TWI469382B - Structure and device of light emitting diode and method for making the same - Google Patents

Structure and device of light emitting diode and method for making the same Download PDF

Info

Publication number
TWI469382B
TWI469382B TW98110497A TW98110497A TWI469382B TW I469382 B TWI469382 B TW I469382B TW 98110497 A TW98110497 A TW 98110497A TW 98110497 A TW98110497 A TW 98110497A TW I469382 B TWI469382 B TW I469382B
Authority
TW
Taiwan
Prior art keywords
layer
mask
light
forming
epitaxial layer
Prior art date
Application number
TW98110497A
Other languages
Chinese (zh)
Other versions
TW201036206A (en
Inventor
Po Chun Liu
Chu Li Chao
Yih Der Guo
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW98110497A priority Critical patent/TWI469382B/en
Priority to US12/562,145 priority patent/US8093081B2/en
Publication of TW201036206A publication Critical patent/TW201036206A/en
Priority to US13/309,530 priority patent/US8502190B2/en
Application granted granted Critical
Publication of TWI469382B publication Critical patent/TWI469382B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Description

發光二極體結構與元件以及其製造方法 Light-emitting diode structure and component and manufacturing method thereof

本發明是有關於一種發光二極體的結構、元件及其製造方法,且特別是有關於一種利用弱化結構使其與基板分離之發光二極體的結構、元件及其製造方法。 The present invention relates to a structure, an element, and a method of fabricating the same, and more particularly to a structure, an element, and a method of fabricating the same for a light-emitting diode that is separated from a substrate by a weakened structure.

發光二極體(light emitting diode,LED)在應用上有水平式與垂直式等結構。傳統水平式LED元件因為他的電極配置在同側,故電流在平台(mesa)部會有電流擁塞(current crowding)的現象,這將導致散熱不良,從而限制了LED能夠承載的驅動電流大小。目前高功率LED則是採用垂直式結構。 Light-emitting diodes (LEDs) have horizontal and vertical structures in their applications. Conventional horizontal LED components have current crowding in the mesa due to the arrangement of their electrodes on the same side, which leads to poor heat dissipation, which limits the amount of driving current that the LED can carry. At present, high power LEDs adopt a vertical structure.

如圖1A所示,藉由一磊晶基板100成長LED元件102以及鏡面/黏著層104後,利用晶圓鍵合(wafer bonding)的方式,將LED元件102,透過黏著層轉移到一導電的承載基板(carrier)108。之後如圖1B所示,將磊晶基板100移除。接著,如圖1C所示,在LED元件102表面與其對側之承載基板108表面上分別形成金屬電極110,而成為垂直式結構。如圖1C所示,因為垂直電極配置,故電流I的散佈較佳;其次,承載基板108一般是選用如矽、銅、鋁、銅/鎢等之導電性好且散熱佳的材質,故可以增加元件的操作效率。 As shown in FIG. 1A, after the LED element 102 and the mirror/adhesive layer 104 are grown by an epitaxial substrate 100, the LED element 102 is transferred to the conductive layer through the adhesive layer by wafer bonding. A carrier 108 is carried. Thereafter, as shown in FIG. 1B, the epitaxial substrate 100 is removed. Next, as shown in FIG. 1C, the metal electrode 110 is formed on the surface of the LED substrate 102 and the surface of the carrier substrate 108 on the opposite side thereof, respectively, to have a vertical structure. As shown in FIG. 1C, because of the vertical electrode configuration, the dispersion of the current I is better. Secondly, the carrier substrate 108 is generally made of a material such as tantalum, copper, aluminum, copper/tungsten, etc., which has good conductivity and good heat dissipation. Increase the operational efficiency of components.

但是,目前分離磊晶基板的方式有如美國專利 US6,071,795所揭示的雷射剝離法(laser lift-off,LLO),於磊晶基板側利用KrF雷射照射基板與氮化鎵層之間的介面,使元件介面吸收足夠的能量後,與磊晶基板分離。或者,也可以利用研磨的方式直接將磊晶基板磨除,或者利用濕蝕刻搭配研磨的方式,將基板磨薄一點,之後再以蝕刻液將剩餘基板溶掉。但是在利用LLO方法的場合,因為雷射能量之控制不易,容易在元件表面造成損傷。對於一些如砷化鎵等之較易碎的基板,則無法適用研磨的方式來處理,而對於一些如藍寶石、氮化鎵、氮化鋁等之材質較硬的基板,則需要花很長的時間來進行研磨。另外,先研磨再以濕蝕刻移除的方式,只適用於砷化鎵或矽基板,但常用的氮化鎵、氮化鋁或藍寶石基板則有適用困難的問題。 However, the current method of separating epitaxial substrates is as in the US patent. The laser lift-off (LLO) disclosed in US 6,071,795 uses a KrF laser to irradiate the interface between the substrate and the gallium nitride layer on the epitaxial substrate side, so that the component interface absorbs sufficient energy, and The epitaxial substrate is separated. Alternatively, the epitaxial substrate may be directly polished by polishing, or the substrate may be thinned by wet etching and polishing, and then the remaining substrate may be dissolved by an etching solution. However, in the case of using the LLO method, since the control of the laser energy is not easy, it is easy to cause damage on the surface of the element. For some of the more fragile substrates such as gallium arsenide, it cannot be processed by grinding, and for some substrates such as sapphire, gallium nitride, aluminum nitride, etc., it takes a long time. Time to grind. In addition, the first method of grinding and then removing by wet etching is only applicable to a gallium arsenide or germanium substrate, but a commonly used gallium nitride, aluminum nitride or sapphire substrate has difficulty in application.

