TWI463781B - 多準位功率控制系統 - Google Patents

多準位功率控制系統 Download PDF

Info

Publication number
TWI463781B
TWI463781B TW102107544A TW102107544A TWI463781B TW I463781 B TWI463781 B TW I463781B TW 102107544 A TW102107544 A TW 102107544A TW 102107544 A TW102107544 A TW 102107544A TW I463781 B TWI463781 B TW I463781B
Authority
TW
Taiwan
Prior art keywords
power
level
phase
coupled
voltage
Prior art date
Application number
TW102107544A
Other languages
English (en)
Other versions
TW201427260A (zh
Inventor
Kwang Hwa Liu
Original Assignee
Greenmark Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Greenmark Technology Inc filed Critical Greenmark Technology Inc
Publication of TW201427260A publication Critical patent/TW201427260A/zh
Application granted granted Critical
Publication of TWI463781B publication Critical patent/TWI463781B/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/293Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/12Regulating voltage or current wherein the variable actually regulated by the final control device is ac
    • G05F1/40Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices
    • G05F1/44Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices semiconductor devices only
    • G05F1/45Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices semiconductor devices only being controlled rectifiers in series with the load
    • G05F1/455Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices semiconductor devices only being controlled rectifiers in series with the load with phase control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/066Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode particular circuits having a special characteristic
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P4/00Arrangements specially adapted for regulating or controlling the speed or torque of electric motors that can be connected to two or more different electric power supplies
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/382Switched mode power supply [SMPS] with galvanic isolation between input and output
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/11Controlling the light source in response to determined parameters by determining the brightness or colour temperature of ambient light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/115Controlling the light source in response to determined parameters by determining the presence or movement of objects or living beings
    • H05B47/13Controlling the light source in response to determined parameters by determining the presence or movement of objects or living beings by using passive infrared detectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/185Controlling the light source by remote control via power line carrier transmission
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/293Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/2932Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage, current or power
    • H02M5/2937Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage, current or power using whole cycle control, i.e. switching an integer number of whole or half cycles of the AC input voltage
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/10Controlling the intensity of the light
    • H05B45/12Controlling the intensity of the light using optical feedback
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/385Switched mode power supply [SMPS] using flyback topology
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/39Circuits containing inverter bridges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Rectifiers (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Description

多準位功率控制系統
本發明是有關於一種功率控制系統,且特別是有關於一種多準位功率控制系統。
一般來說,典型吊燈或吊扇使用壁裝式電力開關以提供基本接通(on)-切斷(off)控制。然而,目前大多數壁裝式開關為單刀單擲類型。因此,在大多數現有家庭照明系統中,典型壁裝式開關僅在兩條交流(alternating current;AC)線路其中之一而非兩者中斷電流回路(current-flow loop)。如圖1所示,兩條交流線101(AC1)和102(AC2)向吊燈105提供市電交流電壓(utility AC voltage)100。但僅交流線102實際上佈線到壁式開關104的輸入側。壁式開關的輸出側經由回線103連接回到燈105。
常規電力開關(例如,壁式開關104)僅能提供接通-切斷功能。在其接通位置,電力開關提供一無阻礙之電流迴路;而在其切斷位置,電力開關斷開(或隔離)負載(例如,燈105)與提供市電交流電壓的一條或兩條交流線。如此,常規電力開關僅能提供其負載在全通或全關兩種功率的選擇。
因此,本發明提供一種多準位功率控制系統。所述系統以簡單架構提供多個中間功率準位。
本發明的實施例提供一種多準位功率控制系統。所述多準位功率控制系統包含功率狀態控制器、電力裝置(例如,發光二極體照明,LED lighting,或吊扇)、多準位功率驅動器、第一交流線、第二交流線以及中繼交流線。
所述功率狀態控制器輸出相位缺口波形(phase-notch pattern)。所述多準位功率驅動器按多個功率準位中的一者驅動所述電力裝置,將所述相位缺口波形解碼為功率跳階命令,且根據所述功率跳階命令從所述功率準位中的一者切換為所述功率準位中的另一者。所述第一交流線耦接於市電交流電壓與所述多準位功率驅動器之間。所述第二交流線耦接於所述市電交流電壓與所述功率狀態控制器之間。所述中繼交流線耦接於所述功率狀態控制器與所述多準位功率驅動器之間。所述功率狀態控制器和所述多準位功率驅動器兩者由所述市電交流電壓通過所述第一交流線、所述第二交流線和所述中繼交流線供電。所述功率狀態控制器經由所述中繼交流線上將第一相位缺口波形輸出到所述多準位功率驅動器。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
100‧‧‧市電交流電壓
101、102‧‧‧交流線
103‧‧‧回線
104‧‧‧壁式開關
105‧‧‧燈
201、202、301、302‧‧‧線路電壓波形
400‧‧‧交流線電壓
401、402‧‧‧市電交流線
403‧‧‧中繼交流線
404、405、406‧‧‧線路
407、408‧‧‧直流線路
410‧‧‧LED照明驅動器
411‧‧‧橋式整流器
412‧‧‧直流轉直流功率轉換器
413‧‧‧相位缺口解碼器
414‧‧‧功率準位暫存器
420‧‧‧功率狀態控制器
421‧‧‧被動式紅外線感測器
422‧‧‧VCC電壓供應電路
423‧‧‧零交越檢測器
424‧‧‧功率狀態控制邏輯電路
425‧‧‧相位缺口產生器
426‧‧‧高電壓線性調節器
427‧‧‧光感測器
428‧‧‧第二準位持續時間計時器
429‧‧‧功率狀態暫存器
430‧‧‧LED燈
601~603‧‧‧狀態
700‧‧‧時脈倍頻器
702‧‧‧相位差放大器
703‧‧‧壓控振盪器
704‧‧‧線路
705‧‧‧計數器
711‧‧‧比較器
712‧‧‧線路
714‧‧‧邏輯反相器
715‧‧‧SR型雙穩態正反器
716、717‧‧‧二進制比較器
718‧‧‧二進制計數器718
801‧‧‧零交越比較器
802‧‧‧線路
803‧‧‧上升邊緣脈衝產生器
804‧‧‧下降邊緣脈衝產生器
805、806‧‧‧線路
807‧‧‧時脈倍頻器
808‧‧‧時脈信號
809‧‧‧缺口寬度計數器
811、812‧‧‧二進制比較器
815‧‧‧及閘
816‧‧‧SR雙穩態正反器
901~903‧‧‧波形
1000‧‧‧交流線電壓
1001、1002‧‧‧市電交流線
1003‧‧‧中繼交流線
1005‧‧‧線路
1010‧‧‧LED照明驅動器
1011‧‧‧橋式整流器
1012‧‧‧直流轉直流功率轉換器
1013‧‧‧相位缺口解碼器
1014‧‧‧功率準位暫存器
1020‧‧‧功率狀態控制器
1021‧‧‧觸摸感測器
1023‧‧‧零交越檢測器
1024‧‧‧觸摸信號主動濾波器
1025‧‧‧功率狀態控制邏輯電路
1026‧‧‧相位缺口產生器
1029‧‧‧功率狀態暫存器
1030‧‧‧LED燈
1101~1103‧‧‧波形
1200‧‧‧交流線電壓
1201、1202‧‧‧市電交流線
1203‧‧‧中繼交流線
1204‧‧‧電源開關
1205、1206‧‧‧按鈕致動器
1208‧‧‧3相無刷直流風扇
1209‧‧‧地線
1210‧‧‧風扇調速器
1211‧‧‧橋式整流器
1212‧‧‧風扇馬達驅動器
1213‧‧‧相位缺口解碼器
1214‧‧‧速度等級暫存器
1220‧‧‧功率狀態控制器
1224‧‧‧上觸發線路
1225‧‧‧下觸發線路
1226‧‧‧微控制器單元
1227‧‧‧相位缺口產生器
1228‧‧‧線路
1229‧‧‧快閃記憶體
1301~1308‧‧‧流程步驟
AC1、AC2‧‧‧交流線
C1~C8‧‧‧線路週期
C1、C2‧‧‧電容器
D1~D5、D11~D15、ZD1‧‧‧二極體
Fin‧‧‧線路頻率
Q1、Q2‧‧‧金屬氧化物半導體場效應電晶體
R1、R2、R5~R8‧‧‧電阻器
T1~T7‧‧‧時間
Vea‧‧‧誤差電壓
α1、α2‧‧‧相位角
β1‧‧‧預置下限
β2‧‧‧預置上限
圖1為繪示常規功率控制系統的示意圖。
圖2A、圖2B、圖3A和圖3B為繪示根據本發明的實施例的一些典型相位缺口波形的示意圖。
圖4為繪示根據本發明的實施例的多準位功率控制系統的示意圖。
圖5為繪示圖4的多準位功率控制系統中的一些典型波形的示意圖。
圖6為繪示圖4的多準位功率控制系統的狀態圖。
圖7為繪示根據本發明的實施例的相位缺口產生器的示意圖。
圖8為繪示根據本發明的實施例的相位缺口解碼器的示意圖。
圖9為繪示圖8的相位缺口解碼器中的一些典型波形的示意圖。
圖10為繪示根據本發明的另一實施例的多準位功率控制系統的示意圖。
圖11為繪示圖10的多準位功率控制系統中的一些典型波形的示意圖。
圖12為繪示根據本發明的另一實施例的多準位功率控制系統的示意圖。
圖13為繪示由圖12的多準位功率控制系統執行的多準位功率控制方法的流程圖。
需要提供用於照明系統的一個或一個以上中間功率準位。舉例來說,除完全接通狀態和完全切斷狀態之外,還有20%功率的低準位和50%功率的中間準位。還需要在不添加任何一條或一條以上額外控制線到原始的兩條交流電源線路的情況下提供這種中間功率準位控制。
需要不使用例如雙向可控矽調光器(triac dimmer)等連續切相控制方法。雙向可控矽調光器容易產生嚴重電磁干擾(electro-magnetic inference;EMI)、噪聲和嚴重電流波形諧波失真。
需要不使用射頻(radio frequency;RF)或紅外線(infra-red;IR)遙控方法。RF和IR遙控方法通常是昂貴的且設計複雜。另外,IR接收器不能在高於80℃的環境溫度下操作。不幸的是,一體式發光二極體(LED)燈在高於80℃的溫度下工作非常普遍。另一方面,RF遙控接收器經常遭受由例如微波爐和車庫門遙控器等各種家用電器產生的電磁干擾雜訊的影響。
還需要提供不需人工干預的智能或自動照明控制或空調控制。
為了實施多準位功率控制系統,需要安裝功率狀態控制 器(例如,壁裝式觸控板)以取代壁式開關,且將功率跳階信號解碼器傳送到受控裝置(例如,LED燈)的功率驅動器。
多準位功率控制系統包含用於切換多個功率準位或功率狀態的逐步升高命令,其中狀態N輪轉回到狀態1。舉例來說,逐步升高命令信號的第一次,觸發從狀態1到狀態2的狀態改變。逐步升高命令信號的第二次,觸發從狀態2到狀態3的狀態改變。逐步升高命令信號的第三次,觸發從狀態3到狀態4的狀態改變。逐步升高命令信號的第四次,則觸發從狀態4再回到狀態1的狀態改變。
多準位功率控制系統可更包含逐步降低命令,其中狀態1輪轉到狀態N。舉例來說,逐步降低命令信號的第一次,觸發從狀態4到狀態3的狀態改變。逐步降低命令信號的第二次,觸發從狀態3到狀態2的狀態改變。逐步降低命令信號的第三次,觸發從狀態2到狀態1的狀態改變。逐步降低命令信號的第四次,則觸發從狀態1再到狀態4的狀態改變。
多準位功率控制系統可更包含電力接通命令和電力切斷命令。電力接通、電力切斷和功率跳階命令可由一個或一個以上致動器觸發。本發明中主要闡述兩種致動器,即,手動致動器和自動致動器。手動致動器可為撥動開關、按鈕、控制旋鈕、觸控板或觸摸感測器。自動致動器可為光感測器、聲音感測器、溫度感測器、壓力感測器、濕度感測器、影像感測器、攝影機、RF感測器或被動式紅外線(passive infra-red;PIR)感測器。
逐步升高命令和逐步降低命令統稱為功率跳階命令。每個功率跳階命令可由事先約定之相位缺口波形表示。相位缺口波形定義為如下情況:通過暫時中斷單個交流線週期中從相位角α1到相位角α2的電流路徑,正弦交流電壓的一部分被阻斷為零值。應注意,相位角α1和α2為預定值,通常小於360°。
在本發明的實施例中,功率狀態控制器取代常規壁式開關。功率狀態控制器包含相位缺口產生器和功率狀態控制邏輯電路。多準位功率驅動器連結到受控裝置(例如,吊燈或吊扇)。多準位功率驅動器包含功率轉換器、相位缺口解碼器和功率準位暫存器。
功率狀態控制器的功率狀態控制邏輯電路中的功率狀態暫存器(其值可從0到N)和受控裝置中的功率準位暫存器(其值可從1到N)同步為相同值。每個值表示不同功率狀態。應注意,功率準位暫存器並不具有值0;且N為大於1的預定正整數。
功率跳階命令
功率狀態控制器通過暫時中斷電流路徑且進而使正弦電壓波形的某一部分被阻斷為零而從原始正弦電壓波形產生相位缺口波形。相位缺口波形的每次發佈對應於功率跳階命令。一般來說,對於多準位功率控制系統,其使用僅單個致動器和僅一個類型的功率跳階命令,且因此需要僅一個類型的相位缺口波形。舉例來說,觸摸感測器可觸發逐步降低命令。
然而,在一些系統中,需要具有一個以上類型的功率跳 階命令。舉例來說,在吊扇控制系統中,逐步升高命令用以指示風扇加速一個等級,而逐步降低命令用以指示風扇減速一個等級。在具有兩個類型的功率跳階命令為特徵的系統中,大體上需要兩個不同之相位缺口波形。每個相位缺口波形對應於一種不同的功率跳階命令。
還應注意,兩個不同功率跳階命令通常需要兩個獨立致動器。舉例來說,在上述吊扇控制系統中,第一按鈕可用于逐步升高命令;且第二按鈕可用於逐步降低命令。
相位缺口波形的定義
市電交流電壓具有正弦波形,所述正弦波形具有50赫茲或60赫茲的交流頻率。從0°到360°的每個全交流線週期具有兩個零交越(zero-crossing)點,一個在相位角0°處,且另一個在相位角180°處。
本發明的實施例在原始正弦電壓波形上產生相位缺口波形以發佈功率跳階命令。相位缺口波形為電壓準位為零伏特且寬度為交流線週期的預定數量的相位角的信號。舉例來說,交流電壓波形201從相位角α1到相位角α2被阻斷為零伏特,如圖2A所示。
通常,α1和α2設置為360°或更短。在圖2A中,交流電壓波形201具有相位缺口波形[α1,α2],其中α1=150°,且α2=240°。相位缺口波形[α1,α2]的寬度為α2減α1。因此,交流電壓波形201中的相位缺口波形的寬度為240°-150°=90°。
圖2B說明供應到負載(受控裝置)的交流線電壓波形202的八個交流週期C1-C8。在圖2B中,交流電壓波形202中,具有在交流週期C2中的相位缺口波形[150°,240°]。另外,波形202中,具有在交流週期C6中的相位缺口波形[120°,180°]。
在圖3A中,交流電壓波形301具有在交流週期C2中的相位缺口波形[0°,180°],和在交流週期C6中的另一[0°,180°]相位缺口波形。
在圖3B中,交流電壓波形302具有在交流週期C2中的相位缺口波形[0°,360°],和在交流週期C6中的另一[0°,360°]相位缺口波形。
第一優選實施例
圖4中繪示根據本發明的實施例的雙準位被動式紅外線照明控制系統。所述系統包含LED燈430、雙準位LED照明驅動器410、PIR觸發功率狀態控制器420、兩條市電交流線401(AC1)和402(AC2)、中繼交流線403,以及兩條直流(DC)線路407和408。
交流線401和402的左端耦接到交流線電壓400(例如,市電交流電壓)。系統從兩條交流線401(AC1)和402(AC2)接收其操作功率。所述功率狀態控制器420和所述LED照明驅動器410兩者由所述交流線電壓400通過交流線401、402和中繼交流線403供電。實際上,大多數交流線配置于天花板上方,而將一段線路402引到壁裝式控制器420,且接著中繼交流線403回到吊 燈430。
所述LED照明驅動器410更包含兩個交流輸入端和兩個直流輸出端。驅動器410的第一交流輸入端耦接到交流線401;驅動器410的第二交流輸入端耦接到中繼交流線403。驅動器410的兩個直流輸出端經由直流線路407和408耦接到LED燈430。
另外,LED照明驅動器410包含橋式整流器411、阻斷二極體D15、和主體電容器(bulk capacitor)C2、直流轉直流功率轉換器412、相位缺口解碼器413、功率準位暫存器414以及耦接到線路405上的經整流交流電壓的分壓器電阻器對R5和R6。功率準位暫存器414耦接到相位缺口解碼器413。功率轉換器412耦接到功率準位暫存器414。橋式整流器411耦接到交流線401和403以及相位缺口解碼器413。阻斷二極體D15的陽極端耦接到橋式整流器411。主體電容器C2耦接到阻斷二極體D15的陰極端。
所述橋式整流器411從交流線401和交流線403接收交流電壓,且在線路405上產生經整流交流電壓。線路405上的經整流交流電壓經由阻斷二極體D15將電容器C2充電到主體直流電壓。所述直流轉直流功率轉換器412將電容器C2上的主體直流電壓轉換為恒定直流電流,且向LED燈430供應恒定直流電流。應注意,根據功率準位暫存器414中記錄的整數值而調節所述恒定直流電流的量值。換句話說,功率轉換器412在對應於功率準位暫存器414中記錄的值的功率準位下驅動LED燈430。
在本發明的一些實施例中,功率轉換器412可在LED照 明驅動器410與LED燈430之間提供電流隔離(galvanic isolation)。在那些實施例中,功率轉換器412可為反激轉換器(flyback converter)、正激轉換器(forward converter)或半橋轉換器(half-bridge converter)。
在本發明的一些其它實施例中,功率轉換器412不在LED照明驅動器410與LED燈430之間提供電流隔離。在那些實施例中,功率轉換器412可為直流轉直流轉換器或線性調節器。
所述功率狀態控制器420包含電流控制電路。電流控制電路包括以橋式整流器方式連接的金屬氧化物半導體場效應電晶體(metal-oxide-semiconductor field-effect transistor;MOSFET)電力開關Q1和四個二極體D1、D2、D3、D4。電力開關Q1的漏極端連接到二極體D1和D3的陰極端。而Q1的源極端連接到二極體D2和D4的陽極端。電流控制電路具有交流輸入端和交流輸出端。交流輸入端耦接到所述第二交流線402;交流輸出端耦接到所述中繼交流線403。二極體D1的陽極端和二極體D2的陰極端耦接到交流輸入端。二極體D3的陽極端和二極體D4的陰極端耦接到交流輸出端。
當相位缺口產生器425接通電力開關Q1時,電流控制電路連接交流線402與中繼交流線403以形成到LED照明驅動器410的電流路徑。當相位缺口產生器425切斷電力開關Q1時,電流控制電路斷開交流線402與中繼交流線403以中斷電流路徑。
所述功率狀態控制器420更包含分壓器電阻器對R1和 R2、零交越檢測器423、VCC電壓供應電路422和高電壓線性調節器426。高電壓線性調節器426耦接於電力開關Q1的漏極端與源極端之間。高電壓線性調節器426包含上拉電阻器R3、齊納二極體(zener diode)ZD1、MOSFET Q2、阻斷二極體D5和電容器C1。R1的選定電阻為1兆歐,R2的選定電阻為16千歐,R3的電阻也為1兆歐。齊納二極體ZD1選定為約12伏特。當Q1切斷時,分壓器對R1和R2向零交越檢測器423提供交流線電壓的縮小版。當Q1切斷且電流路徑中斷時,高電壓線性調節器426通過從交流線402和403竊取一些功率來對電容器C1充電。已充電電容器C1提供主體電壓(bulk voltage)。VCC電壓供應電路422耦接到高電壓線性調節器426。VCC電壓供應電路422從電容器C1接收主體電壓以產生用於功率狀態控制器420的操作電壓VCC。零交越檢測器423耦接到分壓器R1和R2以檢測交流線電壓波形的零交越點。
應注意,在產生或中斷到LED照明驅動器410的AC電流路徑方面,電力開關Q1起常規壁式開關的作用。在Q1接通的情況下,在正半交流週期期間,當交流線401相對於交流線402具有較高電壓時,電流從交流線401流動通過二極體D11、二極體D15、電容器C2、二極體D14、交流線403、二極體D3、電力開關Q1、二極體D2,且回到交流線402。此電流主要用以對電容器C2充電。
在負半交流週期期間,當交流線402相對於交流線401 具有較高電壓時,電流從交流線402流動通過二極體D1、電力開關Q1、二極體D4、交流線403、二極體D13、二極體D15、電容器C2、二極體D12,且回到交流線401。此電流也用以對電容器C2充電。
因此,當Q1接通時,Q1將交流線402與交流線403連接為直接接觸。這實際上類似於常規壁式開關處於接通位置。
另一方面,當Q1切斷時,上述電流路徑現將電阻為1兆歐的R1包含於回路中。到電容器C2中的充電電流將因為額外電阻而減小很多。在存儲於電容器C2中的能量耗盡的情況下,LED照明驅動器410將隨即關閉功率轉換器412。
應注意,當電力開關Q1接通時,基本上沒有電壓跨越Q1的漏源結(drain-source junction)。換句話說,線路404上不存在對電容器C1充電的電壓。所述VCC電壓供應電路422將隨即耗盡其電源。由於當Q1切斷時高電壓線性調節器426僅可從交流線竊取功率,因此有必要使Q1在每個交流線週期中的某一部分內切斷。如稍後將描述,此偷電要求可由短相位缺口波形良好地支持。
這個實施例中的電力開關Q1為N型MOSFET。在本發明的一些其它實施例中,電力開關Q1可被雙極功率電晶體(bipolar power transistor)或絕緣閘雙極電晶體(insulated gate bipolar transistor;IGBT)取代。
所述功率狀態控制器420更包含被動式紅外線感測器 421、相位缺口產生器425、功率狀態控制邏輯電路424、第二準位持續時間計時器428和光感測器427。控制邏輯電路424耦接到被動式紅外線感測器421、光感測器427、持續時間計時器428和相位缺口產生器425。所述被動式紅外線感測器421檢測溫熱身體的存在,且作為對應而觸發功率跳階命令序列。被動式紅外線感測器421和光感測器427在這個實施例中充當致動器。
在這個優選實施例中,存在三個功率狀態,但只有兩個功率準位。對應于功率第二準位的全(100%)功率狀態;對應於功率第一準位的低(20%)功率狀態;以及切斷(0%)狀態。這個優選實施例僅使用一個類型的功率跳階命令,這將LED驅動器410在第二準位功率與第一準位功率之間雙態切換(toggle)。[0°,180°]相位缺口波形指定為用於相位缺口產生器425和相位缺口解碼器413的雙態切換命令。
在白天,當存在足夠環境光時,光感測器427提供邏輯高信號以將功率狀態控制邏輯電路424設置為切斷狀態,這便切斷Q1。在夜間,光感測器427輸出邏輯低信號。光感測器427的輸出信號的下降邊緣觸發功率狀態控制邏輯電路424,這接通Q1且將包含於功率狀態控制邏輯電路424中的功率狀態暫存器429的值重置為1。LED照明驅動器410啟動(power up),其中功率準位暫存器414以預設值1重新啟動。其指示功率轉換器412向LED燈430提供第一準位(20%)功率。
接著,如圖5和圖6所示,在時間T1時,PIR感測器421 檢測到移動的溫暖身體的存在,其向功率狀態控制邏輯電路424發佈觸發脈衝。控制邏輯424指示相位缺口產生器425發佈從T1到T2的[0°,180°]相位缺口波形。Q1從T1到T2為切斷的。一旦檢測到相位缺口波形,且在短處理延遲之後,LED照明驅動器410中的相位缺口檢測器413將即刻在T3時指示功率準位暫存器414雙態切換到第二準位功率狀態。如上所述,功率準位暫存器414的值控制由功率轉換器412輸出的功率準位。因此,功率轉換器412接著向所述LED燈430提供全功率。
應注意,在T1時,控制邏輯電路424也將其功率狀態暫存器429的值改變為2。另外,控制邏輯電路424也在T1時啟動第二準位持續時間計時器428。在持續時間計時器428在T4(例如,T3之後60秒)時已計數到預設持續時間之後,持續時間計時器428將超時信號傳回到控制邏輯424,控制邏輯424又指示相位缺口產生器425發佈從T4到T5的另一[0°,180°]相位缺口波形。一旦檢測到第二相位缺口波形,且在短處理延遲之後,相位缺口檢測器413將即刻在T6時指示功率準位暫存器414雙態切換回到第一準位。功率轉換器412接著向LED燈430提供第一準位或20%功率。應注意,在T4時,控制邏輯電路424也將其功率狀態暫存器429的值重置回1。只要功率狀態控制邏輯電路424接通,功率狀態暫存器429和功率準位暫存器414的值便始終同步為相等的。
應注意,如圖5所示,線路405上的經整流交流電壓具有兩個類型的相位缺口波形。如上所述,第一相位缺口波形[0°,180 °]用作功率跳階命令以將直流轉直流功率轉換器412的輸出功率在第一準位與第二準位之間雙態切換。用於功率跳階命令的這個單觸發相位缺口波形,在幾千個甚至幾百萬個交流線週期才產生一次。
第二相位缺口波形[150°,180°]產生於每個AC半週期中以啟用高電壓線性調節器426以竊取少量功率來維持功率狀態控制器420的操作。由於第二相位缺口僅為30°寬,因此其將不會被相位缺口解碼器414混淆為180°寬的波形以用於雙態切換命令。而且,考慮到LED照明驅動器410及其功率轉換器412,在操作功能性方面,具有30°短相位缺口的輸入電壓波形將呈現為與正常無缺口波形基本上無差異。
圖6繪示功率狀態控制器420和多準位LED功率驅動器410兩者的狀態圖。在白天,光感測器427的輸出為高的。這個輸出將功率狀態控制邏輯電路424保持處於狀態0。這繪示為狀態601。Q1和燈430兩者為切斷的。在日落之後,環境光陷入黑暗,光感測器427的輸出下降為低的。光感測器427的輸出的下降邊緣指示功率狀態控制邏輯電路424進入狀態1,這接通Q1以形成電流路徑,且LED驅動器410也進入狀態1。此繪示為狀態602。 另一方面,當光感測器427檢測到環境光在早晨再次為高時,其輸出升高,這指示功率狀態控制邏輯電路424返回到狀態0,且切斷Q1以無限地中斷電流路徑。喪失了輸入功率,LED照明驅動器410和LED燈430便都將陷入切斷狀態或狀態601。
現在,如果PIR檢測器427在夜間檢測到移動的溫熱身體,那麼其將觸發功率準位控制器420經由中繼交流線403向LED照明驅動器410輸出相位缺口雙態切換信號,LED照明驅動器410進入第二準位功率狀態。功率轉換器412接著向LED燈430供應100%功率。這繪示為狀態603。在持續時間計時器428期滿之後,功率狀態控制器420將向LED照明驅動器410發佈另一相位缺口雙態切換信號,LED照明驅動器410返回到第一準位功率狀態或狀態602。功率轉換器412接著向LED燈供應20%功率。
應注意,相位缺口產生器425經設計以適應於60赫茲或50赫茲交流線頻率。圖7中繪示相位缺口產生器425的優選實施例。相位缺口產生器包含鎖相回路(phase-locked loop;PLL)時脈倍頻器700、二進制計數器718、兩個二進制比較器716和717、SR型雙穩態正反器(flip-flop)715,以及邏輯反相器714。時脈倍頻器700耦接到零交越檢測器比較器711。二進制計數器718耦接到時脈倍頻器700。二進制比較器716和717耦接於雙穩態正反器715與二進制計數器718之間。邏輯反相器714耦接於電力開關Q1與雙穩態正反器715之間。
零交越檢測器比較器711經由分壓器對R1和R2耦接到線路404。圖4中的電流控制電路通過對交流線電壓整流而在線路404上產生經整流交流線電壓。零交越檢測器比較器711類似於圖4中的零交越檢測器423。零交越檢測器比較器711比較經整流交流線電壓與臨界電壓。當線路404上的電壓準位下降到臨界電壓 (例如,30伏特)以下時,比較器711在其輸出線路712上產生零交越脈衝。由於每個線路週期具有兩個零交越點,因此線路712上的零交越脈衝速率為Fin*2,其中Fin為交流頻率,在歐洲國家為50赫茲,在美國為60赫茲。在這個示範性實施例中,針對所述功率準位雙態切換命令,使用[0°,180°]相位缺口波形。
SR雙穩態正反器715的反相輸出耦接到電力開關Q1的閘極端子。PLL時脈倍頻器700使用鎖相回路以在其輸出線路704上產生頻率為Fin*2*180的時脈信號。鎖相回路包含相位差放大器702、壓控振盪器(voltage-controlled oscillator;VCO)703和除180(divided-by-180)計數器705。
相位差放大器702的非反相輸入耦接到比較器711的輸出。相位差放大器702的反相輸入耦接到計數器705的輸出。相位差放大器702產生用於VCO 703的誤差電壓Vea。VCO 703的輸出,亦即線路704,耦接到計數器705以及二進制計數器718。由於相位差放大器702具有60分貝或更高的增益因數,因此PLL時脈倍頻器700可按正好為雙倍輸入頻率Fin*2的180倍的輸出頻率鎖定。因此,線路704上的時脈速率等效於交流週期的每個1°一個時脈。
當二進制比較器716的A輸入超過其B輸入時,二進制比較器716重置SR雙穩態正反器715。同樣地,當二進制比較器717的A輸入超過其B輸入時,二進制比較器717設置SR雙穩態正反器715。二進制比較器716和717接收二進制計數器718的計 數值作為其A輸入。假定到二進制比較器717的B輸入α1為150且到二進制比較器716的B輸入α2為180。二進制計數器718對時脈倍頻器700輸出的時脈週期的數量計數。在每個半交流週期結束時,二進制計數器718具有值180,這觸發二進制比較器716重置SR雙穩態正反器715,SR雙穩態正反器715的輸出降低。SR雙穩態正反器715的低輸出觸發邏輯反相器714接通電力開關Q1。接著比較器711輸出升高,這清零並重新啟動二進制計數器718。鎖定為180*2*Fin的時脈速率的PLL時脈產生器700向二進制計數器718提供穩定時脈輸入。當二進制計數器718計數達150的α1值時,二進制比較器717的輸出升高,這設置SR雙穩態正反器715。SR雙穩態正反器715的高輸出觸發邏輯反相器714切斷電力開關Q1。當二進制計數器718計數達180的α2值時,二進制比較器716重置SR雙穩態正反器715,從而再次接通電力開關Q1。由於電力開關Q1從α1到α2為切斷的,因此相位缺口波形產生於這兩個相位角之間。
以上論述繪示圖7中的相位缺口產生器可通過將α1和α2的不同值加載到二進制比較器716和717中來產生不同相位缺口波形。再次參看圖4,功率狀態控制邏輯電路424可在交流線電壓的每個半週期中輸出值α1=150和α2=180以指示相位缺口產生器425產生偷電相位缺口波形。功率狀態控制邏輯電路424可對應於PIR感測器421的輸出而輸出值α1=0和α2=180以指示相位缺口產生器425產生180°雙態切換相位缺口波形。
同樣需要使相位缺口解碼器413適應於60赫茲或50赫茲交流線頻率。圖8中繪示相位缺口解碼器413的優選實施例。相位缺口解碼器包含零交越比較器801、上升邊緣脈衝產生器803、下降邊緣脈衝產生器804、PLL時脈倍頻器807、缺口寬度計數器809、兩個二進制比較器811和812、及閘815以及SR雙穩態正反器816。零交越比較器801通過R5和R6耦接到橋式整流器411的輸出線路405。上升邊緣脈衝產生器803耦接到零交越比較器801。下降邊緣脈衝產生器804也耦接到零交越比較器801。時脈倍頻器807耦接到上升邊緣脈衝產生器803。計數器809耦接到時脈倍頻器807。二進制比較器811和812都耦接到計數器809。及閘815耦接到下降邊緣脈衝產生器804和二進制比較器811和812的輸出。SR雙穩態正反器816耦接於及閘815與功率準位暫存器414之間。
另外,分壓器電阻器對R5和R6耦接到線路405上的經整流交流線電壓。線路405的縮小電壓波形耦接到所述零交越比較器801。零交越比較器801比較經整流交流線電壓與臨界電壓。當所述經整流交流電壓405下降到臨界電壓(例如,30伏特)以下時,比較器801的輸出升高。應注意,30伏特=0.5伏特*(1+R5/R6)。
如圖9所示,波形901為線路405上的經整流AC波形。在每個半交流週期中存在用於偷電目的的[150°,180°]相位缺口波形。然而,在半交流週期C4中存在功率跳階命令。其為[0°,180°] 相位缺口波形。但在用於偷電目的的先前短相位缺口波形[150°,180°]的情況下,組合相位缺口寬度為210°。
上升邊緣脈衝產生器803對應於由零交越比較器801輸出的每個上升邊緣而輸出脈衝。在穩態操作中,上升邊緣脈衝產生器803向PLL時脈倍頻器807提供頻率Fin*2的穩固時脈。PLL時脈倍頻器807產生180*2*Fin的頻率的輸出時脈信號808。時脈808耦接到缺口寬度計數器809。缺口寬度計數器809對線路808上的時脈脈衝的數量計數。另外,缺口寬度計數器809由來自上升邊緣脈衝產生器803的脈衝清零並重新啟動。基本上,計數器809在由來自上升邊緣脈衝產生器803的新脈衝清零之前始終計數達359。
二進制比較器811比較缺口寬度計數器809的計數值與預置上限β2。類似地,二進制比較器812比較缺口寬度計數器809的計數值與預置下限β1。當缺口寬度計數器809的計數值超過上限時,二進制比較器811的輸出降低。當缺口寬度計數器809的計數值超過下限時,二進制比較器812的輸出升高。因此,二進制比較器811和812始終監視缺口寬度計數器809的計數值。在這種特定情況下,30°的相位缺口寬度為偷電波形,其應被相位缺口解碼器忽視。另一方面,210°的相位缺口寬度為功率跳階命令波形,其應被相位缺口解碼器辨識。應注意,為了使210°的相位缺口寬度合格,下限β1的恰當值可設置為約190;而上限β2的恰當值可設置為約230。
及閘門815接收下降邊緣脈衝產生器804的輸出、二進制比較器811的輸出和二進制比較器812的輸出作為輸入。下降邊緣脈衝產生器804對應於零交越比較器801輸出的每個下降邊緣而輸出脈衝。換句話說,由上升邊緣脈衝產生器803輸出的脈衝標記相位缺口波形的開始;且由下降邊緣脈衝產生器804輸出的脈衝標記相位缺口波形的結束。當相位缺口波形結束且其寬度大於預置下限但小於預置上限時,及閘815的所有三條輸入線路上升到邏輯高狀態,此設置SR雙穩態正反器816的輸出。SR雙穩態正反器816的設置輸出觸發功率跳階命令以指示圖4中的功率準位暫存器414來切換其功率準位。
