TWI457751B - Tandem fault tolerant device - Google Patents
Tandem fault tolerant device Download PDFInfo
- Publication number
- TWI457751B TWI457751B TW101125412A TW101125412A TWI457751B TW I457751 B TWI457751 B TW I457751B TW 101125412 A TW101125412 A TW 101125412A TW 101125412 A TW101125412 A TW 101125412A TW I457751 B TWI457751 B TW I457751B
- Authority
- TW
- Taiwan
- Prior art keywords
- detection
- unit
- actual
- value
- error
- Prior art date
Links
Landscapes
- Error Detection And Correction (AREA)
Description
本發明係關於一種串列式容錯乘法裝置,特別是一種依據一預測檢測單元與一實際檢測單元的運算結果,來實現乘法運算的錯誤更正的串列式容錯乘法裝置。The present invention relates to a tandem fault-tolerant multiplying apparatus, and more particularly to a tandem fault-tolerant multiplying apparatus that implements error correction of a multiplication operation based on an operation result of a prediction detecting unit and an actual detecting unit.
伽羅瓦域(Galois Field,GF)或稱有限場(Finite Field)算術常常應用於錯誤更正碼和公共密鑰密碼系統,尤其是要求在有限場裡進行算術運算之公共密鑰密碼系統,如橢圓(elliptic)和超橢圓密碼系統(hyperelliptic cryptostsyems曲線)。Galois Field (GF) or Finite Field (Arithmetic Field) arithmetic is often applied to error correction codes and public key cryptosystems, especially public key cryptosystems that require arithmetic operations in finite fields, such as ellipses. (elliptic) and hyperelliptic cryptosystem (hyperelliptic cryptostsyems curve).
隨著電腦網路、通訊技術及數位資訊的不斷成長與普及,如何確保資料傳輸的安全性及正確性也愈來愈重要。然而,由於植入錯誤式攻擊法已經被證實可破解非對稱與對稱密碼系統,因此如何防止駭客破解密碼系統便成為一個重要的課題。With the continuous growth and popularity of computer networks, communication technologies and digital information, how to ensure the security and correctness of data transmission is becoming more and more important. However, since the implanted error-based attack method has been proven to break asymmetric and symmetric cryptosystems, how to prevent hackers from cracking the cryptosystem has become an important issue.
在有限域(Finite Field)GF(2 m )中包括2 m 元素,其中m 是一正整數,其能被表示成多項式基底(Polynomial Basis,PB)。而這些乘法是建構於特別的不可分解多項式,包括全一多項式(AOP),等距多項式(ESP)和三項多項式等。A 2 m element is included in the finite field (Finite Field) GF(2 m ), where m is a positive integer, which can be expressed as a Polynomial Basis (PB). These multiplications are constructed in special indecomposable polynomials, including all-one polynomial (AOP), equidistant polynomial (ESP), and trinomial polynomial.
在超大型積體電路(VLSI)設計,分佈於有限場領域的GF(2m )心臟收縮陣列式結構係適合於快速計算,並且依靠規則性電路去執行算術運算,其電路的共通性質是具有規則的結構特性,例如一致性、輸入/輸出平衡、簡單和有規則的設計。從VLSI技術觀點,雖然半導體製造商努力保證他 們的產品是可靠的,但在一系統中之任何時間內,幾乎不可能沒有錯誤產生;所以在已知時間的週期、環境及規定的方法中任一個系統功能中,建構可靠性的運算環境是非常重要的。In the ultra-large integrated circuit (VLSI) design, the GF(2 m ) systolic array structure distributed in the finite field field is suitable for fast calculation, and relies on regular circuits to perform arithmetic operations. The common property of the circuit is Structural characteristics of rules such as consistency, input/output balance, simple and regular design. From the perspective of VLSI technology, although semiconductor manufacturers strive to ensure that their products are reliable, it is almost impossible to generate no errors at any time in a system; therefore, in the known time cycle, environment and prescribed methods In a system function, it is very important to construct a reliable computing environment.
因此,如何設計出一可對分佈於GF(2m )位元串列輸出型乘法器提供即時錯誤更正能力之串列式容錯乘法裝置,便成為相關廠商以及相關研發人員所共同努力的目標。Therefore, how to design a tandem fault-tolerant multiplying device that can provide instant error correction capability to GF(2 m ) bit-serial output multipliers has become the goal of related manufacturers and related R&D personnel.
本發明人有鑑於習知之串列式容錯乘法裝置無法對分佈於GF(2m )位元串列輸出型乘法器提供即時錯誤更正的缺點,乃積極著手進行開發,以期可以改進上述既有之缺點,經過不斷地試驗及努力,終於開發出本發明。The present inventors have actively developed the conventional in-line fault-tolerant multiplying device because of the inability to provide immediate error correction for the GF(2 m ) bit string-output multiplier, in order to improve the above-mentioned existing Disadvantages, after continuous experimentation and efforts, the present invention has finally been developed.
本發明之目的,係提供一種可對分佈於GF(2m )位元串列輸出型乘法器提供即時錯誤更正能力之串列式容錯乘法裝置。SUMMARY OF THE INVENTION It is an object of the present invention to provide a tandem fault tolerant multiplying device that provides instant error correction capability to a GF (2 m ) bit tandem output type multiplier.
為了達成上述之目的,本發明之串列式容錯乘法裝置,係包括:一暫存器B,係儲存一有限場GF(2m )中之一第二元素B;一串列乘法單元,係與該暫存器B連接,係對該有限場GF(2m )中之一第一元素A與該第二元素B進行乘積運算,以得到一第三元素C,其中該第一元素A、該第二元素B以及該第三元素C係為多項式基底{1,x,...,xm-1 }之表示式,且所有係數係為0或1;一暫存器C,係與該串列乘法單元連接,並儲存該第三元素C;一預測檢測單元,係與該串列乘法單元以及該暫存器C連接,並依據該串列乘法單元之乘積運算結果,計算出檢測值,其包括一預測行檢測電路、一預測列檢測電路以及一預 測對角檢測電路;一實際檢測單元,係與該串列乘法單元、該預測檢測單元以及該暫存器C連接,並依據該串列乘法單元之乘積運算結果,計算出實際檢測值,其包括一實際行檢測電路、一實際列檢測電路以及一實際對角檢測電路;一計算錯誤位置單元,係與該預測檢測單元以及該實際檢測單元連接,並依據該預測檢測單元計算出之檢測值以及該實際檢測單元計算出之實際檢測值,計算出乘積運算結果之錯誤值;一暫存器E,係與該計算錯誤位置單元連接,並儲存該乘積運算結果之錯誤值;一錯誤更正單元,係與該暫存器C以及該暫存器E連接,並依據該乘積運算結果之錯誤值,更正該第三元素C;以及一α模組電路,係與該錯誤更正單元連接,該α模組電路係由m個2-輸入及閘(AND gate)以及m個2-輸入的互斥或閘(XOR gate)組成,並計算Ci =Ci-1 x mod F(x)。In order to achieve the above object, the tandem fault-tolerant multiplying device of the present invention comprises: a register B storing a second element B of a finite field GF(2 m ); a series of multiplication units, Connected to the register B, the first element A of the finite field GF(2 m ) is multiplied by the second element B to obtain a third element C, wherein the first element A, The second element B and the third element C are expressions of the polynomial base {1, x, ..., x m-1 }, and all coefficients are 0 or 1; a register C, The serial multiplication unit is connected, and stores the third element C; a prediction detection unit is connected to the serial multiplication unit and the register C, and calculates the detection according to the product operation result of the serial multiplication unit The value includes a prediction row detection circuit, a prediction column detection circuit, and a prediction diagonal detection circuit; an actual detection unit is connected to the serial multiplication unit, the prediction detection unit, and the temporary register C, and is based on The product operation result of the serial multiplication unit calculates the actual detection value, which includes an actual a detection circuit, an actual column detection circuit and an actual diagonal detection circuit; a calculation error location unit connected to the prediction detection unit and the actual detection unit, and the detection value calculated according to the prediction detection unit and the actual detection The unit calculates the actual detected value, and calculates the error value of the product operation result; a register E is connected to the calculated error position unit, and stores the error value of the product operation result; an error correction unit is associated with the The register C and the register E are connected, and correct the third element C according to the error value of the product operation result; and an alpha module circuit is connected to the error correction unit, the alpha module circuit It consists of m 2-input AND gates and m 2-input XOR gates, and calculates C i =C i-1 x mod F(x).
透過上述之系統,本發明可對分佈於GF(2m )位元串列輸出型乘法器提供即時錯誤更正。Through the system described above, the present invention provides instant error correction for GF(2 m ) bit string output multipliers.
為使熟悉該項技藝人士瞭解本發明之目的,兹配合圖式將本發明之較佳實施例詳細說明如下。The preferred embodiments of the present invention are described in detail below with reference to the drawings.
請參考第一、二、三以及七圖所示,本發明之串列式容錯乘法裝置(1),係包括: 一暫存器B(10),係儲存一有限場GF(2m )中之一第二元素B;一串列乘法單元(11),係與該暫存器B(10)連接,係對一有限場GF(2m )中之一第一元素A與該第二元素B進行乘積運算,以得到一第三元素C,其中該第一元素A、該第二元素B以及該第三元素C係為多項式基底{1,x,...,xm-1 }之表示式,且所有係數係為0或1;一暫存器C(12),係與該串列乘法單元(11)連接,並儲存該第三元素C;一預測檢測單元(13),係與該串列乘法單元(11)以及該暫存器C(12)連接,並依據該串列乘法單元(11)之乘積運算結果,計算出檢測值,其包括一預測行檢測電路(130)、一預測列檢測電路(131)以及一預測對角檢測電路(132);一實際檢測單元(14),係與該串列乘法單元(11)、該預測檢測單元(13)以及該暫存器C(12)連接,並依據該串列乘法單元(11)之乘積運算結果,計算出實際檢測值,其包括一實際行檢測電路(140)、一實際列檢測電路(141)以及一實際對角檢測電路(142);一計算錯誤位置單元(15),係與該預測檢測單元(13)以及該實際檢測單元(14)連接,並依據該預測檢測單元(13)計算出之檢測值以及該實際檢測單元(14)計算出之實際檢測值,計算出乘積運算結果之錯誤值;一暫存器E(16),係與該計算錯誤位置單元(15)連接,並儲存該乘積運算結果之錯誤值;一錯誤更正單元(17),係與該暫存器C(12)以及該暫 存器E(16)連接,並依據該乘積運算結果之錯誤值,更正該第三元素C;以及一α模組電路(18),係與該錯誤更正單元(17)連接,該α模組電路(18)係由m個2-輸入及閘(AND gate)以及m個2-輸入的互斥或閘(XOR gate)組成,並計算Ci =Ci-1 x mod F(x)。Referring to the first, second, third and seventh figures, the tandem fault tolerant multiplying device (1) of the present invention comprises: a register B (10) storing a finite field GF (2 m ) a second element B; a serial multiplication unit (11) connected to the register B (10), one of the first element A and the second element of a finite field GF (2 m ) B performs a product operation to obtain a third element C, wherein the first element A, the second element B, and the third element C are polynomial bases {1, x, ..., x m-1 } Expression, and all coefficients are 0 or 1; a register C (12) is connected to the serial multiplication unit (11), and stores the third element C; a prediction detection unit (13) Connected to the serial multiplication unit (11) and the register C(12), and according to the product operation result of the serial multiplication unit (11), the detection value is calculated, and includes a prediction line detection circuit (130) a prediction column detection circuit (131) and a prediction diagonal detection circuit (132); an actual detection unit (14), the serial multiplication unit (11), the prediction detection unit (13), and the temporary storage C (12) is connected, and according to the The result of the product operation of the serial multiplication unit (11) calculates an actual detection value, which includes an actual line detection circuit (140), an actual column detection circuit (141), and an actual diagonal detection circuit (142); The error location unit (15) is connected to the prediction detection unit (13) and the actual detection unit (14), and is calculated according to the detection value calculated by the prediction detection unit (13) and the actual detection unit (14). The actual detected value is used to calculate the error value of the product operation result; a register E (16) is connected to the calculated error position unit (15), and stores the error value of the product operation result; an error correction unit ( 17) is connected to the register C (12) and the register E (16), and corrects the third element C according to the error value of the product operation result; and an alpha module circuit (18) Connected to the error correction unit (18), which consists of m 2-input AND gates and m 2-input XOR gates. And calculate C i =C i-1 x mod F(x).
請參考第四至六圖,其中,該預測行檢測電路(130)係定義為、該預測列檢測電路(131)係定義為,該預測對角檢測電路(132)係定義為,一輔助多項式表示為W i =w i ,0 +w i ,1 x +…+w i ,n -1 x n -1 ,且w i ,j =c i ,nj +n -1 ,係為輔助多項式W之第k次的循環位移。Please refer to the fourth to sixth diagrams, wherein the predicted row detection circuit (130) is defined as The prediction column detection circuit (131) is defined as The predicted diagonal detection circuit (132) is defined as An auxiliary polynomial is expressed as W i = w i , 0 + w i , 1 x +...+ w i , n -1 x n -1 , and w i , j = c i , nj + n -1 , It is the k-th cyclic displacement of the auxiliary polynomial W.
請參考第八至十圖,該實際行檢測電路(140)係定義為,該實際列檢測電路(141)係定義為、該實際對角檢測電路(142)係定義為,PCj
係為檢測位元組,其包括n=個位元,該檢測位元組之定義如下:
在本發明之一較佳實施例中,本發明之串列式容錯乘法裝置(1)更包括一行徵狀值、一列徵狀值、一對角徵狀值以及一計算錯誤多項式,該計算錯誤多項式係計算乘積運算計算的結果C i ,其定義為。In a preferred embodiment of the present invention, the tandem fault-tolerant multiplying device (1) of the present invention further includes a row symptom value, a column symptom value, a pair of angle symptom values, and a calculation error polynomial, and the calculation error The polynomial calculates the result of the product calculation, C i , which is defined as .
該行徵狀值係定義為,該列徵狀值係定義為,該對角徵狀值係定義為。The line symptom value is defined as , the column symptom value is defined as , the diagonal symptom value is defined as .
該計算錯誤多項式係依據該行徵狀值、該列徵狀值、該對角徵狀值,計算出該串列乘法單元(11)之乘積運算結果之每個位元的錯誤值。錯誤更正第i次迴圈計算Ci 係依據方程式Ci =Ci +ECi 完成錯誤更正。The calculation error polynomial calculates the error value of each bit of the product operation result of the serial multiplication unit (11) according to the line symptom value, the column symptom value, and the diagonal symptom value. . Error Correction The i-th loop calculation C i is based on the equation C i =C i +E Ci to complete the error correction.
請參考第一、二、四至六以及八至十三圖,為了讓 貴審查委員更容易瞭解本發明之串列式容錯乘法裝置(1),特舉一實施例說明如下:Please refer to the first, second, fourth to sixth and eighth to thirteenth drawings. In order to make it easier for your review board to understand the tandem fault-tolerant multiplying device (1) of the present invention, an embodiment is described as follows:
該有限場GF(2m )係由一不可分解多項式所產生,其中x為F (x )之根,N ={1,x ,x 2 ,…,x m -1 }為GF(2m )的多項式基底表示法。The finite field GF(2 m ) is composed of an indecomposable polynomial The resulting polynomial base representation where x is the root of F ( x ), N = {1, x , x 2 , ..., x m -1 } is GF(2 m ).
該第一元素, 該第二元素,則由該串列乘法單元(11)對該第一元素A與該第二元素B進行乘積運算,所得到之該第三元素可表示如下:C =AB =(a 0 +a 1 x +a 2 x 2 +…+a m -1 x m -1 )B =a 0 B +a 1 Bx +a 2 Bx 2 +…+a m -1 Bx m -1 =(...((a m -1 B )x +a m -2 B )x +…a 1 B )x +a 0 B (方程式1)The first element , the second element And the serial multiplication unit (11) performs a product operation on the first element A and the second element B, and the obtained third element It can be expressed as follows: C = AB = ( a 0 + a 1 x + a 2 x 2 +... + a m -1 x m -1 ) B = a 0 B + a 1 Bx + a 2 Bx 2 +...+ a m -1 Bx m -1 =(...(( a m -1 B ) x + a m -2 B ) x +... a 1 B ) x + a 0 B (Equation 1)
其中該方程式1係為最高有效位元(MSB,most significant bit)乘法演算法,其乘法結構包含m個迴圈運算。根據該方程式1,該最高有效位元乘法演算法係為一乘法演算法,該乘法演算法係為:輸入(Input):A,BGF(2m )輸出(Output):C=AB modF (x )1 C0 =0 2 For i=1 to m 3C i =C i -1 x +a m -i B mod F (x ) (方程式2)4 End for 5 Return Cm The equation 1 is the most significant bit (MSB) multiplication algorithm, and the multiplication structure includes m loop operations. According to the equation 1, the most significant bit multiplication algorithm is a multiplication algorithm, and the multiplication algorithm is: input: A, B GF(2 m ) Output: C=AB mod F ( x )1 C 0 =0 2 For i=1 to m 3 C i = C i -1 x + a m - i B mod F ( x ) (Equation 2) 4 End for 5 Return C m
該方程式2係為該最高有效位元乘法演算法之核心運算,F(x)=x m
+f m
-1 x m
-1
+f m
-2 x m
-2
+…+f 1 x
+f 0
為有限場GF(2m
)的生成多項式。為了詳細表示位元運算程序,該方程式2可表示成:C i
=C i
-1 x
+a m
-1 B mod F
(x
) (方程式3)=c i
-1,0 x
+c i
-1,1 x 2
+…+c i
-1,m
-2 x m
-1
+c i
-1,m
-1
(f m
-1 x m
-1
+f m
-2 x m
-2
+…+f 1 x
+f 0 )
+a m
-i
(b 0
+b 1 x
+b 2 x 2
+…+b m
-1 x m
-1
)=c i
,0
+c i
,2 x
+c i
,2 x 2
+…+c i
,m
-1 x m
-1
其中c i
,0
=c i
-1,m
-1 f 0
+a m
-i b 0
;
舉例來說,若該元素K為K=x+x 2 +x 5 ,則可由該實際檢測單元(14)獲得實際檢測值P k =1。若計算後的該元素K為K=x+x 2 +x 4 +x 5 ,則可由該實際檢測單元(14)獲得實際檢測值。當P k 與計算後,其結果為,即表示該元素K之計算結果是被植入錯誤值。For example, if the element K is K=x+ x 2 + x 5 , the actual detected value P k =1 can be obtained by the actual detecting unit (14). If the calculated element K is K=x+ x 2 + x 4 + x 5 , the actual detected value can be obtained by the actual detecting unit (14). . When P k and After calculation, the result is , that is, the calculation result of the element K is implanted with an error value.
接著,依據該演算法之乘法程序,假設該第三元素C之計算結果為
C=c 0
+c 1 x
+…+c m
-1 x m
-1
,將該第三元素C之結果預設排成二維陣列,如下列方程式:
其中,m=n2 。Where m=n 2 .
依據該方程式5之定義的檢測結構,可將該方程式6的矩陣排列法定義出三組方向的檢測位元,分別為一列檢測位元組、一行檢測位元組以及一對角檢測位元組,且各檢測位元組包含有n個位元。各檢測位元組之定義如下:
舉例來說,若該第三元素C為C=c 0 +c 1 x +…+c 8 x 8 ,依據方程式7a至方程式7c,三個方向的檢測位元組可分別計算如下:For example, if the third element C is C= c 0 + c 1 x +...+ c 8 x 8 , according to Equation 7a to Equation 7c, the detection bits in the three directions can be calculated as follows:
列檢測位元組:Column detection byte:
行檢測位元組:Row detection byte:
對角檢測位元組:Diagonal detection byte:
基於該乘法演算法之計算程序,各迴圈的三個檢測位元組之計算程序如下:Based on the calculation procedure of the multiplication algorithm, the calculation procedure of the three detection bytes of each loop is as follows:
(a)計算行檢測位元組 (a) Calculate the row detection byte
根據該方程式8之定義檢測位元組,該第二元素B=(b 0
,b 1
,…,b m
-1
),,C i
=(c i
,0
,c i
,1
,…,c i
,m
-1
)的行檢
測位元組可表示成:
定義一:依據該方程式6的結構,將一元素C i 排列成二維矩陣,並利用該二維矩陣的最後一列來定義成輔助多項式W i =w i ,0 +w i ,1 x +…+w i ,n -1 x n -1 ,其中w i ,j =c i ,nj +n -1 。Definition 1: According to the structure of the equation 6, an element C i is arranged into a two-dimensional matrix, and the last column of the two-dimensional matrix is used to define an auxiliary polynomial W i = w i , 0 + w i , 1 x +... + w i , n -1 x n -1 , where w i , j = c i , nj + n -1 .
定義二:假設W i
=w i
,0
+w i
,1 x
+…+w i
,n
-1 x n
-1
為輔助多項式,該輔助多項式Wi
第k次的循環位移可表示成
從該乘法演算法中,該方程式3為乘法的核心運算,即C i
=C i
-1 x
+a m
-i B mod F
(x
),計算該元素C i
的行檢測位元組可表示成
在本發明之一較佳實施例中,該公式11可利用m個2-輸入及閘(AND gate)與m個2-輸入的互斥或閘(XOR gate)計算。In a preferred embodiment of the invention, the equation 11 can be calculated using m 2-input AND gates and m 2-input multiplex gates (XOR gates).
其中
利用該方程式6之矩陣表示法,計算可獲得如下關係:
因此,利用該方程式12,可將該方程式10簡化為:
(b)計算列檢測位元組 (b) Calculate column detection bytes
根據該方程式7之定義檢測位元組,該第二元素B=(b 0
,b 1
,…,b m
-1
),,C i
=(c i
,0
,c i
,1
,…,c i
,m
-1
)的列檢測位元組可表示成
(c)計算對角檢測位元組 (c) Calculate the diagonal detection byte
根據該方程式7之定義檢測位元組,該第二元素B=(b 0
,b 1
,…,b m
-1
),,C i
=(c i
,0
,c i
,1
,…,c i
,m
-1
)的對角檢測位元組可表示成:
最後,在每次迴圈計算後,該實際檢測單元(12)依據該方程式7來計算實際檢測位元組及,且依據該方程式13、18以及23分別計算預測檢測位元組及。假設三組徵狀值S(0)
,S(1)
,S(2)
係分別為行徵狀值,列徵狀值,及對角徵狀值,則計算三組徵狀值係依據:
該計算錯誤位置單元(15)為了評估每次迴圈運算結果C i
=c i
,0
+c i
,1 x
+…+c i
,m
-1 x m
-1
之錯誤位置,令為C i
之位置錯誤多項式,其中為乘法結果C i
之第i位置的錯誤值。從該方程式7,該計算錯誤位置單元(15)可獲得三組徵狀值與位置錯誤多項式的係數關係,以及與c i
的錯誤位置值之關係如下:
若該第三元素C之乘法結果,則該第三元素C的位置錯誤多項式可表示成,因此每個是可表示如下:
由上述方程式中,該計算錯誤位置單元(15)可發現存在於三個檢測位元如。基於上述特性,可定義一向量來表示c0 位元的錯誤狀況,此向量係為錯誤位置向量,依據此向量關係,來分析c0 位元的錯誤情況如下:From the above equation, the calculated error location unit (15) can be found Exist in three detection bits such as . Based on the above characteristics, a vector can be defined To represent the error condition of c 0 bit, this vector is the error position vector. According to this vector relationship, the error condition of c 0 bit is analyzed as follows:
情況1.當錯誤位置發生於c0 位元時,可得到=(1,1,1)。Case 1. When the error location occurs at c 0 bits, you can get =(1,1,1).
情況2.當錯誤位置發生於c1 位元時,可得到=(1,0,0)。Case 2. When the error location occurs in c 1 bit, you can get = (1,0,0).
情況3.當錯誤位置發生於c0 與c1 位元時,可得到=(0,1,1)。Case 3. When the error location occurs in c 0 and c 1 bits, you can get = (0, 1, 1).
在情況1.與情況3.的條件下,向量至少有兩個"1”;且在情況 2.的條件下,向量只有一個"1”。在此三種條件下,可判定發生c0 位元的錯誤條件為(1)與(3)。因此為了滿足這三種形況,採用多數人投票方式(majority voting method),來決定c0 位元之可能的錯誤值如下:In case 1. and condition 3., vector There are at least two "1"s; and in the case of case 2., the vector There is only one "1". Under these three conditions, the error conditions for determining the occurrence of c 0 bits are (1) and (3). Therefore, in order to satisfy these three conditions, the majority voting method is used to determine the possible error values of c 0 bits as follows:
若(0,1,1)時,c0 位元之錯誤值為=1。If (0,1,1), the error value of c 0 bit is =1.
若=(0,1,1)時,c0 位元之錯誤值為=1。If When =(0,1,1), the error value of c 0 bit is =1.
若=(1,0,1)時,c0 位元之錯誤值為=1。If When =(1,0,1), the error value of c 0 bit is =1.
若=(1,1,0)時,c0 位元之錯誤值為=1。If When =(1,1,0), the error value of c 0 bit is =1.
若=(0,0,1)時,c0 位元之錯誤值為=0。If When =(0,0,1), the error value of c 0 bit is =0.
若=(0,1,0)時,c0 位元之錯誤值為=0。If When =(0,1,0), the error value of c 0 bit is =0.
若=(1,0,0)時,c0 位元之錯誤值為=0。If When =(1,0,0), the error value of c 0 bit is =0.
若=(0,0,0)時,c0 位元之錯誤值為=0。If When =(0,0,0), the error value of c 0 bit is =0.
由上述特性,我們可直接地利用如下方程式來計算c0
的錯誤值
同理,由該第三元素C的位置錯誤多項式之關係,c1 的錯誤位置向量為,可獲得。當位置錯誤多項式完成計算後,該錯誤更正單元(17)可利用下方程式,即可實現錯誤更正第i次迴圈計算C i 。Similarly, due to the position error polynomial of the third element C, the error position vector of c 1 is , available . Position error polynomial After the calculation is completed, the error correction unit (17) can use the following program to implement the error correction ith loop calculation C i .
在本發明之一較佳實施例中,該公式28可利用m個2-輸入及閘(AND gate)與m個2-輸入的互斥或閘(XOR gate)計算。In a preferred embodiment of the invention, the equation 28 can be calculated using m 2-input AND gates and m 2-input multiplex gates (XOR gates).
請參考第二圖所示,在本發明之一較佳實施例中,該串列乘法單元(11)係由m個2-輸入及閘(AND gate)與m個2-輸入的互斥或閘(XOR gate)組成,以計算C i =C i +b m -i A 。Referring to the second figure, in a preferred embodiment of the present invention, the serial multiplication unit (11) is mutually exclusive by m 2-input AND gates and m 2-inputs. The gate (XOR gate) is composed to calculate C i = C i + b m - i A .
在本發明之另一較佳實施例中,該計算錯誤位置單元(15)包含九2-輸入的互斥或閘(XOR gate)以及九決策電路(majority voting,MV)(圖未示),其中各MV電路之組成係由三2-輸入及閘(AND gate)與二2-輸入的互斥或閘(XOR gate)(圖未示),以計算各位元乘法結果的錯誤值。In another preferred embodiment of the present invention, the calculated error location unit (15) includes a nine-input XOR gate and a nine-degree decision (MV) (not shown). The components of each MV circuit are composed of three-input AND gates and two-input XOR gates (not shown) to calculate the error value of the result of the multiplication of the bits.
透過上述之裝置以及方法,本發明可對分佈於GF(2m )位元串列輸出型乘法器提供即時錯誤更正能力。再者,其結構型態並非所屬技術領域中之人士所能輕易思及而達成者,實具有新穎性以及進步性無疑。Through the above apparatus and method, the present invention can provide instant error correction capability for a GF (2 m ) bit serial output type multiplier. Moreover, its structural form is not easily reached by those skilled in the art, and it is novel and progressive.
透過上述之詳細說明,即可充分顯示本發明之目的及功效上均具有實施之進步性,極具產業之利用性價值,且為目前市面上前所未見之新發明,完全符合發明專利要件,爰依法提出申請。唯以上所述著僅為本發明之較佳實施例而已,當不能用以限定本發明所實施之範圍。即凡依本發明專利範圍所作之均等變化與修飾,皆應屬於本發明專利涵蓋之範圍內,謹請 貴審查委員明鑑,並祈惠准,是所至禱。Through the above detailed description, it can fully demonstrate that the object and effect of the present invention are both progressive in implementation, highly industrially usable, and are new inventions not previously seen on the market, and fully comply with the invention patent requirements. , 提出 apply in accordance with the law. The above is only the preferred embodiment of the present invention, and is not intended to limit the scope of the invention. All changes and modifications made in accordance with the scope of the invention shall fall within the scope covered by the patent of the invention. I would like to ask your review committee to give a clear explanation and pray for it.
(1)‧‧‧串列式容錯乘法裝置(1)‧‧‧Inline fault-tolerant multiplying device
(10)‧‧‧暫存器B(10) ‧‧‧Storage B
(11)‧‧‧串列乘法單元(11)‧‧‧ Serial multiplication unit
(12)‧‧‧暫存器C(12) ‧‧‧Storage C
(13)‧‧‧預測檢測單元(13) ‧‧‧predictive detection unit
(130)‧‧‧預測行檢測電路(130)‧‧‧Predicted line detection circuit
(131)‧‧‧預測列檢測電路(131)‧‧‧Predicted column detection circuit
(132)‧‧‧預測對角檢測電路(132)‧‧‧Predicted diagonal detection circuit
(14)‧‧‧實際檢測單元(14) ‧‧‧ actual detection unit
(140)‧‧‧實際行檢測電路(140) ‧‧‧ Actual line detection circuit
(141)‧‧‧實際列檢測電路(141)‧‧‧ Actual column detection circuit
(142)‧‧‧實際對角檢測電路(142) ‧‧‧ Actual diagonal detection circuit
(15)‧‧‧計算錯誤位置單元(15)‧‧‧Computed error location unit
(16)‧‧‧暫存器E(16) ‧‧‧Storage E
(17)‧‧‧錯誤更正單元(17)‧‧‧Error correction unit
(18)‧‧‧α模組電路(18)‧‧‧α module circuit
第一圖係本發明之串列式容錯乘法裝置之系統架構圖。The first figure is a system architecture diagram of the tandem fault tolerant multiplying device of the present invention.
第二圖係本發明之串列乘法單元之邏輯電路圖。The second figure is a logic circuit diagram of the serial multiplication unit of the present invention.
第三圖係本發明之預測檢測單元之架構圖。The third figure is an architectural diagram of the predictive detection unit of the present invention.
第四圖係本發明之預測行檢測電路之電路圖。The fourth figure is a circuit diagram of the predictive line detecting circuit of the present invention.
第五圖係本發明之預測列檢測電路之電路圖。The fifth figure is a circuit diagram of the predictive column detecting circuit of the present invention.
第六圖係本發明之預測對角檢測電路之電路圖。Figure 6 is a circuit diagram of the predicted diagonal detection circuit of the present invention.
第七圖係本發明之實際檢測單元之架構圖。The seventh diagram is an architectural diagram of the actual detection unit of the present invention.
第八圖係本發明之實際行檢測電路之電路圖。The eighth figure is a circuit diagram of the actual line detecting circuit of the present invention.
第九圖係本發明之實際列檢測電路之電路圖。The ninth drawing is a circuit diagram of the actual column detecting circuit of the present invention.
第十圖係本發明之實際對角檢測電路之電路圖。The tenth figure is a circuit diagram of the actual diagonal detecting circuit of the present invention.
第十一圖係本發明之計算錯誤位置單元之電路圖。The eleventh drawing is a circuit diagram of the calculation error position unit of the present invention.
第十二圖係本發明之錯誤更正單元之電路圖。The twelfth figure is a circuit diagram of the error correction unit of the present invention.
第十三圖係本發明之α模組電路之電路圖。The thirteenth drawing is a circuit diagram of the alpha module circuit of the present invention.
(1)‧‧‧串列式容錯乘法裝置(1)‧‧‧Inline fault-tolerant multiplying device
(10)‧‧‧暫存器B(10) ‧‧‧Storage B
(11)‧‧‧串列乘法單元(11)‧‧‧ Serial multiplication unit
(12)‧‧‧暫存器C(12) ‧‧‧Storage C
(13)‧‧‧預測檢測單元(13) ‧‧‧predictive detection unit
(130)‧‧‧預測行檢測電路(130)‧‧‧Predicted line detection circuit
(131)‧‧‧預測列檢測電路(131)‧‧‧Predicted column detection circuit
(132)‧‧‧預測對角檢測電路(132)‧‧‧Predicted diagonal detection circuit
(14)‧‧‧實際檢測單元(14) ‧‧‧ actual detection unit
(140)‧‧‧實際行檢測電路(140) ‧‧‧ Actual line detection circuit
(141)‧‧‧實際列檢測電路(141)‧‧‧ Actual column detection circuit
(142)‧‧‧實際對角檢測電路(142) ‧‧‧ Actual diagonal detection circuit
(15)‧‧‧計算錯誤位置單元(15)‧‧‧Computed error location unit
(16)‧‧‧暫存器E(16) ‧‧‧Storage E
(17)‧‧‧錯誤更正單元(17)‧‧‧Error correction unit
(18)‧‧‧α模組電路(18)‧‧‧α module circuit
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101125412A TWI457751B (en) | 2012-07-13 | 2012-07-13 | Tandem fault tolerant device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101125412A TWI457751B (en) | 2012-07-13 | 2012-07-13 | Tandem fault tolerant device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201403306A TW201403306A (en) | 2014-01-16 |
TWI457751B true TWI457751B (en) | 2014-10-21 |
Family
ID=50345533
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101125412A TWI457751B (en) | 2012-07-13 | 2012-07-13 | Tandem fault tolerant device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI457751B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5774389A (en) * | 1986-09-30 | 1998-06-30 | Canon Kabushiki Kaisha | Error correction apparatus |
TW200641665A (en) * | 2006-08-25 | 2006-12-01 | Univ Lunghwa Sci & Technology | Systolic array dual-basis multiplier having parallel output bits with on-line error detection capability |
TW200841232A (en) * | 2007-04-09 | 2008-10-16 | Univ Feng Chia | Finite field Montgomery multiplier |
TW201035781A (en) * | 2009-03-30 | 2010-10-01 | Univ Ishou | Root finding circuit |
-
2012
- 2012-07-13 TW TW101125412A patent/TWI457751B/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5774389A (en) * | 1986-09-30 | 1998-06-30 | Canon Kabushiki Kaisha | Error correction apparatus |
TW200641665A (en) * | 2006-08-25 | 2006-12-01 | Univ Lunghwa Sci & Technology | Systolic array dual-basis multiplier having parallel output bits with on-line error detection capability |
TW200841232A (en) * | 2007-04-09 | 2008-10-16 | Univ Feng Chia | Finite field Montgomery multiplier |
TW201035781A (en) * | 2009-03-30 | 2010-10-01 | Univ Ishou | Root finding circuit |
Also Published As
Publication number | Publication date |
---|---|
TW201403306A (en) | 2014-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8745472B2 (en) | Memory with segmented error correction codes | |
US8522122B2 (en) | Correcting memory device and memory channel failures in the presence of known memory device failures | |
Azarderakhsh et al. | Low-complexity multiplier architectures for single and hybrid-double multiplications in Gaussian normal bases | |
KR101522509B1 (en) | Efficient and scalable cyclic redundancy check circuit using galois-field arithmetic | |
Mozaffari-Kermani et al. | Reliable Concurrent Error Detection Architectures for Extended Euclidean-Based Division Over ${\rm GF}(2^{m}) $ | |
Hariri et al. | Concurrent error detection in montgomery multiplication over binary extension fields | |
Bayat-Sarmadi et al. | Concurrent error detection in finite-field arithmetic operations using pipelined and systolic architectures | |
Chiou et al. | Concurrent error detection and correction in Gaussian normal basis multiplier over GF (2^ m) | |
US8539302B2 (en) | Error detecting/correcting code generating circuit and method of controlling the same | |
Wang et al. | Reliable and secure memories based on algebraic manipulation correction codes | |
CN114389752A (en) | Cyclic redundancy check code generation method, apparatus, device, medium, and program product | |
Reyhani-Masoleh | A new bit-serial architecture for field multiplication using polynomial bases | |
TWI457751B (en) | Tandem fault tolerant device | |
Reyhani-Masoleh et al. | Towards fault-tolerant cryptographic computations over finite fields | |
Chuang et al. | Fault-tolerant Gaussian normal basis multiplier over GF (2m) | |
Lee | Concurrent error detection architectures for Gaussian normal basis multiplication over GF (2m) | |
TWI325560B (en) | ||
Qiu et al. | Concurrent all-cell error detection in semi-systolic multiplier using linear codes | |
Zheng et al. | An efficient eligible error locator polynomial searching algorithm and hardware architecture for one-pass Chase decoding of BCH codes | |
US20120159189A1 (en) | Modular exponentiation resistant against skipping attacks | |
CN114124107A (en) | Method and device for calculating cyclic redundancy check | |
Hariri et al. | Fault detection structures for the Montgomery multiplication over binary extension fields | |
Mozhi et al. | Efficient bit-parallel systolic multiplier over GF (2 m) | |
TWI392238B (en) | Root search circuit | |
Bayat-Sarmadi et al. | Concurrent error detection of polynomial basis multiplication over extension fields using a multiple-bit parity scheme |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MM4A | Annulment or lapse of patent due to non-payment of fees |