本發明提出一種LED結構、元件及其製造方法,可以讓LED元件自磊晶基板分離。 The invention provides an LED structure, an element and a manufacturing method thereof, which can separate the LED element from the epitaxial substrate.

根據本發明一實施範例,其提供一種發光二極體結構。此發光二極體結構至少包括基板、圖案化磊晶層與發光結構。其中,發光結構透過圖案化磊晶層形成於基板上,且圖案化磊晶層包含多數個柱狀結構,可在降溫過程中斷裂。 According to an embodiment of the invention, a light emitting diode structure is provided. The light emitting diode structure includes at least a substrate, a patterned epitaxial layer and a light emitting structure. The light emitting structure is formed on the substrate through the patterned epitaxial layer, and the patterned epitaxial layer comprises a plurality of columnar structures, which can be broken during the cooling process.

此外,根據本發明一實施範例,其提供一種發光二極體元件的製造方法,至少包括以下步驟。首先,提供一基板。在基板上形成一圖案化磊晶層,此圖案化磊晶層具有 特定高度且由多數個柱狀結構所構成。另外,罩幕層形成於圖案化磊晶層的表面上,使該罩幕層至少覆蓋於圖案化磊晶層的側壁。氮化物磊晶層形成於圖案化磊晶層上。一發光結構層形成於氮化物磊晶層上,以完成一第一結構。接著,提供一導電性承載基板,並進行一鍵合程序,將上述結構轉移到導電性承載基板上。接著,以降溫程序,進行弱化製程,使圖案化磊晶層斷裂,以形成一發光二極體結構,係包括不規則的多數個柱狀結構,且該罩幕層覆蓋其表面。 Moreover, according to an embodiment of the present invention, there is provided a method of fabricating a light emitting diode element, comprising at least the following steps. First, a substrate is provided. Forming a patterned epitaxial layer on the substrate, the patterned epitaxial layer having It is made up of a specific height and consists of a number of columnar structures. In addition, a mask layer is formed on the surface of the patterned epitaxial layer such that the mask layer covers at least the sidewall of the patterned epitaxial layer. A nitride epitaxial layer is formed on the patterned epitaxial layer. A light emitting structure layer is formed on the nitride epitaxial layer to complete a first structure. Next, a conductive carrier substrate is provided and a bonding process is performed to transfer the structure to the conductive carrier substrate. Then, in the cooling process, the weakening process is performed to break the patterned epitaxial layer to form a light-emitting diode structure, including an irregular plurality of columnar structures, and the mask layer covers the surface thereof.

本發明的實施範例更提出一種發光二極體元件,包括導電承載基板、發光結構、多數個柱狀結構、介電層、第一電極與第二電極。發光結構位於導電承載基板上。柱狀弱化結構位於發光結構上。介電層覆蓋在柱狀結構的表面。第一電極位於柱狀結構上,而第二電極位於導電承載基板上。 Embodiments of the present invention further provide a light emitting diode device including a conductive carrier substrate, a light emitting structure, a plurality of columnar structures, a dielectric layer, a first electrode, and a second electrode. The light emitting structure is located on the conductive carrier substrate. The columnar weakened structure is located on the light emitting structure. The dielectric layer covers the surface of the columnar structure. The first electrode is on the columnar structure and the second electrode is on the conductive carrier substrate.

綜上所述,藉由弱化結構,使其於製程之降溫過程中,能因材料膨脹係數的差異,讓LED元件自然地從磊晶基板上分離,而不必利用如雷射剝離等額外的製程步驟。此外,LED元件具有一特定厚度的磊晶層,而能讓LED元件自磊晶基板自然地分離,而不至於使LED元件破裂。 In summary, by weakening the structure, the LED elements can be naturally separated from the epitaxial substrate due to the difference in material expansion coefficients during the process of cooling the process without using an additional process such as laser stripping. step. In addition, the LED element has an epitaxial layer of a specific thickness to allow the LED element to be naturally separated from the epitaxial substrate without rupturing the LED element.

為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。 The above and other objects, features and advantages of the present invention will become more <RTIgt;

圖2A至2M為依據本發明實施範例所繪示之LED元件的製造示意圖。圖示中,各層之間並未依據實際比例繪製,其僅代表各層間的相對位置關係。此外,實施範例所提及各層之材料等,僅為方便說明理解之用,此技術領域中具有通常知識者,可以做適度的變更或修改。 2A to 2M are schematic views showing the manufacture of an LED element according to an embodiment of the present invention. In the figures, the layers are not drawn according to the actual scale, which only represents the relative positional relationship between the layers. In addition, the materials and the like of the layers mentioned in the embodiments are merely for convenience of understanding, and those skilled in the art can make appropriate changes or modifications.

如圖2A所示,首先在一基板200上依序形成磊晶層202、第一罩幕層204與第二罩幕層206;其中磊晶層202之後要用來形成本實施範例之弱化結構。上述基板200的材料例如是單晶藍寶石、氮化鎵、矽、碳化矽、砷化鎵、磷化鎵、氧化鋅或氧化鎂等,以下將以藍寶石基板作實施範例。 As shown in FIG. 2A, an epitaxial layer 202, a first mask layer 204 and a second mask layer 206 are sequentially formed on a substrate 200. The epitaxial layer 202 is then used to form the weakened structure of the embodiment. . The material of the substrate 200 is, for example, single crystal sapphire, gallium nitride, germanium, tantalum carbide, gallium arsenide, gallium phosphide, zinc oxide or magnesium oxide. The sapphire substrate will be exemplified below.

另外,在本實施範例中,磊晶層202是使用氮化鎵,此材料僅為說明之用,非用以限制本發明實施範圍;在使用不同發光二極體結構時,可以改變為適當的材料。為了方便,下文均稱為氮化鎵層202。另外,上述氮化鎵層202的厚度例如是0.5-3nm。 In addition, in the present embodiment, the epitaxial layer 202 is made of gallium nitride. This material is for illustrative purposes only and is not intended to limit the scope of the present invention; it may be changed to be appropriate when different light emitting diode structures are used. material. For convenience, hereinafter referred to as a gallium nitride layer 202. Further, the thickness of the gallium nitride layer 202 is, for example, 0.5 to 3 nm.

此外,上述第一罩幕層204例如是使用二氧化矽為材料,其厚度例如是200nm。第二罩幕層206例如是使用鎳為材料,而其厚度約為50-300nm。第一罩幕層204與第二罩幕層206在後續製程中,可使用做為蝕刻罩幕之用。第一罩幕層204與第二罩幕層206所使用的材料則可以依據使用蝕刻配方等做合適的調整。 Further, the first mask layer 204 is made of, for example, cerium oxide and has a thickness of, for example, 200 nm. The second mask layer 206 is made of, for example, nickel and has a thickness of about 50 to 300 nm. The first mask layer 204 and the second mask layer 206 can be used as an etching mask in subsequent processes. The materials used for the first mask layer 204 and the second mask layer 206 can be appropriately adjusted depending on the etching recipe or the like.

接著,如圖2B所示,將上述組件進行一高溫製程。 此高溫製程例如是溫度約650-950℃的回火製程。藉由此高溫製程,第一罩幕層204上的第二罩幕層206會因為表面張力之因素,形成一罩幕球層206a,可包含多數個罩幕球。在本實施例中,此罩幕球層206a例如是具有奈米等級的鎳奈米罩幕球層;各罩幕球的直徑例如在50-350nm之間,間距例如在100-350nm之間。各罩幕球的可排列成隨機圖案或規則圖案。 Next, as shown in FIG. 2B, the above components are subjected to a high temperature process. This high temperature process is, for example, a tempering process at a temperature of about 650-950 °C. By this high temperature process, the second mask layer 206 on the first mask layer 204 forms a mask ball layer 206a due to surface tension, and may include a plurality of mask balls. In the present embodiment, the mask ball layer 206a is, for example, a nickel-nano mask ball layer having a nanometer scale; each of the mask balls has a diameter of, for example, 50-350 nm, and a pitch of, for example, 100-350 nm. Each of the mask balls can be arranged in a random pattern or a regular pattern.

接著,如圖2B、2C所示,以前述的罩幕球層206a為罩幕,利用蝕刻方法,對第一罩幕層204與氮化鎵層202進行蝕刻,直到底下的基板200暴露出為止,藉以形成一圖案化的磊晶層202a。由於該罩幕球層206a具有奈米等級,藉由控制垂直方向的蝕刻速率大於側向蝕刻速率,因此可形成一具有奈米等級的氮化鎵柱層,其後以氮化鎵柱層202a統稱之。參考圖2D,接著將殘留的罩幕球206a及第一罩幕層204a移除,移除的方法可以利用任何型式的半導體蝕刻製程來進行。 Next, as shown in FIGS. 2B and 2C, the first mask layer 204 and the gallium nitride layer 202 are etched by an etching method using the mask layer 206a as a mask until the underlying substrate 200 is exposed. Thereby, a patterned epitaxial layer 202a is formed. Since the mask ball layer 206a has a nanometer level, by controlling the vertical etching rate to be greater than the lateral etching rate, a nanometer-sized gallium nitride pillar layer can be formed, followed by a gallium nitride pillar layer 202a. Collected collectively. Referring to FIG. 2D, the residual mask ball 206a and the first mask layer 204a are then removed, and the removal can be performed using any type of semiconductor etching process.

上述氮化鎵柱層202a在後續的製程中將做為一個弱化結構,以利後續弱化製程的進行;各柱寬度例如是50-350nm之間,間距則例如在100-350nm之間,高度為0.5-3μm。排列可以呈現規則狀,也可以是不規則分布,其由第二罩幕層的蝕刻後圖案決定。 The above-mentioned gallium nitride pillar layer 202a will be used as a weakened structure in the subsequent process to facilitate the subsequent weakening process; the width of each pillar is, for example, between 50 and 350 nm, and the pitch is, for example, between 100 and 350 nm, and the height is 0.5-3 μm. The arrangement may be in the form of a regular or irregular distribution, which is determined by the etched pattern of the second mask layer.

接著,如圖2E所示,在氮化鎵柱層202a的表面上,順應性(conformal)地沉積第三罩幕層210,主要可做為後續製程中的保護層之用。此第三罩幕層210的材料例如是 二氧化矽(SiO2),厚度例如是50-200nm。 Next, as shown in FIG. 2E, on the surface of the gallium nitride pillar layer 202a, a third mask layer 210 is conformally deposited, which can be mainly used as a protective layer in a subsequent process. The material of this third mask layer 210 is, for example, cerium oxide (SiO 2 ), and the thickness is, for example, 50 to 200 nm.

參考圖2F,選擇性地蝕刻氮化鎵柱層202a頂部的第三罩幕層210,使氮化鎵柱層202a暴露出一部份的頂部表面以形成一第四罩幕層210a。蝕刻方式可以選擇合適的半導體製程,使得在蝕刻進行時,僅移除頂部附近的第三罩幕層210。 Referring to FIG. 2F, the third mask layer 210 on top of the gallium nitride pillar layer 202a is selectively etched such that the gallium nitride pillar layer 202a exposes a portion of the top surface to form a fourth mask layer 210a. The etching method can select a suitable semiconductor process such that only the third mask layer 210 near the top is removed while the etching is in progress.

接著,如圖2G、2H所示,利用金屬有機化學氣相沉積法(MOCVD),以側向磊晶的方式,在氮化鎵柱層202a暴露出的表面上成長一層氮化物磊晶層212。此氮化物磊晶層212例如是一N型摻雜的氮化鎵磊晶層。 Next, as shown in FIGS. 2G and 2H, a nitride epitaxial layer 212 is grown on the exposed surface of the gallium nitride pillar layer 202a by metal organic chemical vapor deposition (MOCVD) in a lateral epitaxial manner. . The nitride epitaxial layer 212 is, for example, an N-type doped gallium nitride epitaxial layer.

另外,為了兼顧晶格不匹配、後續的LED元件與基板之間以及後續因為降溫而造成磊晶元件破裂的應力因素,上述氮化物磊晶層212具有特定的厚度範圍,例如0.5-3μm,方能達到成長時使晶格不匹配的影響降到最低,且不致造成破裂。 In addition, in order to balance the lattice mismatch, the subsequent stress factors between the LED element and the substrate, and subsequent cracking of the epitaxial element due to temperature drop, the nitride epitaxial layer 212 has a specific thickness range, for example, 0.5-3 μm. Can achieve the growth of the lattice mismatch minimized, and will not cause cracking.

接著,如圖2I所示,在氮化物磊晶層212的表面形成一半導體堆疊層220,其為一種堆疊式構造,例如是由第一摻雜層、發光層與第二摻雜層所形成。在本實施範例中,此半導體堆疊層220例如是由P型摻雜氮化鎵層222、量子井(quantum well,QW)或多重量子井(multiple quantum well,MQW)224與N型摻雜氮化鎵層226所構成。 Next, as shown in FIG. 2I, a semiconductor stacked layer 220 is formed on the surface of the nitride epitaxial layer 212, which is a stacked structure, for example, formed by a first doped layer, a light emitting layer and a second doped layer. . In this embodiment, the semiconductor stacked layer 220 is, for example, a P-type doped gallium nitride layer 222, a quantum well (QW) or a multiple quantum well (MQW) 224 and an N-type doped nitrogen. The gallium layer 226 is formed.

之後,在半導體堆疊層220上方形成導電反射層290與第一鍵合層230,以形成發光二極體結構,其如圖2I左側圖所示。同樣地參考圖2I,另外準備一導電承載基板 250,該導電承載基板250例如是由矽構成。導電承載基板250的表面也形成一第二鍵合層240。 Thereafter, a conductive reflective layer 290 and a first bonding layer 230 are formed over the semiconductor stacked layer 220 to form a light emitting diode structure as shown in the left side of FIG. 2I. Referring to FIG. 2I as well, a conductive carrier substrate is additionally prepared. 250. The conductive carrier substrate 250 is made of, for example, tantalum. A second bonding layer 240 is also formed on the surface of the conductive carrier substrate 250.

接著,進行晶圓鍵合步驟,將上述兩結構物透過該第一鍵合層230與該第二鍵合層240彼此鍵合在一起。藉由此鍵合步驟,使半導體堆疊層220與藍寶石基板200轉移到導電承載基板250上,形成如圖2J所示的結構A,其包括發光結構A1、氮化鎵柱層202a以及基板200。前述之第一鍵合層230與第二鍵合層240之材料例如是錫金合金(AuSn)、金,其除了用以進行晶圓鍵合外,其反射層與導電材料可選擇銀與鎳、鉑、鋁等合金材料。因此不限於單一層材質,也可視實際需求形成多層,此乃熟習此項技藝者可運用其既有之知識予以完成,上述僅為一種實施例的說明,並不用以限定本發明。 Next, a wafer bonding step is performed to bond the two structures through the first bonding layer 230 and the second bonding layer 240 to each other. By this bonding step, the semiconductor stacked layer 220 and the sapphire substrate 200 are transferred onto the conductive carrier substrate 250 to form a structure A as shown in FIG. 2J, which includes the light emitting structure A1, the gallium nitride pillar layer 202a, and the substrate 200. The material of the first bonding layer 230 and the second bonding layer 240 is, for example, a tin-gold alloy (AuSn), gold, and the reflective layer and the conductive material may be selected from silver and nickel, in addition to being used for wafer bonding. Alloy materials such as platinum and aluminum. Therefore, it is not limited to a single layer material, and it is also possible to form a plurality of layers according to actual needs, which can be accomplished by those skilled in the art, and the above description is only an embodiment and is not intended to limit the present invention.

此外,在上述的製造程序中,因為形成半導體堆疊層220之磊晶過程與晶圓鍵合過程分屬不同的機台,所以在機台移轉過程中,會經歷第一次降溫過程。如前所述,氮化鎵層212之厚度能夠抵抗因藍寶石基板200與氮化鎵層212及半導體堆疊層220等的熱膨脹係數差異,所以可以避免降溫時的溫度差會導致應力分布不均而造成的破裂問題。 In addition, in the above manufacturing process, since the epitaxial process and the wafer bonding process for forming the semiconductor stacked layer 220 are different from each other, the first cooling process is experienced during the transfer of the machine. As described above, the thickness of the gallium nitride layer 212 can resist the difference in thermal expansion coefficient between the sapphire substrate 200 and the gallium nitride layer 212 and the semiconductor stacked layer 220, so that the temperature difference at the time of cooling can be prevented from causing uneven stress distribution. The problem of rupture caused.

接著參考圖2K,在完成上述晶圓鍵合後,將圖2J所示的結構A進行第二次降溫過程,亦即本發明的弱化製程。此降溫過程例如是將上述鍵合後的結構A逐漸降溫到環境溫度,即約室溫。同樣地,因基板200與承載基板250 的熱膨脹係數的不同,所以當環境由進行晶圓鍵合的溫度(以接面為金/錫為例,溫度大約在350-450℃)開始於60分鐘內降至28℃,材料間的應力會造成發光結構A1在結構A中最弱的介面間;亦即氮化鎵柱層202a之間的部分260自然斷裂,以形成不規則的多數個柱狀結構,且其側壁有第四罩幕層210a的覆蓋。 Referring next to FIG. 2K, after the wafer bonding is completed, the structure A shown in FIG. 2J is subjected to a second cooling process, that is, the weakening process of the present invention. This cooling process is, for example, gradually lowering the bonded structure A to ambient temperature, that is, about room temperature. Similarly, the substrate 200 and the carrier substrate 250 The coefficient of thermal expansion is different, so when the environment is changed from the temperature at which the wafer is bonded (the junction is gold/tin, the temperature is about 350-450 ° C) to 28 ° C within 60 minutes, the stress between the materials The light-emitting structure A1 is caused to be between the weakest interfaces in the structure A; that is, the portion 260 between the gallium nitride pillar layers 202a is naturally broken to form an irregular plurality of columnar structures, and the sidewall has a fourth mask. Coverage of layer 210a.

此外,該介面260的斷裂面並不一定是齊面地斷裂,如圖2L的斷裂界面表面265僅為一種斷裂介面的態樣,不用以限定本發明。此外,該斷裂界面表面265形成於發光結構A1之表面,因此可藉由破壞出光時的全反射角以提高光取出效率。因此,本發明在不需要額外製程的情況下,便可以達到將使發光二極體從基板200分離以及達到增加發光效率的效果。 In addition, the fracture surface of the interface 260 does not necessarily have to be fractured in a homogeneous manner. The fracture interface surface 265 of FIG. 2L is only a fracture interface, and is not intended to limit the present invention. Further, the fracture interface surface 265 is formed on the surface of the light-emitting structure A1, so that the light extraction efficiency can be improved by destroying the total reflection angle at the time of light emission. Therefore, the present invention can achieve the effect of separating the light emitting diode from the substrate 200 and achieving an increase in luminous efficiency without requiring an additional process.

最後,在元件表面之適當位置形成N型電極280以及於矽基板250表面形成P型電極270,如圖2M所示,以形成一發光二極體元件B。例如,電極可配置在導電承載基板250與氮化鎵柱層202a之斷裂表面的適當位置上。 Finally, an N-type electrode 280 is formed at an appropriate position on the surface of the element, and a P-type electrode 270 is formed on the surface of the ruthenium substrate 250, as shown in FIG. 2M, to form a light-emitting diode element B. For example, the electrodes may be disposed at appropriate locations on the fracture surface of the conductive carrier substrate 250 and the gallium nitride pillar layer 202a.

本實施範例的發光二極體元件是以氮化鎵材料為範例來加以解說,但是也可以替換成其他合適的發光材料以及磊晶基板。例如,可以使用砷化鎵基板來成長鋁鎵銦磷化物(AlGaInP),或者是使用矽基板來成長氮化鎵。因此,在應用上並不侷限在氮化鎵材質或藍寶石基板。 The light-emitting diode element of the present embodiment is exemplified by a gallium nitride material, but may be replaced with other suitable light-emitting materials and an epitaxial substrate. For example, a gallium arsenide substrate can be used to grow aluminum gallium indium phosphide (AlGaInP), or a germanium substrate can be used to grow gallium nitride. Therefore, the application is not limited to gallium nitride or sapphire substrates.

綜上所述,藉由弱化結構,使其於製程之降溫過程中,能因材料膨脹係數的差異,讓發光結構自然地從磊晶基板 上分離,而不必利用如雷射剝離等額外的製程步驟。此外,發光結構具有一特定厚度的磊晶層,因此能抵抗因基板與及半導體堆疊層等的熱膨脹係數差異在降溫時會導致應力分布不均而造成的破裂問題。 In summary, by weakening the structure, the light-emitting structure can naturally be removed from the epitaxial substrate due to the difference in material expansion coefficient during the process of cooling. Separate without having to take advantage of additional process steps such as laser stripping. In addition, the light-emitting structure has an epitaxial layer of a specific thickness, and thus can withstand cracking problems caused by uneven stress distribution when the temperature is lowered due to a difference in thermal expansion coefficient between the substrate and the semiconductor stacked layer.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

100‧‧‧磊晶基板 100‧‧‧ epitaxial substrate

102‧‧‧LED元件 102‧‧‧LED components

104‧‧‧鏡面/黏著層 104‧‧‧Mirror/adhesive layer

108‧‧‧承載基板(carrier) 108‧‧‧ Carrier substrate

110‧‧‧金屬電極 110‧‧‧Metal electrodes

200‧‧‧基板 200‧‧‧Substrate

202‧‧‧磊晶層 202‧‧‧ epitaxial layer

202a‧‧‧圖案化磊晶層 202a‧‧‧ patterned epitaxial layer

204‧‧‧第一罩幕層 204‧‧‧First mask layer

204a‧‧‧殘留的第一罩幕層 204a‧‧‧Residual first mask layer

206‧‧‧第二罩幕層 206‧‧‧Second cover layer

206a‧‧‧罩幕球層 206a‧‧‧mask ball layer

210‧‧‧第三罩幕層 210‧‧‧ Third mask layer

210a‧‧‧第四罩幕層 210a‧‧‧4th curtain layer

212‧‧‧氮化物磊晶層 212‧‧‧ nitride epitaxial layer

220‧‧‧半導體堆疊層 220‧‧‧Semiconductor stack

222‧‧‧P型摻雜氮化鎵層 222‧‧‧P-type doped GaN layer

224‧‧‧量子井/多重量子井 224‧‧‧Quantum Well/Multiple Quantum Wells

226‧‧‧N型摻雜氮化鎵層 226‧‧‧N-doped GaN layer

230、240‧‧‧第一、第二鍵合層 230, 240‧‧‧ first and second bonding layers

250‧‧‧導電承載基板 250‧‧‧ Conductive carrier substrate

260‧‧‧斷裂介面 260‧‧‧ fracture interface

265‧‧‧斷裂介面表面 265‧‧‧ fracture interface surface

270‧‧‧P型電極 270‧‧‧P type electrode

280‧‧‧N型電極 280‧‧‧N type electrode

290‧‧‧導電反射層 290‧‧‧ Conductive reflective layer

圖1A至1C為習知發光二極體結構及其製造圖。 1A to 1C are conventional light emitting diode structures and their fabrication drawings.

圖2A至2M為依據本發明實施範例所繪示之LED元件的製造示意圖。 2A to 2M are schematic views showing the manufacture of an LED element according to an embodiment of the present invention.

202a‧‧‧圖案化之氮化物磊晶層 202a‧‧‧ patterned nitride epitaxial layer

212‧‧‧氮化物磊晶層 212‧‧‧ nitride epitaxial layer

222‧‧‧P型摻雜氮化鎵層 222‧‧‧P-type doped GaN layer

224‧‧‧量子井/多重量子井 224‧‧‧Quantum Well/Multiple Quantum Wells

226‧‧‧N型摻雜氮化鎵層 226‧‧‧N-doped GaN layer

230/240‧‧‧鍵合層 230/240‧‧‧bonding layer

250‧‧‧導電承載基板 250‧‧‧ Conductive carrier substrate

Claims (9)

一種發光二極體元件的製造方法,包括:提供一基板;形成一圖案化磊晶層於該基板上,且該圖案化磊晶層由多數個柱狀結構所構成;形成一罩幕層於該圖案化磊晶層的表面,其中該罩幕層至少覆蓋該圖案化磊晶層的側壁;形成一氮化物磊晶層於該圖案化磊晶層上;形成一發光結構層於該氮化物磊晶層上,以完成一第一結構;提供一導電性承載基板,並進行一鍵合程序,將該第一結構轉移到該導電性承載基板上;以及以一降溫程序,進行一弱化製程,使該圖案化磊晶層斷裂,其中形成該圖案化磊晶層更包括:形成一磊晶層於該基板上;形成一第一罩幕層於該磊晶層上;形成一第二罩幕層於該第一罩幕層上;進行一高溫製程,使該第二罩幕層形成一罩幕球層,其中該罩幕球層包含多數個罩幕球;以及以該罩幕球層為罩幕,去除部份該第一罩幕與該磊晶層,以形成該圖案化磊晶層。 A method for fabricating a light emitting diode device, comprising: providing a substrate; forming a patterned epitaxial layer on the substrate; and the patterned epitaxial layer is formed by a plurality of columnar structures; forming a mask layer on The surface of the patterned epitaxial layer, wherein the mask layer covers at least a sidewall of the patterned epitaxial layer; a nitride epitaxial layer is formed on the patterned epitaxial layer; and a light emitting structure layer is formed on the nitride Forming a first structure on the epitaxial layer; providing a conductive carrier substrate, and performing a bonding process to transfer the first structure to the conductive carrier substrate; and performing a weakening process by a cooling process Destructing the patterned epitaxial layer, wherein forming the patterned epitaxial layer further comprises: forming an epitaxial layer on the substrate; forming a first mask layer on the epitaxial layer; forming a second mask a curtain layer on the first mask layer; performing a high temperature process to form the second mask layer to form a mask ball layer, wherein the mask ball layer comprises a plurality of mask balls; and the mask layer For the mask, remove part of the first mask and the Lei Layer is patterned to form the epitaxial layer. 如申請專利範圍第1項所述之發光二極體元件的製 造方法,其中該罩幕球層中的各罩幕球的直徑為50-350nm,且間距為100-350nm,各罩幕球的直徑為50-350nm,且間距為100-350nm。 The system for producing a light-emitting diode element as described in claim 1 The method comprises a method in which each of the mask balls in the mask ball layer has a diameter of 50-350 nm and a pitch of 100-350 nm, and each mask ball has a diameter of 50-350 nm and a pitch of 100-350 nm. 如申請專利範圍第1項所述之發光二極體元件的製造方法,其中各該柱狀結構物具有一特定高度,其中該特定高度為0.5至3μm,寬度為50-350nm,且各該些柱狀結構物的間距為100-350nm。 The method for manufacturing a light-emitting diode element according to claim 1, wherein each of the columnar structures has a specific height, wherein the specific height is 0.5 to 3 μm, the width is 50-350 nm, and each of the plurality The columnar structures have a pitch of 100-350 nm. 如申請專利範圍第1項所述之發光二極體元件的製造方法,其中形成該罩幕層更包括:順應性地形成一第三罩幕層於該圖案化磊晶層上;以及去除該圖案化磊晶層頂部的部份該第三罩幕層。 The method of manufacturing the light emitting diode device of claim 1, wherein the forming the mask layer further comprises: conformally forming a third mask layer on the patterned epitaxial layer; and removing the A portion of the third mask layer is patterned on top of the epitaxial layer. 如申請專利範圍第1項所述之發光二極體元件的製造方法,該氮化物磊晶層的厚度為0.5-3μm。 The method for producing a light-emitting diode element according to claim 1, wherein the nitride epitaxial layer has a thickness of 0.5 to 3 μm. 如申請專利範圍第1項所述之發光二極體元件的製造方法,其中形成該發光結構更包括依序形成一第一摻雜層、一發光層與一第二摻雜層,其中該第一與該第二摻雜層的導電性不同,其中該發光層為一量子井層或一多重量子井層。 The method for fabricating a light-emitting diode device according to claim 1, wherein the forming the light-emitting structure further comprises sequentially forming a first doped layer, a light-emitting layer and a second doped layer, wherein the first doped layer The conductivity of the second doped layer is different, wherein the luminescent layer is a quantum well layer or a multiple quantum well layer. 如申請專利範圍第1項所述之發光二極體元件的製造方法,更包括:形成一第一鍵合層於該發光結構層上;形成一第二鍵合層於該導電承載基板上;以及通過該第一與該第二鍵合層,完成該鍵合程序。 The method for manufacturing a light-emitting diode element according to claim 1, further comprising: forming a first bonding layer on the light-emitting structure layer; forming a second bonding layer on the conductive carrier substrate; And completing the bonding process by the first and the second bonding layer. 如申請專利範圍第1項所述之發光二極體元件的製 造方法,更包括形成一第一與一第二電極,分別於該導電承載基板與該弱化結構的表面,其中該第一電極與該第二電極的導電型不同。 The system for producing a light-emitting diode element as described in claim 1 The method further includes forming a first electrode and a second electrode respectively on the surface of the conductive carrier substrate and the weakened structure, wherein the first electrode and the second electrode have different conductivity types. 如申請專利範圍第1項所述之發光二極體元件的製造方法,其中該導電承載基板,與該圖案化磊晶層或該發光結構的熱膨脹係數不同。 The method for fabricating a light-emitting diode element according to claim 1, wherein the conductive carrier substrate has a different thermal expansion coefficient from the patterned epitaxial layer or the light-emitting structure.
TW98110497A 2009-03-30 2009-03-30 Structure and device of light emitting diode and method for making the same TWI469382B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW98110497A TWI469382B (en) 2009-03-30 2009-03-30 Structure and device of light emitting diode and method for making the same
US12/562,145 US8093081B2 (en) 2009-03-30 2009-09-18 Device of light-emitting diode and method for fabricating the same
US13/309,530 US8502190B2 (en) 2009-03-30 2011-12-01 Device of light-emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98110497A TWI469382B (en) 2009-03-30 2009-03-30 Structure and device of light emitting diode and method for making the same

Publications (2)

Publication Number Publication Date
TW201036206A TW201036206A (en) 2010-10-01
TWI469382B true TWI469382B (en) 2015-01-11

Family

ID=42782972

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98110497A TWI469382B (en) 2009-03-30 2009-03-30 Structure and device of light emitting diode and method for making the same

Country Status (2)