現請參看圖9。圖9中的波形901為線路405上的經整流交流電壓的波形。圖9中的波形902為線路802上的比較器801的輸出波形。對於每個半交流週期,存在寬度為約30個計數的短相位缺口波形。然而,在半交流週期C4中,存在寬度為約210個計數的相位缺口波形。相位缺口解碼器認為所有短相位缺口波形不合格,且僅認為半交流週期C4中的功率跳階命令相位缺口波形合格。因此,如圖9所示,在週期C4結束時,波形902的下降邊緣觸發及閘815設置SR雙穩態正反器816。SR雙穩態正反器816的輸出升高,直到其被線路802上的下一上升邊緣清零為止。SR雙穩態正反器816的高輸出信號向圖4電路中的功率準位暫存器414發送有效功率跳階命令。圖9中的波形903繪示在半交流週期C4結束之後僅產生一個有效相位缺口命令。
第二優選實施例
圖10繪示根據本發明的第二優選實施例的三準位觸摸照明控制系統。三準位觸摸照明控制系統包含總共4個功率狀態-切斷狀態、20%功率的第一準位狀態、50%功率的第二準位狀態以及100%功率的第三準位狀態。三準位觸摸照明控制系統更包含單個致動器1021、單個功率跳階命令和單個相位缺口波形。單個致動器為壁裝式觸摸感測器,例如,觸控板。單個功率跳階命令為逐步升高命令,其中狀態3輪轉回到狀態1。單個相位缺口波形為用於這個示範性實施例中的[0°,180°]波形。
LED照明驅動器1010基本上類似於圖4中的LED照明驅動器410。橋式整流器1011類似於圖4中的橋式整流器411。主要差異為與驅動器410中的總共2個功率準位相比,驅動器1010中存在總共3個功率準位。
功率狀態控制器1020還包含電流控制電路、偷電線路、VCC電壓供應電路和零交越檢測器1023。然而,功率狀態控制器1020現更包含觸摸感測器1021、觸摸信號主動濾波器1024、功率狀態控制邏輯電路1025和相位缺口產生器1026。功率狀態控制邏輯電路1025包含功率狀態暫存器1029。
觸摸感測器1021經由導電性、電阻性、電容性或電感性構件檢測人類手指的實際觸摸且對應於所述實際觸摸而輸出觸摸信號。觸摸信號主動濾波器1024從觸摸感測器1021接收觸摸信號,且提供防跳信號濾波和調理以產生清楚和穩固的觸摸脈衝。 一接收到有效觸摸脈衝,功率狀態控制邏輯電路1025即刻將功率狀態暫存器1029的值增加1。
請參看圖11。圖11中的波形1101為由觸摸信號主動濾波器1024輸出的觸摸脈衝。圖11中的波形1102為橋式整流器1011的輸出上的經整流交流電壓。圖11中的波形1103為LED燈1030的輸出功率準位。如圖11所示,以狀態0開始,第一觸摸脈衝在時間T1時觸發控制邏輯電路1025進入狀態1。在時間T1時,控制邏輯電路1025經由相位缺口產生器1026接通電力開關Q1。在Q1接通之後,交流線1002現實際上連接到交流線1003,從而建立AC電流路徑。LED照明驅動器1010接著進入其預設功率準位,即,第一準位。功率轉換器1012向LED燈1030提供20%功率。
接著,第二觸摸脈衝在T2時觸發控制邏輯電路1025進入狀態2,這指示相位缺口產生器1026發佈相位缺口波形直到時間T3為止。一接收到T3相位缺口波形,LED照明驅動器1010即刻進入第二準位功率狀態,從而向LED燈1030提供50%功率。
接著,第三觸摸脈衝在T4時觸發控制邏輯電路1025進入狀態3,這指示相位缺口產生器1026發佈相位缺口波形直到時間T5為止。一接收到T5相位缺口波形,LED照明驅動器1010即刻進入準位3功率狀態,從而向LED燈1030提供100%功率。
接著,第四觸摸脈衝在T6時觸發功率狀態控制邏輯電路1025進入狀態0,這指示相位缺口產生器1026無限地切斷電力開 關Q1。在Q1切斷之後,LED照明驅動器1010將隨即關斷;因此無功率提供到LED燈1030。
接著,第五觸摸脈衝在T7時觸發控制邏輯電路1025和LED驅動器1010再次重新啟動至第一準位功率狀態。
應注意,整體上,這個觸摸控制照明系統僅使用一個類型的相位缺口波形。每個觸摸感測器脈衝觸發相位缺口波形且將燈功率逐步升高一個準位。例外是,從準位3功率狀態,新觸摸脈衝使Q1切斷且使LED驅動器1010無限地關斷。
還應注意,在壁裝式應用中,功率狀態控制器1020仍需要從交流線1002和1003竊取少量功率以操作其內部電路。類似於圖4電路的情況,需要使用[150°,180°]的短相位缺口波形以支持偷電方案。用於逐步升高功率命令的較長相位缺口波形為[0°,180°]波形。
第三優選實施例
圖12繪示根據本發明的第三優選實施例的8準位吊扇速度控制系統。8準位吊扇速度控制系統包含總共8個功率狀態、兩個致動器、一個電力開關、兩個功率跳階命令類型,以及微控制器單元(microcontroller unit;MCU)。8個功率狀態包含切斷狀態和7個風扇速度等級(功率準位),分別為120、180、240、300、360、420和480轉/分鐘(RPM)。兩個致動器包含用於加速命令的常斷按鈕和用於減速命令的常斷按鈕。電源開關為用於接通-切斷系統電源的單刀單擲開關。兩個功率跳階命令類型對應於兩個 相位缺口波形。第一功率跳階命令類型為具有[0°,180°]相位缺口波形或180°相位缺口寬度的加速命令。第二功率跳階命令類型為具有[120°,180°]相位缺口波形或60°相位缺口寬度的減速命令。MCU 1226包含用於存儲上一風扇速度設置的快閃記憶體1229。
這個實施例中的8準位吊扇速度控制系統包含風扇調速器1210和吊扇功率狀態控制器1220。風扇調速器1210基本上類似於圖10中的LED照明驅動器1010。主要差異為(A)風扇調速器1210中存在總共7個功率準位。(B)風扇馬達驅動器1212用以驅動3相無刷直流風扇1208。
吊扇功率狀態控制器1220也基本上類似於圖10中的功率狀態控制器1020。主要差異為:(A)存在兩個按鈕致動器1205和1206,以及一個電源開關1204。(B)兩個致動器1205和1206分別支持加速命令且減速命令。(C)存在微控制器單元(MCU)1226及其相關聯的快閃記憶體1229以用於存儲上一風扇速度設置。
應注意,如圖12中的電路圖和圖13中的流程圖所示,如果電源開關1204轉到切斷位置,沒有功率供應到功率狀態控制器1220或供應到風扇調速器1210。系統處於切斷狀態。
接著,如果電源開關1204接通,那麼在步驟1301中功率狀態控制器1220和MCU 1226兩者將啟動。接著將接通Q1,這將交流線1202連接到交流線1203,從而建立AC電流路徑。風扇調速器1210啟動進入其預設第一準位狀態。作為對應,風扇馬 達驅動器1212將直流風扇1208調節為120RPM速度等級。
接著在步驟1302中MCU 1226從其快閃記憶體1229提 取上一風扇速度設置。假定上一速度設置為準位n,在步驟1303中,MCU 1226將接著歷時幾秒的時間跨度經由相位缺口產生器1227向風扇調速器1210發佈數量n-1個加速命令(即,相同數量的相位缺口波形)。因此,在步驟1304中,風扇速度增加到存儲於快閃記憶體1229中的上一速度設置。
現在,在吊扇啟動到其先前速度設置之後,其準備好供用戶改變速度。應注意,按鈕1205的頂端經由上拉電阻器R7耦接到上觸發線路1224,以及VCC供應電壓。類似地,按鈕1206的頂端經由上拉電阻器R8耦接到下觸發線路1225,以及VCC供應電壓。按鈕1205和1206的下端都耦接到控制器電路地線1209。
接下來,在步驟1305中,MCU 1226檢查加速按鈕1205是否被按壓。如果加速按鈕1205被按壓,那麼其將會將上觸發線路1224連接到電路地線1209的電壓準位(0伏特)。在用戶釋放按鈕1205之後,觸發線路1224將由電阻器R7上拉到VCC。這在觸發線路1224上產生上升邊緣,如此指示相位缺口產生器1227在步驟1306中發佈加速相位缺口波形[0°,180°]。同時,上升邊緣指示MCU 1226將其存儲於快閃記憶體1229中的速度等級設置值增加1。而且,一接收到[0°,180°]相位缺口波形,相位缺口解碼器1213將即刻指示速度等級暫存器1214將其值增加1。風扇馬達驅動器1212接著根據速度等級暫存器1214的值將風扇速度增加一 個等級。
接下來,在步驟1307中,MCU 1226檢查減速按鈕1206是否被按壓。類似地,如果減速按鈕1206被按壓一次,那麼將在步驟1308中發佈減速相位缺口波形[120°,180°]以指示風扇調速器1210將風扇速度降低一個等級。存儲於MCU記憶體1229中的功率狀態整數值和速度等級暫存器1214值也減小1。接下來,流程返回到步驟1305。
應注意,相位缺口解碼器1213必須能夠區分加速命令與減速命令。實際上,這意味相位缺口解碼器1213必須包含兩組上限比較器、下限比較器、及閘和SR雙穩態正反器。每一組類似於圖8中的上限比較器811、下限比較器812、及閘815和SR雙穩態正反器816。第一組用於檢測加速命令,而第二組用於檢測減速命令。
本發明的先前示範性實施例中的每個多準位功率控制系統控制LED燈或直流風扇的功率準位。然而,在本發明的其它實施例中,多準位功率控制系統可應用於其他各式電力裝置。電力裝置可為照明裝置、照明裝置群組、無刷直流馬達、直流馬達群組、電扇或電扇群組。
總之,本發明提供一種多準位功率控制系統。與RF和IR遙控解決方案相比,這個多準位功率控制系統簡單且成本低。即使在高環境溫度中或在高電磁噪聲環境中,所述多準位功率控制系統也可提供一個或一個以上中間功率準位或速度等級。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
400‧‧‧交流線電壓
401、402‧‧‧市電交流線
403‧‧‧中繼交流線
404、405、406‧‧‧線路電位點
407、408‧‧‧直流接線
410‧‧‧LED照明驅動器
411‧‧‧橋式整流器
412‧‧‧直流轉直流功率轉換器
413‧‧‧相位缺口解碼器
414‧‧‧功率準位暫存器
420‧‧‧功率狀態控制器
421‧‧‧被動式紅外線感測器
422‧‧‧VCC電壓供應電路
423‧‧‧零交越檢測器
424‧‧‧功率狀態控制邏輯電路
425‧‧‧相位缺口產生器
426‧‧‧高電壓線性調節器
427‧‧‧光感測器
428‧‧‧第二準位持續時間計時器
429‧‧‧功率狀態暫存器
430‧‧‧LED燈
C1、C2‧‧‧電容器
D1~D5、D11~D15、ZD1‧‧‧二極體
Q1、Q2‧‧‧金屬氧化物半導體場效應電晶體
R1、R2、R3、R5、R6‧‧‧電阻器

