憶胞以驗證;用低於該第一臨限值之第二臨限值更新該第二參考記憶胞以驗證;在具有第二參考記憶胞之臨限值之複數個記憶胞中要程式化以程式化至少一個或多個記憶胞以驗證;以及在具有第二參考記憶胞之臨限值之複數個記憶胞中要更新以更新記憶胞以驗證。According to another aspect of the present invention, a method for controlling a semiconductor device is provided. The semiconductor device is provided with a plurality of memory cells for storing two bits by independently storing data in an isolated region of a memory cell. In the memory cell, the first reference memory cell corresponds to an erase state of the plurality of memory cells, and the second reference memory cell corresponds to a stylized state of the plurality of memory cells, having the following steps: from the first reference memory cell and The threshold value of the second reference memory cell creates a reference threshold value; the data is read by comparing the threshold value and the reference threshold value of the storage area of the plurality of memory cells to be read; a threshold value stylizes the second reference memory cell to verify; updating the second reference memory cell with a second threshold value lower than the first threshold value to verify; and having a threshold value of the second reference memory cell The plurality of memory cells are to be programmed to program at least one or more memory cells for verification; and to update the memory cells for verification in a plurality of memory cells having a threshold value of the second reference memory cell.
首先,將闡明由本發明所解決之問題。參照第1A圖,將說明能夠於一個記憶胞中儲存二位元資料之非揮發性記憶胞MC之配置。於由例如矽所組成之半導體基板10之表面,藉由擴散製程,形成其為輸入/輸出端之源極區域14和汲極區域12。於源極區域14和汲極區域12之間區域上方,形成其為控制端之閘極16。於閘極16和半導體基板10之間,形成由夾層絕緣膜18、陷補層20、和閘極絕緣膜22所組成之ONO層24(亦即,包含氧化膜、氮化膜、和氧化膜)。夾層絕緣膜18和閘極絕緣膜22為由例如氧化矽所組成之氧化膜,而陷補層20為由例如氮化矽所組成之氮化膜。First, the problems solved by the present invention will be explained. Referring to Fig. 1A, the configuration of a non-volatile memory cell MC capable of storing binary data in one memory cell will be explained. The source region 14 and the drain region 12, which are input/output terminals, are formed on the surface of the semiconductor substrate 10 composed of, for example, germanium by a diffusion process. Above the region between the source region 14 and the drain region 12, a gate 16 which is a control terminal is formed. Between the gate 16 and the semiconductor substrate 10, an ONO layer 24 composed of an interlayer insulating film 18, a trapping layer 20, and a gate insulating film 22 is formed (that is, an oxide film, a nitride film, and an oxide film are included). ). The interlayer insulating film 18 and the gate insulating film 22 are oxide films composed of, for example, hafnium oxide, and the trapping layer 20 is a nitride film composed of, for example, tantalum nitride.
藉由由注入電荷於陷補層(trap layer)20中(亦即,程式化),或者從陷補層20中抽回電荷(亦即,抹除)引起之臨限電壓改變,而使記憶胞MC儲存資料。陷補層20為絕緣體,因此注入之電荷保留於相同的地方而沒有移動。由於此緣故,資料能夠獨立地儲存於陷補層20中之隔離區域中。參照第1A圖,陷補層20具有第一儲存區域30和第二儲存區域32,各區域各能夠儲存一個位元資料。至於記憶胞MC,能於一個記憶胞儲存二位元之資料。Memory is made by injecting a charge into the trap layer 20 (i.e., stylized), or by withdrawing charge (i.e., erasing) from the trapping layer 20 to cause a threshold voltage change. Cell MC stores data. The trapping layer 20 is an insulator, so the injected charge remains in the same place without moving. For this reason, the data can be stored independently in the isolation region in the trap layer 20. Referring to FIG. 1A, the trapping layer 20 has a first storage area 30 and a second storage area 32, each of which can store one bit of data. As for the memory cell MC, it is possible to store two bits of data in one memory cell.
參照第1A圖,當程式化該第一儲存區域30時,雖然該閘極16和汲極區域12係設定在高電位而源極區域14設定在低電位,電荷34(亦即,電子)係藉由熱電子注入而注入於箭號方向。參照第1B圖,當抹除於該第一儲存區域30中之資料時,雖然該閘極16設定於低電位而汲極區域12設定於高電位,電荷34係藉由熱電子注入而抽離於箭號方向。Referring to FIG. 1A, when the first storage region 30 is programmed, although the gate 16 and the drain region 12 are set at a high potential and the source region 14 is set at a low potential, the charge 34 (ie, electron) is Injected in the direction of the arrow by hot electron injection. Referring to FIG. 1B, when the data in the first storage region 30 is erased, although the gate 16 is set to a low potential and the drain region 12 is set to a high potential, the charge 34 is extracted by hot electron injection. In the direction of the arrow.
藉由切換汲極區域12和源極區域14、施加反向電壓於該於極區域12和源極區域14、並施加低於程式化之電壓於該閘極16而讀取於該第一儲存區域30中之資料。參照第1C圖,當第一儲存區域30是在程式化狀態時(其中電荷34被注入),臨限電壓是在高狀態而流向箭號方向之電流被阻擋於在圖形中標以x處第一儲存區域30之附近,於是讀取“0”之邏輯值。反之,參照第1D圖,當第一儲存區域30是在抹除狀態時(其中電荷34未被注入),臨限電壓是在低狀態而電流流向箭號方向,於是讀取“1”之邏輯值。Reading the first storage by switching the drain region 12 and the source region 14, applying a reverse voltage to the gate region 12 and the source region 14, and applying a lower than a programmed voltage to the gate 16 Information in area 30. Referring to FIG. 1C, when the first storage area 30 is in a stylized state (where charge 34 is injected), the threshold voltage is in a high state and the current flowing in the direction of the arrow is blocked from being marked first in the figure by x. Near the storage area 30, the logical value of "0" is then read. On the contrary, referring to FIG. 1D, when the first storage region 30 is in the erase state (where the charge 34 is not injected), the threshold voltage is in a low state and the current flows in the direction of the arrow, so the logic of reading "1" is read. value.
如上所述,可以實行程式化、抹除和讀取資料至和從記憶胞MC之第一儲存區域30。藉由切換汲極區域12和源極區域14並反向施加電壓之方向,能夠以相似於各自操作之程式化、抹除和讀取該第一儲存區域30之方式實行這些對於第二儲存區域32之操作。As described above, stylization, erasing, and reading of data to and from the first storage area 30 of the memory cell MC can be performed. By switching the drain region 12 and the source region 14 and applying the direction of the voltage in the reverse direction, these second storage regions can be implemented in a manner similar to the stylization, erasing and reading of the first storage region 30, respectively. 32 operations.
記憶胞MC獨立地儲存一個位元資料至第一儲存區域30和一個位元資料於第二儲存區域32中,於是提供四種狀態如第2A至2D圖中所示。參照第2A圖,其中第一儲存區域30和第二儲存區域32二者係在抹除狀態(亦即,“1”之邏輯值)之狀態,定義為“11”。參照第2B圖,其中第一儲存區域30和第二儲存區域32二者係在程式化狀態(亦即,“0”之邏輯值)之狀態,定義為“00”。參照第2C圖,其中第一儲存區域30是在抹除狀態而第二儲存區域32是在程式化狀態之狀態定義為“10”。參照第2D圖,其中第一儲存區域30是在程式化狀態而第二儲存區域32是在抹除狀態之狀態定義為“01”。The memory cell MC independently stores one bit of data to the first storage area 30 and one bit of data in the second storage area 32, thus providing four states as shown in Figures 2A through 2D. Referring to FIG. 2A, in which both the first storage area 30 and the second storage area 32 are in the erased state (ie, the logical value of "1"), it is defined as "11". Referring to FIG. 2B, both the first storage area 30 and the second storage area 32 are in a state of a stylized state (ie, a logical value of "0"), and are defined as "00". Referring to FIG. 2C, the state in which the first storage area 30 is in the erased state and the second storage area 32 is in the stylized state is defined as "10". Referring to FIG. 2D, the state in which the first storage area 30 is in the stylized state and the second storage area 32 is in the erased state is defined as "01".
此處“程式化(programming)”意指注入電荷至抹除狀態“1”之儲存區域,並上升臨限電壓至程式化狀態“0”之電壓。同時,稍後說明之“更新(refreshing)”意指再注入電荷離開已經於程式化狀態“0”之儲存區域,至已降低臨限電壓以便恢復臨限電壓之儲存區域。Here, "programming" means injecting a charge into a storage region of the erase state "1" and raising the voltage of the threshold voltage to the stylized state "0". Meanwhile, "refreshing" explained later means that the refilled charge leaves the storage region which has been in the stylized state "0", to the storage region where the threshold voltage has been lowered to restore the threshold voltage.
接著,將說明用動態參考方法之資料讀取。參照第3A圖,設在字元線WL之複數個記憶胞MC共用第一參考記憶胞RC1和第二參考記憶胞RC2用於資料讀取操作。參照第3B圖,第一參考記憶胞RC1之臨限值對應於記憶胞MC之抹除狀態MC“1”。第二參考記憶胞RC2之臨限值對應於記憶胞MC之程式化狀態MC“0”。由平均第一參考記憶胞RC1和第二參考記憶胞RC2之臨限值所創造之參考臨限值REF位於MC“1”和MC“0”之中央。藉由比較參考臨限值REF與記憶胞MC之臨限MC“1”和MC“0”,能夠執行賞料譆取。Next, the data reading using the dynamic reference method will be explained. Referring to FIG. 3A, a plurality of memory cells MC disposed in the word line WL share the first reference memory cell RC1 and the second reference memory cell RC2 for data read operation. Referring to FIG. 3B, the threshold value of the first reference memory cell RC1 corresponds to the erase state MC "1" of the memory cell MC. The threshold value of the second reference memory cell RC2 corresponds to the stylized state MC "0" of the memory cell MC. The reference threshold REF created by the threshold values of the average first reference memory cell RC1 and the second reference memory cell RC2 is located at the center of MC "1" and MC "0". By comparing the reference threshold REF with the threshold MC "1" and MC "0" of the memory cell MC, it is possible to perform the trickle capture.
於動態參考方法中,每當抹除其中一個記憶胞時,同時抹除耦接於相同字元線WL之所有的記憶胞MC、第一參考記憶胞RC1、和第二參考記憶胞RC2。再者,每當程式化其中一個記憶胞時,同時更新耦接於相同字元線WL之出於所有記憶胞MC之於程式化狀態的記憶胞MC、和第二參考記憶胞RC2。結果,調和了記憶胞之特性,譬如記憶胞MC、第一參考記憶胞RC1、和第二參考記憶胞RC2之由退化所造成之電荷損失和電荷增益之特性改變,於是能夠連續穩定地實行資料讀取。In the dynamic reference method, each of the memory cells MC, the first reference memory cell RC1, and the second reference memory cell RC2 coupled to the same word line WL are simultaneously erased each time one of the memory cells is erased. Moreover, each time one of the memory cells is programmed, the memory cell MC and the second reference memory cell RC2 coupled to the same word line WL for all memory cells MC in the stylized state are simultaneously updated. As a result, the characteristics of the memory cell are reconciled, such as the change of the charge loss and the charge gain caused by the degradation of the memory cell MC, the first reference memory cell RC1, and the second reference memory cell RC2, so that the data can be continuously and stably implemented. Read.
接著,將說明於相關技術具有改善之資料讀取之動態參考方法中之非揮發性記憶體。第4A圖為剖面圖示意地顯示於“10”狀態中記憶胞MC之“0”側之更新操作。於第二儲存區域32,亦即“0”側,已經注入有電荷34。當藉由施加更新電壓時,電荷被進一步向箭號方向注入,由於超量之電荷而使第二儲存區域32進入過度程式化狀態。結果,如第4B圖中之箭號所示,於相反側第一儲存區域30之臨限電壓MC“1”(其為於“1”狀態)上升,由此使得具有參考臨限值REF之“讀取裕度(read margin)”50小。得到不穩定的資料讀取。Next, a non-volatile memory in the related art dynamic reference method with improved data reading will be explained. Fig. 4A is a cross-sectional view schematically showing an update operation of the "0" side of the memory cell MC in the "10" state. On the second storage region 32, that is, the "0" side, the charge 34 has been injected. When the refresh voltage is applied, the charge is further injected into the direction of the arrow, and the second storage region 32 enters an over-stylized state due to the excess charge. As a result, as indicated by the arrow in FIG. 4B, the threshold voltage MC "1" (which is in the "1" state) rises on the opposite side first storage region 30, thereby causing the reference threshold REF to be present. "Read margin" is 50 small. Get unstable data reading.
因此,如第4C圖所示,當程式化新資料時,程式化臨限值PRGV(亦即,第一臨限值)用來驗證,當更新存在之資料時,更新臨限值REFV(亦即,第二臨限值,其低於該程式化臨限值PRGV)被用來驗證。結果,程式化後之臨限電壓被分佈為PMC“0”和PRC 2。更新後之臨限電壓被分佈為RMC“0”和RRC 2。依照此配置,當更新時,注入之電荷未實行至電荷損失小之儲存區域,於是能夠防止於第二儲存區域32之“0”側之過度程式化和於第一儲存區域30之“1”側之臨限電壓造成的上升。Therefore, as shown in Figure 4C, when stylizing new data, the stylized threshold PRGV (ie, the first threshold) is used to verify that when the existing data is updated, the threshold REFV is updated (also That is, a second threshold, which is below the stylized threshold PRGV), is used for verification. As a result, the programmed threshold voltage is distributed as PMC "0" and PRC 2. The updated threshold voltage is distributed as RMC "0" and RRC 2. According to this configuration, when the update is performed, the injected charge is not applied to the storage region where the charge loss is small, so that over-stylization on the "0" side of the second storage region 32 and "1" in the first storage region 30 can be prevented. The rise of the threshold voltage on the side.
參照第5A圖,於上述配置中,當更新於“10”狀態中記憶胞MC之“0”側時,因為用更新臨限值REFV實施驗證,則於“1”側之臨限電壓MC“1”幾乎不上升,於是能夠確保充分的讀取裕度50。然而,參照第5B圖,當程式化(亦即,寫入新資料)時,於“11”狀態中記憶胞MC之一側,因為用高於更新臨限值REFV之程式化臨限值PRGV實施驗證,因此另一個“1”側之臨限電壓MC“1”上升(看圖式中之箭號),而不能確保足夠的讀取裕度50。此種情況當程式化記憶胞MC而該記憶胞MC於抹除後已經處於長時間時尤其被看到。參考記憶胞RC和記憶胞MC之間之臨限電壓之不匹配可能發生,使得資料讀取不穩定。Referring to FIG. 5A, in the above configuration, when updating to the "0" side of the memory cell MC in the "10" state, since the verification is performed with the update threshold REFV, the threshold voltage MC on the "1" side" 1" hardly rises, so that a sufficient reading margin of 50 can be ensured. However, referring to FIG. 5B, when stylized (ie, writing new data), one side of the cell MC is in the "11" state because the stylized threshold PRGV is higher than the update threshold REFV. The verification is performed, so the threshold voltage MC "1" on the other "1" side rises (see the arrow in the figure), and a sufficient read margin 50 cannot be ensured. In this case, when the memory cell MC is programmed, the memory cell MC is especially seen after being erased for a long time. A mismatch in the threshold voltage between the reference memory cell RC and the memory cell MC may occur, making data reading unstable.
為了解決上述之問題,依照本發明之態樣,提供一種半導體裝置其免除了記憶胞和參考記憶胞之間臨限電壓之不匹配,由此使得資料讀取穩定,以及用來控制該半導體裝置之方法。In order to solve the above problems, according to an aspect of the present invention, a semiconductor device is provided which eliminates a threshold voltage mismatch between a memory cell and a reference memory cell, thereby making data reading stable, and for controlling the semiconductor device. The method.
現在參照所附圖式,本發明之實施例說明於下。Embodiments of the present invention will now be described with reference to the drawings.
第6圖為顯示本發明之第一實施例之半導體裝置之配置之方塊圖。包含儲存區域之記憶胞陣列60由用來儲存資料之記憶胞區域62、和用來儲存參考資料之動態參考區域64組成。記憶胞陣列60於第一方向設有複數個位元線BL,和於與第一方向相交之第二方向設有複數個字元線WL。於單一字元線WL(例如,WL1),複數個記憶胞MC之個別控制端耦接於記憶胞區域62,而第一參考記憶胞RC1和第二參考記憶胞RC2之個別控制端耦接於動態參考區域64。詳言之,由複數個記憶胞MC組成之記憶胞列MCR提供在相同的字元線上作為第一參考記憶胞RC1和第二參考記憶胞RC2,共用RC1和RC2。用於記憶胞MC和參考記憶胞RC之輸入/輸出端分別與二個鄰接位元線BL耦接。Fig. 6 is a block diagram showing the configuration of a semiconductor device of a first embodiment of the present invention. The memory cell array 60 including the storage area is composed of a memory cell region 62 for storing data and a dynamic reference region 64 for storing reference materials. The memory cell array 60 is provided with a plurality of bit lines BL in a first direction, and a plurality of word lines WL are disposed in a second direction intersecting the first direction. The individual control terminals of the plurality of memory cells MC are coupled to the memory cell region 62, and the individual control terminals of the first reference memory cell RC1 and the second reference memory cell RC2 are coupled to the single word line WL (eg, WL1). Dynamic reference area 64. In detail, the memory cell MCR composed of a plurality of memory cells MC is provided on the same word line as the first reference memory cell RC1 and the second reference memory cell RC2, sharing RC1 and RC2. The input/output terminals for the memory cell MC and the reference memory cell RC are respectively coupled to two adjacent bit lines BL.
記憶胞MC、第一參考記憶胞RC1、和第二參考記憶胞RC2與第1A圖中所示之記憶胞MC結構相同,以及能夠藉由獨立地儲存資料於記憶胞中隔離之區域中(亦即,第一儲存區域30和第二儲存區域32),而儲存二位元之資料於記憶胞中。第一參考記憶胞RC1對應於記憶胞MC之抹除狀態,並設定至相等於在記憶胞MC中儲存區域之“1”狀態中儲存區域。第二參考記憶胞RC1對應於記憶胞MC之程式化狀態,並設定至相等於在記憶胞MC中儲存區域之“0”狀態中儲存區域。The memory cell MC, the first reference memory cell RC1, and the second reference memory cell RC2 have the same structure as the memory cell MC shown in FIG. 1A, and can be stored in the isolated region of the memory cell by independently storing data (also That is, the first storage area 30 and the second storage area 32) store the data of the two bits in the memory cell. The first reference memory cell RC1 corresponds to the erase state of the memory cell MC, and is set to be equal to the memory region in the "1" state of the memory region in the memory cell MC. The second reference memory cell RC1 corresponds to the stylized state of the memory cell MC and is set to be equal to the memory region in the "0" state of the memory region in the memory cell MC.
參照第6圖,記憶胞陣列60之位元線BL與行位址解碼器66耦接,而字元線WL與列位址解碼器68耦接。行位址解碼器66和列位址解碼器68依照從外側經過位址匯流排72所提供之位址訊號而選擇記憶胞MC或參考記憶胞RC。再者,行位址解碼器66和列位址解碼器68施加電壓至位元線BL與對應於選擇之記憶胞MC或參考記憶胞RC之字元線WL用來程式化、更新、抹除和讀取供應自電壓供應電路74之資料。Referring to FIG. 6, the bit line BL of the memory cell array 60 is coupled to the row address decoder 66, and the word line WL is coupled to the column address decoder 68. The row address decoder 66 and the column address decoder 68 select the memory cell MC or the reference memory cell RC in accordance with the address signal supplied from the outside through the address bus 72. Furthermore, the row address decoder 66 and the column address decoder 68 apply a voltage to the bit line BL and the word line WL corresponding to the selected memory cell MC or the reference memory cell RC for program, update, erase. And reading the data supplied from the voltage supply circuit 74.
寫入/讀取電路76經由內部感測放大器(未顯示),藉由比較輸出自記憶胞區域62或動態參考區域64之訊號與輸出自動態參考區域64或外部參考區域79之參考訊號,讀取或驗證資料並且輸出資料鎖存器77之結果。再者,當程式化時,寫入/讀取電路76供給從資料鎖存器77輸入之資料至記憶胞陣列60。資料鎖存器77輸出從寫入/讀取電路76輸入之資料至I/O電路78和控制部70。I/O電路78與外側交換資料。The write/read circuit 76 is read by an internal sense amplifier (not shown) by comparing the signal output from the memory cell region 62 or the dynamic reference region 64 with the reference signal output from the dynamic reference region 64 or the external reference region 79. The data is fetched or verified and the result of the data latch 77 is output. Further, when stylized, the write/read circuit 76 supplies the data input from the material latch 77 to the memory cell array 60. The data latch 77 outputs the data input from the write/read circuit 76 to the I/O circuit 78 and the control unit 70. The I/O circuit 78 exchanges data with the outside.
控制部70藉由控制對應於來自外側之命令和來自資料鎖存器77之輸入資料之位址緩衝器72和電壓供應電路74,而控制用於記憶胞陣列60之程式化、抹除和資料讀取之操作。尤其是,當如稍後說明之程式化和更新資料時,控制部70選擇用來驗證之參考記憶胞,並且根據於寫入/讀取電路76中之驗證結果控制施加到記憶胞之電壓。The control unit 70 controls the stylization, erasing, and data for the memory cell array 60 by controlling the address buffer 72 and the voltage supply circuit 74 corresponding to the commands from the outside and the input data from the data latch 77. Read operation. In particular, when staging and updating the material as will be described later, the control section 70 selects the reference memory cell for verification, and controls the voltage applied to the memory cell in accordance with the verification result in the write/read circuit 76.
在記憶胞陣列60之外側,設有外部參考區域79。外部參考區域79包含第三參考記憶胞RC3設定程式化臨限值PRGV之第一臨限電壓,第四參考記憶胞RC4設定更新臨限值REFV之第二臨限電壓,和第五參考記憶胞RC5設定讀取臨限值READV之第三臨限電壓。從這些參考記憶胞之輸出供給至寫入/讀取電路76和當程式化或更新該第二參考記憶胞RC2時參考該等輸出。On the outside of the memory cell array 60, an external reference area 79 is provided. The external reference region 79 includes a first threshold voltage of the third reference memory cell RC3 setting the programmed threshold PRGV, the fourth reference memory cell RC4 sets the second threshold voltage of the update threshold REFV, and the fifth reference memory cell RC5 sets the third threshold voltage for reading the threshold READV. The outputs from these reference memory cells are supplied to the write/read circuit 76 and are referenced when the second reference memory cell RC2 is programmed or updated.
參照第7圖,將說明第一實施例之半導體裝置之抹除操作。首先,控制部70共同地抹除耦接於相同字元線WL之複數個記憶胞MC、第一參考記憶胞RC1、和第二參考記憶胞RC2(步驟S10)。詳言之,與要受抹除之記憶胞MC耦接之字元線WL被設定至低電位,而所有的位元線BL被設定至高電位,藉由注入熱電洞而從記憶胞MC移除電荷,如第1B圖中所示。結果,要受抹除之所有的記憶胞MC、該第一參考記憶胞RC1、和該第二參考記憶胞RC2被設定於“11”狀態。Referring to Fig. 7, the erasing operation of the semiconductor device of the first embodiment will be explained. First, the control unit 70 collectively erases a plurality of memory cells MC, a first reference memory cell RC1, and a second reference memory cell RC2 coupled to the same word line WL (step S10). In detail, the word line WL coupled to the memory cell MC to be erased is set to a low potential, and all the bit lines BL are set to a high potential, and are removed from the memory cell MC by injecting a thermal hole. The charge is as shown in Figure 1B. As a result, all of the memory cells MC to be erased, the first reference memory cell RC1, and the second reference memory cell RC2 are set to the "11" state.
接著,控制部70程式化該第二參考記憶胞RC2(步驟S12)。結果,第二參考記憶胞RC2之至少其中一個儲存區域進入“0”狀態,對應於記憶胞MC之程式化狀態。同時,第一參考記憶胞RC1之至少其中一個儲存區域設定為“1”狀態,對應於記憶胞MC之抹除狀態。用由程式化之第三參考記憶胞RC3設定之程式化臨限值PRGV來驗證第二參考記憶胞RC2。程式化臨限值PRGV被設定高於稍後說明之更新臨限值REFV。如上所述,於第一實施例中,程式化第二參考記憶胞RC2被實施於抹除操作過程中。Next, the control unit 70 programs the second reference memory cell RC2 (step S12). As a result, at least one of the storage areas of the second reference memory cell RC2 enters a "0" state, corresponding to the stylized state of the memory cell MC. At the same time, at least one of the storage areas of the first reference memory cell RC1 is set to a "1" state, corresponding to the erased state of the memory cell MC. The second reference memory cell RC2 is verified by the stylized threshold PRGV set by the stylized third reference memory cell RC3. The stylized threshold PRGV is set higher than the update threshold REFV described later. As described above, in the first embodiment, the stylized second reference memory cell RC2 is implemented during the erase operation.
將說明第一實施例之半導體裝置之程式化操作。第一實施例之半導體裝置使用與參照第3A和3B圖說明之相關技術相同的動態參考方法。詳言之,參照第6圖,當程式化包含於記憶胞NCR中於抹除狀態(亦即,“1”狀態)之記憶胞MC時,於記憶胞列CR中已經於程式化狀態(亦即,“0”狀態)之所有的記憶胞MC被同時更新。第二參考記憶胞RC2亦同時被更新。此處,出自於複數個記憶胞MC之要程式化之記憶胞MC被定義為要程式化之記憶胞PMC(program subjected cell PMC)。已於程式化狀態受到更新之記憶胞MC定義為要更新之記憶胞RMC(refresh subjected cell RMC)。當程式化時,至少一個或多個之記憶胞MC變成要程式化之記憶胞PMC。The stylized operation of the semiconductor device of the first embodiment will be explained. The semiconductor device of the first embodiment uses the same dynamic reference method as that described with reference to FIGS. 3A and 3B. In detail, referring to FIG. 6, when the memory cell MC included in the memory cell NCR in the erase state (ie, the "1" state) is programmed, it is already in the memory state in the memory cell CR (also That is, all the memory cells MC of the "0" state are simultaneously updated. The second reference memory cell RC2 is also updated at the same time. Here, the memory cell MC to be programmed from a plurality of memory cells MC is defined as a memory cell PMC to be programmed. The memory cell MC that has been updated in the stylized state is defined as the memory cell RMC to be updated (refresh the hop cell RMC). When stylized, at least one or more of the memory cells MC become the memory cell PMC to be programmed.
第8圖為第一實施例之半導體裝置之程式化操作之流程圖。參照第6和8圖,控制部70首先輸入待儲存於要程式化記憶胞PMC之新資料(步驟S20)。詳言之,控制部70經,由I/O電路78儲存新資料於資料鎖存器77中。然後控制部70讀取已經儲存於要更新記憶胞RMC中之資料(步驟S22)。此處,藉由動態參考方法實施讀取資料,如第9圖中所示。Fig. 8 is a flow chart showing the stylized operation of the semiconductor device of the first embodiment. Referring to Figures 6 and 8, the control unit 70 first inputs new data to be stored in the program memory cell PMC (step S20). In detail, the control unit 70 stores new data in the material latch 77 via the I/O circuit 78. The control section 70 then reads the material that has been stored in the memory cell RMC to be updated (step S22). Here, the read data is implemented by a dynamic reference method as shown in FIG.
第9圖為顯示第一實施例之半導體裝置之讀取操作之流程圖。參照第6和9圖,控制部70首先獲得第一參考記憶胞RC1之臨限值(步驟S30)。詳言之,出自第一參考記憶胞RC1之儲存區域,獲得設定於抹除狀態“1”之儲存區域之臨限電壓作為電流訊號或電壓訊號。然後控制部70獲得第二參考記憶胞RC2之臨限值(步驟S32)。詳言之,出自第二參考記憶胞RC2之儲存區域,獲得設定於程式化狀態“0”之儲存區域之臨限電壓作為電流訊號或電壓訊號。Fig. 9 is a flow chart showing the reading operation of the semiconductor device of the first embodiment. Referring to Figures 6 and 9, the control section 70 first obtains the threshold value of the first reference memory cell RC1 (step S30). In detail, from the storage area of the first reference memory cell RC1, the threshold voltage set in the storage area of the erase state "1" is obtained as a current signal or a voltage signal. The control section 70 then obtains the threshold value of the second reference memory cell RC2 (step S32). In detail, the storage area from the second reference memory cell RC2 obtains the threshold voltage of the storage area set in the stylized state “0” as a current signal or a voltage signal.
然後,控制部70從於步驟S30和S32獲得之臨限值,決定參考臨限值REF(步驟S34)。於第一實施例中參考臨限值REF是第一參考記憶胞RC1之臨限電壓和第二參考記憶胞RC2之臨限電壓之平均值。可以其他方法計算參考臨限值REF,只要其等於記憶胞RMC之抹除狀態和程式化狀態之間之臨限電壓即可。舉例而言,可以使用第一參考記憶胞RC1之臨限電壓和第二參考記憶胞RC2之臨限電壓之加權平均。Then, the control unit 70 determines the reference threshold value REF from the threshold values obtained in steps S30 and S32 (step S34). In the first embodiment, the reference threshold REF is the average of the threshold voltage of the first reference memory cell RC1 and the threshold voltage of the second reference memory cell RC2. The reference threshold REF can be calculated in other ways as long as it is equal to the threshold voltage between the erased state and the stylized state of the memory cell RMC. For example, a weighted average of the threshold voltage of the first reference memory cell RC1 and the threshold voltage of the second reference memory cell RC2 can be used.
然後控制部70獲得要資料讀取之記憶胞MC之臨限值(步驟S36)。詳言之,出自要資料讀取之記憶胞MC之儲存區域,獲得要讀取之儲存區域之臨限電壓作為電流訊號或電壓訊號。控制部70輸入記憶胞MC之臨限值和於步驟S34創造之參考臨限值REF至寫入/讀取電路76,如第6圖中所示。Then, the control unit 70 obtains the threshold value of the memory cell MC to be read by the data (step S36). In detail, the storage area of the memory cell MC from which the data is to be read obtains the threshold voltage of the storage area to be read as a current signal or a voltage signal. The control section 70 inputs the threshold value of the memory cell MC and the reference margin REF created in step S34 to the write/read circuit 76 as shown in Fig. 6.
其次,控制部70針對寫入/讀取電路76比較於步驟S36獲得的記憶胞MC之臨限值與於步驟S34創造之參考臨限值REF(步驟S38)。當記憶胞MC之臨限值大於參考臨限值REF時,讀取結果為“0”。當記憶胞MC之臨限值小於參考臨限值REF時,讀取結果為“1”。最後,控制部70輸出比較結果(步驟S39)。詳言之,控制部70針對寫入/讀取電路76以輸出比較結果至資料鎖存器77。再者,控制部70從資料鎖存器76經由輸入/輸出電路78提供資料輸出至外側。如此完成了資料讀取操作。Next, the control unit 70 compares the threshold value of the memory cell MC obtained in step S36 with the reference margin REF created in step S34 for the write/read circuit 76 (step S38). When the threshold of the memory cell MC is greater than the reference threshold REF, the reading result is "0". When the threshold value of the memory cell MC is less than the reference threshold REF, the reading result is "1". Finally, the control unit 70 outputs the comparison result (step S39). In detail, the control section 70 outputs a comparison result to the data latch 77 for the write/read circuit 76. Furthermore, the control unit 70 supplies the material output from the material latch 76 via the input/output circuit 78 to the outside. This completes the data reading operation.
再度參照第6和8圖,於步驟S22,控制部70儲存讀取自要更新記憶胞RMC中之資料至資料鎖存器77中。然後控制部70更新第二參考記憶胞RC2(步驟S24)。用由於更新中第四參考記憶胞RC4所設定之更新臨限值REFV驗證第二參考記憶胞RC2。更新臨限值REFV設定低於程式化臨限值PRGV。因此,當於第二參考記憶胞RC2之儲存區域(於“0”狀態)中之電荷損失為小時,不再注入電荷,由此防止於“0”狀態之儲存區域過度程式化。結果,第二參考記憶胞RC2之臨限電壓維持於適當的位準。Referring again to FIGS. 6 and 8, in step S22, the control unit 70 stores the data read from the memory cell RMC to be updated into the material latch 77. The control section 70 then updates the second reference memory cell RC2 (step S24). The second reference memory cell RC2 is verified with the update threshold REFV set by the fourth reference memory cell RC4 in the update. The update threshold REFV setting is lower than the stylized threshold PRGV. Therefore, when the charge loss in the storage region (in the "0" state) of the second reference memory cell RC2 is small, no charge is injected, thereby preventing over-staging of the storage region in the "0" state. As a result, the threshold voltage of the second reference memory cell RC2 is maintained at an appropriate level.
接著,控制部70程式化新資料至要程式化記憶胞PMC(步驟S26)。詳言之,控制部70用於步驟S20中儲存於資料鎖存器77中之新資料,藉由經由電壓供應電路74施加電壓至該資料鎖存器77而程式化要程式化之記憶胞PMC。於程式化中用於步驟S24中更新之第二參考記憶胞RC2之臨限值驗證要程式化之記憶胞PMC。Next, the control unit 70 programs the new data to the program memory cell PMC (step S26). In detail, the control unit 70 is configured to use the new data stored in the data latch 77 in step S20, and to program the memory cell PMC to be programmed by applying a voltage to the data latch 77 via the voltage supply circuit 74. . The memory cell PMC to be stylized is verified in the stylization for the threshold value of the second reference memory cell RC2 updated in step S24.
然後控制部70更新存在之資料於要更新之記憶胞RMC中(步驟S28)。詳言之,控制部70用於步驟S22中儲存於資料鎖存器77中之存在之資料,藉由經由電壓供應電路74施加電壓至該資料鎖存器77,而更新要更新之記憶胞RMC。於更新中用於步驟S24中更新之第二參考記憶胞RC2之臨限值驗證要更新之記憶胞RMC。步驟S26和步驟S28可以同時實施。如此完成程式化資料之操作。The control unit 70 then updates the existing data in the memory cell RMC to be updated (step S28). In detail, the control unit 70 is used for the data stored in the data latch 77 in step S22, and updates the memory cell RMC to be updated by applying a voltage to the data latch 77 via the voltage supply circuit 74. . The memory cell RMC to be updated is verified in the update for the threshold value of the second reference memory cell RC2 updated in step S24. Step S26 and step S28 can be performed simultaneously. This completes the operation of stylized data.
第10A至10D圖顯示依照第一實施例之程式化操作記憶胞MC和參考記憶胞RC之臨限電壓之改變。第10A圖對應於正於抹除資料操作後(亦即,第7圖中所示流程圖結束後)之狀況。第二參考記憶胞RC2之臨限電壓是在高於程式化臨限值PRGV之狀態。第一參考記憶胞RC1和第二參考記憶胞RC2之臨限電壓是在抹除狀態。10A to 10D are diagrams showing changes in the threshold voltage of the memory cell MC and the reference memory cell RC according to the first embodiment. Fig. 10A corresponds to the situation immediately after the erase data operation (i.e., after the end of the flowchart shown in Fig. 7). The threshold voltage of the second reference memory cell RC2 is in a state above the stylized threshold PRGV. The threshold voltage of the first reference memory cell RC1 and the second reference memory cell RC2 is in the erased state.
第10B圖對應於正於資料程式化操作前(亦即,第8圖中所示流程圖開始前)之狀況。由於經過一段時間之電荷損失,第二參考記憶胞RC2之臨限電壓降低,以及該臨限電壓有時候變得低於更新臨限值REFV(參看圖式中實體箭號)。於“1”狀態第一參考記憶胞RC1和第二參考記憶胞RC2之臨限電壓係大約與第10A圖中所示者相同。參考臨限值REF為第一參考記憶胞RC1和第二參考記憶胞RC2之臨限電壓之平均值,而依照第二參考記憶胞RC2之臨限電壓之降低(參閱圖式中虛箭號)降低。因此,對於在“1”狀態儲存區域之讀取裕度50小於第10A圖中所示者。記憶胞MC於“0”狀態之臨限電壓與第二參考記憶胞RC2之臨限電壓有相似的分佈。Fig. 10B corresponds to the situation immediately before the data stylization operation (i.e., before the start of the flowchart shown in Fig. 8). Due to the charge loss over a period of time, the threshold voltage of the second reference memory cell RC2 is lowered, and the threshold voltage sometimes becomes lower than the update threshold REFV (see the physical arrow in the figure). The threshold voltages of the first reference memory cell RC1 and the second reference memory cell RC2 in the "1" state are approximately the same as those shown in FIG. 10A. The reference threshold REF is the average of the threshold voltages of the first reference memory cell RC1 and the second reference memory cell RC2, and the threshold voltage of the second reference memory cell RC2 is decreased (refer to the virtual arrow in the figure) reduce. Therefore, the read margin 50 for the "1" state storage area is smaller than that shown in FIG. 10A. The threshold voltage of the memory cell MC in the "0" state has a similar distribution with the threshold voltage of the second reference memory cell RC2.
第10C圖對應於正於更新第二參考記憶胞RC2後(亦即,第8圖中所示完成之步驟S24)之狀況。藉由更新而上升第二參考記憶胞RC2之臨限電壓,而該臨限電壓分佈於較更新臨限值REFV為高之區域。再者,參考臨限值REF根據更新之第二參考記憶胞RC2而上升(參看圖式中之虛箭號),而對於“1”狀態儲存區域之讀取裕度50大於第10B圖中所示者。The 10Cth map corresponds to the condition immediately after the second reference memory cell RC2 is updated (i.e., the step S24 is completed as shown in Fig. 8). The threshold voltage of the second reference memory cell RC2 is raised by the update, and the threshold voltage is distributed in a region where the update threshold REFV is higher. Furthermore, the reference threshold REF rises according to the updated second reference memory cell RC2 (see the virtual arrow in the figure), and the read margin 50 for the "1" state storage area is greater than that in the 10B chart. Shower.
第10D圖對應於正於更新程式化操作後(亦即,第8圖中所示流程圖之終止)之狀況。第10C圖中所示於“0”狀態要更新記憶胞RMC之臨限電壓藉由更新而恢復(參看圖式中箭號)。再者,第10C圖中所示於“1”狀態要程式化記憶胞RMC之臨限電壓藉由程式化而上升。因為要更新記憶胞RMC和要程式化記憶胞RMC用第二參考記憶胞RC2之臨限電壓驗證(參看第8圖中所示步驟S26和步驟S28),則於程式化後或於更新後記憶胞MC“0”之臨限電壓被分佈於高於第二參考記憶胞RC2之臨限電壓之區域,由此防止過度程式化。結果,於反對側儲存區域MC“1”之臨限電壓幾乎不上升。The 10D map corresponds to the situation immediately after the update of the stylized operation (i.e., the termination of the flowchart shown in Fig. 8). The threshold voltage of the memory cell RMC to be updated in the "0" state shown in Fig. 10C is restored by the update (see the arrow in the figure). Furthermore, the threshold voltage of the memory cell RMC to be programmed in the "1" state shown in Fig. 10C is increased by stylization. Since the memory cell RMC is to be updated and the program memory cell RMC is verified with the threshold voltage of the second reference memory cell RC2 (see step S26 and step S28 shown in FIG. 8), the memory is restored after the stylization or after the update. The threshold voltage of the cell MC "0" is distributed over a region higher than the threshold voltage of the second reference memory cell RC2, thereby preventing over-stylization. As a result, the threshold voltage of the opposite-side storage area MC "1" hardly rises.
參照第8圖,依照第一實施例之半導體裝置,當程式化新資料時,用低於程式化臨限值PRGV之更新臨限值REFV首先更新第二參考記憶胞RC2以驗證(亦即,步驟S24),然後,於更新步驟後用參考記憶胞RC2之臨限電壓以驗證,該記憶胞MC被程式化(亦即,步驟S26)和更新(亦即,步驟S28)。因此,參照第10D圖,於要程式化記憶胞PMC和要更新記憶胞RMC中,能夠防止要程式化或要更新之儲存區域MC“0”過度程式化,以及能夠防止於相對側儲存區域MC“1”之臨限值上升。用第二參考記憶胞RC2之相同臨限值驗證所有之記憶胞MC,藉此防止記憶胞MC與第二參考記憶胞RC2之間臨限電壓之不匹配。結果,比較第5B圖中所示相關技術之例子,記憶胞MC“1”於“1”狀態之臨限值與參考臨限值REF之間之讀取裕度50能夠製得比較大。Referring to FIG. 8, in accordance with the semiconductor device of the first embodiment, when the new material is programmed, the second reference memory cell RC2 is first updated with an update threshold REFV lower than the programmed threshold PRGV to verify (ie, Step S24), and then verifying with the threshold voltage of the reference memory cell RC2 after the updating step, the memory cell MC is programmed (ie, step S26) and updated (ie, step S28). Therefore, referring to FIG. 10D, in the case where the memory cell PMC and the memory cell RMC are to be updated, it is possible to prevent the overwriting of the storage area MC “0” to be programmed or to be updated, and to prevent the storage area MC of the opposite side. The threshold of "1" has risen. All memory cells MC are verified with the same threshold of the second reference memory cell RC2, thereby preventing a mismatch in the threshold voltage between the memory cell MC and the second reference memory cell RC2. As a result, comparing the example of the related art shown in FIG. 5B, the read margin 50 between the threshold value of the memory cell MC "1" and the reference threshold REF can be made relatively large.
於抹除操作中,當程式化該第二參考記憶胞RC2時,程式化臨限值PRGV用來驗證(參看第7圖中所示步驟S12),以及於程式化操作中,當更新該第二參考記憶胞RC2時,更新臨限值REFV(現在低於程式化臨限值PRGV)用來驗證(參看第8圖中所示步驟S24)。結果,參照第10C圖,當更新該第二參考記憶胞RC2時,能夠防止要更新之儲存區域過度程式化,並且能夠防止於相對側儲存區域之臨限值上升,由此適當地設定第二參考記憶胞RC2之臨限電壓。In the erase operation, when the second reference memory cell RC2 is programmed, the programmatic threshold PRGV is used for verification (see step S12 shown in FIG. 7), and in the stylization operation, when updating the When the second memory cell RC2 is referenced, the update threshold REFV (now lower than the stylized threshold PRGV) is used for verification (see step S24 shown in Fig. 8). As a result, referring to FIG. 10C, when the second reference memory cell RC2 is updated, it is possible to prevent the memory area to be updated from being over-stylized, and it is possible to prevent the threshold value of the opposite-side storage area from rising, thereby appropriately setting the second Refer to the threshold voltage of the memory cell RC2.
如上所述,依照第一實施例之半導體裝置,能夠適當地設定第二參考記憶胞RC2之臨限電壓,並且記憶胞MC與第二參考記憶胞RC2之間臨限電壓之不匹配減少,由此改善資料讀取穩定性。As described above, according to the semiconductor device of the first embodiment, the threshold voltage of the second reference memory cell RC2 can be appropriately set, and the threshold voltage mismatch between the memory cell MC and the second reference memory cell RC2 is reduced by This improves data reading stability.
於第一實施例中,提供於外部參考區域79的是第三參考記憶胞RC3用來設定程式化臨限值PRGV和第四參考記憶胞RC4用來設定更新臨限值REFV。因此,能夠用第二參考記憶胞RC2程式化臨限值PRGV或更新臨限值REFV其中任一者來驗證第二參考記憶胞RC2。In the first embodiment, provided in the external reference area 79 is a third reference memory cell RC3 for setting the programmatic threshold PRGV and the fourth reference memory cell RC4 for setting the update threshold REFV. Therefore, the second reference memory cell RC2 can be verified by either the second reference memory cell RC2 is programmed with the threshold PRGV or the updated threshold REFV.
參照第6圖,於第一實施例中,記憶胞MC、第一參考記憶胞RC1、和第二參考記憶胞RC2係設於相同的字元線WL上。依照此結構,藉由選擇單一字元線WL,能夠選擇所有相關的記憶胞MC、RC1、和RC2,由此促進控制。然而,上述結構並非第一實施例之本質構成因素,以及只要第一參考記憶胞RC1和第二參考記憶胞RC2由複數個記憶胞MC所共用,則亦可使用其他的結構。詳言之,當從記憶胞MC讀取資料時,該資料將藉由比較從第一參考記憶胞RC1和第二參考記憶胞RC2所創造之參考臨限值REF與記憶胞MC之臨限值之動態參考方法讀取。舉例而言,可能自記憶胞陣列60外側提供第一參考記憶胞RC1和第二參考記憶胞RC2。當讀取資料時,從第一參考記憶胞RC1獲得“1”側之臨限電壓(亦即,第9圖中所示步驟S30),以及從第二參考記憶胞RC2獲得“0”側之臨限電壓(亦即,第9圖中所示步驟S32)。依照此配置,於“10”狀態中記憶胞MC與參考記憶胞RC之間之臨限電壓不匹配能夠進一步簡少,由此進一步改善資料讀取能力。Referring to FIG. 6, in the first embodiment, the memory cell MC, the first reference memory cell RC1, and the second reference memory cell RC2 are disposed on the same word line WL. According to this configuration, by selecting a single word line WL, all relevant memory cells MC, RC1, and RC2 can be selected, thereby facilitating control. However, the above structure is not an essential constituent of the first embodiment, and other structures may be used as long as the first reference memory cell RC1 and the second reference memory cell RC2 are shared by a plurality of memory cells MC. In detail, when reading data from the memory cell MC, the data will compare the reference threshold REF and the memory cell MC created by the first reference memory cell RC1 and the second reference memory cell RC2. The dynamic reference method is read. For example, a first reference memory cell RC1 and a second reference memory cell RC2 may be provided from outside the memory cell array 60. When the data is read, the threshold voltage on the "1" side is obtained from the first reference memory cell RC1 (that is, step S30 shown in FIG. 9), and the "0" side is obtained from the second reference memory cell RC2. The threshold voltage (that is, step S32 shown in Fig. 9). According to this configuration, the threshold voltage mismatch between the memory cell MC and the reference memory cell RC in the "10" state can be further reduced, thereby further improving the data reading capability.
參照第7圖,於抹除操作中,當程式化第二參考記憶胞RC2(亦即,步驟S12)實施於整體抹除記憶胞MC與參考記憶胞RC(亦即,步驟S10)作為部分之抹除操作時,較佳情況是於整體抹除後即實施程式化操作。Referring to FIG. 7, in the erasing operation, when the second reference memory cell RC2 (ie, step S12) is programmed, the whole erase memory cell MC and the reference memory cell RC (ie, step S10) are implemented as part of In the erasing operation, it is preferable to perform a stylizing operation after the entire erasing.
本發明之第二實施例為抹除資料後(於抹除資料時未程式化第二參考記憶胞RC2),用來對於第一次程式化記憶胞MC之同時程式化第二參考記憶胞RC2之實施例。第二實施例之半導體裝置之配置和資料讀取操作與第一實施例者(亦即,第6和9圖)相同。The second embodiment of the present invention is to program the second reference memory cell RC2 for the first stylized memory cell MC after erasing the data (the second reference memory cell RC2 is not programmed when erasing the data). An embodiment. The configuration and data reading operation of the semiconductor device of the second embodiment are the same as those of the first embodiment (i.e., Figs. 6 and 9).
第11圖為顯示第二實施例之半導體裝置之程式化操作之流程圖。首先,控制部70(參看第6圖)輸入待儲存於要程式化記憶胞PMC之新資料(步驟S40)。詳言之,控制部70經由I/O電路78儲存新資料於資料鎖存器77中。Figure 11 is a flow chart showing the stylized operation of the semiconductor device of the second embodiment. First, the control unit 70 (see Fig. 6) inputs new material to be stored in the program memory cell PMC (step S40). In detail, the control unit 70 stores new data in the material latch 77 via the I/O circuit 78.
然後控制部70判定是否為首次程式化該記憶胞MC(步驟S42)。此處,“首次”意指當記憶胞MC被程式化時從抹除該記憶胞MC和參考記憶胞RC後被首次計數。第二實施例之抹除操作相同於第一實施例之抹除操作。換言之,耦接於相同字元線WL之複數個記憶胞MC、第一參考記憶胞RC1、和第二參考記憶胞RC2被共同地抹除(第7圖中所示步驟S10)。其後,完成抹除操作而沒有程式化該參考記憶胞RC2。The control unit 70 then determines whether or not the memory cell MC is first programmed (step S42). Here, "first time" means that the memory cell MC is programmed for the first time after erasing the memory cell MC and the reference memory cell RC. The erasing operation of the second embodiment is the same as the erasing operation of the first embodiment. In other words, the plurality of memory cells MC, the first reference memory cell RC1, and the second reference memory cell RC2 coupled to the same word line WL are collectively erased (step S10 shown in FIG. 7). Thereafter, the erase operation is completed without programming the reference memory cell RC2.
第12A和12B圖顯示從如第11圖中所示步驟S42之決定方法。控制部70用低於更新臨限值REFV之讀取臨限值READV驗證第二參考記憶胞RC2。讀取臨限值READV設定大於於“1”狀態之記憶胞MC和第一參考記憶胞RC1二者之臨限電壓,並且小於於“0”狀態具有電荷損失之記憶胞MC和第二參考記憶胞RC2二者之臨限電壓。Figures 12A and 12B show the decision method from step S42 as shown in Fig. 11. The control unit 70 verifies the second reference memory cell RC2 with the read threshold READV lower than the update threshold REFV. The read threshold READV sets a threshold voltage greater than both the memory cell MC of the "1" state and the first reference memory cell RC1, and is smaller than the memory cell MC and the second reference memory having a charge loss in the "0" state The threshold voltage of both cells RC2.
參照第12A圖,當抹除後第一次程式化記憶胞MC,所有的記憶胞MC是在“1”狀態而第一參考記憶胞RC1和第二參考記憶胞RC2亦是在“1”狀態。詳言之,當第二參考記憶胞RC2之臨限電壓低於讀取臨限值READV時,控制部70判定記憶胞MC被第一次程式化,和進行至步驟S44。Referring to Fig. 12A, when the first stylized memory cell MC is erased, all memory cells MC are in the "1" state and the first reference memory cell RC1 and the second reference memory cell RC2 are also in the "1" state. . In detail, when the threshold voltage of the second reference memory cell RC2 is lower than the read threshold READV, the control unit 70 determines that the memory cell MC is first programmed, and proceeds to step S44.
反之,參照第12B圖,當抹除後第二次或更多次程式化記憶胞MC,則第二參考記憶胞RC2和一些的記憶胞MC是在“0”狀態。詳言之,當第二參考記憶胞RC2之臨限電壓高於讀取臨限值READV時,控制部70判定記憶胞MC被第二次或更多次程式化,並進行至步驟S46。On the other hand, referring to Fig. 12B, when the memory cell MC is programmed a second time or more after erasing, the second reference memory cell RC2 and some memory cells MC are in the "0" state. In detail, when the threshold voltage of the second reference memory cell RC2 is higher than the read threshold READV, the control section 70 determines that the memory cell MC is programmed a second time or more, and proceeds to step S46.
再參照第6和11圖,於步驟S42,當記憶胞MC被第一次程式化時,控制部70程式化該第二參考記憶胞RC2(亦即,步驟S44)。因此,於第二參考記憶胞RC2中至少其中一個儲存區域進入“0”狀態,對應於記憶胞MC之程式化狀態。對於驗證於程式化中第二參考記憶胞RC2,使用由第三參考記憶胞RC3所設定之程式化臨限值PRGV。Referring again to Figures 6 and 11, in step S42, when the memory cell MC is first programmed, the control unit 70 programs the second reference memory cell RC2 (i.e., step S44). Therefore, at least one of the storage areas in the second reference memory cell RC2 enters a "0" state, corresponding to the stylized state of the memory cell MC. For verifying the second reference memory cell RC2 in the stylization, the stylized threshold PRGV set by the third reference memory cell RC3 is used.
於步驟S42,當記憶胞MC非第一次程式化時,亦即,當程式化記憶胞MC對於從抹除後第二次或更多次計數,該控制部70讀取現有的資料(亦即,步驟S46),並且更新第二參考記憶胞RC2(亦即,步驟S48)。這些操作與第一實施例者相同,亦即,分別如第8圖中所示步驟S22和S24者相同。為了於更新中驗證第二參考記憶胞RC2,使用由第四參考記憶胞RC4所設定之更新臨限值REFV。更新臨限值REFV被設定低於程式化臨限值PRGV。In step S42, when the memory cell MC is not first programmed, that is, when the stylized memory cell MC counts the second or more times after erasing, the control unit 70 reads the existing data (also That is, step S46), and the second reference memory cell RC2 is updated (i.e., step S48). These operations are the same as those of the first embodiment, that is, the same as steps S22 and S24 shown in Fig. 8, respectively. In order to verify the second reference memory cell RC2 in the update, the update threshold REFV set by the fourth reference memory cell RC4 is used. The update threshold REFV is set below the stylized threshold PRGV.
於步驟S44或S48,第二參考記憶胞RC2設定為“0”狀態。接著,控制部70用第二參考記憶胞RC2之臨限電壓來驗證,程式化該要程式化之記憶胞PMC(亦即,步驟S50),並且更新該要更新之記憶胞RMC(亦即,步驟S52)。這些操作與第一實施例者相同,亦即,分別與第8圖中所示步驟S26和步驟S28相同,如此完成了第二實施例之半導體裝置之程式化操作。當記憶胞MC被第一次程式化時,因為沒有要更新之記憶胞RMC存在,因此不實施再更新(亦即,步驟S52)。In step S44 or S48, the second reference memory cell RC2 is set to the "0" state. Next, the control unit 70 verifies the threshold voltage of the second reference memory cell RC2, programs the memory cell PMC to be programmed (ie, step S50), and updates the memory cell RMC to be updated (ie, Step S52). These operations are the same as those of the first embodiment, that is, the same as steps S26 and S28 shown in Fig. 8, respectively, thus completing the stylized operation of the semiconductor device of the second embodiment. When the memory cell MC is first programmed, since there is no memory cell RMC to be updated, no re-update is performed (i.e., step S52).
第13A至13C圖顯示於依照第二實施例之程式化操作中記憶胞MC和參考記憶胞RC之臨限電壓之改變。第13A圖對應於正抹除資料後之狀況(亦即,第7圖中所示步驟S10)。所有的記憶胞MC、第一參考記憶胞RC1、和第二參考記憶胞RC2為於“1”狀態,而臨限電壓為低於讀取臨限值READV。Figures 13A to 13C show changes in the threshold voltage of the memory cell MC and the reference memory cell RC in the stylized operation according to the second embodiment. Fig. 13A corresponds to the situation after the data is erased (i.e., step S10 shown in Fig. 7). All of the memory cells MC, the first reference memory cell RC1, and the second reference memory cell RC2 are in the "1" state, and the threshold voltage is lower than the read threshold READV.
第13B圖對應於正程式化該第二參考記憶胞RC2後之狀況(亦即,第11圖中所示步驟S44)。所有的記憶胞MC是在“1”狀態。藉由程式化臨限值PRGV而驗證第二參考記憶胞RC2,因此,該第二參考記憶胞RC2被設定高於程式化臨限值PRGV之臨限值。設定參考臨限值REF於第一參考記憶胞RC1和第二參考記憶胞RC2之中央。Fig. 13B corresponds to the situation after the second reference memory cell RC2 is being programmed (i.e., step S44 shown in Fig. 11). All memory cells MC are in the "1" state. The second reference memory cell RC2 is verified by the programmatic threshold PRGV, and therefore, the second reference memory cell RC2 is set above the threshold of the stylized threshold PRGV. The reference threshold REF is set at the center of the first reference memory cell RC1 and the second reference memory cell RC2.
第13C圖對應於正程式化操作該記憶胞MC後之狀況(亦即,第11圖中所示流程圖之結束)。於“0”狀態記憶胞MC之臨限電壓(亦即,要程式化之記憶胞PMC)分佈於用高於程式化臨限值PRGV驗證之第二參考記憶胞RC2之區域。因此,可以提升於相對側於“1”狀態中儲存區域MC“1”之臨限值。然而,於第二實施例中,因為第二參考記憶胞RC2於程式化中用程式化臨限值PRGV驗證,因此參考臨限值REFV高於第一實施例(亦即,第10D圖)中者。結果,與第一實施例中者相同,能夠充分地維持“1”側之讀取裕度50。Fig. 13C corresponds to the situation after the memory cell MC is being programmatically operated (i.e., the end of the flowchart shown in Fig. 11). The threshold voltage of the "0" state memory cell MC (i.e., the memory cell PMC to be programmed) is distributed over the region of the second reference memory cell RC2 that is verified above the stylized threshold PRGV. Therefore, the threshold value of the storage area MC "1" in the opposite side in the "1" state can be raised. However, in the second embodiment, since the second reference memory cell RC2 is verified by the stylized threshold PRGV in the stylization, the reference threshold REFV is higher than in the first embodiment (ie, the 10D picture). By. As a result, as in the first embodiment, the reading margin 50 of the "1" side can be sufficiently maintained.
第13A至13C圖對應於當於抹除資料後第一次程式化該記憶胞MC時,記憶胞之臨限電壓之改變。當於抹除資料後第二次或更多次程式化該記憶胞MC時,應用顯示於第10B至10D圖相同的圖式。Figures 13A through 13C correspond to changes in the threshold voltage of the memory cell when the memory cell MC is first programmed after erasing the data. When the memory cell MC is programmed a second or more times after erasing the data, the application shows the same pattern as shown in FIGS. 10B to 10D.
依照第二實施例,如於第一實施例中,能夠減少記憶胞MC與第二參考記憶胞RC2之間之臨限電壓不匹配,由此改善資料讀取操作能力。第二參考記憶胞RC2於抹除操作中不被程式化,於是需用於抹除操作之時間相較於第一實施例之抹除操作之時間縮短。According to the second embodiment, as in the first embodiment, the threshold voltage mismatch between the memory cell MC and the second reference memory cell RC2 can be reduced, thereby improving the data reading operation capability. The second reference memory cell RC2 is not programmed in the erase operation, so that the time required for the erase operation is shortened compared to the erase operation of the first embodiment.
於第二實施例中,用低於更新臨限值REFV之讀取臨限值READV決定第二參考記憶胞RC2之狀態以驗證(參看第12A至12B圖)。因此,甚至當參考記憶胞RC2之臨限值變成低於更新臨限值REFV時,藉由程式化第二參考記憶胞RC2後經過一段時間之電荷損失,能夠正確地決定第二參考記憶胞RC2之狀態是否是在“1”或“0”狀態。In the second embodiment, the state of the second reference memory cell RC2 is determined by the read threshold READV lower than the update threshold REFV (see FIGS. 12A to 12B). Therefore, even when the threshold of the reference memory cell RC2 becomes lower than the update threshold REFV, the second reference memory cell RC2 can be correctly determined by the charge loss after a period of time after the second reference memory cell RC2 is programmed. Whether the state is in the "1" or "0" state.
於第二實施例中,提供於外部參考區域79的是第三參考記憶胞RC3設定程式化臨限值PRGV,第四參考記憶胞RC4設定更新臨限值REFV,和第五參考記憶胞RC5設定讀取臨限值REFV。因此,參照第11圖,用讀取臨限值READV驗證後(亦即,如第12圖中所示步驟S42),可以連續地實施用程式化臨限值PRGV驗證(亦即,步驟S44),或者用更新臨限值REFV驗證(亦即,步驟S8)。In the second embodiment, provided in the external reference area 79 is a third reference memory cell RC3 setting stylized threshold PRGV, a fourth reference memory cell RC4 setting update threshold REFX, and a fifth reference memory cell RC5 setting. Read the threshold REFV. Therefore, referring to Fig. 11, after verification by the read threshold READV (i.e., as shown in step S42 of Fig. 12), the stylized threshold PRGV verification can be continuously performed (i.e., step S44). Or verify with the update threshold REFV (ie, step S8).
最後,本發明之幾個態樣總結如下。Finally, several aspects of the invention are summarized below.
依照本發明之一態樣,提供一種半導體裝置具有複數個記憶胞,藉由獨立地儲存資料於記憶胞中隔離之儲存區域中而儲存二位元之資料;第一參考記憶胞,對應於儲存區域之抹除狀態並由複數個記憶胞所共享;第二參考記憶胞,對應於儲存區域之程式化狀態並由複數個記憶胞所共享;以及控制部,藉由從第一參考記憶胞和第二參考記憶胞之臨限值創造參考臨限值以及藉由比較於複數個記憶胞中要讀取資料之儲存區域之臨限值與當讀取資料時之參考臨限值而施行資料讀取操作,當程式化該第二參考記憶胞時用第一臨限值程式化以驗證,當更新該第二參考記憶胞時用低於該第一臨限值之第二臨限值更新以驗證,以及當程式化該複數個記憶胞時在具有第二參考記憶胞之臨限值之複數個記憶胞中要程式化以程式化至少一個或多個記憶胞以驗證,和在具有第二參考記憶胞之臨限值之複數個記憶胞中要更新以更新記憶胞以驗證。用此種結構,能夠適當地設定第二參考記憶胞之臨限電壓,和記憶胞與第二參考記憶胞之間之臨限電壓不匹配能夠減少,由此改善資料讀取穩定度。According to an aspect of the present invention, a semiconductor device is provided with a plurality of memory cells for storing data of two bits by independently storing data in a storage area isolated in a memory cell; the first reference memory cell corresponding to the storage The erasing state of the region is shared by a plurality of memory cells; the second reference memory cell corresponds to the stylized state of the storage region and is shared by the plurality of memory cells; and the control portion, by using the first reference memory cell and The threshold of the second reference memory cell creates a reference threshold and performs data reading by comparing the threshold of the storage area in which the data is to be read in a plurality of memory cells with the reference threshold when reading the data. a fetching operation to verify that the second reference memory cell is programmed with a first threshold to verify that the second reference memory cell is updated with a second threshold value lower than the first threshold value when updating the second reference memory cell Verifying, and when stylizing the plurality of memory cells, in a plurality of memory cells having a threshold value of the second reference memory cell to be programmed to program at least one or more memory cells for verification, and having A plurality of reference memory cells of the memory cell of the threshold value to be updated to the memory cell to verify the update. With this configuration, the threshold voltage of the second reference memory cell can be appropriately set, and the threshold voltage mismatch between the memory cell and the second reference memory cell can be reduced, thereby improving data reading stability.
於上述結構中,可以配置控制部,當抹除資料時,共同抹除複數個記憶胞、第一參考記憶胞、和第二參考記憶胞,其後,用第一臨限值程式化第二參考記憶胞以驗證。依照此配置,能夠縮短需用於程式化操作之時間。In the above structure, the control unit may be configured to erase a plurality of memory cells, the first reference memory cell, and the second reference memory cell when erasing the data, and then program the second threshold with the first threshold. Refer to the memory cell for verification. According to this configuration, the time required for the stylized operation can be shortened.
於上述結構中,可以配置控制部當抹除資料時共同抹除複數個記憶胞、第一參考記憶胞、和第二參考記憶胞,然後於抹除後當第一次程式化該複數個記憶胞時用第一臨限值程式化第二參考記憶胞以驗證。依照此配置,能夠縮短所需用於抹除操作之時間。In the above structure, the control unit may be configured to erase a plurality of memory cells, the first reference memory cell, and the second reference memory cell when erasing the data, and then program the plurality of memories for the first time after erasing The second reference memory cell is programmed with the first threshold to verify. According to this configuration, the time required for the erase operation can be shortened.
於上述結構中,可以配置控制部,當程式化資料時,用低於第二臨限值之第三臨限值驗證第二參考記憶胞,當第二參考記憶胞之臨限值低於第三臨限值時,用第一臨限值程式化第二參考記憶胞以驗證,以及當第二參考記憶胞之臨限值高於第三臨限值時,用第二臨限值更新第二參考記憶胞以驗證。依照此配置,能夠縮短所需用於抹除操作之時間。In the above structure, the control unit may be configured to verify the second reference memory cell with a third threshold value lower than the second threshold value when the data is programmed, when the threshold value of the second reference memory cell is lower than the When the threshold is three, the second reference memory cell is programmed with the first threshold to verify, and when the threshold of the second reference memory cell is higher than the third threshold, the second threshold is updated. Two reference memory cells are verified. According to this configuration, the time required for the erase operation can be shortened.
於上述結構中,可以進一步提供設定第一臨限值之第三參考記憶胞、設定第二臨限值之第四參考記憶胞、和設定第三臨限值之第五參考記憶胞。依照此結構,於實施驗證第三臨限值後,可接著連續地驗證第一臨限值或第二臨限值。In the above structure, a third reference memory cell that sets the first threshold, a fourth reference memory cell that sets the second threshold, and a fifth reference memory cell that sets the third threshold may be further provided. According to this configuration, after the verification of the third threshold is performed, the first threshold or the second threshold can be continuously verified.
於上述結構中,可以結構設於相同字元線上之複數個記憶胞、該第一參考記憶胞、和該第二參考記憶胞。In the above structure, a plurality of memory cells, the first reference memory cell, and the second reference memory cell are disposed on the same word line.
於上述結構中,可以結構第一參考記憶胞和第二參考記憶胞藉由獨立地儲存資料於記憶胞之二個隔離儲存區域中以儲存二位元之資料於記憶胞中,並且可以配置設定二個儲存區域其中之一至程式化狀態而另一個至抹除狀態。依照此配置,能夠進一步減少記憶胞和參考記憶胞之間之臨限電壓不匹配,由此進一步改善資料讀取操作之穩定性。In the above structure, the first reference memory cell and the second reference memory cell can be separately stored in the two isolated storage areas of the memory cell to store the data of the two bits in the memory cell, and can be configured. One of the two storage areas goes to the stylized state and the other to the erased state. According to this configuration, the threshold voltage mismatch between the memory cell and the reference memory cell can be further reduced, thereby further improving the stability of the data reading operation.
依照本發明之一態樣,提供一種用來控制半導體裝置之方法,該半導體裝置設有複數個記憶胞,藉由獨立地儲存資料於記憶胞中隔離之區域中而儲存二位元之資料於記憶胞中,第一參考記憶胞對應於複數個記憶胞之抹除狀態,和第二參考記憶胞對應於複數個記憶胞之程式化狀態,具有下列步驟:從該第一參考記憶胞和該第二參考記憶胞之臨限值創造參考臨限值;藉由比較於該複數個記憶胞中要讀取資料之儲存區域之臨限值與參考臨限值而讀取資料;用第一臨限值程式化該第二參考記憶胞以驗證;用低於該第一臨限值之第二臨限值更新該第二參考記憶胞以驗證;在具有第二參考記憶胞之臨限值之複數個記憶胞中要程式化以程式化至少一個或多個記憶胞以驗證;以及在具有第二參考記憶胞之臨限值之複數個記憶胞中要更新以更新記憶胞以驗證。用此種結構,能夠適當地設定第二參考記憶胞之臨限電壓,並且記憶胞與第二參考記憶胞之間之臨限電壓不匹配能夠減少,由此改善資料讀取穩定度。According to an aspect of the present invention, a method for controlling a semiconductor device is provided. The semiconductor device is provided with a plurality of memory cells, and the two-bit data is stored by independently storing data in an isolated region of the memory cell. In the memory cell, the first reference memory cell corresponds to an erase state of the plurality of memory cells, and the second reference memory cell corresponds to a stylized state of the plurality of memory cells, having the following steps: from the first reference memory cell and the The threshold value of the second reference memory cell creates a reference threshold value; the data is read by comparing the threshold value with the reference threshold value of the storage area of the plurality of memory cells to be read; Limiting the second reference memory cell to verify; updating the second reference memory cell with a second threshold below the first threshold to verify; having a threshold value of the second reference memory cell A plurality of memory cells are to be programmed to program at least one or more memory cells for verification; and in a plurality of memory cells having a threshold of the second reference memory cell to be updated to update the memory cells for verification. With this configuration, the threshold voltage of the second reference memory cell can be appropriately set, and the threshold voltage mismatch between the memory cell and the second reference memory cell can be reduced, thereby improving data reading stability.
上述之配置可以進一步提供抹除步驟,共同抹除複數個記憶胞、第一參考記憶胞、和第二參考記憶胞,以及可以配置當執行抹除步驟時實施用第一臨限值程式化第二參考記憶胞以驗證之步驟。依照此配置,能夠縮短需用於程式化操作之時間。The above configuration may further provide an erasing step of collectively erasing the plurality of memory cells, the first reference memory cell, and the second reference memory cell, and may be configured to implement the first threshold stylized when performing the erasing step Two reference memory cells to verify the steps. According to this configuration, the time required for the stylized operation can be shortened.
上述之配置可以進一步提供抹除步驟,共同抹除複數個記憶胞、第一參考記憶胞、和第二參考記憶胞,以及可以配置用第一臨限值程式化第二參考記憶胞以驗證之步驟,執行當抹除步驟後第一次程式化複數個記憶胞。依照此配置,能夠縮短需用於抹除操作之時間。The foregoing configuration may further provide an erasing step of collectively erasing the plurality of memory cells, the first reference memory cell, and the second reference memory cell, and configured to program the second reference memory cell with the first threshold to verify Step, performing the first stylization of a plurality of memory cells after the erasing step. According to this configuration, the time required for the erase operation can be shortened.
雖然以上已詳細說明了本發明之較佳實施例,但是本發明並不受限於該等特定實施例,在本發明之精神和範圍內如申請專利範圍所定義的,可以作各種的修飾和改變。While the preferred embodiments of the present invention have been described hereinabove, the present invention is not limited to the specific embodiments, and various modifications may be made within the spirit and scope of the invention as defined by the scope of the claims. change.
10...半導體基板10. . . Semiconductor substrate
12...汲極區域12. . . Bungee area
14...源極區域14. . . Source area
16...閘極16. . . Gate
18...夾層絕緣膜18. . . Interlayer insulating film
20...陷補層20. . . Trapped layer
22...閘極絕緣膜twenty two. . . Gate insulating film
24...ONO層twenty four. . . ONO layer
30...第一儲存區域30. . . First storage area
32...第二儲存區域32. . . Second storage area
34...電荷34. . . Electric charge
50...讀取裕度(read margin)50. . . Read margin
60...記憶胞陣列60. . . Memory cell array
62...記憶胞區域62. . . Memory cell area
64...動態參考區域64. . . Dynamic reference area
66...行位址解碼器66. . . Row address decoder
68...列位址解碼器68. . . Column address decoder
70...控制部70. . . Control department
72...位址匯流排(位址緩衝器)72. . . Address bus (address buffer)
74...電壓供應電路74. . . Voltage supply circuit
76...寫入/讀取電路76. . . Write/read circuit
77...資料鎖存器77. . . Data latch
78...I/O電路78. . . I/O circuit
79...外部參考區域79. . . External reference area
BL...位元線BL. . . Bit line
MC...記憶胞MC. . . Memory cell
MCR...記憶胞列MCR. . . Memory cell
PMC...要程式化記憶胞PMC. . . Stylize memory cells
PMC“0”、PRC2...程式化後(更新後)之臨限電壓PMC "0", PRC2. . . Threshold voltage after stylization (updated)
PRGV...程式化臨限值(第一臨限值)PRGV. . . Stylized threshold (first threshold)
RC1...第一參考記憶胞RC1. . . First reference memory cell
RC2...第二參考記憶胞RC2. . . Second reference memory cell
RC3...第三參考記憶胞RC3. . . Third reference memory cell
RC4...第四參考記憶胞RC4. . . Fourth reference memory cell
RC5...第五參考記憶胞RC5. . . Fifth reference memory cell
READV...讀取臨限值READV. . . Read threshold
REF...參考臨限值REF. . . Reference threshold
REFV...更新臨限值(第二臨限值)REFV. . . Update threshold (second threshold)
RMC...要更新記憶胞RMC. . . To update the memory cell
RMC“0”、RRC 2...更新後之臨限電壓RMC "0", RRC 2. . . Updated threshold voltage
S10、S12...步驟S10, S12. . . step
S20、S22、S24、S26、S28...步驟S20, S22, S24, S26, S28. . . step
S30、S32、S34、S36、S38、S39...步驟S30, S32, S34, S36, S38, S39. . . step
S40、S42、S44、S46、S48、S50、S52...步驟S40, S42, S44, S46, S48, S50, S52. . . step
WL...字元線WL. . . Word line
第1A至1D圖為剖面圖(部分1)示意地顯示於相關技術之記憶胞之配置與本發明之實施例記憶胞之配置;1A to 1D are cross-sectional views (Part 1) schematically showing the configuration of the memory cell of the related art and the configuration of the memory cell of the embodiment of the present invention;
第2A至2D圖為剖面圖(部分2)示意地顯示於相關技術之記憶胞之配置與本發明之實施例記憶胞之配置;2A to 2D are cross-sectional views (Part 2) schematically showing the configuration of the memory cell of the related art and the configuration of the memory cell of the embodiment of the present invention;
第3A圖為顯示於相關技術中半導體裝置之配置之電路圖,而第3B圖為顯示於第3A圖中各記憶胞之臨限電壓之圖示;3A is a circuit diagram showing a configuration of a semiconductor device in the related art, and FIG. 3B is a diagram showing a threshold voltage of each memory cell shown in FIG. 3A;
第4A圖為剖面圖示意地顯示於相關技術之半導體裝置之配置,而第4B和4C圖為顯示於第4A圖中各記憶胞之臨限電壓之圖示;4A is a cross-sectional view schematically showing the configuration of the related art semiconductor device, and FIGS. 4B and 4C are diagrams showing the threshold voltage of each memory cell shown in FIG. 4A;
第5A和5B圖為顯示於相關技術中各記憶胞之臨限電壓之圖示;5A and 5B are diagrams showing the threshold voltages of the respective memory cells in the related art;
第6圖為顯示本發明之第一實施例之半導體裝置之配置之方塊圖;Figure 6 is a block diagram showing the configuration of a semiconductor device according to a first embodiment of the present invention;
第7圖為顯示第一實施例之半導體裝置之抹除操作之流程圖;Figure 7 is a flow chart showing the erasing operation of the semiconductor device of the first embodiment;
第8圖為顯示第一實施例之半導體裝置之程式化操作之流程圖;Figure 8 is a flow chart showing the stylized operation of the semiconductor device of the first embodiment;
第9圖為顯示第一實施例之半導體裝置之讀取操作之流程圖;Figure 9 is a flow chart showing a reading operation of the semiconductor device of the first embodiment;
第10A至10D圖顯示依照第一實施例之程式化操作各記憶胞之臨限電壓之改變;10A to 10D are diagrams showing changes in the threshold voltage of each memory cell in the stylized operation according to the first embodiment;
第11圖為顯示本發明之第二實施例之半導體裝置之程式化操作之流程圖;Figure 11 is a flow chart showing the stylized operation of the semiconductor device of the second embodiment of the present invention;
第12A和12B圖顯示從如第11圖中所示步驟S42之操作決定;以及Figures 12A and 12B show the operation from the operation of step S42 as shown in Fig. 11;
第13A至13C圖顯示於第二實施例之程式化操作中各記憶胞之臨限電壓之改變。Figures 13A to 13C show changes in the threshold voltage of the respective memory cells in the stylized operation of the second embodiment.
60...記憶胞陣列60. . . Memory cell array
62...記憶胞區域62. . . Memory cell area
64...動態參考區域64. . . Dynamic reference area
66...行位址解碼器66. . . Row address decoder
68...列位址解碼器68. . . Column address decoder
70...控制部70. . . Control department
72...位址匯流排(位址緩衝器)72. . . Address bus (address buffer)
74...電壓供應電路74. . . Voltage supply circuit
76...寫入/讀取電路76. . . Write/read circuit
77...資料鎖存器77. . . Data latch
78...I/O電路78. . . I/O circuit
79...外部參考區域79. . . External reference area
BL...位元線BL. . . Bit line
MC...記憶胞MC. . . Memory cell
PRGV...程式化臨限值(第一臨限值)PRGV. . . Stylized threshold (first threshold)
RC1...第一參考記憶胞RC1. . . First reference memory cell
RC2...第二參考記憶胞RC2. . . Second reference memory cell
RC3...第三參考記憶胞RC3. . . Third reference memory cell
RC4...第四參考記憶胞RC4. . . Fourth reference memory cell
RC5...第五參考記憶胞RC5. . . Fifth reference memory cell
READV...讀取臨限值READV. . . Read threshold
REFV...更新臨限值(第二臨限值)REFV. . . Update threshold (second threshold)
WL...字元線WL. . . Word line
Claims (10)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007316460A JP5057517B2 (en) | 2007-12-06 | 2007-12-06 | Semiconductor device and control method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200941482A TW200941482A (en) | 2009-10-01 |
TWI473095B true TWI473095B (en) | 2015-02-11 |
Family
ID=40347980
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW97147293A TWI473095B (en) | 2007-12-06 | 2008-12-05 | Semiconductor device and control method thereof |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5057517B2 (en) |
TW (1) | TWI473095B (en) |
WO (1) | WO2009073221A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102055375B1 (en) | 2013-01-14 | 2020-01-22 | 삼성전자 주식회사 | Nonvolatile memory device using variable resistive element and memory system comprising the same |
JP2018147544A (en) | 2017-03-09 | 2018-09-20 | ソニーセミコンダクタソリューションズ株式会社 | Control circuit, semiconductor memory device, information processing device, and control method |
JP2018147545A (en) * | 2017-03-09 | 2018-09-20 | ソニーセミコンダクタソリューションズ株式会社 | Control circuit, semiconductor storage, information processor, and control method |
CN107644666B (en) * | 2017-10-20 | 2020-09-18 | 上海华力微电子有限公司 | Self-adaptive flash memory write-in operation control method and circuit |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1248263A1 (en) * | 2001-04-05 | 2002-10-09 | Saifun Semiconductors Ltd | Method for programming a reference cell |
TW583664B (en) * | 2002-02-28 | 2004-04-11 | Fujitsu Ltd | Nonvolatile semiconductor memory device programming second dynamic reference cell according to threshold value of first dynamic reference cell |
US6754125B2 (en) * | 2001-02-02 | 2004-06-22 | Stmicroelectronics Sa | Method and device for refreshing reference cells |
US20040179396A1 (en) * | 2003-03-11 | 2004-09-16 | Shigekazu Yamada | Nonvolatile semiconductor memory device |
US20040257873A1 (en) * | 2003-06-20 | 2004-12-23 | Ming-Huei Shieh | Memory with a core-based virtual ground and dynamic reference sensing scheme |
US20050162921A1 (en) * | 2003-04-28 | 2005-07-28 | Fujitsu Limited | Nonvolatile semiconductor memory device which stores two bits per memory cell |
US20060142977A1 (en) * | 2004-12-23 | 2006-06-29 | Rambus Inc. | Circuits, systems and methods for dynamic reference voltage calibration |
US20060274581A1 (en) * | 2005-06-03 | 2006-12-07 | Marco Redaelli | Reference scheme for a non-volatile semiconductor memory device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3610621B2 (en) * | 1994-11-11 | 2005-01-19 | ソニー株式会社 | Nonvolatile semiconductor memory device |
-
2007
- 2007-12-06 JP JP2007316460A patent/JP5057517B2/en not_active Expired - Fee Related
-
2008
- 2008-12-04 WO PCT/US2008/013441 patent/WO2009073221A1/en active Application Filing
- 2008-12-05 TW TW97147293A patent/TWI473095B/en active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6754125B2 (en) * | 2001-02-02 | 2004-06-22 | Stmicroelectronics Sa | Method and device for refreshing reference cells |
EP1248263A1 (en) * | 2001-04-05 | 2002-10-09 | Saifun Semiconductors Ltd | Method for programming a reference cell |
TW583664B (en) * | 2002-02-28 | 2004-04-11 | Fujitsu Ltd | Nonvolatile semiconductor memory device programming second dynamic reference cell according to threshold value of first dynamic reference cell |
US20040179396A1 (en) * | 2003-03-11 | 2004-09-16 | Shigekazu Yamada | Nonvolatile semiconductor memory device |
US20050162921A1 (en) * | 2003-04-28 | 2005-07-28 | Fujitsu Limited | Nonvolatile semiconductor memory device which stores two bits per memory cell |
US20040257873A1 (en) * | 2003-06-20 | 2004-12-23 | Ming-Huei Shieh | Memory with a core-based virtual ground and dynamic reference sensing scheme |
US20060142977A1 (en) * | 2004-12-23 | 2006-06-29 | Rambus Inc. | Circuits, systems and methods for dynamic reference voltage calibration |
US20060274581A1 (en) * | 2005-06-03 | 2006-12-07 | Marco Redaelli | Reference scheme for a non-volatile semiconductor memory device |
US7259993B2 (en) * | 2005-06-03 | 2007-08-21 | Infineon Technologies Ag | Reference scheme for a non-volatile semiconductor memory device |
Also Published As
Publication number | Publication date |
---|---|
JP5057517B2 (en) | 2012-10-24 |
WO2009073221A1 (en) | 2009-06-11 |
JP2009140576A (en) | 2009-06-25 |
TW200941482A (en) | 2009-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100935948B1 (en) | Algorithm dynamic reference programming | |
US7151692B2 (en) | Operation scheme for programming charge trapping non-volatile memory | |
JP3943526B2 (en) | Nonvolatile semiconductor memory device | |
US7773429B2 (en) | Non-volatile memory device and driving method thereof | |
US7190614B2 (en) | Operation scheme for programming charge trapping non-volatile memory | |
KR100960352B1 (en) | Method of erasing a flashing memory using a pre-reasing step | |
US7206241B2 (en) | Semiconductor device and programming method | |
TWI473095B (en) | Semiconductor device and control method thereof | |
JP4104151B2 (en) | Nonvolatile semiconductor memory device and method for programming nonvolatile semiconductor memory device | |
JP4106028B2 (en) | Method and apparatus for soft program verification in a memory device | |
KR100840562B1 (en) | Nonvolatile semiconductor memory device and its writing method | |
US6700815B2 (en) | Refresh scheme for dynamic page programming | |
WO2002097821A1 (en) | Nonvolatile semiconductor storage device | |
US7224619B2 (en) | Method and apparatus for protection from over-erasing nonvolatile memory cells | |
US6639839B1 (en) | Sensing method for EEPROM refresh scheme | |
JP2007193885A (en) | Write method for multi-level flash memory | |
JP4005522B2 (en) | Nonvolatile semiconductor memory and operation control method thereof | |
JP2002140893A (en) | Non-volatile semiconductor memory | |
JP4901827B2 (en) | Semiconductor storage device, writing method thereof, and storage medium storing writing method |