Country Link
US (2) US8093081B2 (en)
TW (1) TWI469382B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI817264B (en) * 2021-11-26 2023-10-01 晶呈科技股份有限公司 Vertical light-emitting diode and manufacturing method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI407491B (en) * 2008-05-09 2013-09-01 Advanced Optoelectronic Tech Method for separating semiconductor and substrate
TWI469382B (en) * 2009-03-30 2015-01-11 Ind Tech Res Inst Structure and device of light emitting diode and method for making the same
TW201248725A (en) 2011-05-31 2012-12-01 Aceplux Optotech Inc Epitaxial substrate with transparent cone, LED, and manufacturing method thereof.
TWI469388B (en) * 2011-09-23 2015-01-11 Univ Nat Cheng Kung Light-emitting diode having surface-textured structure and method for manufacturing the same
KR102013363B1 (en) 2012-11-09 2019-08-22 서울바이오시스 주식회사 Light emitting device and method of fabricating the same
TWI627317B (en) * 2017-04-12 2018-06-21 光鋐科技股份有限公司 Rod micro light-emitting diode and manufacturing method the same
TWI647741B (en) * 2018-02-13 2019-01-11 優貝克科技股份有限公司 Process for microwave stripping epitaxial elements

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6303405B1 (en) * 1998-09-25 2001-10-16 Kabushiki Kaisha Toshiba Semiconductor light emitting element, and its manufacturing method
US20070141823A1 (en) * 2005-12-12 2007-06-21 Kyma Technologies, Inc. Inclusion-free uniform semi-insulating group III nitride substrates and methods for making same
CN100373642C (en) * 2004-12-13 2008-03-05 新世纪光电股份有限公司 Method of manufacturing light-emitting device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071795A (en) 1998-01-23 2000-06-06 The Regents Of The University Of California Separation of thin films from transparent substrates by selective optical processing
US20010042866A1 (en) * 1999-02-05 2001-11-22 Carrie Carter Coman Inxalygazn optical emitters fabricated via substrate removal
KR100630197B1 (en) * 2004-11-03 2006-09-29 삼성전자주식회사 Fabricating method of semicondouctor optical device for flip-chip bonding
KR20070063731A (en) 2005-12-15 2007-06-20 엘지전자 주식회사 Method of fabricating substrate with nano pattern and light emitting device using the substrate
TWI469382B (en) * 2009-03-30 2015-01-11 Ind Tech Res Inst Structure and device of light emitting diode and method for making the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6303405B1 (en) * 1998-09-25 2001-10-16 Kabushiki Kaisha Toshiba Semiconductor light emitting element, and its manufacturing method
CN100373642C (en) * 2004-12-13 2008-03-05 新世纪光电股份有限公司 Method of manufacturing light-emitting device
US20070141823A1 (en) * 2005-12-12 2007-06-21 Kyma Technologies, Inc. Inclusion-free uniform semi-insulating group III nitride substrates and methods for making same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI817264B (en) * 2021-11-26 2023-10-01 晶呈科技股份有限公司 Vertical light-emitting diode and manufacturing method thereof

Also Published As

Publication number Publication date
US20120074383A1 (en) 2012-03-29
US20100243987A1 (en) 2010-09-30
US8502190B2 (en) 2013-08-06
US8093081B2 (en) 2012-01-10
TW201036206A (en) 2010-10-01

Similar Documents

Publication Publication Date Title
TWI469382B (en) Structure and device of light emitting diode and method for making the same
TWI742222B (en) Light emitting diodes with integrated reflector for a direct view display and method of making thereof
CN101764185B (en) Semiconductor device and method for manufacturing semiconductor device
TWI527267B (en) Micro light emitting diode
EP1727218B1 (en) Method of manufacturing light emitting diodes
CN104025319B (en) Semiconductor device and the method manufacturing semiconductor device
KR101198758B1 (en) Vertical structured semiconductor light emitting device and method for producing thereof
CN104733365B (en) Semiconductor growing template, base plate separation method and method of manufacturing luminescent device
TWI429104B (en) Method for fabricating vertical led structures
JP2006135321A (en) Light emitting device and method of manufacturing the same
TWI559573B (en) Light emitting diode
KR20090104931A (en) Integrated large-area vertical structured group 3 nitride-based light emitting diode and its methods
JP2008543032A (en) InGaAlN light emitting device and manufacturing method thereof
JP2006086489A (en) Nitride semiconductor light emitting device having electrostatic discharge protection capability
TW201944627A (en) Subpixel light emitting diodes for direct view display and methods of making the same
TWI750650B (en) Emissive display substrate for surface mount micro-led fluidic assembly and method for making same
KR20140068798A (en) Method of manufacturing a light emitting diode
KR20110077707A (en) Vertical light emitting diode and manufacturing method of the same
US20160247963A1 (en) Horizontal power led device and method for manufacturing same
CN103904170B (en) The method of separating base plate and the method using its manufacture semiconductor device
TW201547053A (en) Method of forming a light-emitting device
TWI740488B (en) Planar surface mount micro-led for fluidic assembly and method for making same
US11973172B2 (en) Subpixel light emitting diodes for direct view display and methods of making the same
TWI786503B (en) Light-emitting device and manufacturing method thereof
CN101872815B (en) Light-emitting diode structure and element and manufacturing method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees