TWI627317B - Rod micro light-emitting diode and manufacturing method the same - Google Patents

Rod micro light-emitting diode and manufacturing method the same Download PDF

Info

Publication number
TWI627317B
TWI627317B TW106112153A TW106112153A TWI627317B TW I627317 B TWI627317 B TW I627317B TW 106112153 A TW106112153 A TW 106112153A TW 106112153 A TW106112153 A TW 106112153A TW I627317 B TWI627317 B TW I627317B
Authority
TW
Taiwan
Prior art keywords
gallium nitride
transparent substrate
emitting diode
light
columnar micro
Prior art date
Application number
TW106112153A
Other languages
Chinese (zh)
Other versions
TW201837248A (en
Inventor
黃德利
許明森
Original Assignee
光鋐科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光鋐科技股份有限公司 filed Critical 光鋐科技股份有限公司
Priority to TW106112153A priority Critical patent/TWI627317B/en
Application granted granted Critical
Publication of TWI627317B publication Critical patent/TWI627317B/en
Publication of TW201837248A publication Critical patent/TW201837248A/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

一種柱狀微發光二極體,其包括第一透明基板、氮化鎵層、複數個遮罩、第二透明基板及複數個金屬電極。氮化鎵層設置於第一透明基板之上,複數個遮罩設置於氮化鎵層之上,各遮罩彼此間隔設置並在其間具有間隙。通入三甲基鎵在氮化鎵層一段時間,停止通入三甲基鎵,再通入氨氣在氮化鎵層一段時間,停止通入氨氣,上述循環為成長週期,氮化鎵層經過多次成長週期而在各間隙成長複數個氮化鎵柱,接著複數個金屬電極設置於第二透明基板之下,第二透明基板黏附複數個氮化鎵柱,且第一透明基板和第二透明基板皆為透明,各氮化鎵柱往其上或其下發光。 A columnar micro-light emitting diode includes a first transparent substrate, a gallium nitride layer, a plurality of masks, a second transparent substrate, and a plurality of metal electrodes. The gallium nitride layer is disposed on the first transparent substrate, and the plurality of masks are disposed on the gallium nitride layer, and the masks are spaced apart from each other with a gap therebetween. Passing trimethylgallium to the gallium nitride layer for a period of time, stopping the introduction of trimethylgallium, and then introducing ammonia gas into the gallium nitride layer for a period of time, stopping the introduction of ammonia gas, the above cycle is a growth cycle, gallium nitride The layer grows a plurality of gallium nitride pillars in each gap after a plurality of growth cycles, and then the plurality of metal electrodes are disposed under the second transparent substrate, the second transparent substrate adheres to the plurality of gallium nitride pillars, and the first transparent substrate and The second transparent substrate is transparent, and each of the gallium nitride pillars emits light thereon or below.

Description

柱狀微發光二極體及其製造方法 Columnar micro-light emitting diode and manufacturing method thereof

本發明關於一種發光二極體,特別是,一種柱狀微發光二極體及其方法。 The present invention relates to a light-emitting diode, and more particularly to a columnar micro-light emitting diode and a method thereof.

發光二極體為一種發光的半導體元件,因為其發光材料的不同,發出不同顏色光。早期用於指示燈方面的紅光材料,雖然也有藍光材料的發展,但都因其發出的光色非純藍色或光度太弱,而未能投入商業用途,直到日本科學家天野浩與赤崎勇、中村修二共同發展出P型氮化鎵及氮化鎵晶體,成功地做出純藍色且高亮度的發光二極體,造就現今藍光二極體的大量普及,處處可見藍光二極體的身影。 A light-emitting diode is a light-emitting semiconductor element that emits light of different colors because of its luminescent material. The red light materials used in the early stage of the indicator light, although there were also the development of blue light materials, were not commercialized because of the non-pure blue color or the luminosity of the light, until the Japanese scientists Amano and Akasaka Nakamura Shuji has jointly developed P-type gallium nitride and gallium nitride crystals, successfully producing pure blue and high-brightness light-emitting diodes, which has created a large number of popular blue-light diodes, and blue-light diodes are everywhere. Figure.

現今,利用藍光二極體搭配螢光粉的使用,而發出其他顏色的光,再者,藍光二極體也可搭配兩種以上的螢光粉發出白光,以取代市面上的白熾燈泡,然而,由於其製造程序的複雜,製造成本跟著上揚,未能完全取代白熾燈泡,如何讓製造程序變得簡單,遂成為待解決的問題。 Nowadays, the use of blue light diodes with fluorescent powders is used to emit light of other colors. In addition, blue light diodes can also be used with two or more kinds of fluorescent powders to emit white light instead of the incandescent bulbs on the market. Due to the complexity of its manufacturing process, manufacturing costs have risen and failed to completely replace incandescent light bulbs. How to make the manufacturing process simple has become a problem to be solved.

有鑑於上述習知之問題,本發明的目的在於提供一種柱狀微發光二極體及其方法,用以解決習知技術中所面臨之問題。 In view of the above-mentioned problems, it is an object of the present invention to provide a columnar micro-light emitting diode and a method thereof for solving the problems faced by the prior art.

基於上述目的,本發明提供一種柱狀微發光二極體,其包括第一透明基板、氮化鎵(GaN)層、複數個遮罩、第二透明基板及複數個金屬電極。氮化鎵層設置於第一透明基板之上,接著複數個遮罩設置於氮化鎵層之上,各遮罩彼此間隔設置並在其間具有間隙。先通入三甲基鎵(TMGa)在氮化鎵層一段時間,通入三甲基鎵的時間為第一時間,停止通入三甲基鎵,再通入氨氣(NH3)在氮化鎵層一段時間,通入氨氣的時間為第二時間,停止通入氨氣,再次回到第一時間,第一時間後為第二時間,第一時間和第二時間結合為成長週期,氮化鎵層經過多次成長週期而在各間隙成長複數個氮化鎵柱,複數個金屬電極設置於第二透明基板之下,複數個金屬電極的數目對應複數個氮化鎵柱的數目,接著第二透明基板黏附於複數個氮化鎵柱。 Based on the above object, the present invention provides a columnar micro-light emitting diode comprising a first transparent substrate, a gallium nitride (GaN) layer, a plurality of masks, a second transparent substrate, and a plurality of metal electrodes. The gallium nitride layer is disposed on the first transparent substrate, and then a plurality of masks are disposed on the gallium nitride layer, and the masks are spaced apart from each other with a gap therebetween. First into trimethyl gallium (of TMGa) in the gallium nitride layer over time, trimethylgallium into a first time period, stopping the flow of trimethyl gallium, ammonia gas and then (NH 3) in a nitrogen During the gallium layer for a period of time, the time for introducing ammonia gas is the second time, the ammonia gas is stopped, and the first time is returned again. After the first time, the second time is combined, and the first time and the second time are combined into a growth cycle. The gallium nitride layer grows a plurality of gallium nitride pillars in each gap after a plurality of growth cycles, and the plurality of metal electrodes are disposed under the second transparent substrate, and the number of the plurality of metal electrodes corresponds to the number of the plurality of gallium nitride pillars Then, the second transparent substrate is adhered to a plurality of gallium nitride columns.

較佳地,各遮罩包括氮化矽(Si3N4)、二氧化矽(SiO2)及氧化鋁(Al2O3)中之其一。 Preferably, each of the masks includes one of tantalum nitride (Si 3 N 4 ), hafnium oxide (SiO 2 ), and aluminum oxide (Al 2 O 3 ).

較佳地,各金屬電極為對應且覆蓋複數個氮化鎵柱。 Preferably, each metal electrode is corresponding and covers a plurality of gallium nitride columns.

較佳地,各金屬電極為對應且沿著複數個氮化鎵柱之橫截面的側邊設置。 Preferably, each of the metal electrodes is correspondingly disposed along a side of a cross section of the plurality of gallium nitride pillars.

較佳地,各金屬電極包括銀(Ag)、鋁(Al)、銅(Cu)、鈦(Ti)、鎳(Ni)及金(Au)中之其一。 Preferably, each of the metal electrodes includes one of silver (Ag), aluminum (Al), copper (Cu), titanium (Ti), nickel (Ni), and gold (Au).

較佳地,在第一透明基板下方設置複數個螢光顆粒。 Preferably, a plurality of fluorescent particles are disposed under the first transparent substrate.

基於上述目的,本發明提供一種製造柱狀微發光二極體的方法,其包括(1)提供第一透明基板,並在第一透明基板上透過磊晶成長的方式成長氮 化鎵層(2)沉積遮罩層在氮化鎵層上方,透過曝光顯影的方式變為複數個遮罩,各遮罩彼此間隔設置並在其間具有間隙(3)通入三甲基鎵在氮化鎵層一段時間,通入三甲基鎵的時間為第一時間,停止通入三甲基鎵,再通入氨氣在氮化鎵層一段時間,通入氨氣的時間為第二時間,停止通入氨氣,再次回到第一時間,第一時間後為第二時間,第一時間和第二時間結合為成長週期,氮化鎵層經過多次成長週期而在各間隙成長複數個氮化鎵柱(4)黏附第二透明基板於複數個氮化鎵柱,複數個金屬電極沉積在第二透明基板之上。 Based on the above object, the present invention provides a method of manufacturing a columnar micro-light emitting diode, comprising: (1) providing a first transparent substrate, and growing nitrogen on the first transparent substrate by epitaxial growth The gallium layer (2) deposits a mask layer over the gallium nitride layer, and becomes a plurality of masks by exposure and development, and the masks are spaced apart from each other with a gap therebetween (3) passing through the trimethylgallium For a period of time, the gallium nitride layer is introduced into the trimethylgallium for the first time, the access to the trimethylgallium is stopped, and the ammonia gas is introduced into the gallium nitride layer for a period of time, and the ammonia gas is introduced for the second time. Time, stop the introduction of ammonia gas, return to the first time again, the second time after the first time, the first time and the second time are combined into a growth cycle, and the gallium nitride layer grows in each gap after multiple growth cycles A plurality of gallium nitride pillars (4) adhere the second transparent substrate to the plurality of gallium nitride pillars, and a plurality of metal electrodes are deposited on the second transparent substrate.

較佳地,磊晶成長的方式包括化學氣相沉積(CVD)法、分子束磊晶(MBE)及原子層堆積(ALD)。 Preferably, the manner of epitaxial growth includes chemical vapor deposition (CVD), molecular beam epitaxy (MBE), and atomic layer deposition (ALD).

基於上述目的,本發明提供一種柱狀微發光二極體陣列,其包括以矩陣方式排列之複數個柱狀微發光二極體,各柱狀微發光二極體包括第一透明基板、氮化鎵層、複數個遮罩、第二透明基板及複數個金屬電極。氮化鎵層設置於第一透明基板之上,接著複數個遮罩設置於氮化鎵層之上,各遮罩彼此間隔設置並在其間具有間隙。先通入三甲基鎵在氮化鎵層一段時間,通入三甲基鎵的時間為第一時間,停止通入三甲基鎵,再通入氨氣在氮化鎵層一段時間,通入氨氣的時間為第二時間,停止通入氨氣,再次回到第一時間,第一時間後為第二時間,第一時間和第二時間結合為成長週期,氮化鎵層經過多次成長週期而在各間隙成長複數個氮化鎵柱,沉積複數個金屬電極在第二透明基板之下,黏附第二透明基板於複數個氮化鎵柱,複數個金屬電極的數目對應複數個氮化鎵柱的數目。 Based on the above object, the present invention provides a columnar micro-light emitting diode array comprising a plurality of columnar micro-light emitting diodes arranged in a matrix, each of the columnar micro-light emitting diodes comprising a first transparent substrate and nitriding a gallium layer, a plurality of masks, a second transparent substrate, and a plurality of metal electrodes. The gallium nitride layer is disposed on the first transparent substrate, and then a plurality of masks are disposed on the gallium nitride layer, and the masks are spaced apart from each other with a gap therebetween. First, the trimethylgallium is introduced into the gallium nitride layer for a period of time, and the time for introducing the trimethylgallium is the first time, the access to the trimethylgallium is stopped, and the ammonia gas is introduced into the gallium nitride layer for a period of time. The time of entering the ammonia gas is the second time, the ammonia gas is stopped, and the first time is returned again. After the first time is the second time, the first time and the second time are combined into a growth period, and the gallium nitride layer passes through a plurality of gallium nitride columns are grown in each gap, a plurality of metal electrodes are deposited under the second transparent substrate, and the second transparent substrate is adhered to the plurality of gallium nitride columns, and the number of the plurality of metal electrodes corresponds to the plurality of The number of gallium nitride columns.

較佳地,柱狀微發光二極體設置控制電路,控制電路電性連接各柱狀微發光二極體並控制其發光。 Preferably, the columnar micro-light emitting diode is provided with a control circuit, and the control circuit is electrically connected to each of the columnar micro-light emitting diodes and controls the light emission thereof.

承上所述,本發明之柱狀微發光二極體及其方法,其可具有一或多個下述優點: In view of the above, the columnar micro-light emitting diode of the present invention and method thereof can have one or more of the following advantages:

(1)本發明之柱狀微發光二極體及其方法,施加電流於本發明時,每個氮化鎵柱因電而發光,並視每個氮化鎵柱為一個光點,再者,由於第一透明基板和第二透明基板皆為透明,各氮化鎵柱往其上或其下發光。 (1) The columnar micro-light-emitting diode of the present invention and a method thereof, when an electric current is applied in the present invention, each gallium nitride column emits light by electricity, and each of the gallium nitride columns is regarded as a light spot, and Since the first transparent substrate and the second transparent substrate are both transparent, each of the gallium nitride pillars emits light thereon or below.

(2)本發明之柱狀微發光二極體及其方法,經由交替通入氣體的方式成長氮化鎵柱,無需經由複雜的化學調配蝕刻成氮化鎵柱。 (2) The columnar micro-light-emitting diode of the present invention and the method thereof, wherein the gallium nitride column is grown by alternately introducing a gas, and it is not necessary to etch into a gallium nitride column through complicated chemical compounding.

(3)本發明之柱狀微發光二極體及其方法,由複數個柱狀微發光二極體組成柱狀微發光二極體陣列,以用於顯示器的背光模組。 (3) The columnar micro-light-emitting diode of the present invention and the method thereof, wherein a plurality of columnar micro-light-emitting diodes are used to form a columnar micro-light-emitting diode array for use in a backlight module of a display.

10‧‧‧第一透明基板 10‧‧‧First transparent substrate

20‧‧‧氮化鎵層 20‧‧‧GaN layer

21‧‧‧長條狀氮化鎵 21‧‧‧Large GaN

30‧‧‧遮罩層 30‧‧‧mask layer

31‧‧‧遮罩 31‧‧‧ mask

32‧‧‧長條狀遮罩 32‧‧‧ long strips

40‧‧‧成長週期 40‧‧‧ growth cycle

41‧‧‧第一時間 41‧‧‧First time

42‧‧‧第二時間 42‧‧‧ second time

50‧‧‧氮化鎵柱 50‧‧‧GaN Gallium Column

60‧‧‧第二透明基板 60‧‧‧Second transparent substrate

70‧‧‧金屬電極 70‧‧‧Metal electrodes

80‧‧‧螢光顆粒 80‧‧‧Fluorescent particles

90‧‧‧控制電路 90‧‧‧Control circuit

100‧‧‧控制電極 100‧‧‧Control electrode

311‧‧‧間隙 311‧‧‧ gap

321‧‧‧成長空間 321‧‧‧ Growth space

P‧‧‧正極 P‧‧‧ positive

N‧‧‧負極 N‧‧‧negative

第1圖為本發明之柱狀微發光二極體及其方法之第一實施例的流程圖。 Fig. 1 is a flow chart showing a first embodiment of a columnar micro-light-emitting diode of the present invention and a method therefor.

第2圖為本發明之柱狀微發光二極體及其方法之第一實施例的結構圖。 Fig. 2 is a structural view showing a first embodiment of a columnar micro-light-emitting diode of the present invention and a method therefor.

第3圖為本發明之柱狀微發光二極體及其方法之第二實施例之橫截面圖。 Fig. 3 is a cross-sectional view showing a second embodiment of the columnar micro-light-emitting diode of the present invention and a method therefor.

第4圖為本發明之柱狀微發光二極體及其方法之第二實施例之結構圖。 Fig. 4 is a structural view showing a second embodiment of the columnar micro-light-emitting diode of the present invention and a method thereof.

第5圖為本發明之柱狀微發光二極體及其方法之第三實施例之流程圖。 Fig. 5 is a flow chart showing a third embodiment of the columnar micro-light emitting diode of the present invention and a method therefor.

本發明之優點、特徵以及達到之技術方法將參照例示性實施例及所附圖式進行更詳細地描述而更容易理解,且本發明可以不同形式來實現,故不應被理解僅限於此處所陳述的實施例,相反地,對所屬技術領域具有通常知識者而言,所提供的實施例將使本揭露更加透徹與全面且完整地傳達本發明的範疇,且本發明將僅為所附加的申請專利範圍所定義。 The advantages and features of the present invention, as well as the technical methods of the present invention, are described in more detail with reference to the exemplary embodiments and the accompanying drawings. The embodiments of the present invention are to be construed as being limited by the scope of the present invention, and the invention The scope of the patent application is defined.

如第1圖及第2圖所示,其分別為本發明之柱狀微發光二極體及其方法之第一實施例的流程圖及本發明之柱狀微發光二極體及其方法之第一實施例的結構圖。在此實施例中,先說明製造本發明之方法,其包括:(1)提供第一透明基板10,並在第一透明基板10上透過磊晶成長的方式成長氮化鎵層20(2)沉積遮罩層30在氮化鎵層20上方,透過曝光顯影的方式變為複數個遮罩31,各遮罩31彼此間隔設置並在其間具有間隙311(3)通入三甲基鎵在氮化鎵層20一段時間,通入三甲基鎵的時間為第一時間41,停止通入三甲基鎵,再通入氨氣在氮化鎵層20一段時間,通入氨氣的時間為第二時間42,停止通入氨氣,再次回到第一時間41,第一時間41後為第二時間42,第一時間41和第二時間42結合為成長週期40,氮化鎵層20經過多次成長週期40而在各間隙311成長複數個氮化鎵柱50(4)沉積複數個金屬電極70在第二透明基板60之下,黏附第二透明基板60於複數個氮化鎵柱50,複數個金屬電極70的數目對應複數個氮化鎵柱50的數目。其中,磊晶成長的方式為有機化學金屬氣相沉積(MOCVD)法、分子束磊晶(MBE)及原子層堆積(ALD)之其一,並未限定在某種磊晶成長方法。 As shown in FIG. 1 and FIG. 2, the flow chart of the first embodiment of the columnar micro-light-emitting diode of the present invention and the method thereof, and the columnar micro-light-emitting diode of the present invention and the method thereof A structural diagram of the first embodiment. In this embodiment, a method of fabricating the present invention is described, which includes: (1) providing a first transparent substrate 10, and growing a gallium nitride layer 20 on the first transparent substrate 10 by epitaxial growth (2) The deposition mask layer 30 is formed over the gallium nitride layer 20 by exposure and development into a plurality of masks 31. The masks 31 are spaced apart from each other with a gap 311 (3) therebetween to pass through the trimethyl gallium in the nitrogen. The gallium layer 20 is heated for a period of time, and the time for introducing the trimethylgallium is the first time 41, the introduction of the trimethylgallium is stopped, and the ammonia gas is introduced into the gallium nitride layer 20 for a period of time, and the ammonia gas is introduced for a period of time. At the second time 42, the ammonia gas is stopped, and the first time 41 is returned again. After the first time 41 is the second time 42, the first time 41 and the second time 42 are combined into the growth period 40, and the gallium nitride layer 20 After a plurality of growth cycles 40, a plurality of gallium nitride pillars 50 (4) are grown in each gap 311 to deposit a plurality of metal electrodes 70 under the second transparent substrate 60, and the second transparent substrate 60 is adhered to the plurality of gallium nitride pillars. 50. The number of the plurality of metal electrodes 70 corresponds to the number of the plurality of gallium nitride columns 50. Among them, the epitaxial growth method is one of organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), and atomic layer deposition (ALD), and is not limited to a certain epitaxial growth method.

各遮罩31包括氮化矽(Si3N4)、二氧化矽(SiO2)及氧化鋁(Al2O3)中之其一,遮罩31為在可見光波段為高穿透率材質即可。各金屬電極70包括銀(Ag)、 鋁(Al)、銅(Cu)、鈦(Ti)、鎳(Ni)及金(Au)中之其一,金屬電極70為導電性良好的金屬即可。 Each of the masks 31 includes one of tantalum nitride (Si 3 N 4 ), cerium oxide (SiO 2 ), and aluminum oxide (Al 2 O 3 ), and the mask 31 is a high transmittance material in the visible light band. can. Each of the metal electrodes 70 includes one of silver (Ag), aluminum (Al), copper (Cu), titanium (Ti), nickel (Ni), and gold (Au), and the metal electrode 70 is a metal having good conductivity. .

根據上述方法製造本發明,其包括第一透明基板10、氮化鎵層20、複數個遮罩31、第二透明基板60及複數個金屬電極70。氮化鎵層20設置於第一透明基板10之上,接著複數個遮罩31設置於氮化鎵層20之上,各遮罩31彼此間隔設置並在其間具有間隙311。氮化鎵層20經過多次成長週期40而在各間隙311成長複數個氮化鎵柱50,複數個金屬電極70設置於第二透明基板60之下,複數個金屬電極70的數目對應複數個氮化鎵柱50的數目,接著第二透明基板60黏附於複數個氮化鎵柱50,且複數個金屬電極70為對應且覆蓋複數個氮化鎵柱50,在垂直於各遮罩31的方向,複數個金屬電極70兩兩以一電線相連,複數個金屬電極70為正極P,氮化鎵層20為負極N,施加電流在正極P、負極N,電流均勻通過氮化鎵柱50,讓氮化鎵柱50均勻發光。 The present invention is fabricated according to the above method, and includes a first transparent substrate 10, a gallium nitride layer 20, a plurality of masks 31, a second transparent substrate 60, and a plurality of metal electrodes 70. The gallium nitride layer 20 is disposed on the first transparent substrate 10, and then a plurality of masks 31 are disposed on the gallium nitride layer 20, and the masks 31 are spaced apart from each other with a gap 311 therebetween. The gallium nitride layer 20 grows a plurality of gallium nitride pillars 50 in each gap 311 through a plurality of growth cycles 40, and a plurality of metal electrodes 70 are disposed under the second transparent substrate 60, and the number of the plurality of metal electrodes 70 corresponds to a plurality of The number of gallium nitride pillars 50, followed by the second transparent substrate 60 adhered to the plurality of gallium nitride pillars 50, and the plurality of metal electrodes 70 correspond to and cover a plurality of gallium nitride pillars 50, perpendicular to the masks 31. In the direction, a plurality of metal electrodes 70 are connected by a wire, a plurality of metal electrodes 70 are positive electrodes P, a gallium nitride layer 20 is a negative electrode N, and a current is applied to the positive electrode P and the negative electrode N, and the current is uniformly passed through the gallium nitride column 50. The gallium nitride column 50 is uniformly illuminated.

除此之外,透過黃光曝光顯影的方式蝕刻氮化鎵柱50,此時,無氮化鎵柱50而剩下氮化鎵層20和基板10,在氮化鎵層20之上設置控制電極100;控制電路90設置於第二透明基板60之上,控制電路90透過埋入在第二透明基板60的金屬線連接各金屬電極70(正極P),控制電路90可控制各金屬電極70的電流,透過控制電路90和控制電極100的控制,能獨立點亮特定的氮化鎵柱50,此作法可依客製化需求,在單片晶圓內彈性改變製程晶片大小,避免因製程缺陷造成良率損失,解決目前微發光二極體量產困境。 In addition, the gallium nitride pillar 50 is etched by yellow light exposure development. At this time, the gallium nitride pillar 50 and the substrate 10 are left without the gallium nitride pillar 50, and the control is set on the gallium nitride layer 20. The electrode 100 is disposed on the second transparent substrate 60. The control circuit 90 connects the metal electrodes 70 (positive electrode P) through the metal wires buried in the second transparent substrate 60, and the control circuit 90 can control the metal electrodes 70. The current can be independently illuminate a specific gallium nitride column 50 through the control of the control circuit 90 and the control electrode 100. This method can flexibly change the process wafer size in a single wafer according to the customization requirements, thereby avoiding the process. The defect causes loss of yield and solves the current dilemma of mass production of micro-light-emitting diodes.

請參閱第3圖及第4圖,其分別為本發明之柱狀微發光二極體及其方法之第二實施例之橫截面圖及本發明之柱狀微發光二極體及其方法之第二 實施例之結構圖。於本實施例中,相同元件符號之元件,其配置與前述類似,其類似處於此便不再加以贅述。 Please refer to FIG. 3 and FIG. 4 , which are respectively a cross-sectional view of a columnar micro-light-emitting diode of the present invention and a second embodiment thereof, and a columnar micro-light-emitting diode of the present invention and a method thereof. second A structural diagram of an embodiment. In the present embodiment, the components of the same component symbols are similar in configuration to those described above, and the likes are not described herein again.

在第一透明基板10下方設置複數個螢光顆粒80,螢光顆粒80有各種顏色,例如:紅色螢光顆粒80、綠色螢光顆粒80,而使本發明發出的為各種色光,當然也可透過各種螢光顆粒80和氮化鎵柱50發出的藍光搭配,而混出白光。 A plurality of fluorescent particles 80 are disposed under the first transparent substrate 10, and the fluorescent particles 80 have various colors, for example, red fluorescent particles 80 and green fluorescent particles 80, so that the present invention emits various colored lights, of course, The white light is mixed by the combination of the various fluorescent particles 80 and the blue light emitted by the gallium nitride column 50.

再者,各金屬電極70為對應且沿著複數個氮化鎵柱50之橫截面的側邊設置,在垂直於各遮罩31的方向,各金屬電極70兩兩以一電線相連,各金屬電極70為正極P,氮化鎵層20為負極N,施加電流在正極P、負極N,金屬電極70不會擋住氮化鎵50柱發出的光,因此,氮化鎵柱50往其上或其下發光,增加本發明的優點。 Furthermore, each of the metal electrodes 70 is correspondingly disposed along a side of a cross section of the plurality of gallium nitride pillars 50. In a direction perpendicular to the respective masks 31, the metal electrodes 70 are connected by a wire, each metal The electrode 70 is a positive electrode P, the gallium nitride layer 20 is a negative electrode N, and a current is applied to the positive electrode P and the negative electrode N. The metal electrode 70 does not block the light emitted from the gallium nitride 50 column, and therefore, the gallium nitride column 50 is thereon or The underlying illumination increases the advantages of the present invention.

順道一提,可使用複數個柱狀微發光二極體排列成矩陣,成為柱狀微發光二極體陣列,而各柱狀微發光二極體的結構如第1圖所示,再者,各柱狀微發光二極體的結構還設置控制電路90,控制電路90控制各柱狀微發光二極體的亮度,第一透明基板10下方設置各種顏色的螢光顆粒80,透過調整控制電路90的電流大小,而激發不同顏色的螢光顆粒80,發出不同的色光,並可將柱狀微發光二極體陣列應用於顯示面板的背光模組。 By the way, a plurality of columnar micro-light-emitting diodes can be arranged in a matrix to form a columnar micro-light-emitting diode array, and the structure of each column-shaped micro-light-emitting diode is as shown in FIG. The structure of each of the columnar micro-light-emitting diodes is further provided with a control circuit 90. The control circuit 90 controls the brightness of each of the columnar micro-light-emitting diodes, and the phosphor particles 80 of various colors are disposed under the first transparent substrate 10, and the adjustment control circuit is transmitted through the adjustment control circuit. The current of 90 is excited to excite different colors of the fluorescent particles 80 to emit different color lights, and the columnar micro-light emitting diode array can be applied to the backlight module of the display panel.

請參閱第5圖,其為本發明之柱狀微發光二極體及其方法之第三實施例之流程圖。本實施例為利用大尺寸第一透明基板10直接做成柱狀微發光二極體陣列的方法,與前述的實施例略有不同,其包括:(1)提供第一透明基板10,並在其上磊晶成長氮化鎵層20,再透過感應耦合電漿(ICP)蝕刻,蝕刻成複數個長條狀氮化鎵21(2)在複數個長條狀氮化鎵21之上覆蓋遮罩層30,接著用 曝光顯影的方式蝕刻遮罩層30,使遮罩層30變為複數個長條狀遮罩32,各長條狀遮罩32彼此互相間隔並存在成長空間321(3)接著,使用如前述的三甲基鎵和氨氣交替通氣的成長週期40,在成長空間321成長氮化鎵柱50(4)最後,第二透明基板60黏附於複數個氮化鎵柱50,複數個金屬電極70設置於第二透明基板60之上,各金屬電極70為對應且沿著複數個氮化鎵柱50之橫截面的側邊設置,在垂直於各長條狀遮罩32的方向,各金屬電極70兩兩以一電線相連,各金屬電極70視為正極P,氮化鎵層20為負極N,施加電流在正極P、負極N,氮化鎵柱50往其上或其下發光。此方法適合用於具有大腔體的磊晶成長系統,可以一次做完較大面積的柱狀微發光二極體陣列,較為省時。 Please refer to FIG. 5, which is a flow chart of a third embodiment of the columnar micro-light emitting diode of the present invention and a method thereof. This embodiment is a method for directly forming a columnar micro-light-emitting diode array by using the large-sized first transparent substrate 10, which is slightly different from the foregoing embodiment, and includes: (1) providing a first transparent substrate 10, and The epitaxially grown gallium nitride layer 20 is etched by inductively coupled plasma (ICP) etching to form a plurality of strips of gallium nitride 21 (2) over a plurality of strips of gallium nitride 21 Cover layer 30, followed by The mask layer 30 is etched in a manner of exposure and development, and the mask layer 30 is formed into a plurality of elongated masks 32. The elongated masks 32 are spaced apart from each other and have a growth space 321 (3). Then, as described above, The growth cycle of alternating trimethylgallium and ammonia gas is 40, and the gallium nitride column 50 is grown in the growth space 321 (4) Finally, the second transparent substrate 60 is adhered to the plurality of gallium nitride columns 50, and the plurality of metal electrodes 70 are disposed. On the second transparent substrate 60, each of the metal electrodes 70 is disposed corresponding to and along the side of the cross section of the plurality of gallium nitride pillars 50. In the direction perpendicular to the elongated strips 32, the metal electrodes 70 are respectively disposed. The two electrodes are connected by a wire, each metal electrode 70 is regarded as a positive electrode P, the gallium nitride layer 20 is a negative electrode N, and a current is applied to the positive electrode P and the negative electrode N, and the gallium nitride column 50 emits light thereon or below. The method is suitable for an epitaxial growth system with a large cavity, and can complete a large area of the columnar micro-light-emitting diode array at one time, which is more time-saving.

綜上所述,本發明之柱狀微發光二極體及其方法,經由交替通入氣體的方式成長氮化鎵柱50,無需經由複雜的化學調配蝕刻成氮化鎵柱50,再者,施加電流於本發明時,每個氮化鎵柱50因電而發光,並視每個氮化鎵柱50為一個光點,且由於第一透明基板10和第二透明基板60皆為透明,各氮化鎵柱50往其上或其下發光,另外,由複數個柱狀微發光二極體組成柱狀微發光二極體陣列,並搭配控制電路90的使用,而能控制其氮化鎵柱50發出的光能量,激發不同顏色的螢光顆粒80,而發出不同色光,再者,也可透過製作大面積的柱狀微發光二極體陣列,並搭配控制電路90及控制電極100,能獨立點亮特定的氮化鎵柱50。總而言之,本發明之柱狀微發光二極體及其方法具有如上述的優點,不會限制氮化鎵柱50發射光的方向,並透過組合的方式製造柱狀微發光二極體陣列,而可用於顯示器的背光模組。 In summary, the columnar micro-light-emitting diode of the present invention and the method thereof, the gallium nitride pillar 50 is grown by alternately introducing a gas, and is not required to be etched into the gallium nitride pillar 50 via complicated chemical compounding, and further, When the current is applied in the present invention, each of the gallium nitride pillars 50 emits light by electricity, and each of the gallium nitride pillars 50 is a light spot, and since both the first transparent substrate 10 and the second transparent substrate 60 are transparent, Each of the gallium nitride pillars 50 emits light thereon or below. In addition, a plurality of columnar micro-light-emitting diodes are formed into a columnar micro-light-emitting diode array, and can be controlled by the use of the control circuit 90. The light energy emitted by the gallium column 50 excites the fluorescent particles 80 of different colors to emit different colors of light, and further, the large-area columnar micro-light emitting diode array can be fabricated, and the control circuit 90 and the control electrode 100 are matched. The specific gallium nitride column 50 can be independently illuminated. In summary, the columnar micro-light-emitting diode of the present invention and the method thereof have the advantages as described above, do not limit the direction in which the gallium nitride pillar 50 emits light, and manufacture a columnar micro-light-emitting diode array by a combination of methods. A backlight module that can be used in displays.

以上所述僅為舉例性,而非為限制性者。任何未脫離本發明之精神與範疇,而對其進行之等效修改或變更,均應包含於後附之申請專利範圍中。 The above is intended to be illustrative only and not limiting. Any equivalent modifications or alterations to the spirit and scope of the invention are intended to be included in the scope of the appended claims.

Claims (9)

一種柱狀微發光二極體,其包括:一第一透明基板,作為該柱狀微發光二極體的生長基板;一氮化鎵(GaN)層,設置於該第一透明基板之上;複數個遮罩,設置於該氮化鎵層之上,各該遮罩彼此間隔設置並在其間具有一間隙;一第二透明基板,作為該柱狀微發光二極體的導光板;以及複數個金屬電極,設置於該第二透明基板之下,並兩兩以一電線相連;其中,週期性輪流通入三甲基鎵(TMGa)和氨氣(NH3),在各該間隙成長複數個氮化鎵柱,該複數個金屬電極的數目對應該複數個氮化鎵柱的數目,該第二透明基板黏附於該複數個氮化鎵柱,接著透過黃光曝光顯影蝕刻該複數個氮化鎵柱,將該複數個氮化鎵柱和該氮化鎵層分離,在該氮化鎵層之上設置一控制電極,並於該第二透明基板之上設置一控制電路以連接各該金屬電極。 a columnar micro-light emitting diode comprising: a first transparent substrate as a growth substrate of the columnar micro-light-emitting diode; a gallium nitride (GaN) layer disposed on the first transparent substrate; a plurality of masks disposed on the gallium nitride layer, each of the masks being spaced apart from each other and having a gap therebetween; a second transparent substrate as a light guide plate of the columnar micro-light emitting diode; a metal electrode disposed under the second transparent substrate and connected by a wire; wherein the periodic wheel flows into the trimethylgallium (TMGa) and the ammonia gas (NH 3 ), and the plurality of gaps grow in the gap a gallium nitride column, the number of the plurality of metal electrodes is corresponding to the number of the plurality of gallium nitride pillars, the second transparent substrate is adhered to the plurality of gallium nitride pillars, and then the plurality of nitrogens are etched by yellow light exposure development a gallium pillar, separating the plurality of gallium nitride pillars and the gallium nitride layer, disposing a control electrode on the gallium nitride layer, and providing a control circuit on the second transparent substrate to connect the respective Metal electrode. 如申請專利範圍第1項所述之柱狀微發光二極體,其中各該遮罩包括氮化矽(Si3N4)、二氧化矽(SiO2)及氧化鋁(Al2O3)中之其一。 The columnar micro-light emitting diode according to claim 1, wherein each of the masks comprises tantalum nitride (Si 3 N 4 ), hafnium oxide (SiO 2 ), and aluminum oxide (Al 2 O 3 ). One of them. 如申請專利範圍第1項所述之柱狀微發光二極體,其中各該金屬電極為對應且覆蓋該複數個氮化鎵柱。 The columnar micro-light emitting diode according to claim 1, wherein each of the metal electrodes corresponds to and covers the plurality of gallium nitride columns. 如申請專利範圍第1項所述之柱狀微發光二極體,其中各該金屬電極為對應且沿著該複數個氮化鎵柱之橫截面的側邊設置。 The columnar micro-light emitting diode according to claim 1, wherein each of the metal electrodes is correspondingly disposed along a side of a cross section of the plurality of gallium nitride pillars. 如申請專利範圍第1項所述之柱狀微發光二極體,其中各該金屬電極包括銀(Ag)、鋁(Al)、銅(Cu)、鈦(Ti)、鎳(Ni)及金(Au)中之其一。 The columnar micro-light-emitting diode according to claim 1, wherein each of the metal electrodes comprises silver (Ag), aluminum (Al), copper (Cu), titanium (Ti), nickel (Ni), and gold. One of (Au). 如申請專利範圍第1項所述之柱狀微發光二極體,其中在該第一透明基板下方設置複數個螢光顆粒。 The columnar micro-light emitting diode according to claim 1, wherein a plurality of fluorescent particles are disposed under the first transparent substrate. 一種製造柱狀微發光二極體之方法,其包括:提供一第一透明基板以作為該柱狀微發光二極體的生長基板,並在該第一透明基板上透過一磊晶成長的方式成長一氮化鎵層;沉積一遮罩層在該氮化鎵層上方,透過曝光顯影的方式變為複數個遮罩,各該遮罩彼此間隔設置並在其間具有一間隙;週期性輪流通入三甲基鎵(TMGa)和氨氣(NH3),在各該間隙成長複數個氮化鎵柱;提供一第二透明基板以作為該柱狀微發光二極體的導光板,沉積複數個金屬電極在一第二透明基板之下,各該金屬電極兩兩以一電線相連,黏附該第二透明基板於該複數個氮化鎵柱,該複數個金屬電極的數目對應該複數個氮化鎵柱的數目;以及利用黃光曝光顯影蝕刻該複數個氮化鎵柱,將該複數個氮化鎵柱和該氮化鎵層分離,設置一控制電極於該氮化鎵層之上,並設置一控制電路於該第二透明基板之上以連接各該金屬電極。 A method for manufacturing a columnar micro-light-emitting diode, comprising: providing a first transparent substrate as a growth substrate of the columnar micro-light-emitting diode, and transmitting an epitaxial growth manner on the first transparent substrate Growing a gallium nitride layer; depositing a mask layer over the gallium nitride layer, forming a plurality of masks by exposure and development, each of the masks being spaced apart from each other with a gap therebetween; Into trimethylgallium (TMGa) and ammonia (NH 3 ), a plurality of gallium nitride columns are grown in each of the gaps; a second transparent substrate is provided as a light guide plate of the columnar micro-light emitting diodes, and a plurality of deposition plates are deposited a metal electrode is under a second transparent substrate, and each of the metal electrodes is connected by a wire, and the second transparent substrate is adhered to the plurality of gallium nitride columns, and the number of the plurality of metal electrodes corresponds to a plurality of nitrogens The number of gallium pillars; and etching and etching the plurality of gallium nitride pillars by yellow light exposure, separating the plurality of gallium nitride pillars and the gallium nitride layer, and providing a control electrode on the gallium nitride layer, And setting a control circuit to the second Above the transparent substrate, the metal electrodes are connected. 如申請專利範圍第7項所述之製造柱狀微發光二極體之方法,其中該磊晶成長的方式為有機化學金屬氣相沉積(MOCVD)法、分子束磊晶(MBE)及原子層堆積(ALD)之其一。 The method for manufacturing a columnar micro-light-emitting diode according to claim 7, wherein the epitaxial growth method is an organic chemical vapor deposition (MOCVD) method, molecular beam epitaxy (MBE), and an atomic layer. One of the accumulation (ALD). 一種柱狀微發光二極體陣列,其包括:複數個柱狀微發光二極體,其以一矩陣方式排列,各該柱狀微發光二極體包括:一第一透明基板,作為該柱狀微發光二極體的生長基板;一氮化鎵層,設置於該第一透明基板之上;複數個遮罩,設置於該氮化鎵層之上,各該遮罩彼此間隔設置並在其間具有一間隙;一第二透明基板,作為該柱狀微發光二極體的導光板;以及複數個金屬電極,設置於該第二透明基板之下,並兩兩以一電線相連;其中,週期性輪流通入三甲基鎵(TMGa)和氨氣(NH3),在各該間隙成長複數個氮化鎵柱,該第二透明基板黏附於該複數個氮化鎵柱,接著透過黃光曝光顯影蝕刻該複數個氮化鎵柱,將該複數個氮化鎵柱和該氮化鎵層分離,在該氮化鎵層之上設置一控制電極,並於該第二透明基板之上設置一控制電路以連接各該金屬電極。 A columnar micro-light emitting diode array comprising: a plurality of columnar micro-light emitting diodes arranged in a matrix, each of the columnar micro-light emitting diodes comprising: a first transparent substrate as the column a growth substrate of the micro-light-emitting diode; a gallium nitride layer disposed on the first transparent substrate; a plurality of masks disposed on the gallium nitride layer, each of the masks being spaced apart from each other a second transparent substrate as a light guide plate of the columnar micro-light emitting diode; and a plurality of metal electrodes disposed under the second transparent substrate and connected by a wire; Periodically, the trimethylgallium (TMGa) and the ammonia (NH 3 ) are flowed, and a plurality of gallium nitride columns are grown in each of the gaps, and the second transparent substrate is adhered to the plurality of gallium nitride pillars, and then passes through the yellow Photoexpanding and etching the plurality of gallium nitride pillars, separating the plurality of gallium nitride pillars and the gallium nitride layer, and disposing a control electrode on the gallium nitride layer, and on the second transparent substrate A control circuit is provided to connect the respective metal electrodes.
TW106112153A 2017-04-12 2017-04-12 Rod micro light-emitting diode and manufacturing method the same TWI627317B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106112153A TWI627317B (en) 2017-04-12 2017-04-12 Rod micro light-emitting diode and manufacturing method the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106112153A TWI627317B (en) 2017-04-12 2017-04-12 Rod micro light-emitting diode and manufacturing method the same

Publications (2)

Publication Number Publication Date
TWI627317B true TWI627317B (en) 2018-06-21
TW201837248A TW201837248A (en) 2018-10-16

Family

ID=63256140

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106112153A TWI627317B (en) 2017-04-12 2017-04-12 Rod micro light-emitting diode and manufacturing method the same

Country Status (1)

Country Link
TW (1) TWI627317B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200908780A (en) * 2007-05-31 2009-02-16 Eastman Kodak Co Ltd Electroluminescent device having improved light output
TW201036206A (en) * 2009-03-30 2010-10-01 Ind Tech Res Inst Structure and device of light emitting diode and method for making the same
US20110254043A1 (en) * 2009-10-19 2011-10-20 Sharp Kabushiki Kaisha Rod-like light-emitting device, method of manufacturing rod-like light-emitting device, backlight, illuminating device, and display device
US20130221385A1 (en) * 2010-09-01 2013-08-29 Sharp Kabushiki Kaisha Light emitting element and production method for same, production method for light-emitting device, illumination device, backlight, display device, and diode
TW201712891A (en) * 2015-07-13 2017-04-01 卡亞奈米公司 Device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200908780A (en) * 2007-05-31 2009-02-16 Eastman Kodak Co Ltd Electroluminescent device having improved light output
TW201036206A (en) * 2009-03-30 2010-10-01 Ind Tech Res Inst Structure and device of light emitting diode and method for making the same
US20110254043A1 (en) * 2009-10-19 2011-10-20 Sharp Kabushiki Kaisha Rod-like light-emitting device, method of manufacturing rod-like light-emitting device, backlight, illuminating device, and display device
US20130221385A1 (en) * 2010-09-01 2013-08-29 Sharp Kabushiki Kaisha Light emitting element and production method for same, production method for light-emitting device, illumination device, backlight, display device, and diode
TW201712891A (en) * 2015-07-13 2017-04-01 卡亞奈米公司 Device

Also Published As

Publication number Publication date
TW201837248A (en) 2018-10-16

Similar Documents

Publication Publication Date Title
Kang et al. Hybrid full-color inorganic light-emitting diodes integrated on a single wafer using selective area growth and adhesive bonding
US11404473B2 (en) III-nitride multi-wavelength LED arrays
CN105576108B (en) Light emitting device
EP2696375B1 (en) Light emitting diode
KR102590362B1 (en) III-Nitride multi-wavelength LED arrays with etch stop layer
CN101615646A (en) Threedimensional solid luminescent device and manufacture method thereof
JP2003158296A (en) Nitride semiconductor light emitting device chip and its manufacturing method
CN103811603A (en) A semiconductor light emitting device and a method of manufacturing the same
JPH0553511A (en) Color display device
US8013349B2 (en) Light emitting device and method of manufacturing the same
WO2014036939A1 (en) Warm white light-emitting diode and manufacturing method thereof
CN110265587A (en) Display panel and its manufacturing method
TWI627317B (en) Rod micro light-emitting diode and manufacturing method the same
KR100826379B1 (en) monolithic white light emitting device
JP3157124U (en) Structure of gallium nitride based light-emitting diode
JP7423860B2 (en) Light emitting diode device with adjustable light emission
JP2000286506A (en) Gallium nitride light-emitting device
KR100670929B1 (en) Flip chip light-emitting device and Method of manufacturing the same
US7888152B2 (en) Method of forming laterally distributed LEDs
KR100523740B1 (en) Lamp utilizing the LED
KR20210023423A (en) Light emitting device and method of fabricating the same
KR102017496B1 (en) Light emitting device
KR101986720B1 (en) Light emitting device
US20240297270A1 (en) Green LED With Current-Invariant Emission Wavelength
JP2014049759A (en) Method for manufacturing light emitting diode chip