TWI469267B - Method for fabricating a sonos memory - Google Patents

Method for fabricating a sonos memory Download PDF

Info

Publication number
TWI469267B
TWI469267B TW99101630A TW99101630A TWI469267B TW I469267 B TWI469267 B TW I469267B TW 99101630 A TW99101630 A TW 99101630A TW 99101630 A TW99101630 A TW 99101630A TW I469267 B TWI469267 B TW I469267B
Authority
TW
Taiwan
Prior art keywords
layer
oxide layer
hard mask
region
patterned
Prior art date
Application number
TW99101630A
Other languages
Chinese (zh)
Other versions
TW201126650A (en
Inventor
Ping Chia Shih
yu cheng Yin
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW99101630A priority Critical patent/TWI469267B/en
Publication of TW201126650A publication Critical patent/TW201126650A/en
Application granted granted Critical
Publication of TWI469267B publication Critical patent/TWI469267B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Description

製作矽-氧化物-氮化物-氧化物-矽記憶體的方法Method for making bismuth-oxide-nitride-oxide-germanium memory

本發明是關於一種製作SONOS記憶體的方法,尤指一種維持SONOS記憶體中ONO堆疊結構比例的製作方法。The invention relates to a method for fabricating a SONOS memory, in particular to a method for maintaining the proportion of an ONO stack structure in a SONOS memory.

非揮發性記憶體裝置具有不因電源供應中斷而造成儲存資料遺失的特性,因此被廣泛使用。現今廣泛使用的非揮發性記憶體裝置包含有唯讀記憶體(read-only-memory,ROM)、可程式化唯讀記憶體(programmable-read-only memory,PROM)、可抹除及可程式化唯讀記憶體(erasable-programmable-read-only memory,EPROM)以及電子式可抹除可程式化唯讀記憶體(electrically-erasable-programmable-read-only memory,EEPROM)。其中,電子式可抹除可程式化唯讀記憶體相較於其他非揮發性記憶體不同之處在於他們可利用電子來進行程式化及抹除操作。The non-volatile memory device is widely used because it has a characteristic that the stored data is not lost due to power supply interruption. Non-volatile memory devices widely used today include read-only-memory (ROM), programmable-read-only memory (PROM), erasable and programmable Erasable-programmable-read-only memory (EPROM) and electronically erasable-programmable-read-only memory (EEPROM). Among them, electronic erasable programmable read-only memory is different from other non-volatile memory in that they can use electronic to program and erase.

目前對EEPROM裝置中產品研發的方向均集中在增加程式化的速度、降低進行程式化與讀取時的電壓、延長資料保存的時間、減少記憶體單元的抹除時間以及縮小記憶體元件的尺寸。此外,現今有些快閃(Flash)記憶體陣列(array)係使用一種由雙層多晶矽堆疊所形成的閘極(Dual poly-Si gate),且在此閘極結構中多晶矽通常會以氧化物-氮化物-氧化物(oxide-nitride-oxide,ONO)所構成的介電材料作區隔,元件操作時將電子由基板注入底層的多晶矽中達到儲存資料(data)的功能。然而,此由雙層多晶矽閘極所形成的記憶體陣列由於只能儲存單一位元的資料,故較不利於提昇記憶體容量。因此另一種衍生的快閃記憶體使用矽-氧化物-氮化物-氧化物-矽(SONOS)作為資料儲存單元即因應而生,而且可以作到一個電晶體(transistor)同時儲存二個位元的功能,如此可以達到縮小元件尺寸及提升記憶體的容量。SONOS元件的操作方式例舉如下。At present, the direction of product development in EEPROM devices is focused on increasing the speed of stylization, reducing the voltage during programming and reading, prolonging the time for data storage, reducing the erasing time of memory cells, and reducing the size of memory components. . In addition, some flash memory arrays today use a dual poly-Si gate formed by a stack of two-layer polysilicon, and in this gate structure, polysilicon is usually oxide- A dielectric material composed of an oxide-nitride-oxide (ONO) is used as a spacer, and when the device is operated, electrons are injected from the substrate into the underlying polysilicon to achieve the function of storing data. However, the memory array formed by the double-layer polysilicon gate is more difficult to increase the memory capacity because it can store only a single bit of data. Therefore, another derivative flash memory uses 矽-oxide-nitride-oxide-矽 (SONOS) as a data storage unit, and can be used as a transistor to store two bits at the same time. The function is to reduce the size of the component and increase the capacity of the memory. The operation of the SONOS device is exemplified as follows.

在SONOS記憶體進行程式化的時候,電荷會從一基底轉移至ONO結構中的氮化矽層。舉例來說,使用者會先施加一電壓到閘極和汲極並建立垂直電場(vertical electric field))及橫向電場(lateral electric field),然後藉由這些電場沿著通道來增加電子的運行速度。當電子沿著通道移動時,一部份的電子會獲得足夠的能量並越過底部二氧化矽層的位能障壁而被陷捕(trap)在ONO結構的氮化矽層中。由於接近汲極區的電場最強,因此電子通常會陷捕在靠近汲極的區域。反之,當操作者將施加到源極與汲極區域的電位進行反向時,電子則會沿著通道朝相反的方向前進,並被注入到靠近源極區域的氮化矽層中。由於部分氮化矽層並不導電,這些引入到氮化矽層中的電荷傾向於維持在局部區域(localized)。因此,根據所施加的電壓,電荷可儲存在單一氮化矽層中的各不同區域中。When the SONOS memory is programmed, the charge is transferred from a substrate to the tantalum nitride layer in the ONO structure. For example, the user first applies a voltage to the gate and the drain and establishes a vertical electric field and a lateral electric field, and then increases the speed of the electron along the channel by these electric fields. . As the electron moves along the channel, a portion of the electrons will gain sufficient energy to trap trapped in the tantalum nitride layer of the ONO structure across the potential barrier of the bottom ceria layer. Since the electric field near the bungee zone is the strongest, electrons are usually trapped in areas close to the bungee. Conversely, when the operator reverses the potential applied to the source and drain regions, the electrons travel in the opposite direction along the channel and are implanted into the tantalum nitride layer near the source region. Since a portion of the tantalum nitride layer is not electrically conductive, these charges introduced into the tantalum nitride layer tend to remain localized. Thus, depending on the applied voltage, the charge can be stored in different regions of the single tantalum nitride layer.

依據習知製作SONOS記憶體與MOS電晶體的流程,通常是先於記憶體區的半導體基底表面形成一圖案化之ONO堆疊結構,然後直接將閘極氧化層覆蓋於ONO堆疊結構中最上層的氧化矽層表面及電晶體區的半導體基底上。然而,閘極氧化層與堆疊結構中氧化層的堆疊容易改變整個ONO堆疊結構中層與層之間的比例,進而影響整個SONOS記憶體的運作。因此如何改良目前SONOS記憶體的製程以維持記憶體單元中ONO結構的厚度比例即為現今一重要課題。According to the conventional process of fabricating SONOS memory and MOS transistor, a patterned ONO stack structure is usually formed on the surface of the semiconductor substrate before the memory region, and then the gate oxide layer is directly covered on the uppermost layer of the ONO stack structure. On the surface of the yttrium oxide layer and on the semiconductor substrate of the transistor region. However, the stacking of the gate oxide layer and the oxide layer in the stacked structure tends to change the ratio between the layers in the entire ONO stack structure, thereby affecting the operation of the entire SONOS memory. Therefore, how to improve the current SONOS memory process to maintain the thickness ratio of the ONO structure in the memory cell is an important issue today.

因此本發明是揭露一種製作SONOS記憶體的方法,以解決上述習知製程中所遇到的瓶頸。Therefore, the present invention discloses a method for fabricating SONOS memory to solve the bottleneck encountered in the above conventional processes.

本發明是揭露一種製作矽-氧化物-氮化物-氧化物-矽(SONOS)記憶體的方法。首先提供一半導體基底,然後形成一第一氧化矽層、一氮化矽層以及一第二氧化矽層於該半導體基底表面。接著形成一硬遮罩於第二氧化矽層表面,並圖案化硬遮罩、第一氧化矽層、氮化矽層及第二氧化矽層以形成一圖案化硬遮罩及一堆疊結構。隨後形成一閘極氧化層於圖案化硬遮罩表面、去除閘極氧化層及圖案化硬遮罩及形成一圖案化之多晶矽層於堆疊結構表面。最後形成一源極/汲極區域於多晶矽層兩側之半導體基底中。The present invention is directed to a method of making a strontium-oxide-nitride-oxide-germanium (SONOS) memory. First, a semiconductor substrate is provided, and then a first tantalum oxide layer, a tantalum nitride layer, and a second tantalum oxide layer are formed on the surface of the semiconductor substrate. A hard mask is then formed on the surface of the second tantalum oxide layer, and the hard mask, the first tantalum oxide layer, the tantalum nitride layer and the second tantalum oxide layer are patterned to form a patterned hard mask and a stacked structure. A gate oxide layer is then formed on the patterned hard mask surface, the gate oxide layer and the patterned hard mask are removed, and a patterned polysilicon layer is formed on the surface of the stacked structure. Finally, a source/drain region is formed in the semiconductor substrate on both sides of the polysilicon layer.

本發明另一實施例是揭露一種製作SONOS記憶體的方法,包含有下列步驟:提供一半導體基底,該半導體基底上具有一記憶體區與一電晶體區;形成一第一氧化矽層、一氮化矽層以及一第二氧化矽層於記憶體區及電晶體區之半導體基底表面;形成一硬遮罩於第二氧化矽層表面;圖案化硬遮罩、第一氧化矽層、氮化矽層及第二氧化矽層以於記憶體區形成一圖案化硬遮罩及一堆疊結構;形成一閘極氧化層於圖案化硬遮罩表面及電晶體區;去除記憶體區之閘極氧化層;去除該記憶體區之圖案化硬遮罩;分別形成一圖案化之多晶矽層於記憶體區之堆疊結構表面及電晶體區;以及各形成一源極/汲極區域於記憶體區及電晶體區之多晶矽層兩側之半導體基底中。Another embodiment of the present invention discloses a method of fabricating a SONOS memory, comprising the steps of: providing a semiconductor substrate having a memory region and a transistor region; forming a first ruthenium oxide layer, a tantalum nitride layer and a second hafnium oxide layer on the surface of the semiconductor substrate of the memory region and the transistor region; forming a hard mask on the surface of the second hafnium oxide layer; patterning the hard mask, the first hafnium oxide layer, and the nitrogen layer The ruthenium layer and the second ruthenium oxide layer form a patterned hard mask and a stacked structure in the memory region; a gate oxide layer is formed on the surface of the patterned hard mask and the transistor region; and the gate of the memory region is removed a pole oxide layer; a patterned hard mask for removing the memory region; forming a patterned polysilicon layer on the stacked structure surface and the transistor region of the memory region; and forming a source/drain region in the memory The semiconductor substrate on both sides of the polysilicon layer of the region and the transistor region.

請參照第1圖至第9圖,第1圖至第9圖為本發明較佳實施例製作一SONOS記憶體之示意圖。如第1圖所示,首先提供一半導體基底12,例如一由砷化鎵、矽覆絕緣(silicon on insulator,SOI)層、磊晶層、矽鍺層或其他半導體基底材料所構成的基底。半導體基底12上定義有一記憶體區14與一電晶體區16,然後依序形成一第一氧化矽層18、一氮化矽層20、一第二氧化矽層22以及一硬遮罩26於整個半導體基底12表面。在本實施例中,硬遮罩26較佳由氮化矽所構成,其厚度約介於100埃至200埃之間,且較佳為150埃。Please refer to FIG. 1 to FIG. 9 . FIG. 1 to FIG. 9 are schematic diagrams showing a SONOS memory according to a preferred embodiment of the present invention. As shown in FIG. 1, a semiconductor substrate 12 is first provided, such as a substrate composed of gallium arsenide, a silicon on insulator (SOI) layer, an epitaxial layer, a germanium layer, or other semiconductor substrate material. A memory region 14 and a transistor region 16 are defined on the semiconductor substrate 12, and then a first hafnium oxide layer 18, a tantalum nitride layer 20, a second hafnium oxide layer 22, and a hard mask 26 are sequentially formed. The entire surface of the semiconductor substrate 12. In the present embodiment, the hard mask 26 is preferably made of tantalum nitride and has a thickness of between about 100 angstroms and 200 angstroms, and preferably 150 angstroms.

如第2圖所示,先形成一圖案化光阻層28於記憶體區14的硬遮罩26上,然後利用圖案化光阻層28當作遮罩進行一乾蝕刻製程,以去除記憶體區14部分硬遮罩26、及部分第二氧化矽層22及部分氮化矽層20,以及電晶體區16的硬遮罩26、第二氧化矽層22及氮化矽層20,而停止於第一氧化矽層18表面。As shown in FIG. 2, a patterned photoresist layer 28 is first formed on the hard mask 26 of the memory region 14, and then a dry etching process is performed using the patterned photoresist layer 28 as a mask to remove the memory region. a 14-part hard mask 26, a portion of the second hafnium oxide layer 22 and a portion of the tantalum nitride layer 20, and the hard mask 26, the second hafnium oxide layer 22 and the tantalum nitride layer 20 of the transistor region 16 are stopped at The surface of the first ruthenium oxide layer 18.

如第3圖所示,接著再利用圖案化光阻層28當作遮罩進行一濕蝕刻製程,以去除記憶體區14的部分第一氧化矽層18與電晶體區16的第一氧化矽層18,以於記憶體區14形成一ONO堆疊結構24。As shown in FIG. 3, a wet etching process is then performed using the patterned photoresist layer 28 as a mask to remove a portion of the first hafnium oxide layer 18 of the memory region 14 and the first hafnium oxide of the transistor region 16. Layer 18 forms an ONO stack structure 24 for memory region 14.

接著如第4圖所示,利用一硫酸與過氧化氫混合物(sulfuric acid-hydrogen peroxide mixture,SPM)來進行一清洗製程,以去除圖案化光阻層28。需注意的是,雖然在此清洗過程中部分的硬遮罩26會流失,但大部分的硬遮罩26仍覆蓋於第二氧化矽層22表面,使得整個半導體基底12表面僅剩下記憶體區14存在有ONO的堆疊結構24,且此ONO堆疊結構24的頂部仍覆蓋有硬遮罩26。在本實施例中,經由SPM清洗步驟剩餘的硬遮罩26厚度約介於60埃至80埃。Next, as shown in FIG. 4, a cleaning process is performed using a sulfuric acid-hydrogen peroxide mixture (SPM) to remove the patterned photoresist layer 28. It should be noted that although part of the hard mask 26 is lost during the cleaning process, most of the hard mask 26 covers the surface of the second ruthenium oxide layer 22, so that only the memory remains on the entire surface of the semiconductor substrate 12. The region 14 has a stacked structure 24 of ONOs, and the top of this ONO stack structure 24 is still covered with a hard mask 26. In the present embodiment, the remaining hard mask 26 via the SPM cleaning step has a thickness of between about 60 angstroms and 80 angstroms.

然後如第5圖所示,對整個半導體基底12表面進行一現場蒸汽成長(in-situ steam generation,ISSG)製程,以於記憶體區14的半導體基底12及硬遮罩26表面形成一閘極氧化層30並同時於電晶體區16的半導體基底12表面形成一閘極氧化層32。在本實施中,閘極氧化層30/32的厚度較佳約30埃。Then, as shown in FIG. 5, an in-situ steam generation (ISSG) process is performed on the entire surface of the semiconductor substrate 12 to form a gate on the surface of the semiconductor substrate 12 and the hard mask 26 of the memory region 14. The oxide layer 30 simultaneously forms a gate oxide layer 32 on the surface of the semiconductor substrate 12 of the transistor region 16. In the present embodiment, the thickness of the gate oxide layer 30/32 is preferably about 30 angstroms.

另外需注意的是,由於現場蒸汽成長製程係為一侵入性的氧化物成長步驟,因此於硬遮罩26表面形成閘極氧化層30的時候會同時消耗部分的硬遮罩26並降低硬遮罩26的厚度。依據本發明之較佳實施例,硬遮罩26在現場蒸汽成長製程後的剩餘厚度約介於40埃至50埃。然而,即便部分的硬遮罩26在形成閘極氧化層30的過程中被消耗,本發明仍可藉由硬遮罩26的保護來維持整個堆疊結構24中第一氧化矽層18、氮化矽層20與第二氧化矽層22的厚度比例。In addition, it should be noted that since the on-site vapor growth process is an invasive oxide growth step, when the gate oxide layer 30 is formed on the surface of the hard mask 26, part of the hard mask 26 is simultaneously consumed and the hard cover is reduced. The thickness of the cover 26. In accordance with a preferred embodiment of the present invention, the remaining thickness of the hard mask 26 after the in-situ vapor growth process is between about 40 angstroms and 50 angstroms. However, even if a portion of the hard mask 26 is consumed during the formation of the gate oxide layer 30, the present invention maintains the first hafnium oxide layer 18 and nitride in the entire stacked structure 24 by the protection of the hard mask 26. The thickness ratio of the tantalum layer 20 to the second hafnium oxide layer 22.

接著於部分的電晶體區16覆蓋一圖案化光阻層(圖未示)並暴露出記憶體區14的閘極氧化層30表面。然後如第6圖所示,先利用一濕蝕刻製程去除部分電晶體區16的部分閘極氧化層及記憶體區14的閘極氧化層30。接著如第7圖所示,利用一硫酸與過氧化氫混合物來去除設於記憶體區14的硬遮罩26及此圖案化光阻層,進而暴露出堆疊結構24中最上層的第二氧化矽層22。A portion of the transistor region 16 is then covered with a patterned photoresist layer (not shown) and exposes the surface of the gate oxide layer 30 of the memory region 14. Then, as shown in FIG. 6, a portion of the gate oxide layer of the portion of the transistor region 16 and the gate oxide layer 30 of the memory region 14 are removed by a wet etching process. Next, as shown in FIG. 7, the hard mask 26 and the patterned photoresist layer disposed in the memory region 14 are removed by using a mixture of monosulfuric acid and hydrogen peroxide, thereby exposing the second oxidation of the uppermost layer in the stacked structure 24.矽 layer 22.

依據本發明之一實施例,電晶體區16另包含一輸入/輸出(I/O)區以及一核心(core)區,而上述之圖案化光阻層較佳形成於I/O區的半導體基底12上。因此,以上述濕蝕刻製程去除記憶體區14之閘極氧化層30的時候較佳同時去除核心區的閘極氧化層。然後再進行另一現場蒸汽成長製程,以於核心區中形成一厚度較薄的閘極氧化層。換句話說,I/O區及核心區的半導體基底12表面會分別形成兩種不同厚度的閘極氧化層。According to an embodiment of the invention, the transistor region 16 further includes an input/output (I/O) region and a core region, and the patterned photoresist layer is preferably formed in the I/O region. On the substrate 12. Therefore, when the gate oxide layer 30 of the memory region 14 is removed by the above wet etching process, it is preferable to simultaneously remove the gate oxide layer of the core region. Another on-site vapor growth process is then performed to form a thinner gate oxide layer in the core region. In other words, the surface of the semiconductor substrate 12 of the I/O region and the core region respectively forms gate oxide layers of two different thicknesses.

如第8圖所示,先覆蓋一多晶矽層(圖未示)於記憶體區14及電晶體區16的半導體基底12上,其中設於記憶體區14的多晶矽層較佳覆蓋半導體基底12與堆疊結構24表面,而設於電晶體區16的多晶矽層則較佳覆蓋閘極氧化層32表面。接著進行一圖案轉移製程,例如利用一圖案化光阻層(圖未示)當作遮罩進行一蝕刻製程,去除部分多晶矽層,以於記憶體區14的半導體基底12表面形成一堆疊閘極34以及於電晶體區16形成一閘極電極36。其中,堆疊閘極34包含由圖案化之多晶矽層33所構成的控制閘極電極以及由第二氧化矽層22、氮化矽層20及第一氧化矽層18所構成的ONO堆疊結構。如同先前所述,氮化矽層20在進行程式化與抹除時可作為一電荷儲存層(charge storage layer)。As shown in FIG. 8, a polysilicon layer (not shown) is first overlying the semiconductor substrate 12 of the memory region 14 and the transistor region 16, wherein the polysilicon layer disposed in the memory region 14 preferably covers the semiconductor substrate 12 and The surface of the structure 24 is stacked, and the polysilicon layer provided in the transistor region 16 preferably covers the surface of the gate oxide layer 32. Then, a pattern transfer process is performed. For example, a patterned photoresist layer (not shown) is used as a mask to perform an etching process to remove a portion of the polysilicon layer to form a stacked gate on the surface of the semiconductor substrate 12 of the memory region 14. 34 and a gate electrode 36 is formed in the transistor region 16. The stack gate 34 includes a control gate electrode composed of the patterned polysilicon layer 33 and an ONO stack structure composed of the second hafnium oxide layer 22, the tantalum nitride layer 20 and the first hafnium oxide layer 18. As previously described, the tantalum nitride layer 20 acts as a charge storage layer when programmed and erased.

然後如第9圖所示,進行一離子佈植製程,利用堆疊閘極34與閘極電極36當作遮罩,以於堆疊閘極34與閘極電極36兩側的半導體基底12中各形成一源極/汲極區域38/40。Then, as shown in FIG. 9, an ion implantation process is performed, using the stacked gate 34 and the gate electrode 36 as a mask to form each of the semiconductor substrate 12 on both sides of the stacked gate 34 and the gate electrode 36. A source/drain region 38/40.

接著形成一層間介電層(inter-layer dielectric,ILD)42於記憶體區14及電晶體區16的半導體基底12上並覆蓋堆疊閘極34與閘極電極36,然後進行另一圖案轉移製程,例如利用一圖案化光阻層(圖未示)當作遮罩來進行一蝕刻製程,以於層間介電層42中形成複數個接觸洞44。隨後覆蓋一由鎢(W)等所構成的金屬層於層間介電層42上並填滿各接觸洞44,以於接觸洞44中形成複數個接觸插塞46。至此即完成本發明較佳實施例之一SONOS記憶體單元,其較佳包含一SONOS電晶體與一MOS電晶體。需注意的是,上述製程雖以整合SONOS電晶體與MOS電晶體為例,但不侷限於此,本發明又可依據製程需求僅實施記憶體區14的製程並僅製作出SONOS電晶體,此設計也屬本發明所涵蓋的範圍。An inter-layer dielectric (ILD) 42 is then formed on the semiconductor substrate 12 of the memory region 14 and the transistor region 16 and covers the stack gate 34 and the gate electrode 36, and then another pattern transfer process is performed. For example, an etching process is performed using a patterned photoresist layer (not shown) as a mask to form a plurality of contact holes 44 in the interlayer dielectric layer 42. A metal layer made of tungsten (W) or the like is then overlying the interlayer dielectric layer 42 and fills the contact holes 44 to form a plurality of contact plugs 46 in the contact holes 44. Thus, a SONOS memory cell of a preferred embodiment of the present invention is completed, which preferably comprises a SONOS transistor and a MOS transistor. It should be noted that although the above process is exemplified by integrating the SONOS transistor and the MOS transistor, the present invention is not limited thereto, and the invention can only implement the process of the memory region 14 according to the process requirements and only produce the SONOS transistor. Designs are also within the scope of the invention.

另外,依據本發明之一實施例,上述製程所揭露之SONOS電晶體又可應用至一非揮發性記憶體,例如一同時具有揮發性記憶體元件與非揮發性記憶體元件之優點的非揮發性靜態隨機存取記憶體(non-volatile static random access memory,NVSRAM)元件。NVSRAM元件較佳包含一記憶單元陣列、複數條位元線(bit line)以及複數條字元線(word line)。記憶單元陣列包含在垂直方向之複數行NVSRAM單元與在水平方向之複數列NVSRAM單元。位元線以平行於記憶單元陣列中複數行NVSRAM單元之方向來設置,而複數條字元線以平行於記憶單元陣列中複數列NVSRAM單元之方向來設置。在記憶單元陣列中,每一個NVSRAM單元具有相同結構,每一列NVSRAM單元共用一組相對應之位元線BT和BC,而每一行NVSRAM則共用一條相對應之字元線WL。In addition, according to an embodiment of the invention, the SONOS transistor disclosed in the above process can be applied to a non-volatile memory, such as a non-volatile product having the advantages of both a volatile memory component and a non-volatile memory component. Non-volatile static random access memory (NVSRAM) component. The NVSRAM device preferably includes a memory cell array, a plurality of bit lines, and a plurality of word lines. The memory cell array includes a plurality of rows of NVSRAM cells in a vertical direction and a plurality of columns of NVSRAM cells in a horizontal direction. The bit lines are arranged parallel to the direction of the plurality of rows of NVSRAM cells in the memory cell array, and the plurality of word lines are arranged parallel to the direction of the plurality of columns of NVSRAM cells in the memory cell array. In the memory cell array, each NVSRAM cell has the same structure, each column of NVSRAM cells shares a corresponding set of bit lines BT and BC, and each row of NVSRAM shares a corresponding word line WL.

請參照第10圖,第10圖為本發明將上述製程中所完成之SONOS電晶體應用至一NVSRAM元件之等效電路示意圖。如圖中所示,記憶單元陣列中一NVSRAM單元52包含一揮發性電路54與兩組三電晶體SONOS單元56。其中3T-SONOS單元56各包含一上述實施例所揭露之SONOS電晶體58以及兩個MOS電晶體。揮發性電路54則採用六電晶體(6T)架構,且各電晶體均為MOS電晶體型態。Please refer to FIG. 10. FIG. 10 is a schematic diagram showing an equivalent circuit of applying the SONOS transistor completed in the above process to an NVSRAM device according to the present invention. As shown in the figure, an NVSRAM cell 52 in the memory cell array includes a volatile circuit 54 and two sets of three transistor SONOS cells 56. The 3T-SONOS units 56 each include a SONOS transistor 58 and two MOS transistors disclosed in the above embodiments. The volatility circuit 54 is a six-cell (6T) architecture, and each transistor is of a MOS transistor type.

在電源持續供電的情況下,NVSRAM單元52能透過揮發性電路54來保存其內存資料,而在斷電的情況下,NVSRAM單元52能將訊號或資料回存至3T-SONOS單元56,等下次供電時再將資料讀取出來,使揮發性功能轉變為非揮發性功能,達到記憶的效果。In the case of continuous power supply, the NVSRAM unit 52 can store its memory data through the volatile circuit 54, and in the case of power failure, the NVSRAM unit 52 can store the signal or data back to the 3T-SONOS unit 56, etc. When the power is supplied, the data is read out, and the volatile function is converted into a non-volatile function to achieve the memory effect.

綜上所述,本發明較佳在記憶體區形成ONO堆疊結構後先覆蓋一層較厚的硬遮罩於ONO堆疊結構表面,然後再利用圖案化光阻層來圖案化ONO堆疊結構。由於硬遮罩的厚度較厚,因此去除圖案化光阻層的時候仍有部分的硬遮罩殘留於圖案化之ONO堆疊結構上。接下來,進行閘極氧化層的蒸汽成長製程時可直接將閘極氧化層設於剩餘的硬遮罩表面,然後再伴隨電晶體區的閘極氧化層圖案化步驟依序去除記憶體區裸露出的閘極氧化層與硬遮罩。由於記憶體區的ONO堆疊結構上在整個製作過程中均由硬遮罩所遮蓋保護住,本發明不但可在不增加額外製程的情況下維持ONO堆疊結構中各層的厚度比例,又可在電晶體區形成所需的圖案化閘極氧化層之後適當裸露出記憶體區的ONO堆疊結構以進行後續多晶矽層的沈積,並藉此製作出效能穩定的SONOS記憶體單元。In summary, the present invention preferably forms a thick hard mask on the surface of the ONO stacked structure after forming the ONO stack structure in the memory region, and then uses the patterned photoresist layer to pattern the ONO stack structure. Due to the thick thickness of the hard mask, a portion of the hard mask remains on the patterned ONO stack when the patterned photoresist layer is removed. Next, when performing the vapor growth process of the gate oxide layer, the gate oxide layer may be directly disposed on the surface of the remaining hard mask, and then the gate oxide layer patterning step of the transistor region is sequentially removed to remove the memory region. The gate oxide layer and the hard mask. Since the ONO stack structure of the memory region is covered by the hard mask during the entire manufacturing process, the present invention can maintain the thickness ratio of each layer in the ONO stack structure without adding an additional process, and can also be used in electricity. After the crystal region forms the desired patterned gate oxide layer, the ONO stack structure of the memory region is appropriately exposed to deposit the subsequent polysilicon layer, thereby producing a stable SONOS memory cell.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

12...半導體基底12. . . Semiconductor substrate

14...記憶體區14. . . Memory area

16...電晶體區16. . . Transistor region

18...第一氧化矽層18. . . First ruthenium oxide layer

20...氮化矽層20. . . Tantalum nitride layer

22...第二氧化矽層twenty two. . . Second ruthenium oxide layer

24...堆疊結構twenty four. . . Stack structure

26...硬遮罩26. . . Hard mask

28...圖案化光阻層28. . . Patterned photoresist layer

30...閘極氧化層30. . . Gate oxide layer

32...閘極氧化層32. . . Gate oxide layer

33...多晶矽層33. . . Polycrystalline layer

34...堆疊閘極34. . . Stack gate

36...閘極電極36. . . Gate electrode

38...源極/汲極區域38. . . Source/drain region

40...源極/汲極區域40. . . Source/drain region

42...層間介電層42. . . Interlayer dielectric layer

44...接觸洞44. . . Contact hole

46...接觸插塞46. . . Contact plug

52...NVSRAM單元52. . . NVSRAM unit

54...揮發性電路54. . . Volatile circuit

56...3T-SONOS單元56. . . 3T-SONOS unit

58...SONOS電晶體58. . . SONOS transistor

第1圖至第9圖為本發明較佳實施例製作一SONOS記憶體之示意圖。1 to 9 are schematic views showing a SONOS memory according to a preferred embodiment of the present invention.

第10圖為本發明將SONOS電晶體應用至一NVSRAM元件之等效電路示意圖。Figure 10 is a schematic diagram of an equivalent circuit for applying a SONOS transistor to an NVSRAM device of the present invention.

12...半導體基底12. . . Semiconductor substrate

14...記憶體區14. . . Memory area

16...電晶體區16. . . Transistor region

18...第一氧化矽層18. . . First ruthenium oxide layer

20...氮化矽層20. . . Tantalum nitride layer

22...第二氧化矽層twenty two. . . Second ruthenium oxide layer

32...閘極氧化層32. . . Gate oxide layer

33...多晶矽層33. . . Polycrystalline layer

36...閘極電極36. . . Gate electrode

38...源極/汲極區域38. . . Source/drain region

40...源極/汲極區域40. . . Source/drain region

42...層間介電層42. . . Interlayer dielectric layer

44...接觸洞44. . . Contact hole

46...接觸插塞46. . . Contact plug

Claims (19)

一種製作矽-氧化物-氮化物-氧化物-矽(SONOS)記憶體的方法,包含有下列步驟:提供一半導體基底;形成一第一氧化矽層、一氮化矽層以及一第二氧化矽層於該半導體基底表面;形成一硬遮罩於該第二氧化矽層表面;圖案化該硬遮罩、該第一氧化矽層、該氮化矽層及該第二氧化矽層以形成一圖案化硬遮罩及一堆疊結構;形成一閘極氧化層於該圖案化硬遮罩表面;完全去除該閘極氧化層之後再去除該圖案化硬遮罩;形成一圖案化之多晶矽層於該堆疊結構表面;以及形成一源極/汲極區域於該多晶矽層兩側之該半導體基底中。 A method of fabricating a germanium-oxide-nitride-oxide-germanium (SONOS) memory, comprising the steps of: providing a semiconductor substrate; forming a first tantalum oxide layer, a tantalum nitride layer, and a second oxide Laminating a layer on the surface of the semiconductor substrate; forming a hard mask on the surface of the second ruthenium oxide layer; patterning the hard mask, the first ruthenium oxide layer, the tantalum nitride layer and the second ruthenium oxide layer to form a patterned hard mask and a stacked structure; forming a gate oxide layer on the surface of the patterned hard mask; removing the patterned oxide mask after completely removing the gate oxide layer; forming a patterned polysilicon layer And a source/drain region is formed in the semiconductor substrate on both sides of the polysilicon layer. 如申請專利範圍第1項所述之方法,其中圖案化該硬遮罩、該第一氧化矽層、該氮化矽層及該第二氧化矽層之步驟另包含:形成一圖案化光阻層於該硬遮罩表面;利用該圖案化光阻層去除部分該硬遮罩、部分該第二氧化矽層及部分該氮化矽層;去除部分該第一氧化矽層;以及 去除該圖案化光阻層。 The method of claim 1, wherein the step of patterning the hard mask, the first hafnium oxide layer, the tantalum nitride layer, and the second hafnium oxide layer further comprises: forming a patterned photoresist Laminating the hard mask surface; using the patterned photoresist layer to remove a portion of the hard mask, a portion of the second hafnium oxide layer and a portion of the tantalum nitride layer; removing a portion of the first hafnium oxide layer; The patterned photoresist layer is removed. 如申請專利範圍第2項所述之方法,另包含利用一乾蝕刻製程來去除部分該硬遮罩、部分該第二氧化矽層及部分該氮化矽層。 The method of claim 2, further comprising removing a portion of the hard mask, a portion of the second hafnium oxide layer and a portion of the tantalum nitride layer by a dry etching process. 如申請專利範圍第2項所述之方法,另包含利用一濕蝕刻製程來去除部分該第一氧化矽層。 The method of claim 2, further comprising removing a portion of the first ruthenium oxide layer by a wet etching process. 如申請專利範圍第2項所述之方法,另包含利用一硫酸與過氧化氫混合物(sulfuric acid-hydrogen peroxide mixture,SPM)來去除該圖案化光阻層。 The method of claim 2, further comprising removing the patterned photoresist layer using a sulfuric acid-hydrogen peroxide mixture (SPM). 如申請專利範圍第1項所述之方法,其中該硬遮罩包含氮化矽。 The method of claim 1, wherein the hard mask comprises tantalum nitride. 如申請專利範圍第1項所述之方法,另包含利用一現場蒸汽成長(in-situ steam generation,ISSG)製程來形成該閘極氧化層。 The method of claim 1, further comprising forming the gate oxide layer using an in-situ steam generation (ISSG) process. 如申請專利範圍第1項所述之方法,另包含利用一濕蝕刻製程來去除該閘極氧化層。 The method of claim 1, further comprising removing the gate oxide layer by a wet etching process. 如申請專利範圍第1項所述之方法,另包含利用一硫酸與過氧化氫混合物來去除該硬遮罩。 The method of claim 1, further comprising removing the hard mask with a mixture of monosulfuric acid and hydrogen peroxide. 一種製作SONOS記憶體的方法,包含有下列步驟:提供一半導體基底,該半導體基底上具有一記憶體區與一電晶體區;形成一第一氧化矽層、一氮化矽層以及一第二氧化矽層於該記憶體區及該電晶體區之該半導體基底表面;形成一硬遮罩於該第二氧化矽層表面;圖案化該硬遮罩、該第一氧化矽層、該氮化矽層及該第二氧化矽層以於該記憶體區形成一圖案化硬遮罩及一堆疊結構;形成一閘極氧化層於該電晶體區之半導體基底上;完全去除該記憶體區之該閘極氧化層之後再去除該記憶體區之該圖案化硬遮罩;分別形成一圖案化之多晶矽層於該記憶體區之該堆疊結構表面及該電晶體區;以及各形成一源極/汲極區域於該記憶體區及該電晶體區之該多晶矽層兩側之該半導體基底中。 A method of fabricating a SONOS memory, comprising the steps of: providing a semiconductor substrate having a memory region and a transistor region; forming a first hafnium oxide layer, a tantalum nitride layer, and a second a ruthenium oxide layer on the surface of the semiconductor substrate and the surface of the semiconductor substrate; forming a hard mask on the surface of the second ruthenium oxide layer; patterning the hard mask, the first ruthenium oxide layer, and nitriding The ruthenium layer and the second ruthenium oxide layer form a patterned hard mask and a stacked structure in the memory region; forming a gate oxide layer on the semiconductor substrate of the transistor region; completely removing the memory region After the gate oxide layer, the patterned hard mask of the memory region is removed; a patterned polysilicon layer is formed on the surface of the stacked structure of the memory region and the transistor region; and each source is formed. The / drain region is in the memory region and the semiconductor substrate on both sides of the polysilicon layer of the transistor region. 如申請專利範圍第10項所述之方法,其中圖案化該硬遮罩、該第一氧化矽層、該氮化矽層及該第二氧化矽層之步驟另包含: 形成一圖案化光阻層於該記憶體區之該硬遮罩表面;利用該圖案化光阻層去除該記憶體區之部分該硬遮罩、部分該第二氧化矽層與部分該氮化矽層,以及去除該電晶體區之該硬遮罩、該第二氧化矽層及該氮化矽層;去除該記憶體區之部分該第一氧化矽層及該電晶體區之該第一氧化矽層;以及去除該圖案化光阻層。 The method of claim 10, wherein the step of patterning the hard mask, the first tantalum oxide layer, the tantalum nitride layer, and the second tantalum oxide layer further comprises: Forming a patterned photoresist layer on the hard mask surface of the memory region; removing the portion of the memory region by the patterned photoresist layer, the portion of the second ruthenium oxide layer and a portion of the nitridation layer a layer of germanium, and the hard mask, the second layer of tantalum oxide and the layer of tantalum nitride removed from the transistor region; removing a portion of the first germanium oxide layer and the first region of the transistor region a ruthenium oxide layer; and removing the patterned photoresist layer. 如申請專利範圍第11項所述之方法,另包含利用一乾蝕刻製程來去除部分該硬遮罩、部分該第二氧化矽層及部分該氮化矽層。 The method of claim 11, further comprising removing a portion of the hard mask, a portion of the second hafnium oxide layer, and a portion of the tantalum nitride layer by a dry etching process. 如申請專利範圍第11項所述之方法,另包含利用一濕蝕刻製程來去除部分該第一氧化矽層。 The method of claim 11, further comprising removing a portion of the first hafnium oxide layer by a wet etching process. 如申請專利範圍第11項所述之方法,另包含利用一硫酸與過氧化氫混合物(sulfuric acid-hydrogen peroxide mixture,SPM)來去除該圖案化光阻層。 The method of claim 11, further comprising removing the patterned photoresist layer using a sulfuric acid-hydrogen peroxide mixture (SPM). 如申請專利範圍第10項所述之方法,其中該硬遮罩包含氮化矽。 The method of claim 10, wherein the hard mask comprises tantalum nitride. 如申請專利範圍第10項所述之方法,另包含利用一現 場蒸汽成長製程來形成該閘極氧化層。 For example, the method described in claim 10 of the patent application, including the use of a present A field vapor growth process is used to form the gate oxide layer. 如申請專利範圍第10項所述之方法,另包含利用一濕蝕刻製程來去除該閘極氧化層。 The method of claim 10, further comprising removing the gate oxide layer by a wet etching process. 如申請專利範圍第10項所述之方法,另包含利用一硫酸與過氧化氫混合物來去除該硬遮罩。 The method of claim 10, further comprising removing the hard mask with a mixture of monosulfuric acid and hydrogen peroxide. 如申請專利範圍第10項所述之方法,其中去除該記憶體區之該圖案化硬遮罩之前另包含:形成該閘極氧化層於該圖案化硬遮罩表面及該電晶體區之半導體基底上;以及去除該記憶體區之閘極氧化層。 The method of claim 10, wherein the removing the patterned hard mask of the memory region further comprises: forming the gate oxide layer on the patterned hard mask surface and the semiconductor region of the transistor region On the substrate; and removing the gate oxide layer of the memory region.
TW99101630A 2010-01-21 2010-01-21 Method for fabricating a sonos memory TWI469267B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99101630A TWI469267B (en) 2010-01-21 2010-01-21 Method for fabricating a sonos memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99101630A TWI469267B (en) 2010-01-21 2010-01-21 Method for fabricating a sonos memory

Publications (2)

Publication Number Publication Date
TW201126650A TW201126650A (en) 2011-08-01
TWI469267B true TWI469267B (en) 2015-01-11

Family

ID=45024596

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99101630A TWI469267B (en) 2010-01-21 2010-01-21 Method for fabricating a sonos memory

Country Status (1)

Country Link
TW (1) TWI469267B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6498106B1 (en) * 2001-04-30 2002-12-24 Taiwan Semiconductor Manufacturing Company Prevention of defects formed in photoresist during wet etching
US6528390B2 (en) * 2001-03-02 2003-03-04 Advanced Micro Devices, Inc. Process for fabricating a non-volatile memory device
US6872667B1 (en) * 2003-11-25 2005-03-29 Taiwan Semiconductor Manufacturing Company, Ltd. Method of fabricating semiconductor device with separate periphery and cell region etching steps
US20050142757A1 (en) * 2003-12-31 2005-06-30 Dongbuanam Semiconductor Inc. Methods of fabricating nonvolatile memory device
US20070102754A1 (en) * 2005-11-07 2007-05-10 Hsin-Ming Chen Non-volatile memory device
US20080311694A1 (en) * 2007-06-14 2008-12-18 Mitsubishi Electric Corporation Method for manufacturing semiconductor optical device
US20090072274A1 (en) * 2007-09-14 2009-03-19 Qimonda Ag Integrated circuit including a first gate stack and a second gate stack and a method of manufacturing

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6528390B2 (en) * 2001-03-02 2003-03-04 Advanced Micro Devices, Inc. Process for fabricating a non-volatile memory device
US6498106B1 (en) * 2001-04-30 2002-12-24 Taiwan Semiconductor Manufacturing Company Prevention of defects formed in photoresist during wet etching
US6872667B1 (en) * 2003-11-25 2005-03-29 Taiwan Semiconductor Manufacturing Company, Ltd. Method of fabricating semiconductor device with separate periphery and cell region etching steps
US20050142757A1 (en) * 2003-12-31 2005-06-30 Dongbuanam Semiconductor Inc. Methods of fabricating nonvolatile memory device
US20070102754A1 (en) * 2005-11-07 2007-05-10 Hsin-Ming Chen Non-volatile memory device
US20080311694A1 (en) * 2007-06-14 2008-12-18 Mitsubishi Electric Corporation Method for manufacturing semiconductor optical device
US20090072274A1 (en) * 2007-09-14 2009-03-19 Qimonda Ag Integrated circuit including a first gate stack and a second gate stack and a method of manufacturing

Also Published As

Publication number Publication date
TW201126650A (en) 2011-08-01

Similar Documents

Publication Publication Date Title
US8426294B2 (en) 3D memory array arranged for FN tunneling program and erase
TWI390679B (en) Manufacturing method of nonvolatile semiconductor storage device and nonvolatile semiconductor storage device
US6818944B2 (en) Nonvolatile memory devices and methods of fabricating the same
US9905429B2 (en) Semiconductor device and a manufacturing method thereof
US8759902B2 (en) Non-volatile memory device with vertical memory cells
TW201435999A (en) Method of manufacturing semiconductor device and semiconductor device
US8653581B2 (en) HTO offset for long Leffective, better device performance
US11812618B2 (en) Nonvolatile memory device including ferroelectric layer having negative capacitance
US8247864B2 (en) Amorphous silicon MONOS or MAS memory cell structure with OTP function
US6878988B1 (en) Non-volatile memory with induced bit lines
CN100481396C (en) Non-volatile memory device and manufacturing method thereof
KR100608376B1 (en) Non-volatile memory cell using state of three kinds and method of manufacturing the same
US7615437B2 (en) Non-volatile memory device and method of manufacturing the same
JP2002368140A (en) Non-volatile semiconductor memory device
TWI441258B (en) Gate replacement with top oxide regrowth for the top oxide improvement
KR100525448B1 (en) Method for fabricating of flash memory device
JP2001077219A (en) Nonvolatile semiconductor storage device and manufacture thereof
TWI469267B (en) Method for fabricating a sonos memory
US8633079B2 (en) Method for fabricating a SONOS memory
US20070069275A1 (en) Bi-directional read/program non-volatile floating gate memory array, and method of formation
KR101111917B1 (en) Non-volatile memory cell using state of three kinds and method of manufacturing the same
US20090152616A1 (en) Semiconductor Device and Method for Manufacturing the Same
KR20080084188A (en) Nonvolatile memory device and method of manufacturing nonvolatile memory device
KR20070023453A (en) Method of manufacturing semiconductor memory device capable of improving characteristics of storage node thereof
TWI606578B (en) Non-volatile memory array and method of fabricating the same