Claims (20)

  1. 一種多準位功率控制系統,包括:功率狀態控制器,輸出第一相位缺口波形;電力裝置;多準位功率驅動器,耦接到所述電力裝置,按多個功率準位中的一者驅動所述電力裝置,將所述第一相位缺口波形解碼為功率跳階命令,以及根據所述功率跳階命令從所述功率準位中的一者切換為所述功率準位中的另一者;第一交流線,耦接於市電交流電壓與所述多準位功率驅動器之間;第二交流線,耦接於所述市電交流電壓與所述功率狀態控制器之間;以及中繼交流線,耦接於所述功率狀態控制器與所述多準位功率驅動器之間,其中所述功率狀態控制器和所述多準位功率驅動器兩者由所述市電交流電壓通過所述第一交流線、所述第二交流線和所述中繼交流線供電,且所述功率狀態控制器經由所述中繼交流線將所述第一相位缺口波形輸出到所述多準位功率驅動器。
  2. 如申請專利範圍第1項所述的多準位功率控制系統,其中所述第一相位缺口波形為具有零伏特的電壓準位且橫跨交流線週期的預定寬度的相位角的單次觸發信號。
  3. 如申請專利範圍第1項所述的多準位功率控制系統,其中所述電力裝置為照明裝置、照明裝置群組、無刷直流馬達、直流 馬達群組、電扇或電扇群組。
  4. 如申請專利範圍第1項所述的多準位功率控制系統,其中所述功率狀態控制器包括:至少一個致動器;相位缺口產生器;以及控制電路,耦接到所述至少一個致動器和所述相位缺口產生器,對應於所述至少一個致動器的輸出而產生第一相位角和第二相位角以觸發所述相位缺口產生器產生所述第一相位缺口波形。
  5. 如申請專利範圍第4項所述的多準位功率控制系統,其中所述至少一個致動器中的每一者為撥動開關、按鈕、觸控板、觸摸感測器、光感測器、聲音感測器、溫度感測器、壓力感測器、濕度感測器、影像感測器、攝影機、射頻感測器或被動式紅外線感測器。
  6. 如申請專利範圍第4項所述的多準位功率控制系統,其中所述功率狀態控制器更包括:電流控制電路,包括電力開關,耦接到所述第二交流線、所述中繼交流線以及所述相位缺口產生器,在所述相位缺口產生器接通所述電源開關時連接所述第二交流線與所述中繼交流線以形成到所述多準位功率驅動器的電流路徑,在所述相位缺口產生器切斷所述電力開關時斷開所述第二交流線與所述中繼交流線以中斷所述電流路徑,其中所述相位缺口產生器經由在所述市電交流電壓的交流週期的所述第一相位角處切斷所述電力開關並在所述 市電交流電壓的所述交流週期的所述第二相位角處接通所述電力開關以產生所述第一相位缺口波形。
  7. 如申請專利範圍第6項所述的多準位功率控制系統,其中所述電力開關為N型功率金屬氧化物半導體場效應電晶體、雙極功率電晶體或絕緣閘雙極電晶體,其中所述電力開關的控制端耦接到所述相位缺口產生器。
  8. 如申請專利範圍第6項所述的多準位功率控制系統,其中所述電流控制電路更包括交流輸入端、交流輸出端、第一二極體、第二二極體、第三二極體和第四二極體,其中所述交流輸入端耦接到所述第二交流線,所述交流輸出端耦接到所述中繼交流線,所述第一二極體和所述第三二極體的陰極端耦接到所述電力開關的第一端,所述第二二極體和所述第四二極體的陽極端耦接到所述電力開關的第二端,所述第一二極體的陽極端和所述第二二極體的陰極端耦接到所述交流輸入端,所述第三二極體的陽極端和所述第四二極體的陰極端耦接到所述交流輸出端。
  9. 如申請專利範圍第8項所述的多準位功率控制系統,其中所述功率狀態控制器更包括:高電壓線性調節器,耦接於所述電力開關的所述第一端與所述第二端之間,在所述電力開關切斷時通過從所述第二交流線和所述中繼交流線竊取功率來產生主體電壓;以及電壓供應電路,耦接到所述高電壓線性調節器,接收所述主體電壓以產生所述功率狀態控制器的操作電壓。
  10. 如申請專利範圍第9項所述的多準位功率控制系統,其中所述相位缺口產生器進一步在所述市電交流電壓的每個半交流週期中產生第二相位缺口波形以使所述高電壓線性調節器能夠竊取少量功率以維持所述功率狀態控制器的操作,所述第二相位缺口波形比所述第一相位缺口波形短,且所述多準位功率驅動器忽視所述第二相位缺口波形。
  11. 如申請專利範圍第6項所述的多準位功率控制系統,其中所述電流控制電路經由對所述市電交流電壓整流而產生經整流之市電交流電壓,且所述功率狀態控制器更包括:零交越檢測器,耦接到所述電流控制電路,比較所述經整流之市電交流電壓與一臨界電壓;其中所述相位缺口產生器更包括:時脈倍頻器,耦接到所述零交越檢測器,通過將零交越比較器的輸出頻率與一預定值相乘來產生時脈信號;二進制計數器,其耦接到所述時脈倍頻器,對所述時脈信號的週期計數;雙穩態正反器;第一二進制比較器,耦接於所述雙穩態正反器與所述二進制計數器之間,在所述二進制計數器的輸出超過所述第一相位角時設置所述雙穩態正反器的輸出;第二二進制比較器,其耦接於所述雙穩態正反器與所述二進制計數器之間,在所述二進制計數器的所述輸出超過所述第二相 位角時重置所述雙穩態正反器的輸出;以及邏輯反相器,耦接於所述電力開關與所述雙穩態正反器之間,根據所述雙穩態正反器的所述輸出接通或切斷所述電力開關。
  12. 如申請專利範圍第6項所述的多準位功率控制系統,其中所述功率狀態控制器更包括耦接到所述控制電路的光感測器;對應於所述光感測器的第一輸出狀態,所述控制電路指示所述相位缺口產生器接通所述電力開關以形成所述電流路徑,且所述功率狀態控制器和所述多準位功率驅動器兩者進入所述功率準位中的預設功率準位;對應於所述光感測器的第二輸出狀態,所述控制電路指示所述相位缺口產生器切斷所述電力開關以中斷所述電流路徑,且所述功率狀態控制器和所述多準位功率驅動器兩者進入切斷狀態。
  13. 如申請專利範圍第4項所述的多準位功率控制系統,其中所述功率準位包含高功率準位和低功率準位;其中所述功率狀態控制器更包括耦接到所述控制電路的持續時間計時器;當所述控制電路觸發所述相位缺口產生器產生所述第一相位缺口波形時,所述控制電路啟動所述持續時間計時器,所述多準位功率驅動器對應於所述第一相位缺口波形而切換到所述高功率準位;當所述持續時間計時器期滿時,所述控制電路觸發所述相位缺口產生器再次產生所述第一相位缺口波形,且所述多準位功率驅動器對應於所述再次產生之第一相位缺口波形而切換回到所述低功率準位。
  14. 如申請專利範圍第4項所述的多準位功率控制系統,其中所述功率狀態控制器包括第一致動器和第二致動器,所述第一致動器和所述第二致動器耦接到所述控制電路;所述控制電路對應於所述第一致動器的輸出而觸發所述相位缺口產生器產生所述第一相位缺口波形,且所述多準位功率驅動器對應於所述第一相位缺口波形而將當前功率準位增加一階;所述控制電路對應於所述第二致動器的輸出而觸發所述相位缺口產生器產生第三相位缺口波形,且接著所述多準位功率驅動器對應於所述第三相位缺口波形而將所述當前功率準位減小一階。
  15. 如申請專利範圍第14項所述的多準位功率控制系統,其中當所述當前功率準位為所述功率準位中的最高功率準位時,所述多準位功率驅動器對應於下一次第一相位缺口波形而切換到所述功率準位中的最低功率準位;當所述當前功率準位為所述功率準位中的所述最低功率準位時,所述多準位功率驅動器對應於下一次第三相位缺口波形而切換到所述功率準位中的所述最高功率準位。
  16. 如申請專利範圍第1項所述的多準位功率控制系統,其中所述多準位功率驅動器包括:相位缺口解碼器,在所述第一相位缺口波形的寬度小於上限且大於下限時將所述第一相位缺口波形辨識為所述功率跳階命令;功率準位暫存器,耦接到所述相位缺口解碼器,存儲功率準 位值,且根據所述功率跳階命令來調整所述功率準位值;以及功率轉換器,耦接到所述功率準位暫存器,以對應於所述功率準位值的所述功率準位中的一者來驅動所述電力裝置。
  17. 如申請專利範圍第16項所述的多準位功率控制系統,其中所述多準位功率驅動器更包括:橋式整流器,耦接到所述第一交流線、所述中繼交流線和所述相位缺口解碼器,從所述第一交流線和所述中繼交流線接收包括所述第一相位缺口波形的交流電壓,通過對所述交流電壓整流而產生經整流交流電壓,且向所述相位缺口解碼器提供所述經整流交流電壓;阻斷二極體,包括陽極端和陰極端,所述陽極端耦接到所述橋式整流器;以及主體電容器,耦接到所述阻斷二極體的所述陰極端,其中所述經整流交流電壓經由所述阻斷二極體將所述主體電容器充電到主體直流電壓且所述功率轉換器用所述主體直流電壓來驅動所述電力裝置。
  18. 如申請專利範圍第16項所述的多準位功率控制系統,其中所述相位缺口解碼器包括:零交越比較器,耦接到所述橋式整流器,比較所述經整流交流電壓與臨界電壓;上升邊緣脈衝產生器,耦接到所述零交越比較器,對應於由所述零交越比較器輸出的每個上升邊緣而輸出一脈衝; 下降邊緣脈衝產生器,耦接到所述零交越比較器,對應於由所述零交越比較器輸出的每個下降邊緣而輸出一脈衝;時脈倍頻器,耦接到所述上升邊緣脈衝產生器,通過將所述上升邊緣脈衝產生器的輸出脈衝頻率與預定值相乘來產生時脈信號;二進制計數器,耦接到所述時脈倍頻器,對所述時脈信號的週期計數;第一二進制比較器,耦接到所述二進制計數器,比較所述二進制計數器的計數值與所述上限;第二二進制比較器,耦接到所述二進制計數器,比較所述二進制計數器的所述計數值與所述下限;及閘,耦接到所述下降邊緣脈衝產生器、所述第一二進制比較器和所述第二二進制比較器,接收所述下降邊緣脈衝產生器的輸出、所述第一二進制比較器的輸出和所述第二二進制比較器的輸出以作為輸入;以及雙穩態正反器,耦接於所述及閘與所述功率準位暫存器之間,其中所述雙穩態正反器的輸出由所述及閘的輸出設置,且所述雙穩態正反器的所述設置輸出作為所述功率跳階命令而提供到所述功率準位暫存器。
  19. 如申請專利範圍第16項所述的多準位功率控制系統,其中所述功率轉換器為反激轉換器、正激轉換器或半橋轉換器,其中所述功率轉換器在所述多準位功率驅動器與所述電力裝置之間 提供電流隔離。
  20. 如申請專利範圍第16項所述的多準位功率控制系統,其中所述功率轉換器為直流轉直流轉換器或線性調節器,其中所述功率轉換器不提供所述多準位功率驅動器與所述電力裝置之間的電流隔離。
TW102107544A 2012-12-17 2013-03-04 多準位功率控制系統 TWI463781B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/716,213 US9093894B2 (en) 2012-12-17 2012-12-17 Multiple-level power control system

Publications (2)

Publication Number Publication Date
TW201427260A TW201427260A (zh) 2014-07-01
TWI463781B true TWI463781B (zh) 2014-12-01

Family

ID=50908510

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102107544A TWI463781B (zh) 2012-12-17 2013-03-04 多準位功率控制系統

Country Status (3)

Country Link
US (1) US9093894B2 (zh)
CN (1) CN103869870B (zh)
TW (1) TWI463781B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI793752B (zh) * 2020-09-29 2023-02-21 美商茂力科技股份有限公司 功率電源及其方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI513168B (zh) * 2012-12-20 2015-12-11 Compal Electronics Inc 電源轉換裝置
CN105191487B (zh) * 2013-03-14 2019-06-11 威斯控件有限公司 双极三端双向交流开关短路检测和安全电路及方法
US9124101B2 (en) * 2013-04-02 2015-09-01 Bel Fuse (Macao Commercial Offshore) Limited Power supply having selectable operation based on communications with load
JP6268330B2 (ja) * 2014-10-10 2018-01-24 シャオフア ルオ 電源コードエッジ信号トリガの演算装置及びledドライバ
ES2644863T3 (es) * 2015-06-04 2017-11-30 Philips Lighting Holding B.V. Fuente de luz LED con reducción de luminiscencia mejorada
US20180067511A1 (en) * 2016-09-06 2018-03-08 Mark R. Gregorek Remote Power Management Module
US10143054B2 (en) * 2016-11-10 2018-11-27 Dazzo Techonology Corporation Light-emitting diode driver
CN107787089B (zh) * 2017-11-03 2023-06-20 赛尔富电子有限公司 一种led灯具调控系统
CN112332836B (zh) * 2020-11-17 2022-10-28 天津津航计算技术研究所 一种逆变器基准信号锁相电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM343822U (en) * 2008-03-21 2008-11-01 Mosdesign Semiconductor Corp Simultaneous LED cascade circuit of two-cord AC power
US20110084622A1 (en) * 2009-10-14 2011-04-14 National Semiconductor Corporation Dimmer decoder with low duty cycle handling for use with led drivers
TWM423417U (en) * 2011-10-24 2012-02-21 Mean Well Entpr Co Ltd Dynamically adjusting dimming range driving apparatus
US8203276B2 (en) * 2008-11-28 2012-06-19 Lightech Electronic Industries Ltd. Phase controlled dimming LED driver system and method thereof
CN102711314A (zh) * 2012-04-05 2012-10-03 安提亚科技股份有限公司 大功率电源开关切换式调光器、调光系统及调光方法

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4649323A (en) 1985-04-17 1987-03-10 Lightolier Incorporated Microcomputer-controlled light switch
US4695739A (en) 1985-10-18 1987-09-22 Pierce Lyle R Multi-function switch-controlled lamp circuit
US4924109A (en) 1987-11-02 1990-05-08 Weber Harold J Dim-down electric light time switch method and apparatus
US5015994A (en) 1989-12-28 1991-05-14 Grh Electronics Security light controlled by motion detector
US5081411A (en) 1990-12-20 1992-01-14 Honeywell Inc. AC/DC two-wire control techniques
GB2308910A (en) 1996-01-02 1997-07-09 Bernard John Regan Lighting control
US6091205A (en) 1997-10-02 2000-07-18 Lutron Electronics Co., Inc. Phase controlled dimming system with active filter for preventing flickering and undesired intensity changes
CN1168210C (zh) 2000-06-27 2004-09-22 百利通电子(上海)有限公司 红外线感应照明灯电子开关
KR100345965B1 (ko) 2000-09-15 2002-08-01 페어차일드코리아반도체 주식회사 복합 디밍 회로
AUPS131202A0 (en) * 2002-03-25 2002-05-09 Clipsal Integrated Systems Pty Ltd Circuit arrangement for power control
US6727665B2 (en) 2002-05-30 2004-04-27 Star Bright Technology Limited Dimmer for energy saving lamp
US6877885B2 (en) 2002-06-20 2005-04-12 Paul Eusterbrock Floor lamp having improved dimmer configuration
ATE357125T1 (de) 2002-12-19 2007-04-15 Koninkl Philips Electronics Nv Konfigurationsverfahren für ein drahtlos gesteuertes beleuchtungssystem
US7355523B2 (en) 2004-04-15 2008-04-08 Alberto Sid Remote controlled intelligent lighting system
US7834856B2 (en) 2004-04-30 2010-11-16 Leviton Manufacturing Co., Inc. Capacitive sense toggle touch dimmer
US7190125B2 (en) 2004-07-15 2007-03-13 Lutron Electronics Co., Inc. Programmable wallbox dimmer
JP4423157B2 (ja) * 2004-10-06 2010-03-03 キヤノン株式会社 電力線通信装置およびその制御方法
US7019469B1 (en) 2004-10-21 2006-03-28 Electronic Theatre Controls, Inc. Sinewave dimmer control method
US7242150B2 (en) 2005-05-12 2007-07-10 Lutron Electronics Co., Inc. Dimmer having a power supply monitoring circuit
US7511628B2 (en) 2005-05-16 2009-03-31 Lutron Electronics Co., Inc. Status indicator circuit for a dimmer switch
US7489088B2 (en) 2005-10-27 2009-02-10 Leviton Manufacturing Co., Ltd. Power supply for 2-line dimmer
US7476988B2 (en) 2005-11-23 2009-01-13 Honeywell International Inc. Power stealing control devices
KR100661906B1 (ko) * 2006-02-06 2006-12-27 (주) 파워에이앤디 맥류를 이용한 조도제어 장치
US8049599B2 (en) * 2006-12-29 2011-11-01 Marvell World Trade Ltd. Power control device
KR20080078455A (ko) * 2007-02-23 2008-08-27 삼성전자주식회사 램프 구동방법, 이를 수행하기 위한 구동회로 및 이를 갖는액정표시장치
USD567767S1 (en) 2007-03-29 2008-04-29 Lutron Electronics Co., Inc. Wall-mountable dual dimmer switch
US7969100B2 (en) 2007-05-17 2011-06-28 Liberty Hardware Manufacturing Corp. Bulb type detector for dimmer circuit and inventive resistance and short circuit detection
US7804255B2 (en) * 2007-07-26 2010-09-28 Leviton Manufacturing Company, Inc. Dimming system powered by two current sources and having an operation indicator module
WO2009082559A1 (en) * 2007-12-21 2009-07-02 Cypress Semiconductor Corporation Power line communication for electrical fixture control
US7701150B2 (en) 2007-12-31 2010-04-20 Lumination Llc Current shaping of an LED signal for interfacing with traffic control equipment
US7609007B1 (en) 2008-02-26 2009-10-27 Creston Electronics, Inc. Dimmer adaptable to either two or three active wires
US8350678B1 (en) * 2008-03-05 2013-01-08 Universal Lighting Technologies, Inc. Power line dimming controller and receiver
US8102167B2 (en) * 2008-03-25 2012-01-24 Microsemi Corporation Phase-cut dimming circuit
US7956694B1 (en) 2008-05-12 2011-06-07 Wilson Jeffrey D Phase controlled dimmer using a narrow band quadrature demodulator
US8339062B2 (en) * 2008-05-15 2012-12-25 Marko Cencur Method for dimming non-linear loads using an AC phase control scheme and a universal dimmer using the method
US8482391B2 (en) * 2008-11-19 2013-07-09 System General Corp. Wall control interface with phase modulation and detection for power management
US8089216B2 (en) 2008-12-10 2012-01-03 Linear Technology Corporation Linearity in LED dimmer control
TWI495393B (zh) * 2009-05-09 2015-08-01 Innosys Inc 通用型調光器
US8390435B2 (en) * 2009-08-07 2013-03-05 General Electric Company Apparatus for controlling integrated lighting ballasts in a series scheme
US8587266B2 (en) * 2011-04-06 2013-11-19 Tai-Her Yang Synchronous regulation circuit for turn-on and turn-off phase angle of the AC voltage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM343822U (en) * 2008-03-21 2008-11-01 Mosdesign Semiconductor Corp Simultaneous LED cascade circuit of two-cord AC power
US8203276B2 (en) * 2008-11-28 2012-06-19 Lightech Electronic Industries Ltd. Phase controlled dimming LED driver system and method thereof
US20110084622A1 (en) * 2009-10-14 2011-04-14 National Semiconductor Corporation Dimmer decoder with low duty cycle handling for use with led drivers
TWM423417U (en) * 2011-10-24 2012-02-21 Mean Well Entpr Co Ltd Dynamically adjusting dimming range driving apparatus
CN102711314A (zh) * 2012-04-05 2012-10-03 安提亚科技股份有限公司 大功率电源开关切换式调光器、调光系统及调光方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI793752B (zh) * 2020-09-29 2023-02-21 美商茂力科技股份有限公司 功率電源及其方法

Also Published As

Publication number Publication date
US9093894B2 (en) 2015-07-28
TW201427260A (zh) 2014-07-01
CN103869870A (zh) 2014-06-18
CN103869870B (zh) 2015-11-25
US20140167728A1 (en) 2014-06-19

Similar Documents

Publication Publication Date Title
TWI463781B (zh) 多準位功率控制系統
US8694807B2 (en) Load control device having a microprocessor for monitoring an internal power supply
JP2020129553A (ja) 調光装置
US20150137692A1 (en) Load control device for high-efficiency loads
US11677261B2 (en) Load control device having a reduced leakage through ground
TWI597930B (zh) Use to change the conduction angle as the control command of the control device
US20110298302A1 (en) Toggling Method and Apparatus in Controllers for Home Appliances
US10231297B2 (en) Lighting apparatus control switch and method
US10165642B2 (en) Dimming device
CA2933454A1 (en) Electronic device for controlling high-voltage with multiple low-voltage switches
JP7033744B2 (ja) 照明制御システム、点灯システム、照明システム、及びプログラム
JP5967513B2 (ja) 調光器
Smith et al. An overview of the modern light dimmer: design, operation, and application
JP7026320B2 (ja) 電子スイッチ装置
JP2011258431A (ja) 電源回路及び照明装置及び照明システム
CN109729621B (zh) 泄放电路的控制电路、方法、芯片及驱动系统和方法
JP7045770B2 (ja) 電気負荷のコントロール装置とスイッチ装置
WO2022030362A1 (ja) 負荷制御装置
JP2013251190A (ja) 調光装置
JP6830224B2 (ja) 電子スイッチ装置及び電子スイッチシステム
JP2022029794A (ja) 負荷制御装置
JP2013235776A (ja) 調光信号変換装置及びそれを用いた照明システム

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees