TWI461741B - 光學頭 - Google Patents

光學頭 Download PDF

Info

Publication number
TWI461741B
TWI461741B TW100140836A TW100140836A TWI461741B TW I461741 B TWI461741 B TW I461741B TW 100140836 A TW100140836 A TW 100140836A TW 100140836 A TW100140836 A TW 100140836A TW I461741 B TWI461741 B TW I461741B
Authority
TW
Taiwan
Prior art keywords
optical head
head according
light
tube
hollow
Prior art date
Application number
TW100140836A
Other languages
English (en)
Other versions
TW201319627A (zh
Inventor
Chih Kung Lee
Chih Jen Chien
Yu Hsun Lee
Chun Yen Chen
Yuh Yan Yu
Te Hsun Chen
Original Assignee
Univ Nat Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan filed Critical Univ Nat Taiwan
Priority to TW100140836A priority Critical patent/TWI461741B/zh
Priority to US13/421,204 priority patent/US8625949B2/en
Publication of TW201319627A publication Critical patent/TW201319627A/zh
Application granted granted Critical
Publication of TWI461741B publication Critical patent/TWI461741B/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/18SNOM [Scanning Near-Field Optical Microscopy] or apparatus therefor, e.g. SNOM probes
    • G01Q60/22Probes, their manufacture, or their related instrumentation, e.g. holders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y35/00Methods or apparatus for measurement or analysis of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q80/00Applications, other than SPM, of scanning-probe techniques
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core

Description

光學頭
本發明係有關於一種光學頭,尤指一種能提供長焦深聚焦能力的管狀光學頭。
隨著半導體產品不斷地朝向微型化發展,光微影技術也不斷地被要求達成愈來愈細的線寬,亦即需要將光束聚縮得更小。
一般來說,光學透鏡的聚焦光點大小主要是受到繞射極限的限制,而為了突破光學的繞射極限,遂有學者提出應用近場光學的方式,雖然近場光學的光點尺寸可由探針孔徑的尺寸來決定,而能將光點尺寸縮小至數十奈米,但是其焦點深度(depth of focus,簡稱DOF)也極小,造成實際應用上的困難。
另一方面,若要捨棄傳統光罩,而直接利用光束進行微影,以目前的研究發展來看,係受限於其焦點深度過小而無法製作高深寬比之結構,使得整體實用性大為減低。
曾有研究團隊提出光束的異常穿透現象,並陸續對週期性結構所產生之表面電漿效應進行探討,且對光束之指向性及其電磁理論作了許多討論,而最終提出了一種次波長圓環孔徑(sub-wavelength annular aperture,簡稱SAA)結構,並藉由此結構來產生具有長焦點深度之貝索光束(Bessel beam),其具有次波長之超聚焦能力,並同時將焦點位置從近場拉至遠場,而改善原本近場光學之缺點。(請參閱中華民國第200848785號專利公開案)
惟,前述習知技術之光學聚焦結構係藉由半導體製程方式來形成,整體製作步驟較為繁複,且製作成本亦較高,而較不利於商品化的應用。
因此,如何提出一種在製作上較為簡易、成本較為低廉且功能亦佳的聚焦用光學元件,以解決上述習知技術中之種種問題,實已成為本領域的技術人員目前亟欲解決的課題。
有鑒於上述習知技術之缺失,本發明提供一種光學頭,係包括:中空微管體,係由透光材料形成,具有大管徑部及與其相接之管徑漸縮部;以及填塞件,係由非透光材料形成,設置於該中空微管體內部,俾於入射光被導入該中空微管體時,藉由該填塞件提供的中心遮蔽效果使該入射光僅沿著該中空微管體之管壁傳遞,而令該入射光藉由該管徑漸縮部出光並聚焦以形成長焦深之焦點。
所述之光學頭中,該管徑漸縮部係可呈圓錐形,且該中空微管體的內外徑比值可為0.7至0.8。
於本發明之光學頭中,該填塞件可為柱體(例如碳棒),且該填塞件之外壁上係可形成有金屬層。
依上所述之光學頭,復可包括遮蔽層,係形成於該大管徑部與管徑漸縮部之交界處及其周緣的外壁上。
又於前述之光學頭中,該遮蔽層復可形成於該微管體的所有外壁上,且該遮蔽層之材質可為金屬或非金屬。
所述之光學頭中,該管徑漸縮部的尖端處的外徑係可小於20微米。
由上可知,因為本發明之光學頭之結構簡單,故製作上較為容易,有利於成本的降低,且易於整合至曝光系統中。此外,透過實驗也證明本發明之光學頭可實現次波長光點尺寸與長焦點深度之優異結果。
以下藉由特定的具體實施例說明本發明之實施方式,熟悉此技藝之人士可由本說明書所揭示之內容輕易地瞭解本發明之其他優點及功效。
須知,本說明書所附圖式所繪示之結構、比例、大小等,均僅用以配合說明書所揭示之內容,以供熟悉此技藝之人士之瞭解與閱讀,並非用以限定本發明可實施之限定條件,故不具技術上之實質意義,任何結構之修飾、比例關係之改變或大小之調整,在不影響本發明所能產生之功效及所能達成之目的下,均應仍落在本發明所揭示之技術內容得能涵蓋之範圍內。同時,本說明書中所引用之如「上」、「大」、「漸縮」、「內」、「圓錐形」、「外」、「遮蔽」、「交界」及「周緣」等之用語,亦僅為便於敘述之明瞭,而非用以限定本發明可實施之範圍,其相對關係之改變或調整,在無實質變更技術內容下,當亦視為本發明可實施之範疇。
請參閱第1圖,係本發明之光學頭的示意圖。如圖所示,本發明之聚焦用光學頭係包括:中空微管體10,係由透光材料形成,具有大管徑部101及與其相接之管徑漸縮部102,且係用以將入射光L由該大管徑部101傳遞至管徑漸縮部102;以及填塞件11,係設置於該中空微管體10內,其中,藉由填塞件11提供的中心遮蔽效果使入射光僅沿著中空微管體10之管壁傳遞,使該入射光藉由管徑漸縮部102出光並聚焦以形成長焦深之焦點,一般來說,該管徑漸縮部102的尖端處的外徑較佳係小於20微米。
於本實施例之光學頭中,為了將近場光學的特性拉到遠場來,因此使用類似近場探針之製作方式,該中空微管體10的製作係利用拉針機將中空之微管(例如石英毛細管或光纖)拉伸出呈圓錐形之該管徑漸縮部102,而形成具有次波長圓環孔徑(SAA)特性的管狀光學頭,即該入射光L由該管徑漸縮部102的尖端出光口離開,並依此產生聚焦於焦點F處的具有長焦點深度的貝索光束。
此外,為了防止傳遞於該中空微管體10中的光從該中空微管體10外壁漏光,因此該中空微管體10的外壁上可形成有遮蔽層(厚度很薄,故在此並未圖示)。在實作上,該遮蔽層係使用濺鍍之金屬較為方便,但金屬材質之遮蔽層會吸收部分光能量而造成最終的出光強度下降,因此該遮蔽層之厚度不宜過厚,例如100至150奈米厚的金層事實上即足夠,且理想上仍以不會吸收光能量的非金屬材質之遮蔽層為最佳方案。
承上述,又由於在該大管徑部101與管徑漸縮部102之交界處及其周緣最容易發生漏光之情形,因此該遮蔽層較佳地係至少形成於該大管徑部101與管徑漸縮部102之交界處及其周緣的外壁上,當然,該遮蔽層亦可直接形成於該中空微管體10的所有外壁上。
本發明另使用有限時域差分(Finite-Difference Time Domain,簡稱FDTD)方法來電磁數值模擬光學頭之光束聚焦圖形。
請參閱第2圖,係本發明之光學頭於中心未做阻擋處理(blocking process)時的數值模擬圖,其中,X、Y軸代表徑向方向,Z軸代表縱長方向,顏色代表光強度(intensity)的大小。由圖可知,該光學頭之出光情形較不具有貝索光束的特性,且開始聚焦的光點雖然在遠場聚焦,但其光點大小也不會太小,而其光束樣貌有如蠟燭的火焰般,焦長也只有不到2微米長,且在出光面的範圍內有許多雜散光,這應該是因為光束大部分從該中空微管體10中心的中空部分出光,所以才會有這些比較明顯的雜散光出現,進而使得從該中空微管體10的圓環管離開的光束的干涉作用被大大的降低,成為較不理想的貝索光束。
有鑑於前述之數值模擬結果,於較佳的實施例中,在該中空微管體10內係設置有例如為柱體且為不透光材質的填塞件11,以防止光從該中空微管體10中心的中空處傳播,且為了避免該填塞件11吸收光能量,因此建議在該填塞件11之外壁上形成金屬層(未圖示)。另在實作上,可在直徑0.5毫米的自動鉛筆筆芯(碳棒)的外表面鍍上金層後,直接拿來當作該填塞件11使用,總之,盡量使光束行進於該中空微管體10的圓環管,以達到較好的聚焦效果。
再者,針對該中空微管體10的內外徑比進行比較,發現內外徑比以0.7~0.8:1為最佳,若該內外徑比接近0.9:1(即管厚度變小)時,則得到強度漸漸增強的光旁波瓣(side lobe),即高階(1、2階)的干涉條紋越趨明顯,而中心光束(0階干涉條紋)的光強度相對下降,不利於光學微影製程的應用。
請參閱第3圖,係本發明之光學頭的光強度的實驗結果圖,其中,X座標為光學頭與電荷耦合裝置(CCD)物鏡之焦平面之間的距離,Y座標為CCD所觀察到的光強度。由圖可知,光束在6微米處開始增強,在9微米處達到最強之光強度,並在12微米處恢復增強前的光強度,以此判斷聚焦光束的焦長約為6微米。另在出光口處有些許較強的光,其原因可能是金屬濺鍍品質不佳造成漏光所導致。
請參閱第4圖,係本發明之光學頭於AZ4620光阻上曝光的結果圖。由圖可知,曝光後之光阻洞為一錐狀洞,且其直徑為4.06微米,深度為10.1微米,即一深寬比約2.5的高深寬比結構。進行曝光實驗之目的在於驗證本發明之光學頭實現次波長微影之可行性,另就目前之最佳實驗結果中,已可證實本發明之光學頭可在光阻上形成開孔尺寸約數個波長、且深寬比超過5之光阻洞。
請參閱第5圖,係以石英管製作本發明之光學頭之流程圖,其具體實驗內容及其參數簡述如下:提供一來自拉針機原廠公司(Sutter Instrument公司)的石英管,其材質為Heraeus公司型號HSQ300的石英,該石英管的外徑尺寸為1.00毫米、內徑尺寸為0.70毫米,接著進行拉針,以使該石英管之一端的管徑縮小,由於該石英管具有均質性(Homogeneous)及等向性(Isotropic)等材料性質,即在各維度之力學性質相同,因此若對其二端施予同軸拉力,則其內外徑應依相同比例縮小,最終拉針後之石英管之外徑尺寸為2.748微米、內徑尺寸為2.090微米,其外內徑比為1:0.76,接近未拉針前10:7的比例;然後,使用濺鍍機於該石英管的外部鍍金,並薄片式且成本較低之陶瓷刀切割該石英管之末端,且以能量較強之聚焦離子束(Focused Ion Beam,簡稱FIB)進行切割,其係使用具有質量之帶電離子撞擊物體之高動量進行物理切割;最後,將市售0.5毫米的自動鉛筆筆芯的表面鍍上約200奈米的金膜,並置於該石英管中以遮蔽其中心。
請參閱第6圖,係以光纖製作本發明之光學頭之流程圖,其具體實驗內容及其參數簡述如下:提供一來自Polymicro Technologies公司的可彎曲熔煉二氧化矽毛細管(Flexible Fused Silica Capillary Tubing)以做為中空光纖,其主要材質為光學鏡片常使用之熔煉二氧化矽(在400奈米波長的折射率為1.47012),與石英材質類似,但熔煉二氧化矽具有較高的塑性而不易破損,且其外部包覆聚亞醯胺(polyimide,簡稱PI)膜,而可避免光纖受損,具有聚亞醯胺膜之該光纖的外徑尺寸為435±10微米、內徑尺寸為320±6微米,且該聚亞醯胺膜的厚度為18微米;接著,利用例如打火機的火燒來去除該聚亞醯胺膜,再進行拉針步驟,最終拉針後之光纖之外徑尺寸為2.893微米,至於剩下的步驟除了光纖光學頭不必遮蔽中心之外,其他大致上與前述石英管光學頭所述者相同,故不在此加以贅述。
綜上所述,相較於習知技術,由於本發明之光學頭之製作較為簡單,而有利於成本的降低,且易於與曝光系統相結合。此外,實驗結果也證明本發明之光學頭可實現次波長光點尺寸及長焦點深度之出色結果。
上述實施例係用以例示性說明本發明之原理及其功效,而非用於限制本發明。任何熟習此項技藝之人士均可在不違背本發明之精神及範疇下,對上述實施例進行修改。因此本發明之權利保護範圍,應如後述之申請專利範圍所列。
10...中空微管體
101...大管徑部
102...管徑漸縮部
11...填塞件
L...入射光
F...焦點
第1圖係本發明之光學頭的示意圖;
第2圖係本發明之光學頭於中心未做阻擋處理時的數值模擬圖,其中,X、Y軸代表徑向方向,Z軸代表縱長方向,顏色代表光強度的大小;
第3圖係本發明之光學頭的光強度的實驗結果圖,其中,X座標為光學頭與電荷耦合裝置物鏡之焦平面之間的距離,Y座標為CCD所觀察到的光強度;
第4圖係本發明之光學頭於AZ4620光阻上曝光的結果圖;
第5圖係以石英管製作本發明之光學頭之流程圖;以及
第6圖係以光纖製作本發明之光學頭之流程圖。
10...中空微管體
101...大管徑部
102...管徑漸縮部
11...填塞件
L...入射光
F...焦點

Claims (10)

  1. 一種光學頭,係包括:中空微管體,係由透光材料形成,具有大管徑部及與其相接之管徑漸縮部;以及填塞件,係由非透光材料形成,設置於該中空微管體內部,俾於入射光被導入該中空微管體時,藉由該填塞件提供的中心遮蔽效果使該入射光僅沿著該中空微管體之管壁傳遞,而令該入射光藉由該管徑漸縮部出光並聚焦以形成長焦深之焦點。
  2. 如申請專利範圍第1項所述之光學頭,其中,該管徑漸縮部係呈圓錐形。
  3. 如申請專利範圍第1項所述之光學頭,其中,該填塞件係為柱體。
  4. 如申請專利範圍第1項所述之光學頭,其中,該填塞件係為碳棒。
  5. 如申請專利範圍第1項所述之光學頭,其中,該填塞件之外壁上係形成有金屬層。
  6. 如申請專利範圍第1項所述之光學頭,復包括遮蔽層,係形成於該大管徑部與管徑漸縮部之交界處及其周緣的外壁上。
  7. 如申請專利範圍第1項所述之光學頭,復包括遮蔽層,係形成於該中空微管體的全部外壁上。
  8. 如申請專利範圍第6或7項所述之光學頭,其中,該遮蔽層之材質係為金屬或非金屬。
  9. 如申請專利範圍第1項所述之光學頭,其中,該微管體的內外徑比值為0.7至0.8。
  10. 如申請專利範圍第1項所述之光學頭,其中,該管徑漸縮部的尖端處的外徑係小於20微米。
TW100140836A 2011-11-09 2011-11-09 光學頭 TWI461741B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW100140836A TWI461741B (zh) 2011-11-09 2011-11-09 光學頭
US13/421,204 US8625949B2 (en) 2011-11-09 2012-03-15 Optical head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100140836A TWI461741B (zh) 2011-11-09 2011-11-09 光學頭

Publications (2)

Publication Number Publication Date
TW201319627A TW201319627A (zh) 2013-05-16
TWI461741B true TWI461741B (zh) 2014-11-21

Family

ID=48223885

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100140836A TWI461741B (zh) 2011-11-09 2011-11-09 光學頭

Country Status (2)

Country Link
US (1) US8625949B2 (zh)
TW (1) TWI461741B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10088424B2 (en) 2016-08-24 2018-10-02 Industrial Technology Research Institute Tapered optical needle

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI461741B (zh) * 2011-11-09 2014-11-21 Univ Nat Taiwan 光學頭
CN104141897B (zh) * 2014-06-24 2017-01-25 浙江大学医学院附属妇产科医院 一种用于冷光源聚焦的光锥系统
EP3136143B1 (en) 2015-08-26 2020-04-01 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Hollow-core fibre and method of manufacturing thereof
TWI548273B (zh) * 2015-11-24 2016-09-01 Metal Ind Res & Dev Ct Light field acquisition device
TWI638991B (zh) 2016-08-24 2018-10-21 財團法人工業技術研究院 錐形光學針
CN107024734B (zh) * 2017-05-10 2020-01-07 北京航空航天大学 一种基于微纳光纤锥的亚波长点光源及其制备方法
CN109270695B (zh) * 2018-11-29 2021-05-11 哈尔滨工程大学 一种牵引光束产生装置及产生方法
CN112229780A (zh) * 2020-09-07 2021-01-15 桂林电子科技大学 一种改进的基于光纤集成微流芯片的流式细胞仪

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5315095A (en) * 1993-02-18 1994-05-24 Symbol Technologies, Inc. Beam with extended confinement for scanning purposes

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2566925B1 (fr) * 1984-06-29 1987-11-27 Blanc Michel Dispositif concentrateur de radiations multidirectionnel non imageur
US4806289A (en) * 1987-01-16 1989-02-21 The Dow Chemical Company Method of making a hollow light pipe
TW293090B (zh) * 1995-02-17 1996-12-11 Allied Signal Inc
US5647041A (en) * 1996-04-17 1997-07-08 Lucent Technologies Inc. Multimode fiber beam compressor
JP3917354B2 (ja) * 2000-09-12 2007-05-23 株式会社東芝 光プローブ及び光ピックアップ装置
JP4399328B2 (ja) * 2004-07-23 2010-01-13 富士ゼロックス株式会社 近接場光出射素子、光ヘッド、および近接場光出射素子の製造方法
US7824620B2 (en) * 2004-09-21 2010-11-02 The Trustees Of The University Of Pennsylvania Nano- and micro-scale structures: methods, devices and applications thereof
EP2369378B1 (en) * 2006-07-25 2013-10-30 The Board Of Trustees Of The Leland Stanford Junior University Hollow core fiber tapers
TWI370911B (en) 2007-06-08 2012-08-21 Ind Tech Res Inst Optical head
US7620280B2 (en) * 2007-09-05 2009-11-17 Harris Corporation Filled core optical fiber spliced to optical fiber and method of making the same
DE102009007096B4 (de) * 2009-02-01 2018-12-27 Fiberware Generalunternehmen für Nachrichtentechnik GmbH Laseranordnung mit einem Lichtleiter
TWI461741B (zh) * 2011-11-09 2014-11-21 Univ Nat Taiwan 光學頭

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5315095A (en) * 1993-02-18 1994-05-24 Symbol Technologies, Inc. Beam with extended confinement for scanning purposes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Jian Fu, Hongtao Dong, and Wei Fang, "Subwavelength focusing of light by a tapered microtube", Applied Physics Letters vol. 97, 041114, 2010/07/29 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10088424B2 (en) 2016-08-24 2018-10-02 Industrial Technology Research Institute Tapered optical needle

Also Published As

Publication number Publication date
US8625949B2 (en) 2014-01-07
TW201319627A (zh) 2013-05-16
US20130115454A1 (en) 2013-05-09

Similar Documents

Publication Publication Date Title
TWI461741B (zh) 光學頭
CN100580491C (zh) 毛细管光纤光镊及其制作方法
US11454739B2 (en) Method of fabricating all-dielectric flat lens with low refractive index
JPH045170B2 (zh)
CN104597562B (zh) 近红外宽波段定向传播和聚焦的表面等离激元透镜
CN108614130B (zh) 一种增强透射的纳米环形近场光学探针及其制备方法
US7149395B1 (en) Light-enhancing component and fabrication method thereof
Zhang et al. Gold nanohole array with sub-1 nm roughness by annealing for sensitivity enhancement of extraordinary optical transmission biosensor
JP2018532148A (ja) 微小球を保持する膜
CN106033092B (zh) 一种光纤探针及其制备方法
TW200848785A (en) Optical head
Zhou et al. Recent progress of laser micro-and nano manufacturing
CN109752798B (zh) 基于同轴双波导光纤的光学纳米天线探测器及其制备方法
CN105204289A (zh) 一种三维等离激元光学聚焦结构的制备方法
JP5511718B2 (ja) 光コネクタおよび内視鏡システム
TW201106106A (en) Optical etching device for laser machining
Genolet et al. Micromachined photoplastic probe for scanning near-field optical microscopy
JP4778616B2 (ja) 準波長域の開口を備えたレンズを有する光ファイバ及び独特のマイクロピペット
WO2022252300A1 (zh) 基于飞秒激光结合超分辨透镜的光纤探针制备装置及方法
Rui et al. Plasmonic near-field probe using the combination of concentric rings and conical tip under radial polarization illumination
JP3921556B2 (ja) 光ファイバ端面のマイクロレンズの形成方法
KR102506747B1 (ko) 광학 영상 장비의 초점 심도 향상 장치
US6600856B1 (en) Lensed optical fibers and unique micropipettes with subwavelength apertures
JP5623274B2 (ja) 光学装置およびその使用方法
JP2006010961A (ja) フォトニッククリスタルファイバおよびレーザ加工機

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees