TWI458116B - Apparatus and method for depositing a cigs layer - Google Patents

Apparatus and method for depositing a cigs layer Download PDF

Info

Publication number
TWI458116B
TWI458116B TW100105275A TW100105275A TWI458116B TW I458116 B TWI458116 B TW I458116B TW 100105275 A TW100105275 A TW 100105275A TW 100105275 A TW100105275 A TW 100105275A TW I458116 B TWI458116 B TW I458116B
Authority
TW
Taiwan
Prior art keywords
substrate
layer
segment
roller
copper
Prior art date
Application number
TW100105275A
Other languages
Chinese (zh)
Other versions
TW201208102A (en
Inventor
Edward Teng
Original Assignee
Tsmc Solar Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/853,254 external-priority patent/US20110030794A1/en
Application filed by Tsmc Solar Ltd filed Critical Tsmc Solar Ltd
Publication of TW201208102A publication Critical patent/TW201208102A/en
Application granted granted Critical
Publication of TWI458116B publication Critical patent/TWI458116B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Physical Vapour Deposition (AREA)

Description

沉積銅銦鎵硒(CIGS)吸收層之裝置及其方法Device and method for depositing copper indium gallium selenide (CIGS) absorption layer

本發明係關於一種太陽能光電領域,特別是關於一種可撓式太陽能電池鍍層裝置及製造可撓式銅銦鎵硒(CIGS)吸收層電池的方法。The present invention relates to the field of solar photovoltaic, and more particularly to a flexible solar cell coating apparatus and a method of manufacturing a flexible copper indium gallium selenide (CIGS) absorber layer battery.

由於科技的進步,包括轉換效率的改善以及降低製造成本的關係,使得薄膜太陽能光電的發展受到矚目。銅銦鎵硒(CIGS)是一種習知薄膜太陽能電池中使用的吸收層。銅銦鎵硒(CIGS)薄膜太陽能電池已在實驗室環境中達成了出色的轉換率(>19.5%)。The development of thin-film solar photovoltaics has attracted attention due to advances in technology, including improvements in conversion efficiency and reduced manufacturing costs. Copper indium gallium selenide (CIGS) is an absorption layer used in conventional thin film solar cells. Copper indium gallium selenide (CIGS) thin film solar cells have achieved excellent conversion rates (>19.5%) in the laboratory environment.

現今而言,多數的銅銦鎵硒沉積是以兩種技術達成:共蒸鍍(co-evaporation)或硒化法(selenization)。共蒸鍍包含同時蒸鍍銅、銦、鎵及硒。由於四種不同的元素各具有不同的熔點,使得要控制整比化合物在一大型基板上的形成是很困難的。此外,利用共蒸鍍形成的薄膜,其附著力較弱。而硒化法包含兩個步驟。第一,銅、銦及鎵濺鍍於一基板上形成前驅物。第二,硒化反應係藉由將上述前驅物與有毒的H2 Se在550℃或更高溫度下進行反應。H2 Se是難以控制的。進一步地,由於膜的厚度會導致銅、銦、鎵及硒混合不均,並產生晶格缺陷,此會降低電池的效率。同時,兩種技術需要過量的硒,大約為所需量的四倍,且不容易大量生產。Today, most copper indium gallium selenide deposits are achieved by two techniques: co-evaporation or selenization. Co-evaporation involves simultaneous vapor deposition of copper, indium, gallium and selenium. Since the four different elements each have a different melting point, it is difficult to control the formation of the compound on a large substrate. Further, the film formed by co-evaporation has a weak adhesion. The selenization method consists of two steps. First, copper, indium, and gallium are sputtered onto a substrate to form a precursor. Second, the selenization reaction is carried out by reacting the above precursor with toxic H 2 Se at 550 ° C or higher. H 2 Se is difficult to control. Further, since the thickness of the film causes uneven mixing of copper, indium, gallium, and selenium, and lattice defects are generated, the efficiency of the battery is lowered. At the same time, both technologies require an excess of selenium, which is about four times the amount required, and is not easily mass produced.

據此,其需要一種更安全且更有效率之銅銦鎵硒薄膜太陽能電池生產方法,且具有可完整混合吸收成分及易於計算之量產優點。Accordingly, there is a need for a safer and more efficient method for producing a copper indium gallium selenide thin film solar cell, which has the advantage of being able to fully mix the absorption components and to be easily calculated.

依據本發明,藉由單層反應及可撓性基板的使用,可解決無法完整混合及難以大量生產的問題。可撓性基板的轉動可適當地限制吸收成分的沉積,洽達到在單層反應中所需之足夠原子或分子數量。在某些實施例中,可撓性太陽能電池鍍層裝置可經由其中的滾筒轉動可撓性基板。將一捲可撓性基板置於一載入滾子,沿著滾筒的圓周推進基板之一片段。當該片段轉動時,同時進行濺鍍及蒸鍍之流程,可使吸收成分沉積於該片段上。吸收成分的單層反應可發生並產生一吸收薄膜層。沉積可持續進行直到吸收薄膜層達到預定厚度。在吸收薄膜層的沉積結束後,再沉積形成一緩衝層。在緩衝層的沉積完成後,該片段可沿著載出滾子展開。可撓性基板之一新片段可再沿著滾筒的圓周推進並進行沉積。According to the present invention, the problem of incomplete mixing and difficulty in mass production can be solved by the use of a single layer reaction and the use of a flexible substrate. The rotation of the flexible substrate can suitably limit the deposition of the absorbing component to the amount of sufficient atoms or molecules required in the monolayer reaction. In some embodiments, the flexible solar cell plating apparatus can rotate the flexible substrate via a drum therein. A roll of flexible substrate is placed on a loading roller to advance a segment of the substrate along the circumference of the roller. When the segment is rotated, the sputtering and vapor deposition processes are simultaneously performed to deposit an absorbing component on the segment. A single layer reaction of the absorbing component can occur and produce an absorbing film layer. The deposition can continue until the absorbing film layer reaches a predetermined thickness. After the deposition of the absorbing film layer is completed, a buffer layer is formed by redeposition. After the deposition of the buffer layer is completed, the segment can be deployed along the loading roller. A new segment of the flexible substrate can then be advanced along the circumference of the drum and deposited.

在本發明之特定實施例中,吸收薄膜可以是一銅銦鎵硒層。使用鈉滲雜銦則無需使用鹼矽酸鹽層(Alkali-silicate layer)。硒元素的使用可是製造過程安全且無毒性。在特定實施例中,硒元素可經離子化以增加反應性而降低反應溫度。In a particular embodiment of the invention, the absorbing film can be a layer of copper indium gallium selenide. The use of sodium-infiltrated indium eliminates the need for an alkalinium-silicate layer. The use of selenium is safe and non-toxic during the manufacturing process. In a particular embodiment, the selenium element can be ionized to increase reactivity and lower the reaction temperature.

依據一實施例,其為一種可在可撓性太陽能電池上沉積一或多個膜層的裝置。該裝置包括:一殼體,定義有一真空室;一滾筒,係設置於該真空室中且耦接於該真空室之頂部;一載入滾子,係用於沿著該滾筒之圓周推進一基板之一片段;一加熱器,係用於加熱該基板之片段;複數個吸收成分濺鍍源,係用於將複數個吸收成分沉積於該基板之片段表面;一蒸鍍源,係用於蒸發一吸收成分以使其沉積於該基板之片段表面;一隔離擋板,係用於防止該複數個吸收成分濺鍍源受到該蒸鍍源的汙染;一緩衝層濺鍍源,係用於將一緩衝層成分沉積於該基板之片段表面;以及一載出滾子,係用於舉起該滾筒之基板之片段。According to an embodiment, it is a device that deposits one or more layers on a flexible solar cell. The device comprises: a casing defining a vacuum chamber; a drum disposed in the vacuum chamber and coupled to the top of the vacuum chamber; and a loading roller for advancing along a circumference of the drum a segment of the substrate; a heater for heating the segment of the substrate; a plurality of absorbing component sputtering sources for depositing a plurality of absorbing components on the surface of the substrate; an evaporation source is used Evaporating an absorbing component to deposit on a surface of the segment of the substrate; an isolating baffle for preventing contamination of the plurality of absorbing component sputtering sources by the evaporation source; a buffer layer sputtering source is used for Depositing a buffer layer component on the surface of the segment of the substrate; and loading a roller for lifting a segment of the substrate of the roller.

依據另一實施例,其為一種在太陽能電池沉積一吸收層及一緩衝層的方法。該方法包括:將一捲基板放置於一滾筒中的載入滾子上;沿著該滾筒的圓周推進該基板之一片段;將該吸收層沉積於該基板之片段表面,其中沉積反應係發生在該滾筒轉動時;將該緩衝層沉積於該吸收層上;以及藉由將該基板之片段沿一載出滾子舉起,使該基板之片段由該滾筒中卸載。According to another embodiment, a method of depositing an absorber layer and a buffer layer in a solar cell. The method comprises: placing a roll of substrate on a loading roller in a drum; advancing a segment of the substrate along a circumference of the roller; depositing the absorbing layer on a surface of the segment of the substrate, wherein a deposition reaction occurs The buffer layer is deposited on the absorber layer as the drum rotates; and the segments of the substrate are unloaded from the drum by lifting the segments of the substrate along a loading roller.

本發明之該些實施例及其他實施例將於以下內容作進一步說明,使該領域熟習此技藝者可更為清楚本發明所揭露之內容。The embodiments of the present invention and other embodiments will be further described in the following, and the disclosure of the present invention will become more apparent to those skilled in the art.

本發明之可撓式太陽能電池鍍層裝置將可由以下的實施例說明而得到充分瞭解,使得熟習本技藝之人士可以據以完成之,然而本案之實施並非可由下列實施例而被限制其實施型態,熟習本技藝之人士仍可依據除既揭露之實施例的精神推演出其他實施例,該等實施例皆當屬於本發明之範圍。The flexible solar cell coating apparatus of the present invention will be fully understood by the following examples, so that those skilled in the art can do so. However, the implementation of the present invention may not be limited by the following embodiments. Other embodiments may be devised by those skilled in the art, and such embodiments are intended to be within the scope of the invention.

參閱第一圖,其係顯示習知銅銦鎵硒電池100之結構示意圖。習知銅銦鎵硒電池100具有一基板102,且在基板102表面沉積有複數薄層。適當的基板材料可包括玻璃、鋁、不鏽鋼、聚合物或任何具相似可撓性的金屬及塑膠。在於基板102上沉積有一鹼矽酸鹽層(Alkali-silicate layer) 104。一般而言,來自鹼矽酸鹽層104的鈉穿過底部電極層106至吸收層108並增加電池效率。接著,含有鉬(Mo)的底部電極層106噴濺至鹼矽酸鹽層104。底部電極層106之厚度大約為1000 nm。在底部電極層106上沉積有一p型吸收層108。p型吸收層108之厚度大約為2000 nm,且由銅(Cu)、銦(In)、鎵(Ga)及硒(Se)所組成。在p型吸收層108上沉積有一n型緩衝層110。n型緩衝層110係由硫化鎘(CdS)所組成。硫化鎘具有毒性。由氧化鋅(ZnO)組成的一快閃層112濺鍍形成於n型緩衝層110上。快閃層112可用於防止太陽能電池在進行發電過程中,因Shunting及薄膜針孔(pinhole)的問題導致CIGS薄膜效能下降。n型緩衝層110及快閃層112之厚度大約為50 nm。最終,由鋁掺雜氧化鋅所構成的頂部電極層114係濺鍍於快閃層112上。頂部電極層114之厚度大約為800 nm。Referring to the first figure, it shows a schematic structural view of a conventional copper indium gallium selenide battery 100. The conventional copper indium gallium selenide battery 100 has a substrate 102, and a plurality of thin layers are deposited on the surface of the substrate 102. Suitable substrate materials can include glass, aluminum, stainless steel, polymers, or any metal and plastic with similar flexibility. An alkalinium-silicate layer 104 is deposited on the substrate 102. In general, sodium from the alkali citrate layer 104 passes through the bottom electrode layer 106 to the absorbing layer 108 and increases cell efficiency. Next, a bottom electrode layer 106 containing molybdenum (Mo) is sprayed onto the alkali niobate layer 104. The bottom electrode layer 106 has a thickness of approximately 1000 nm. A p-type absorber layer 108 is deposited on the bottom electrode layer 106. The p-type absorber layer 108 has a thickness of about 2000 nm and is composed of copper (Cu), indium (In), gallium (Ga), and selenium (Se). An n-type buffer layer 110 is deposited on the p-type absorber layer 108. The n-type buffer layer 110 is composed of cadmium sulfide (CdS). Cadmium sulfide is toxic. A flash layer 112 composed of zinc oxide (ZnO) is sputter-plated on the n-type buffer layer 110. The flash layer 112 can be used to prevent the solar cell from degrading the performance of the CIGS film due to problems with Shunting and film pinholes during power generation. The thickness of the n-type buffer layer 110 and the flash layer 112 is approximately 50 nm. Finally, a top electrode layer 114 composed of aluminum-doped zinc oxide is sputtered onto the flash layer 112. The top electrode layer 114 has a thickness of approximately 800 nm.

第二圖係顯示可撓式太陽能電池鍍層裝置200之一實施例之側面示意圖。一個可撓式太陽能電池鍍層裝置200包括,但非僅限於,一殼體202、一滾筒204、一載入滾子206、一載出滾子208、一加熱器224、複數個濺鍍源216、複數個濺鍍靶材218、至少一蒸鍍源220,以及一隔離擋板214。The second figure shows a side view of one embodiment of a flexible solar cell coating apparatus 200. A flexible solar cell coating apparatus 200 includes, but is not limited to, a housing 202, a roller 204, a loading roller 206, a loading roller 208, a heater 224, and a plurality of sputtering sources 216. And a plurality of sputtering targets 218, at least one evaporation source 220, and a spacer baffle 214.

由殼體202可大致地定義出一真空室。在本實施例中,殼體202可定義出一單一的、高1.2 m及直徑1 m的真空室。殼體202可以是長方形,且在真空室的三面設置有三個可移式門。殼體202可由不鏽鋼或其他金屬、合金所構成,以作為滾筒殼體。A vacuum chamber can be generally defined by the housing 202. In the present embodiment, the housing 202 defines a single vacuum chamber having a height of 1.2 m and a diameter of 1 m. The housing 202 may be rectangular and has three movable doors disposed on three sides of the vacuum chamber. The housing 202 may be constructed of stainless steel or other metals or alloys to serve as a drum housing.

滾筒204係設置於真空室內部。滾筒204大約為0.8 m高且具有0.8 m之直徑。滾筒204可包括一指示機構212以監測基板沿滾筒204圓周推進。指示機構212可進一步包括一感測元件。當感測元件偵測到完全地覆蓋於滾筒204之圓周時,載入滾子206及一基板推進機構即可停止基板沿滾筒204圓周之推進。在一實施例中,滾筒204包括一頂板及一底板(圖未示)。滾筒204之頂板可直接地耦接於一驅動軸、一馬達或其他可由真空室頂部啟動滾筒轉動的機構。轉速在60-150 RPM之間的轉動可防止基材上吸收成分過度地沉積。在本實施例中,滾筒204的轉速為120 RPM。吸收成分的沉積可限於單層的原子或分子。該單層包括足夠的原子或分子以覆蓋基材表面形成單一薄層,且不會有過多的原子或分子堆疊在該薄層上。The drum 204 is disposed inside the vacuum chamber. The drum 204 is approximately 0.8 m high and has a diameter of 0.8 m. The drum 204 can include an indicator mechanism 212 to monitor the advancement of the substrate along the circumference of the drum 204. The indicator mechanism 212 can further include a sensing element. When the sensing element detects that it completely covers the circumference of the drum 204, the loading roller 206 and a substrate advancement mechanism can stop the advancement of the substrate along the circumference of the drum 204. In one embodiment, the drum 204 includes a top plate and a bottom plate (not shown). The top plate of the drum 204 can be directly coupled to a drive shaft, a motor or other mechanism that can initiate rotation of the drum from the top of the vacuum chamber. Rotation of the rotational speed between 60-150 RPM prevents excessive deposition of absorbing components on the substrate. In the present embodiment, the rotational speed of the drum 204 is 120 RPM. The deposition of the absorbing component can be limited to a single layer of atoms or molecules. The single layer includes sufficient atoms or molecules to cover the surface of the substrate to form a single thin layer without excessive atoms or molecules stacked on the thin layer.

載入滾子206及載出滾子208可設置於滾筒204的內部且同時耦接於滾筒204的頂板及底板。在另一實施例中,載入滾子206及載出滾子208耦接於頂板。一般而言,滾子大約為80 cm高且以不鏽鋼製成。在該滾子內部佈設有一不鏽鋼軸。載入滾子206可用於接收一捲基板。載入滾子206可展開該捲基板之一片段210,並可將該片段210沿著滾筒204之圓周推進,以使片段210可受到滾筒204表面之支覆。在展開環繞載出滾子208之片段210並進行沉積步驟之後,載出滾子208可由滾筒204卸載該片段210。The loading roller 206 and the loading roller 208 can be disposed inside the drum 204 and simultaneously coupled to the top plate and the bottom plate of the drum 204. In another embodiment, the loading roller 206 and the loading roller 208 are coupled to the top plate. In general, the rollers are approximately 80 cm high and are made of stainless steel. A stainless steel shaft is disposed inside the roller. Loading roller 206 can be used to receive a roll of substrate. The loading roller 206 can unfold a segment 210 of the roll substrate and can advance the segment 210 along the circumference of the drum 204 such that the segment 210 can be supported by the surface of the drum 204. After the segment 210 surrounding the loading roller 208 is unfolded and the deposition step is performed, the loading roller 208 can be unloaded by the roller 204.

可撓式太陽能電池鍍層裝置可具有一或多個加熱器224,以在濺鍍及蒸鍍時加熱基板。在一實施例中,加熱器224可設置在滾筒204內部。加熱器224係設置於滾筒204內部以使其動力源可延伸穿過滾筒204之底板。滾筒204據此可沿加熱器224轉動。在另一實施例中,一或多個加熱器224可設置在滾筒204外部,並耦接於真空室的底面,且分離於轉動的滾筒204之頂板及底板。加熱器224可以是一種該領域習知用於在沉積過程中加熱基板的紅外線或鹵素燈加熱器。加熱器224可以介於300-550℃之溫度加熱該基板。The flexible solar cell coating apparatus can have one or more heaters 224 to heat the substrate during sputtering and evaporation. In an embodiment, the heater 224 may be disposed inside the drum 204. The heater 224 is disposed inside the drum 204 such that its power source can extend through the bottom plate of the drum 204. The drum 204 is thereby rotatable along the heater 224. In another embodiment, one or more heaters 224 may be disposed outside the drum 204 and coupled to the bottom surface of the vacuum chamber and separated from the top and bottom plates of the rotating drum 204. Heater 224 can be an infrared or halogen lamp heater that is known in the art for heating substrates during deposition. The heater 224 can heat the substrate at a temperature of 300-550 °C.

可撓式太陽能電池鍍層裝置可具有複數個濺鍍源216。該複數個濺鍍源216可設置於真空室中且介於滾筒204及殼體202之間。該複數個濺鍍源216可耦接於真空室的底部。該複數個濺鍍源216及至少一蒸鍍源220可平均地分佈於滾筒204之圓周。該複數個濺鍍源216可以是任何習知用於薄膜沉積之濺鍍源,例如磁控管、離子束源或RF產生器。The flexible solar cell coating apparatus can have a plurality of sputtering sources 216. The plurality of sputter sources 216 can be disposed in the vacuum chamber and between the drum 204 and the housing 202. The plurality of sputter sources 216 can be coupled to the bottom of the vacuum chamber. The plurality of sputtering sources 216 and the at least one evaporation source 220 are evenly distributed over the circumference of the drum 204. The plurality of sputter sources 216 can be any conventional sputtering source for thin film deposition, such as magnetrons, ion beam sources, or RF generators.

該各個濺鍍源216可對應於複數個濺鍍靶材218其中之一。該複數個濺鍍靶材218可以是10 cm寬且1 m高。在本實施例中,其可以是單一的銅-鎵(Cu-Ga)濺鍍靶材及單一的滲鈉銦(sodium doped indium)濺鍍靶材。銅-鎵濺鍍靶材可以是70-80%的銅以及20-30%的鎵。滲鈉銦濺鍍靶材可包含2-3%的鈉。以鈉滲雜銦的作法無需鹼矽酸鹽層(Alkali-silicate layer),而可使成產成本降低。相較於沉積一額外的鹼矽酸鹽層,以鈉滲雜銦的作法是較佳的,因為鈉可被直接地導入銅銦鎵硒層。銦可滲雜其他鹼金屬元素,例如鉀(K)。在另一實施例中,可具有複數個銅-鎵濺鍍靶材以及複數個滲鈉銦濺鍍靶材。例如,可撓式太陽能電池鍍層裝置可具有一70:30的銅-鎵濺鍍靶材以及一80:20的銅-鎵濺鍍靶材。The respective sputter source 216 can correspond to one of a plurality of sputter targets 218. The plurality of sputter targets 218 can be 10 cm wide and 1 m high. In this embodiment, it may be a single copper-gallium (Cu-Ga) sputtering target and a single sodium doped indium sputtering target. The copper-gallium sputtering target can be 70-80% copper and 20-30% gallium. The sodium indium sputter target can contain 2-3% sodium. The use of sodium-infiltrated indium does not require an alkalinium-silicate layer, which reduces the cost of production. Sodium-infiltrated indium is preferred over the deposition of an additional alkali silicate layer because sodium can be directly introduced into the copper indium gallium selenide layer. Indium can be doped with other alkali metal elements such as potassium (K). In another embodiment, there may be a plurality of copper-gallium sputtering targets and a plurality of sodium indium sputtering targets. For example, a flexible solar cell coating apparatus can have a 70:30 copper-gallium sputtering target and an 80:20 copper-gallium sputtering target.

可撓式太陽能電池鍍層裝置可具有一蒸鍍源220,係用於產生一蒸鍍源材料222的蒸汽。該蒸汽可凝結在基材上。蒸鍍源220可以是一蒸發舟、坩堝、線圈束、電子束蒸鍍源,或其相似物。在本實施例中,蒸鍍源材料222可以是無毒性硒元素。The flexible solar cell coating apparatus can have an evaporation source 220 for generating a vapor of the evaporation source material 222. The steam can condense on the substrate. The evaporation source 220 can be an evaporation boat, crucible, coil bundle, electron beam evaporation source, or the like. In the present embodiment, the evaporation source material 222 may be a non-toxic selenium element.

第三圖係顯示可撓式太陽能電池鍍層裝置300之一實施例之頂面示意圖。可撓式太陽能電池鍍層裝置300包括,但非僅限於,一殼體302、一滾筒304、一載入滾子308、一載出滾子310、一指示機構312、一或多個加熱器322、複數個濺鍍源318、複數個濺鍍靶材320a、320b、320c,至少一蒸鍍源316,以及一隔離擋板314。雖然第三圖顯示順時針方向旋轉,但此並非限制滾筒304亦可於逆時針方向旋轉。相反位置的載入滾子308及載出滾子310,可使其逆時針旋轉地捲曲或展開基板306。The third figure shows a top plan view of one embodiment of a flexible solar cell coating apparatus 300. The flexible solar cell coating device 300 includes, but is not limited to, a housing 302, a roller 304, a loading roller 308, a loading roller 310, an indicating mechanism 312, and one or more heaters 322. A plurality of sputtering sources 318, a plurality of sputtering targets 320a, 320b, 320c, at least one evaporation source 316, and a spacer baffle 314. Although the third figure shows a clockwise rotation, this does not limit the rotation of the drum 304 in the counterclockwise direction. The loading roller 308 and the loading roller 310 at the opposite positions can be used to curl or unwind the substrate 306 counterclockwise.

雖然第三圖顯示三個濺鍍靶材,且三個濺鍍靶材分別具有不同的沉積成分,但此並非限制可撓式太陽能電池鍍層裝置用於沉積吸收層及緩衝層的濺鍍靶材之任何數目及種類。在本實施例中,可以是一銅-鎵濺鍍靶材320a、一滲鈉銦濺鍍靶材320b以及一硫化鋅濺鍍靶材320c。在另一實施例中,可撓式太陽能電池鍍層裝置包括可用於任何特定沉積成分之複數個濺鍍靶材。例如,可撓式太陽能電池鍍層裝置可具有兩個銅-鎵濺鍍靶材,一個是銅-鎵比例為70:30的銅-鎵濺鍍靶材以及另一個是銅-鎵比例為80:20的銅-鎵濺鍍靶材。Although the third figure shows three sputtering targets, and the three sputtering targets have different deposition compositions, this does not limit the sputtering target of the flexible solar cell coating device for depositing the absorption layer and the buffer layer. Any number and type. In this embodiment, a copper-gallium sputtering target 320a, a sodium indium sputter target 320b, and a zinc sulfide sputtering target 320c may be used. In another embodiment, the flexible solar cell coating apparatus includes a plurality of sputtering targets that can be used for any particular deposition composition. For example, a flexible solar cell coating device can have two copper-gallium sputtering targets, one with a copper-gallium sputtering target with a copper-gallium ratio of 70:30 and the other with a copper-gallium ratio of 80: 20 copper-gallium sputtering targets.

該複數個濺鍍源318及至少一蒸鍍源316可平均地分佈於滾筒304之圓周。在一可撓式太陽能電池鍍層裝置之例子中,其具有三個濺鍍源以及一蒸鍍源,總共為四個沉積源。該四個沉積源可設置於滾筒304,且每90度設置一個沉積源。相等的沉積源有助於防止沉積源之間的交互污染。在另一實施例中,一或多個加熱器322可完全地分布於滾筒304外、真空室殼體302內、鄰近於濺鍍源318。The plurality of sputtering sources 318 and at least one evaporation source 316 are evenly distributed over the circumference of the drum 304. In the example of a flexible solar cell coating apparatus, it has three sputtering sources and one evaporation source for a total of four deposition sources. The four deposition sources may be disposed on the drum 304 and a deposition source is provided every 90 degrees. Equal deposition sources help prevent cross-contamination between deposition sources. In another embodiment, one or more heaters 322 may be completely distributed outside of the drum 304, within the vacuum chamber housing 302, adjacent to the sputtering source 318.

第四圖係顯示隔離擋板400之一實施例之示意圖。隔離擋板402可具有一弧刀延伸部404以及一埠件410。隔離擋板402可防止靶材被蒸汽源材料產生的蒸汽所污染,該蒸汽係應用至基板的片段。隔離擋板402可由不鏽鋼或其他相似金屬及合金材料所構成。隔離擋板402可設置於真空室內部。隔離擋板之底部一端可耦接於真空室之底面,例如藉由焊接、黏著劑、螺絲、或任何其他結合方法。The fourth figure shows a schematic diagram of one embodiment of the isolation baffle 400. The isolation barrier 402 can have an arc knife extension 404 and a jaw 410. The isolation baffle 402 prevents the target from being contaminated by steam generated by the vapor source material that is applied to the segments of the substrate. The barrier baffle 402 can be constructed of stainless steel or other similar metal and alloy materials. The isolation baffle 402 can be disposed inside the vacuum chamber. The bottom end of the isolation baffle can be coupled to the bottom surface of the vacuum chamber, such as by soldering, adhesives, screws, or any other bonding method.

弧刀延伸部404恰對應於滾筒414之曲度且可覆蓋30-90度。弧刀延伸部404之一內曲面408可設置於面對滾筒414且相對於滾筒414不超過5 mm之位置。埠件410可耦接於弧刀延伸部404之一外曲面406。雖然埠件410在圖中係顯示為長方形,但此並非限制埠件410可以為任何形狀,例如圓形、三角形及其他相似形狀。開口412可形成於埠件410以及弧刀延伸部404。開口412可使蒸汽通過隔離擋板402達到基板。The arc knife extension 404 corresponds exactly to the curvature of the drum 414 and may cover 30-90 degrees. One of the inner curved surfaces 408 of the arc knife extension 404 can be disposed at a position that faces the drum 414 and does not exceed 5 mm with respect to the drum 414. The member 410 can be coupled to an outer curved surface 406 of the arc blade extension 404. Although the jaws 410 are shown as rectangular in the figures, this is not limiting the jaws 410 can be of any shape, such as circular, triangular, and other similar shapes. An opening 412 can be formed in the jaw 410 and the arc knife extension 404. The opening 412 allows steam to pass through the barrier baffle 402 to the substrate.

在此雖然以一可撓式太陽能電池基板作說明,該機構可用於沉積一或多個薄膜於玻璃基板上。一般玻璃基板之厚度可以是1-3 mm,寬30-60 cm,以及長度為60-100 cm。由於玻璃基板的本質,玻璃基板係嵌置於滾筒的外表面以進行沉積,而非在滾筒內部滾動。Although described herein as a flexible solar cell substrate, the mechanism can be used to deposit one or more films on a glass substrate. Generally, the thickness of the glass substrate may be 1-3 mm, width 30-60 cm, and length 60-100 cm. Due to the nature of the glass substrate, the glass substrate is embedded on the outer surface of the drum for deposition rather than rolling inside the drum.

第五A、五B及五C圖係顯示在基板502上進行銅銦鎵硒層沉積500之示意圖。複數個吸收成分506、508、510可沉積於基板502上(基板502上具有一鉬層504)。複數個吸收成分506、508、510可包括銅(Cu)、鎵(Ga)、硒(Se)、銦(In),及其相似物。複數個吸收成分506、508、510可透過濺鍍或蒸鍍同時地沉積於基板502上。在本實施例中,銅、鎵、銦是以濺鍍的方式,而硒是以蒸鍍的方式。藉由調整濺鍍源的動力源,可控制濺鍍的吸收成分506、508沉積於基板502上的量。相似地,藉由調整蒸鍍源的動力源,可控制蒸鍍的吸收成分510沉積於基板502上的量。基板的旋轉亦可影響濺鍍的吸收成分506、508,以及蒸鍍的吸收成分510沉積於基板502上的量。The fifth, fifth, and fifth C diagrams show a schematic diagram of a copper indium gallium selenide layer deposition 500 on a substrate 502. A plurality of absorbing components 506, 508, 510 can be deposited on substrate 502 (with a molybdenum layer 504 on substrate 502). The plurality of absorbing components 506, 508, 510 can include copper (Cu), gallium (Ga), selenium (Se), indium (In), and the like. A plurality of absorbing components 506, 508, 510 can be simultaneously deposited on the substrate 502 by sputtering or evaporation. In this embodiment, copper, gallium, and indium are in a sputtering manner, and selenium is in a vapor deposition manner. The amount of sputtered absorbing components 506, 508 deposited on substrate 502 can be controlled by adjusting the power source of the sputter source. Similarly, by adjusting the power source of the evaporation source, the amount of vapor deposited absorption component 510 deposited on the substrate 502 can be controlled. The rotation of the substrate can also affect the amount of absorbing components 506, 508 that are sputtered, as well as the amount of vapor deposited absorbing component 510 deposited on the substrate 502.

該複數個吸收成分506、508、510可在一單層反應512中進行反應。在本實施例中,單層反應512可在基板上形成一銅銦鎵硒層514。單層反應512可導致在銅銦鎵硒層514中形成較整齊且較一致的帶隙(bandgap)。在本實施例中,銅銦鎵硒層514的厚度可以是10或1 nm。可以有更多的吸收成分506、508、510沉積在銅銦鎵硒層514上,以在另一單層反應512中進行反應以形成另一銅銦鎵硒層514。所有銅銦鎵硒層形成的聚集可形成一銅銦鎵硒薄膜。沉積反應可持續進行直到達到一預定厚度的銅銦鎵硒薄膜為止。在本實施例中,預定厚度可以是1500 nm。形成厚度為1500 nm之銅銦鎵硒薄膜的沉積反應約需10-15分鐘。各個滾筒的每次轉動可形成一厚度為1 nm的銅銦鎵硒層。The plurality of absorbing components 506, 508, 510 can be reacted in a single layer reaction 512. In this embodiment, a single layer reaction 512 can form a copper indium gallium selenide layer 514 on the substrate. The single layer reaction 512 can result in a more uniform and consistent bandgap in the copper indium gallium selenide layer 514. In this embodiment, the thickness of the copper indium gallium selenide layer 514 may be 10 Or 1 nm. More absorbing components 506, 508, 510 may be deposited on the copper indium gallium selenide layer 514 to react in another single layer reaction 512 to form another copper indium gallium selenide layer 514. The aggregation of all the copper indium gallium selenide layers forms a copper indium gallium selenide film. The deposition reaction can continue until a predetermined thickness of the copper indium gallium selenide film is reached. In this embodiment, the predetermined thickness may be 1500 nm. The deposition reaction for forming a copper indium gallium selenide film having a thickness of 1500 nm takes about 10-15 minutes. Each turn of each roller can form a copper indium gallium selenide layer having a thickness of 1 nm.

第六圖係顯示依據本發明一實施例之銅銦鎵硒層之歐傑電子能譜儀(Auger Electron Spectroscopy,AES)縱深分析之結果。由歐傑電子能譜儀縱深分析證實了本發明之技術可在銅銦鎵硒薄膜中產生階級組成物。在歐傑電子能譜儀縱深分析結果亦顯示該階級組成物在不同厚度的銅銦鎵硒薄膜中具有一致性。The sixth figure shows the results of the depth analysis of the Auger Electron Spectroscopy (AES) of the copper indium gallium selenide layer according to an embodiment of the present invention. The depth analysis by the Oujie Electron Spectrometer confirmed that the technique of the present invention can produce a class composition in a copper indium gallium selenide film. The depth analysis of the Auger electron spectrometer also shows that the class composition is consistent in different thicknesses of copper indium gallium selenide film.

進入的光可包括有複數個波長。各波長可對應於一能量。具有能階帶隙的吸收層可完全地吸收該進入光線的各個波長之能量。在本實施例中,吸收層可以是銅銦鎵硒薄膜。銅銦鎵硒薄膜的最佳能量帶隙可發生在1.3-1.5 ev之間。The incoming light can include a plurality of wavelengths. Each wavelength can correspond to an energy. An absorbing layer having an energy band gap can completely absorb the energy of the respective wavelengths of the incoming light. In this embodiment, the absorbing layer may be a copper indium gallium selenide film. The optimal energy band gap of a copper indium gallium selenide film can occur between 1.3 and 1.5 ev.

最佳能量帶隙可由該複數個吸收成分之階級組成物所致。在一實施例中,可在沉積反應過程中藉由調整其供能以產生該階級組成物。例如,降低銅-鎵濺鍍源的供能並增加滲鈉銦濺鍍源的供能,可在銅銦鎵硒薄膜從上到下產生較多量的銅及鎵並減少銦的量。再另一實施例中,利用不同成分比例的濺鍍靶材也可產生該階級組成物。例如,在進行薄膜沉積時,利用針對70:30比例之銅-鎵濺鍍源以及80:20比例之銅-鎵濺鍍源進行不同時間點的供能,以得到銅及鎵的階級組成物。The optimal energy band gap can be caused by the class composition of the plurality of absorption components. In one embodiment, the class composition can be produced by adjusting its energization during the deposition reaction. For example, reducing the energy supply of the copper-gallium sputtering source and increasing the energy supply of the sodium-indium-phosphorus sputtering source can produce a greater amount of copper and gallium and reduce the amount of indium from the top to bottom of the copper indium gallium selenide film. In still another embodiment, the class composition can also be produced using sputter targets of different composition ratios. For example, in film deposition, a copper-gallium sputtering source of 70:30 ratio and a copper-gallium sputtering source of 80:20 ratio are used for energy supply at different time points to obtain a class composition of copper and gallium. .

X軸的歐傑電子能譜儀縱深分析是由銅銦鎵硒薄膜表面以奈米(nm)為單位之深度。Y軸的歐傑電子能譜儀縱深分析是針對該複數個吸收成分之原子組成。由歐傑電子能譜儀縱深分析顯示銅銦鎵硒薄膜中具有較多量的銅及鎵。由歐傑電子能譜儀縱深分析亦顯示,在不同深度之銅銦鎵硒薄膜中且銅、鎵組成比例增加時,薄膜中的銅、鎵組成比例仍然具有一致性。銅銦鎵硒薄膜中的銅、鎵組成比例可維持一致性的原因在於,銅及鎵是由相同的濺鍍靶材所濺鍍出,而該濺鍍靶材具有一致的銅-鎵比例。歐傑電子能譜儀縱深分析亦顯示出較少量的銦,且在不同深度之銅銦鎵硒薄膜中,與較多量的銅及鎵一致。歐傑電子能譜儀縱深分析亦顯示,在銅銦鎵硒薄膜中的硒含量仍然維持一致。The depth analysis of the X-axis Oujie electron spectrometer is based on the depth of the surface of the copper indium gallium selenide film in nanometers (nm). The depth analysis of the Y-axis of the Auger electron spectrometer is directed to the atomic composition of the plurality of absorbing components. The depth analysis by the Auger electron spectrometer shows that copper indium gallium selenide film has a large amount of copper and gallium. The depth analysis by the Oujie Electron Spectrometer also shows that the composition ratio of copper and gallium in the film is still consistent when the proportion of copper and gallium increases in the copper indium gallium selenide film at different depths. The reason why the composition ratio of copper and gallium in the copper indium gallium selenide film can be maintained is that copper and gallium are sputtered by the same sputtering target, and the sputtering target has a uniform copper-gallium ratio. The depth analysis of the Oujie Electron Spectrometer also showed a smaller amount of indium, and it was consistent with a larger amount of copper and gallium in different thicknesses of copper indium gallium selenide film. The depth analysis of the Oujie Electron Spectrometer also showed that the selenium content in the copper indium gallium selenide film remained consistent.

第七圖係顯示依據本發明一實施例之銅銦鎵硒電池之X光繞射(XRD)圖譜結果。X光繞射圖譜結果證實了銅銦鎵硒電池具有一黃銅礦結構(Chalcopyrite Structure)。黃銅礦結構是一種所有銅銦鎵硒電池所具有之可辨識特徵。The seventh figure shows the X-ray diffraction (XRD) pattern results of a copper indium gallium selenide battery according to an embodiment of the present invention. The X-ray diffraction pattern confirmed that the copper indium gallium selenide battery has a chalcopyrite structure. The chalcopyrite structure is an identifiable feature of all copper indium gallium selenide batteries.

典型銅銦鎵硒電池之生產,需要高溫(至少500℃),以產生黃銅礦結構。黃銅礦結構可造成在(112)面的繞射,其對應於在一個典型銅銦鎵硒電池在X光繞射圖譜中約27度之尖峰。The production of a typical copper indium gallium selenide battery requires high temperatures (at least 500 ° C) to produce a chalcopyrite structure. The chalcopyrite structure can cause diffraction at the (112) plane, which corresponds to a peak of about 27 degrees in a typical copper indium gallium selenide cell in the X-ray diffraction pattern.

就銅銦鎵硒電池的實例而言,可利用單層反應以350℃沉積銅銦鎵硒薄膜於一基板上。X光繞射圖譜之X軸是指由入射粒子束產生繞射之粒子束的角度,或是2θ。X光繞射圖譜之Y軸是指反射粒子束的強度(以a.u為單位)。X光繞射圖譜之尖峰可能集中出現在約27度。該尖峰可表示在低溫下以單層反應所製備的銅銦鎵硒電池具有黃銅礦結構。In the case of a copper indium gallium selenide battery, a copper indium gallium selenide film can be deposited on a substrate at 350 ° C using a single layer reaction. The X-axis of the X-ray diffraction pattern refers to the angle of the particle beam that is diffracted by the incident particle beam, or 2θ. The Y-axis of the X-ray diffraction pattern refers to the intensity of the reflected particle beam (in a.u). The peaks of the X-ray diffraction pattern may appear concentrated at approximately 27 degrees. The spike may indicate that the copper indium gallium selenide battery prepared by a single layer reaction at a low temperature has a chalcopyrite structure.

第八圖係顯示在可撓性基板800上沉積銅銦鎵硒層及氧硫化鋅層之方法流程圖。在該沉積方法開始時,將一捲可撓性基板放置於一真空室中的載入滾子上(步驟802)。在一實施例中,該基板之厚度可以為0.1 mm,且預先鍍設有一鉬(Mo)的背向接觸層,或是其他可作為背向接觸層之金屬或化合物。適合的基板材料包括有:鋁、不鏽鋼、聚合物、或任何具相似可撓性的金屬及塑膠。在另一實施例中,該基板可以是一玻璃基板,其厚度可以是1-3 mm,寬30-60 cm,以及長度為60-100 cm。玻璃基板可嵌置於滾筒的外表面以進行沉積。滾動的滾筒可接受複數個玻璃基板。The eighth figure shows a flow chart of a method of depositing a copper indium gallium selenide layer and a zinc oxysulfide layer on a flexible substrate 800. At the beginning of the deposition process, a roll of flexible substrate is placed on a loading roller in a vacuum chamber (step 802). In one embodiment, the substrate may have a thickness of 0.1 mm and is pre-plated with a back contact layer of molybdenum (Mo) or other metal or compound that acts as a back contact layer. Suitable substrate materials include: aluminum, stainless steel, polymers, or any metal and plastic with similar flexibility. In another embodiment, the substrate can be a glass substrate having a thickness of 1-3 mm, a width of 30-60 cm, and a length of 60-100 cm. The glass substrate can be embedded on the outer surface of the drum for deposition. The rolling drum can accept a plurality of glass substrates.

載入一捲基板之片段至滾筒上(步驟804)。該滾筒需要載入滾子展開該捲基板之片段並沿著該滾筒之圓周推進該片段,以使該片段可受到滾筒表面之支覆。滾筒之一指示機構可控制該基板所展開之片段長度。A segment of a roll of substrate is loaded onto the drum (step 804). The drum requires a loading roller to unwind the segment of the roll substrate and advance the segment along the circumference of the roll so that the piece can be supported by the surface of the roll. One of the rollers indicates the length of the segment in which the substrate is unfolded.

在載入該片段(步驟804)後,可在該片段上沉積一銅銦鎵硒層(步驟806)。步驟806中銅銦鎵硒層的沉積,可在滾筒滾動及加熱器加熱該片段時於真空狀態下發生。真空泵可自真空室中抽出氣體分子以產生真空狀態。可利用馬達或任何其他可驅動旋轉動作的機構使該滾筒旋轉。滾筒可在沉積銅銦鎵硒層時,以60-150 RPM的速度旋轉。加熱器可以是一種該領域習知用於在沉積過程中加熱基板的紅外線或鹵素燈加熱器。在本實施例中,加熱器可以介於300-550℃之溫度加熱基板。After loading the segment (step 804), a layer of copper indium gallium selenide can be deposited over the segment (step 806). The deposition of the copper indium gallium selenide layer in step 806 can occur under vacuum when the roll is rolled and the heater heats the segment. The vacuum pump can extract gas molecules from the vacuum chamber to create a vacuum state. The drum can be rotated using a motor or any other mechanism that can drive the rotary motion. The roller can be rotated at a speed of 60-150 RPM when depositing a copper indium gallium selenide layer. The heater can be an infrared or halogen lamp heater known in the art for heating a substrate during deposition. In this embodiment, the heater can heat the substrate at a temperature of 300-550 °C.

銅銦鎵硒層的沉積步驟806可以是一混合過程,包括同時濺鍍及蒸鍍複數個吸收成分。例如,當硒元素蒸鍍於該片段上時,銅-鎵靶材及滲鈉銦靶材也同時進行濺鍍。各滾筒的轉動可使複數個吸收成分的原子或分子進行沉積。該些吸收成分的原子或分子之沉積可在一單層反應中發生反應。該單層反應可產生銅銦鎵硒層。該銅銦鎵硒層之厚度可是10The deposition step 806 of the copper indium gallium selenide layer can be a mixing process including simultaneous sputtering and evaporation of a plurality of absorbing components. For example, when selenium is evaporated onto the segment, the copper-gallium target and the sodium indium target are simultaneously sputtered. The rotation of each roller can deposit a plurality of atoms or molecules of the absorbing component. The deposition of atoms or molecules of the absorbing components can be reacted in a single layer reaction. This single layer reaction produces a copper indium gallium selenide layer. The thickness of the copper indium gallium selenide layer can be 10 .

濺鍍作用可利用一濺鍍氣體及複數個濺鍍源。在本實施例中,濺鍍作用是以氬氣進行。其他可能的濺鍍氣體包括氪、氙、氖及其他相似惰性氣體。而其他習知用於薄膜沉積之濺鍍源可以是,例如磁控管、離子束源或RF產生器,或其他可用於薄膜沉積之濺鍍源。Sputtering can utilize a sputtering gas and a plurality of sputtering sources. In the present embodiment, the sputtering effect is performed by argon gas. Other possible sputtering gases include helium, neon, xenon and other similar inert gases. Other conventional sources of sputtering for thin film deposition may be, for example, magnetrons, ion beam sources or RF generators, or other sources of sputtering that can be used for thin film deposition.

對各個濺鍍源而言,其可以為一濺鍍靶材。在本實施例中,可以是單一的銅-鎵濺鍍靶材及單一的滲鈉銦濺鍍靶材。在另一實施例中,可以是複數個銅-鎵濺鍍靶材以及複數個滲鈉銦濺鍍靶材。該些靶材可以是寬10 cm及高1 m。可將不同的吸收成分組合形成一濺鍍靶材。例如,銅及鎵粉可一起壓製形成一銅-鎵濺鍍靶材。此情況下所製成的銅-鎵濺鍍靶材,可具有變動的銅-鎵比例,例如但非僅限於,70:30的銅-鎵濺鍍靶材以及一80:20的銅-鎵濺鍍靶材。雖然在此是以銅及鎵所進行,但此並非意圖限制其他可用於相同情形的吸收成分之濺鍍靶材。For each sputtering source, it can be a sputtering target. In this embodiment, it may be a single copper-gallium sputtering target and a single sodium-infiltrated sputtering target. In another embodiment, there may be a plurality of copper-gallium sputtering targets and a plurality of sodium indium sputtering targets. The targets may be 10 cm wide and 1 m high. Different absorbing components can be combined to form a sputtering target. For example, copper and gallium powder can be pressed together to form a copper-gallium sputtering target. The copper-gallium sputtering target produced in this case can have varying copper-gallium ratios such as, but not limited to, a 70:30 copper-gallium sputtering target and an 80:20 copper-gallium Sputter target. Although copper and gallium are used herein, this is not intended to limit other sputtering targets that can be used for the same conditions of the absorbing component.

蒸鍍作用包括將一蒸鍍源材料以一蒸鍍源蒸發,且使蒸鍍源材料蒸發的蒸汽凝結於基板上。在本實施例中,蒸鍍源材料可以是無毒性硒元素。蒸鍍源可以是一蒸發舟、坩堝、線圈束、電子束蒸鍍源,或其相似物。蒸鍍源材料蒸發的蒸汽可在凝結前先使其離子化以增加其反應速率。反應速率的增加可使蒸鍍源材料的需求減少,且可降低基板溫度。在本實施例中,硒蒸汽可以利用一電離放電裝置進行離子化。The vapor deposition comprises evaporating an evaporation source material as an evaporation source, and condensing the vapor evaporated from the evaporation source material on the substrate. In this embodiment, the evaporation source material may be a non-toxic selenium element. The evaporation source may be an evaporation boat, crucible, coil bundle, electron beam evaporation source, or the like. The vapor evaporated from the evaporation source material can be ionized prior to condensation to increase its reaction rate. An increase in the reaction rate reduces the demand for the evaporation source material and lowers the substrate temperature. In this embodiment, the selenium vapor can be ionized using an ionization discharge device.

決定在基板上的銅銦鎵硒層是否達到預定厚度(步驟808)。步驟808可包括該複數個吸收成分在一恆定時間內的沉積。該複數個吸收成分之沉積厚度可被測量。該複數個吸收成分之沉積速率可由沉積厚度及恆定時間而被計算出來。該沉積速率及沉積源動力設定可被用於決定步驟808中的銅銦鎵硒薄膜是否達到預定厚度。It is determined whether the copper indium gallium selenide layer on the substrate reaches a predetermined thickness (step 808). Step 808 can include depositing the plurality of absorbing components for a constant time. The deposited thickness of the plurality of absorbing components can be measured. The deposition rate of the plurality of absorbing components can be calculated from the deposited thickness and the constant time. The deposition rate and deposition source power settings can be used to determine if the copper indium gallium selenide film in step 808 has reached a predetermined thickness.

若步驟808中的銅銦鎵硒薄膜未達到預定厚度,可重覆進行步驟806中銅銦鎵硒層的沉積。然而,複數個吸收成分的沉積及蒸鍍可發生於下層的銅銦鎵硒層。若步驟808中的銅銦鎵硒薄膜已達到預定厚度,一緩衝層可沉積形成於最上層的銅銦鎵硒層(步驟810)。在本實施例中,緩衝層可以是無毒性氧硫化鋅(ZnS-O)。緩衝層可利用80-90%的氬以及10-20%的氧作為濺鍍氣體沉積形成。If the copper indium gallium selenide film in step 808 does not reach a predetermined thickness, the deposition of the copper indium gallium selenide layer in step 806 may be repeated. However, deposition and evaporation of a plurality of absorbing components may occur in the underlying layer of copper indium gallium selenide. If the copper indium gallium selenide film in step 808 has reached a predetermined thickness, a buffer layer may be deposited on the uppermost layer of copper indium gallium selenide (step 810). In this embodiment, the buffer layer may be non-toxic zinc oxysulfide (ZnS-O). The buffer layer can be formed by depositing 80-90% of argon and 10-20% of oxygen as a sputtering gas.

決定該捲基板是否已完整地鍍設(步驟814)。若其決定該捲基板尚未完整地鍍設,該方法可將該捲基板的新片段重新載入置於滾筒上(步驟804)。若其決定該捲基板已完整地鍍設,即可打破真空狀態。該捲基板可被移除。同時,一捲新的基板重新置於滾筒上(步驟802)。It is determined whether the roll substrate has been completely plated (step 814). If it determines that the roll substrate has not been completely plated, the method reloads the new segment of the roll substrate onto the drum (step 804). If it decides that the substrate of the roll has been completely plated, the vacuum state can be broken. The roll substrate can be removed. At the same time, a new roll of substrate is placed back on the drum (step 802).

由以上實施例可知,本發明所提供之用於沉積可撓式太陽能電池之一或多鍍層的裝置及其方法確具產業上之利用價值,惟以上之敘述僅為本發明之較佳實施例說明,凡精於此項技藝者當可依據上述之說明而作其它種種之改良,惟這些改變仍屬於本發明之精神及以下所界定之專利範圍中。It can be seen from the above embodiments that the apparatus and method for depositing one or more coatings of a flexible solar cell provided by the present invention have industrial value, but the above description is only a preferred embodiment of the present invention. It is to be understood that those skilled in the art can make various other modifications in light of the above description, but such changes are still within the spirit of the invention and the scope of the invention as defined below.

100...銅銦鎵硒電池100. . . Copper indium gallium selenide battery

102...基板102. . . Substrate

104...鹼矽酸鹽層104. . . Alkali citrate layer

106...底部電極層106. . . Bottom electrode layer

108...p型吸收層108. . . P-type absorption layer

110...n型緩衝層110. . . N-type buffer layer

112...快閃層112. . . Flash layer

114...頂部電極層114. . . Top electrode layer

200...可撓式太陽能電池鍍層裝置200. . . Flexible solar cell coating device

202...殼體202. . . case

204...滾筒204. . . roller

206...載入滾子206. . . Loading roller

208...載出滾子208. . . Carrying out the roller

210...片段210. . . Fragment

212...指示機構212. . . Instructor

214...隔離擋板214. . . Isolation baffle

216...濺鍍源216. . . Sputter source

218...濺鍍靶材218. . . Sputter target

220...蒸鍍源220. . . Evaporation source

222...蒸鍍源材料222. . . Evaporation source material

224...加熱器224. . . Heater

300...可撓式太陽能電池鍍層裝置300. . . Flexible solar cell coating device

302...殼體302. . . case

304...滾筒304. . . roller

306...基板306. . . Substrate

308...載入滾子308. . . Loading roller

310...載出滾子310. . . Carrying out the roller

312...指示機構312. . . Instructor

314...隔離擋板314. . . Isolation baffle

316...蒸鍍源316. . . Evaporation source

318...濺鍍源318. . . Sputter source

320a、320b、320c...濺鍍靶材320a, 320b, 320c. . . Sputter target

322...加熱器322. . . Heater

400...隔離擋板400. . . Isolation baffle

402...隔離擋板402. . . Isolation baffle

404...弧刀延伸部404. . . Arc knife extension

406...外曲面406. . . Outer surface

408...內曲面408. . . Inner surface

410...埠件410. . . Software

412...開口412. . . Opening

414...滾筒414. . . roller

500...沉積500. . . Deposition

502...基板502. . . Substrate

504...鉬層504. . . Molybdenum layer

506、508、510...吸收成分506, 508, 510. . . Absorbing component

512...單層反應512. . . Single layer reaction

514...銅銦鎵硒層514. . . Copper indium gallium selenide layer

第一圖係顯示習知銅銦鎵硒電池之結構示意圖;The first figure shows a schematic structural view of a conventional copper indium gallium selenide battery;

第二圖係顯示可撓式太陽能電池鍍層裝置之一實施例之側面示意圖;2 is a side view showing an embodiment of a flexible solar cell plating apparatus;

第三圖係顯示可撓式太陽能電池鍍層裝置之一實施例之頂面示意圖;The third figure shows a top view of one embodiment of a flexible solar cell plating apparatus;

第四圖係顯示隔離擋板之一實施例之示意圖;The fourth figure shows a schematic view of one embodiment of the isolation baffle;

第五A、五B及五C圖係顯示在基板上沉積銅銦鎵硒層之示意圖;The fifth A, fifth B and five C diagrams show a schematic diagram of depositing a copper indium gallium selenide layer on a substrate;

第六圖係顯示依據本發明一實施例之銅銦鎵硒層之歐傑電子能譜儀縱深分析之結果;The sixth figure shows the results of the depth analysis of the Auger electron spectrometer of the copper indium gallium selenide layer according to an embodiment of the present invention;

第七圖係顯示依據本發明一實施例之銅銦鎵硒電池之X光繞射圖譜結果;Figure 7 is a graph showing the results of X-ray diffraction of a copper indium gallium selenide battery according to an embodiment of the present invention;

第八圖係顯示在可撓性基板上沉積銅銦鎵硒層及氧硫化鋅層之方法流程圖。The eighth figure shows a flow chart of a method of depositing a copper indium gallium selenide layer and a zinc oxysulfide layer on a flexible substrate.

200...可撓式太陽能電池鍍層裝置200. . . Flexible solar cell coating device

202...殼體202. . . case

204...滾筒204. . . roller

206...載入滾子206. . . Loading roller

208...載出滾子208. . . Carrying out the roller

210...片段210. . . Fragment

212...指示機構212. . . Instructor

214...隔離擋板214. . . Isolation baffle

216...濺鍍源216. . . Sputter source

218...濺鍍靶材218. . . Sputter target

220...蒸鍍源220. . . Evaporation source

222...蒸鍍源材料222. . . Evaporation source material

224...加熱器224. . . Heater

Claims (12)

一種用於沉積可撓式太陽能電池之一或多鍍層的裝置,包括:一殼體,定義有一真空室;一滾筒,係設置於該真空室中且耦接於該真空室之頂部;一載入滾子,係用於發放沿著該滾筒之圓周推進一基板之一片段;一加熱器,係用於加熱該基板之片段;複數個吸收成分濺鍍源,係用於將複數個吸收成分沉積於該基板之片段表面;一蒸鍍源,係用於蒸發一吸收成分以使其沉積於該基板之片段表面;一隔離擋板,係用於防止該複數個吸收成分濺鍍源受到該蒸鍍源的汙染,該隔離擋板包括:一弧刀延伸部,具有一內表面及一外表面,該內表面洽符合於該滾筒之曲率;一埠件,係耦接於該弧刀延伸部之外表面;一緩衝層濺鍍源,係用於將一緩衝層成分沉積於該基板之片段表面;以及一載出滾子,係用於接收該滾筒之基板之片段。 An apparatus for depositing one or more coatings of a flexible solar cell, comprising: a casing defining a vacuum chamber; a drum disposed in the vacuum chamber and coupled to the top of the vacuum chamber; a roller for issuing a segment of a substrate along a circumference of the roller; a heater for heating a segment of the substrate; and a plurality of absorbing component sputtering sources for applying a plurality of absorption components Deposited on the surface of the segment of the substrate; an evaporation source for evaporating an absorbing component to be deposited on the surface of the segment of the substrate; a spacer baffle for preventing the plurality of absorbing component sputtering sources from being subjected to the The isolation baffle comprises: an arc knife extension having an inner surface and an outer surface, the inner surface conforming to the curvature of the roller; a member coupled to the arc blade extension The outer surface of the portion; a buffer layer sputtering source for depositing a buffer layer component on the surface of the segment of the substrate; and a loading roller for receiving a segment of the substrate of the roller. 如申請專利範圍第1項所述之裝置,其中該複數個吸收成分包括銅(Cu)、鎵(Ga)、硒(Se)及滲鈉銦(sodium doped indium)。 The device of claim 1, wherein the plurality of absorbing components comprise copper (Cu), gallium (Ga), selenium (Se), and sodium doped indium. 如申請專利範圍第2項所述之裝置,其中該濺鍍源之其中之一係為一具有2-3百分比之鈉的滲鈉銦濺鍍源。 The device of claim 2, wherein one of the sputtering sources is a sodium indium sputter sputtering source having 2-3 percent sodium. 如申請專利範圍第1項所述之裝置,其中該各個吸收成分濺鍍源及緩衝層濺鍍源係為平均地分佈於該滾筒之外圓周。 The device of claim 1, wherein the respective absorbing component sputtering source and buffer layer sputtering source are evenly distributed on the outer circumference of the roller. 如申請專利範圍第1項所述之裝置,其中該緩衝層成分包括氧硫化鋅(ZnS-O)。 The device of claim 1, wherein the buffer layer component comprises zinc oxysulfide (ZnS-O). 如申請專利範圍第1項所述之裝置,其中該滾筒係用於安放複數個玻璃基板。 The device of claim 1, wherein the roller is used to mount a plurality of glass substrates. 一種沉積太陽能電池之一吸收層及一緩衝層的方法,包括:將一捲基板放置於一滾筒中的載入滾子上;沿著該滾筒的圓周推進該基板之一片段;將該吸收層沉積於該基板之片段表面,其中沉積反應係發生在該滾筒轉動時;將該緩衝層沉積於該吸收層上;以及藉由將該基板之片段沿一載出滾子接收,使該基板之片段由該滾筒中卸載;其中該吸收層沉積於該基板之片段表面之步驟,包括同時濺鍍及蒸鍍複數個吸收成分,該些吸收成分為銅、鎵、銦及硒。 A method of depositing an absorber layer and a buffer layer of a solar cell, comprising: placing a roll of substrate on a loading roller in a drum; advancing a segment of the substrate along a circumference of the roller; Deposited on the surface of the segment of the substrate, wherein the deposition reaction occurs when the roller rotates; the buffer layer is deposited on the absorption layer; and the substrate is received by the segment of the substrate along a loading roller The segment is unloaded from the roller; wherein the absorbing layer is deposited on the surface of the segment of the substrate, including simultaneously sputtering and vapor depositing a plurality of absorbing components, such as copper, gallium, indium and selenium. 如申請專利範圍第7項所述之方法,其中該各個步驟係在一真空室內進行。 The method of claim 7, wherein the steps are performed in a vacuum chamber. 如申請專利範圍第7項所述之方法,其中該吸收層沉積於該基板之片段表面之步驟,係重複進行直到達成一預定厚度之吸收層。 The method of claim 7, wherein the step of depositing the absorbing layer on the surface of the segment of the substrate is repeated until an absorbing layer of a predetermined thickness is achieved. 一種沉積一銅銦鎵硒層及一氧硫化鋅層的方法,包括:將一捲可撓性基板放置於一載入滾子上;沿著該滾筒的圓周推進該可撓性基板之一片段;在該可撓性基板之片段表面形成一銅銦鎵硒(CIGS)層,包括:轉動該滾筒;濺鍍複數個銅、鎵及滲鈉銦原子至該可撓性基板之片段表面; 蒸發一硒材料以在該可撓性基板之片段表面沉積複數個硒原子;於一單層反應中使該複數個銅、鎵、硒及滲鈉銦原子發生反應;其中該銅銦鎵硒層的形成係重複進行直到達成一預定厚度之銅銦鎵硒層,且其中上述之濺鍍與蒸發步驟係同時實施;在該銅銦鎵硒層上沉積一氧硫化鋅層;以及藉由將該可撓性基板之片段沿一載出滾子接受,使該可撓性基板之片段由該滾筒中卸載。 A method of depositing a layer of a copper indium gallium selenide layer and a zinc oxysulfide layer, comprising: placing a roll of flexible substrate on a loading roller; advancing a segment of the flexible substrate along a circumference of the roller Forming a copper indium gallium selenide (CIGS) layer on the surface of the segment of the flexible substrate, comprising: rotating the roller; sputtering a plurality of copper, gallium, and sodium indium atoms to a surface of the segment of the flexible substrate; Evaporating a selenium material to deposit a plurality of selenium atoms on a surface of the segment of the flexible substrate; reacting the plurality of copper, gallium, selenium and sodium indium atoms in a single layer reaction; wherein the copper indium gallium selenide layer The formation is repeated until a predetermined thickness of the copper indium gallium selenide layer is achieved, and wherein the sputtering and evaporation steps are performed simultaneously; depositing a zinc oxysulfide layer on the copper indium gallium selenide layer; A segment of the flexible substrate is received along a loading roller such that a segment of the flexible substrate is unloaded from the roller. 如申請專利範圍第10項所述之方法,其中該沉積複數個硒原子的沉積,更包括將該複數個硒原子進行離子化以增加反應速率。 The method of claim 10, wherein depositing a plurality of selenium atoms further comprises ionizing the plurality of selenium atoms to increase the reaction rate. 如申請專利範圍第11項所述之方法,其中該離子化係以一電離放電裝置進行。 The method of claim 11, wherein the ionization is performed by an ionization discharge device.
TW100105275A 2010-08-09 2011-02-17 Apparatus and method for depositing a cigs layer TWI458116B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/853,254 US20110030794A1 (en) 2009-08-10 2010-08-09 Apparatus And Method For Depositing A CIGS Layer

Publications (2)

Publication Number Publication Date
TW201208102A TW201208102A (en) 2012-02-16
TWI458116B true TWI458116B (en) 2014-10-21

Family

ID=45795087

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100105275A TWI458116B (en) 2010-08-09 2011-02-17 Apparatus and method for depositing a cigs layer

Country Status (2)

Country Link
CN (1) CN102373405B (en)
TW (1) TWI458116B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI617684B (en) * 2016-10-07 2018-03-11 國家中山科學研究院 Integrated fast selenium vulcanization process equipment

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140131198A1 (en) * 2012-11-09 2014-05-15 Tsmc Solar Ltd. Solar cell formation apparatus and method
US20150021163A1 (en) * 2013-07-16 2015-01-22 Tsmc Solar Ltd. Apparatus and method for producing solar cells with a heater apparatus
TWI496304B (en) * 2013-12-12 2015-08-11 Ind Tech Res Inst Solar cell and method of forming the same and method for forming n-type zns layer
CN103695851B (en) * 2013-12-27 2016-02-24 柳州百韧特先进材料有限公司 Sputtering method prepares the method for flexible solar battery CIGS absorption layer and buffer layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4851095A (en) * 1988-02-08 1989-07-25 Optical Coating Laboratory, Inc. Magnetron sputtering apparatus and process
US20040063320A1 (en) * 2002-09-30 2004-04-01 Hollars Dennis R. Manufacturing apparatus and method for large-scale production of thin-film solar cells
US20090215224A1 (en) * 2008-02-21 2009-08-27 Film Solar Tech Inc. Coating methods and apparatus for making a cigs solar cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159372A (en) * 1987-12-15 1989-06-22 Murata Mfg Co Ltd Sputtering target for forming thin film
CN2760049Y (en) * 2004-10-20 2006-02-22 邓凤山 Rotary magnetic control sputter with diffuser plate
CN101459200B (en) * 2007-12-14 2011-07-20 中国电子科技集团公司第十八研究所 Preparation method of flexible CIGS thin-film solar cell and absorption layer
CN101752453A (en) * 2008-12-04 2010-06-23 上海空间电源研究所 Preparation method of glass-substrate double-side CIGS thin film solar cell module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4851095A (en) * 1988-02-08 1989-07-25 Optical Coating Laboratory, Inc. Magnetron sputtering apparatus and process
US20040063320A1 (en) * 2002-09-30 2004-04-01 Hollars Dennis R. Manufacturing apparatus and method for large-scale production of thin-film solar cells
US20090215224A1 (en) * 2008-02-21 2009-08-27 Film Solar Tech Inc. Coating methods and apparatus for making a cigs solar cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Platzer-Bjorkman et al," Atomic layer deposition of Zn(O,S) buffer layers for high efficiency Cu(In,Ga)Se/sub 2/ solar cells ", Proceedings of 3rd World Conference on Photovoltaic Energy Conversion, Vol. 1, 11-18 May, 2003, pages 461-464. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI617684B (en) * 2016-10-07 2018-03-11 國家中山科學研究院 Integrated fast selenium vulcanization process equipment

Also Published As

Publication number Publication date
CN102373405A (en) 2012-03-14
TW201208102A (en) 2012-02-16
CN102373405B (en) 2014-08-06

Similar Documents

Publication Publication Date Title
US20110030794A1 (en) Apparatus And Method For Depositing A CIGS Layer
TWI427814B (en) Method of manufacturing solar cell
TWI458116B (en) Apparatus and method for depositing a cigs layer
TWI583811B (en) A Cu-Ga sputtering target, a method for manufacturing the target, a light absorbing layer, and a solar cell using the light absorbing layer
JP6248118B2 (en) Molybdenum substrate for CIGS photovoltaic devices
WO2003005456A1 (en) Method for forming light-absorbing layer
JP2011109052A (en) Method for manufacturing thin film light absorbing layer, method for manufacturing thin film solar cell employing the light absorbing layer, and thin film solar cell
Huang et al. Effect of selenization and sulfurization on the structure and performance of CIGS solar cell
Cheng et al. Chalcogenide solar cells fabricated by co-sputtering of quaternary CuIn0. 75Ga0. 25Se2 and In targets: Another promising sputtering route for mass production
TWI477633B (en) Apparatus and method for forming solar cell
JP2000087234A (en) Device for producing compound film and production of compound film
JP5378534B2 (en) Method for producing chalcopyrite type compound thin film and method for producing thin film solar cell using the same
CN101771100A (en) Method for preparing light absorption layer for CuInGaSe thin film solar cell
KR101275156B1 (en) Apparatus for making the photovoltaic absorber layer, photovoltaic absorber layer and solar cell
JP2016541124A (en) Layer system for thin film solar cells
Lim et al. Influence of stacking order and intermediate phase at low temperature on Cu 2 ZnSnS 4 thin film formation for solar cell
TW201503379A (en) Method of forming an absorber layer of a solar cell
US20150021163A1 (en) Apparatus and method for producing solar cells with a heater apparatus
CN105679881B (en) A kind of preparation method of indium sulphur based thin film solar cell
JP3966723B2 (en) Method of forming semiconductor FeSi2 by laser ablation method
CN104124290A (en) Cadmium telluride solar cell with Te-Ti-Cu pre-set layer
KR101444188B1 (en) Apparatus for making the photovoltaic absorber layer
JP6002207B2 (en) Method for producing CIGS-based solar cell alloy
Huynh et al. Cu-In-Ga metal precursors sputter deposited from a single ternary target for Cu (lnGa)(SeS) 2 film formation
Olejníček et al. Preparation of CIGS thin films by HiPIMS or DC sputtering and various selenization processes

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent