TWI454910B - Method of operating a memory device, method of reading a digital memory, and memory device thereof - Google Patents

Method of operating a memory device, method of reading a digital memory, and memory device thereof Download PDF

Info

Publication number
TWI454910B
TWI454910B TW100140172A TW100140172A TWI454910B TW I454910 B TWI454910 B TW I454910B TW 100140172 A TW100140172 A TW 100140172A TW 100140172 A TW100140172 A TW 100140172A TW I454910 B TWI454910 B TW I454910B
Authority
TW
Taiwan
Prior art keywords
memory device
sensing
address
flash memory
time
Prior art date
Application number
TW100140172A
Other languages
Chinese (zh)
Other versions
TW201319806A (en
Inventor
Michael Oron
Original Assignee
Winbond Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Winbond Electronics Corp filed Critical Winbond Electronics Corp
Priority to TW100140172A priority Critical patent/TWI454910B/en
Publication of TW201319806A publication Critical patent/TW201319806A/en
Application granted granted Critical
Publication of TWI454910B publication Critical patent/TWI454910B/en

Links

Description

記憶體裝置之操作方法、讀取數位記憶體的方法及其應用、及其記憶體裝置Method for operating memory device, method for reading digital memory and application thereof, and memory device thereof

本發明是有關於一種快閃記憶體,且特別是有關於一種快閃記憶體的讀取。This invention relates to a flash memory, and more particularly to the reading of a flash memory.

單位元串列及多位元串列快閃記憶體由於較少的腳位數及簡單的介面已經變得普遍。最簡單的介面是一位元串列週邊介面(Serial Peripheral Interface,SPI)。一位元串列週邊介面通訊協定(protocol)包含使用者送出8位元的指令(command)、位址位元組(address bytes)、以及選擇性的虛擬位元組(dummy bytes)給串列週邊介面快閃記憶體裝置,並且串列週邊介面快閃記憶體裝置將回傳資料給使用者作為回應。單一的8位元指令可識別讀取、抹除/程式、或另一個適當的操作。對於要求快速讀取效能的高效能系統應用,已經發展出例如雙串列週邊介面(SPI-Dual)、四串列週邊介面(SPI-Quad)、以及四元週邊介面(Quad Peripheral Interface,QPI)之多位元串列介面。在四串列週邊介面中,以一次一位元的方式串列地提供8位元指令,但是所有的後續欄位(例如位址、選擇性的虛擬位元組、以及資料)是在4位元(四)串列基礎上完成以改善讀取量。在四元週邊介面中,所有的欄位(例如8位元指令、位址、選擇性的虛擬位元組、以及資料)都是以4位元串列完成。以此方式,四元週邊介面於兩個時脈週期提供8位元指令,而四串列週邊介面則需要八個時脈週期。相較於串列週邊介面及四串列週邊介面兩種介面,四元週邊介面藉由減少提供讀取指令所需之時脈週期數目達成較佳的讀取效能。各種多位元串列快閃介面通訊協定說明於例如第7558900號美國專利。Unit cell serial and multi-bit serial flash memory have become commonplace due to fewer pin counts and simple interfaces. The simplest interface is a Serial Peripheral Interface (SPI). A meta-listing peripheral interface protocol includes a user-supplied 8-bit command, address bytes, and optional dummy bytes for the serial port. The peripheral interface flash memory device, and the serial peripheral interface flash memory device will respond to the user by returning the data. A single 8-bit instruction can identify a read, erase/program, or another suitable operation. For high-performance system applications that require fast read performance, for example, a dual serial peripheral interface (SPI-Dual), a four-string peripheral interface (SPI-Quad), and a Quad Peripheral Interface (QPI) have been developed. The multi-bit serial interface. In the four-column peripheral interface, 8-bit instructions are provided in tandem in a one-bit manner, but all subsequent fields (such as address, selective virtual byte, and data) are in 4 bits. Yuan (4) is completed on a serial basis to improve the reading amount. In the quaternary peripheral interface, all fields (such as 8-bit instructions, addresses, selective virtual bytes, and data) are all done in 4-bit serials. In this way, the quaternary peripheral interface provides 8-bit instructions in two clock cycles, while the four-string peripheral interface requires eight clock cycles. Compared to the serial interface and the four-serial peripheral interface, the quaternary peripheral interface achieves better read performance by reducing the number of clock cycles required to provide read commands. Various multi-bit serial flash interface protocols are described, for example, in U.S. Patent No. 7,558,900.

為了要最小化延遲,將針對不同的位址邊界使用不同的讀取指令,並且這些不同的指令根據位址邊界使用不同的虛擬位元組數目(可包括模式位元組);參閱圖1及圖2。例如,在四串列週邊介面中,根據1位元串列介面(例如藉由I/O0)來提供8位元指令給快閃記憶體裝置,但是根據4位元(四)介面(例如藉由I/O0-I/O3(未繪示))來完成後續的介面操作。指令及位址將提供給串列週邊介面快閃記憶體裝置且在時脈的「上升邊緣」予以閂鎖,並且串列週邊介面快閃記憶體裝置將在時脈的「下降邊緣」提供輸出資料。In order to minimize the delay, different read instructions will be used for different address boundaries, and these different instructions use different numbers of virtual bytes (including mode bytes) depending on the address boundary; see Figure 1 and figure 2. For example, in a four-column peripheral interface, an 8-bit instruction is provided to the flash memory device according to a 1-bit serial interface (eg, by I/O0), but according to a 4-bit (four) interface (eg, borrowing Subsequent interface operations are performed by I/O0-I/O3 (not shown). The command and address will be provided to the serial peripheral interface flash memory device and latched at the "rising edge" of the clock, and the serial peripheral interface flash memory device will provide output at the "falling edge" of the clock. data.

圖1繪示一種稱為EBh_SPI(或快速讀取四輸入/輸出(Quad I/O))之四串列週邊介面指令,因為其假定位元組邊界所以不強加位址限制。這指令包括6個虛擬時脈。圖2繪示一種稱為E7h_SPI(或字組讀取四輸入/輸出)之四串列週邊介面指令,其將位址限定為字組邊界(A0=0)。因為位址邊界限制載明於指令中,所以這只需要包括4個虛擬位元組。因此,相較於EBh_SPI指令,在衡量所減少的延遲後可知E7h_SPI指令提供較高的系統讀取效能。Figure 1 illustrates a four-column peripheral interface instruction called EBh_SPI (or Fast Read Quad Input/Output (Quad I/O)) because it does not impose address restrictions because it falsely locates tuple boundaries. This instruction includes 6 virtual clocks. 2 illustrates a four-string peripheral interface instruction called E7h_SPI (or block read four input/output) that defines the address as a block boundary (A0=0). Since the address boundary restrictions are stated in the instruction, this only needs to include 4 dummy bytes. Therefore, compared to the EBh_SPI instruction, the E7h_SPI instruction provides a higher system read performance after measuring the reduced delay.

各種操作模式,包括支援多位元串列輸入及輸出之串列週邊介面、四串列週邊介面、以及充分強化的串列週邊介面模式說明於第7558900號美國專利。Various modes of operation, including a serial peripheral interface supporting multi-bit serial input and output, a four-column peripheral interface, and a fully enhanced tandem peripheral interface mode are described in U.S. Patent No. 7,558,900.

然而,某些應用需要更高的系統讀取效能。However, some applications require higher system read performance.

本發明提供一種記憶體裝置之操作方法,其中記憶體裝置包括快閃記憶胞陣列,此方法用以提供經由讀取指令以提供資料的應用,其中應用具有一位址邊界。此包括:接收包括起始位址(start address)之讀取指令;針對此應用的位址邊界來配置記憶體裝置;經由讀取指令對快閃記憶胞陣列執行一序列的感應操作(sense operations)。此序列的感應操作包括:執行快閃記憶胞陣列的第一感應(sensing)以獲得輸出的第一資料,第一感應具有此序列的第一位置且發生於第一內部感應時間(sense time);提供第一資料作為記憶體裝置的輸出;執行快閃記憶胞陣列的第二感應以獲得輸出的第二資料,第二感應具有此序列的第二位置且發生於第二內部感應時間;以及提供第二資料作為記憶體裝置的輸出。為了改善讀取效能,可根據此應用的位址邊界與第一感應及第二感應的時間預算(time budgets)來改變第一內部感應時間及第二內部感應時間。The present invention provides a method of operating a memory device, wherein the memory device includes a flash memory cell array for providing an application for reading data via a read command, wherein the application has a bit boundary. The method includes: receiving a read instruction including a start address; configuring a memory device for an address boundary of the application; performing a sequence of sensing operations on the flash memory cell array via the read command (sense operations) ). The sensing operation of the sequence includes: performing a first sensing of the flash memory cell array to obtain an output first data, the first sensing having the first position of the sequence and occurring at the first internal sensing time (sense time) Providing a first data as an output of the memory device; performing a second sensing of the flash memory cell array to obtain an output second data, the second sensing having the second position of the sequence and occurring at the second internal sensing time; The second material is provided as an output of the memory device. In order to improve the read performance, the first internal sensing time and the second internal sensing time may be changed according to the address boundary of the application and the time budgets of the first sensing and the second sensing.

本發明提供一種記憶體裝置之操作方法,其中記憶體裝置包括快閃記憶胞陣列。此方法用以經由讀取指令提供資料的應用。此應用在第一時間具有第一位址邊界,且在不同於該第一時間之第二時間具有第二位址邊界。此方法包括:接收包括第一起始位址之第一讀取指令;針對此應用的第一位址邊界來配置記憶體裝置;經由第一讀取指令對快閃記憶胞陣列執行第一序列的感應操作;接收包括第二起始位址之第二讀取指令;針對此應用的第二位址邊界來配置記憶體裝置;以及經由第二讀取指令對快閃記憶胞陣列執行第二序列的感應操作。第一序列包括:執行快閃記憶胞陣列的第一感應以獲得輸出的第一資料,第一感應具有第一序列的第一位置且發生於第一內部感應時間;提供第一資料作為記憶體裝置的輸出;執行快閃記憶胞陣列的第二感應以獲得輸出的第二資料,第二感應具有第一序列的第二位置且發生於第二內部感應時間;以及提供第二資料作為記憶體裝置的輸出,其中第一內部感應時間及第二內部感應時間取決於此應用的第一位址邊界與第一感應及第二感應的時間預算。第二序列包括:執行快閃記憶胞陣列的第三感應以獲得輸出的第三資料,第三感應具有第二序列的第一位置且發生於第三內部感應時間;提供第三資料作為記憶體裝置的輸出;執行快閃記憶胞陣列的第四感應以獲得輸出的第四資料,第四感應具有第二序列的第二位置且發生於第四內部感應時間;以及提供第四資料作為記憶體裝置的輸出,其中第三內部感應時間及第四內部感應時間取決於此應用的第二位址邊界與第三感應及第四感應的時間預算。The present invention provides a method of operating a memory device, wherein the memory device comprises a flash memory cell array. This method is used to provide an application of data via a read command. The application has a first address boundary at a first time and a second address boundary at a second time different from the first time. The method includes receiving a first read instruction including a first start address, configuring a memory device for a first address boundary of the application, and performing a first sequence on the flash memory cell array via the first read command Sensing operation; receiving a second read instruction including a second start address; configuring a memory device for a second address boundary of the application; and performing a second sequence on the flash memory cell array via the second read command Induction operation. The first sequence includes: performing a first sensing of the flash memory cell array to obtain an output first data, the first sensing having a first position of the first sequence and occurring at the first internal sensing time; providing the first data as a memory An output of the device; performing a second sensing of the flash memory cell array to obtain an output second data, the second sensing has a second sequence of the first sequence and occurring at the second internal sensing time; and providing the second data as the memory The output of the device, wherein the first internal sensing time and the second internal sensing time are dependent on a first address boundary of the application and a time budget of the first sensing and the second sensing. The second sequence includes: performing a third sensing of the flash memory cell array to obtain an output third data, the third sensing having the first position of the second sequence and occurring at the third internal sensing time; providing the third data as the memory An output of the device; performing a fourth sensing of the flash memory cell array to obtain a fourth data of the output, a fourth sensing having a second position of the second sequence and occurring at the fourth internal sensing time; and providing the fourth data as the memory The output of the device, wherein the third internal sensing time and the fourth internal sensing time are dependent on a second address boundary of the application and a time budget of the third sensing and the fourth sensing.

本發明提供一種在應用中讀取數位記憶體的方法,包括:以記憶體裝置的多個可能操作頻率當中之選定的操作頻率來操作記憶體裝置,此記憶體裝置具有在多個感應操作中予以感應之快閃記憶胞陣列,更具有這些感應操作的多個可能內部感應時間,其取決於不同位址邊界條件的多個感應序列;根據選定的操作頻率來提供配置指令給具有讀取虛擬位元組數目參數之快閃記憶體裝置;提供配置指令給快閃記憶體裝置,以便設定此應用的位址邊界參數;提供具有起始位址之讀取指令給記憶體裝置;以及利用時間預算從記憶體裝置接收資料,此時間預算是藉由讀取虛擬位元組數目參數以及藉由與位址邊界參數的位址邊界條件的感應序列之一相對應的可能內部感應時間之一個或多個予以確定。The present invention provides a method of reading a digital memory in an application, comprising: operating a memory device at a selected one of a plurality of possible operating frequencies of the memory device, the memory device having a plurality of sensing operations The flash memory cell array to be sensed has more than one possible internal sensing time of these sensing operations, which depends on multiple sensing sequences of different address boundary conditions; the configuration instruction is provided according to the selected operating frequency to have read virtual a flash memory device having a parameter number parameter; providing a configuration command to the flash memory device to set an address boundary parameter of the application; providing a read command having a start address to the memory device; and utilizing time The budget receives data from the memory device, the time budget being by reading the virtual byte number parameter and one of the possible internal sensing times corresponding to one of the sensing sequences of the address boundary conditions of the address boundary parameter or Multiple to be determined.

本發明提供一種記憶體裝置,包括:快閃記憶胞陣列;位址邊界測定電路,用以從讀取指令的起始位址的多個不同潛在位址邊界測定一位址邊界;內部感應時間確定電路電路,與位址邊界測定電路耦合,用以分別根據不同潛在位址邊界來確定與快閃記憶胞陣列的多個不同感應序列(sense sequences)之一相對應的內部感應時間序列;多個感應放大器(sense amplifiers),與內部感應時間確定電路及快閃記憶胞陣列耦合,用以根據多個內部感應時間對快閃記憶胞陣列執行多個循序感應操作以便從快閃記憶胞陣列獲得資料;以及指令及控制邏輯(command and control logic),與感應放大器耦合,用以藉由記憶體裝置的輸出提供所獲得之資料。The present invention provides a memory device comprising: a flash memory cell array; an address boundary determination circuit for determining an address boundary from a plurality of different potential address boundaries of a start address of a read command; Determining a circuit circuit coupled to the address boundary determination circuit for determining an internal sensing time sequence corresponding to one of a plurality of different sense sequences of the flash memory cell array, respectively, according to different potential address boundaries; Sensing amplifiers coupled to the internal sensing time determining circuit and the flash memory cell array for performing a plurality of sequential sensing operations on the flash memory cell array according to the plurality of internal sensing times for obtaining from the flash memory cell array Data; and command and control logic coupled to the sense amplifier for providing the obtained data by the output of the memory device.

本發明提供一種記憶體裝置,包括:快閃記憶胞陣列;指令及控制邏輯,用以測定讀取指令的起始位址的位址邊界,指令及控制邏輯包括多工器,此多工器用以選擇在一序列的感應當中感應快閃記憶胞陣列之內部感應時間,對於至少兩個感應序列將根據位址邊界與感應序列的感應的個別位置來確定內部感應時間;以及多個感應放大器,與多工器及快閃記憶胞陣列耦合,用以感應快閃記憶胞陣列以便獲得資料,以及指令及控制邏輯進一步與感應放大器耦合,以便藉由記憶體裝置的輸出提供所獲得之資料。The present invention provides a memory device comprising: a flash memory cell array; instruction and control logic for determining an address boundary of a start address of a read command, the command and control logic comprising a multiplexer, the multiplexer Inducing an internal sensing time of the flash memory cell array in a sequence of sensing, determining an internal sensing time for at least two sensing sequences based on individual locations of the sensing of the address boundary and the sensing sequence; and a plurality of inductive amplifiers, Coupled with the multiplexer and the flash memory cell array for sensing the flash memory cell array for data acquisition, and the command and control logic is further coupled to the sense amplifier to provide the obtained data by the output of the memory device.

可在單位元或多位元串列通訊協定下操作的快閃記憶體裝置可針對應用的一個或多個位址邊界予以配置,藉以啟用相同的位址邊界可配置的讀取指令,不管此應用的一個或多個位址邊界為何。藉由例如位址邊界可配置的(ABC)讀取指令的起始位址的最低有效位元(least significant bits,LSB),或藉由可在先前的配置指令中指定的位址邊界參數,可針對應用的位址邊界自動配置快閃記憶體裝置。根據位址邊界配置,可最佳化快閃記憶體裝置的內部感應時間,因而對於使用固定的內部感應時間來感應記憶體之記憶體裝置可改善快閃記憶體裝置的效能。根據應用的位址邊界與想要的快閃記憶體裝置操作頻率,使用者可事先指定或配置讀取指令的虛擬位元組數目。在大部分的應用中,快閃記憶體裝置以固定的頻率來操作且位址邊界固定於位元組、字組、或雙字組,因而使用者只需要一次指定或配置虛擬位元組數目。然而,對於那些位址邊界改變或快閃記憶體裝置的操作頻率改變之應用,虛擬位元組數目也可改變,因此使用者事先指定或配置的位址邊界可配置的(ABC)讀取指令可能必須再度予以指定或配置。因此,可同時最小化讀取指令的虛擬位元組數目及最佳化內部感應時間來改善快閃記憶體裝置讀取效能,以便針對應用的位址邊界容許較高的快閃記憶體裝置操作頻率。A flash memory device operable under a unit or multi-bit serial protocol can be configured for one or more address boundaries of an application to enable the same address boundary configurable read instruction, regardless of What is the boundary of one or more addresses of the application. The least significant bits (LSBs) of the start address of the read instruction, such as the address boundary configurable (ABC), or by the address boundary parameter that can be specified in the previous configuration command, The flash memory device can be automatically configured for the address boundary of the application. Depending on the address boundary configuration, the internal sensing time of the flash memory device can be optimized, thereby improving the performance of the flash memory device for a memory device that uses a fixed internal sensing time to sense the memory. Depending on the address boundary of the application and the desired flash memory device operating frequency, the user can specify or configure the number of virtual bytes of the read command in advance. In most applications, the flash memory device operates at a fixed frequency and the address boundaries are fixed to a byte, a block, or a double word, so the user only needs to specify or configure the number of virtual bytes at a time. . However, for those applications where the address boundary changes or the operating frequency of the flash memory device changes, the number of virtual byte groups can also be changed, so the user can specify or configure the address boundary configurable (ABC) read command in advance. It may have to be specified or configured again. Therefore, the number of dummy bytes of the read command can be minimized and the internal sensing time can be optimized to improve the read performance of the flash memory device, so as to allow higher flash memory device operation for the address boundary of the application. frequency.

這專利申請案所使用的術語「快閃記憶體裝置」意指任何類型的記憶體裝置,其中包括例如反或閘(NOR)、反及閘(NAND)、或任何其組合之任何記憶體結構中的任何類型的快閃記憶胞,單獨亦或組合任何其他類型的記憶體結構中的任何其他類型的記憶胞。術語「位址邊界可配置的(ABC)讀取指令」意指未受限於任何特殊位址邊界條件因而之讀取指令,因而可針對不同的位址邊界來配置快閃記憶體裝置且不必改變讀取指令。The term "flash memory device" as used in this patent application means any type of memory device including any memory structure such as a reverse or gate (NOR), a NAND, or any combination thereof. Any type of flash memory cell, either alone or in combination with any other type of memory cell in any other type of memory structure. The term "address boundary configurable (ABC) read instruction" means a read instruction that is not restricted by any particular address boundary condition, so that the flash memory device can be configured for different address boundaries and does not have to Change the read command.

術語「內部感應時間」是指快閃記憶體裝置所要求之用以感應一群快閃位元的時間。內部感應時間可表示成多種時脈週期Tcc 。在許多種快閃記憶體裝置中,成群地同時感應一些快閃位元(例如32位元)以達成較佳的讀取效能。快閃記憶體裝置能夠根據位址邊界可配置的(ABC)讀取指令所提供的位址的位址邊界與感應序列的感應的位置來動態調整其內部感應時間。The term "internal sensing time" refers to the time required by the flash memory device to sense a group of flash bits. The internal sensing time can be expressed in a variety of clock cycles T cc . In many types of flash memory devices, some flash bits (e.g., 32 bits) are simultaneously sensed in groups to achieve better read performance. The flash memory device is capable of dynamically adjusting its internal sensing time based on the address boundary of the address provided by the address boundary configurable (ABC) read command and the sensed position of the sensing sequence.

圖3是如何操作具有可配置的內部感應時間之快閃記憶體裝置以完成位址邊界可配置的(ABC)讀取操作20之例子,並且圖4是此種快閃記憶體裝置如何處理位址邊界可配置的(ABC)讀取指令30之例子。在實施特殊應用中,使用者可從快閃記憶體裝置(方塊21)所支援的頻率範圍選擇快閃記憶體裝置的操作頻率,並且也可識別此應用所使用的位址邊界的類型(方塊22)。根據操作頻率及位址邊界類型,使用者可確定位址邊界可配置的(ABC)讀取指令所要求的虛擬位元組的最小數目(方塊23)。所要說明建立多個虛擬位元組數量的技術,是對快閃記憶體裝置在收到位址邊界可配置(ABC)的讀取指令之前,發出一個設定指令(configuration command)。當可根據圖4所示之程序在快閃記憶體裝置中予以處理時,接著可發出位址邊界可配置的(ABC)讀取指令(方塊24)。接收位址邊界可配置的(ABC)指令所要求的資料(方塊25),並且可依需求繼續讀取(方塊26-是)。若此應用要求不同的位址邊界,則可指定新位址邊界(方塊27-是、方塊22)。若使用者想要以不同的頻率來操作快閃記憶體裝置,則可指定頻率(方塊28-是、方塊21)。當讀取操作結束時(方塊26-否、方塊27-否、以及方塊28-否),可繼續處理其他的操作(方塊29)。3 is an example of how to operate a flash memory device with configurable internal sensing time to complete an address boundary configurable (ABC) read operation 20, and FIG. 4 is how such a flash memory device processes bits. An example of an address boundary configurable (ABC) read instruction 30. In implementing a particular application, the user can select the operating frequency of the flash memory device from the range of frequencies supported by the flash memory device (block 21) and can also identify the type of address boundary used by the application (block twenty two). Depending on the operating frequency and the type of address boundary, the user can determine the minimum number of virtual bytes required by the address boundary configurable (ABC) read instruction (block 23). The technique for establishing the number of virtual bytes is to issue a configuration command to the flash memory device before receiving the address boundary configurable (ABC) read command. When processed in the flash memory device in accordance with the procedure illustrated in Figure 4, an address boundary configurable (ABC) read command can then be issued (block 24). The data required by the (BBC) configurable (ABC) instruction is received (block 25) and can be read as needed (block 26-yes). If the application requires a different address boundary, then a new address boundary can be specified (block 27-y, block 22). If the user wants to operate the flash memory device at a different frequency, the frequency can be specified (block 28-y, block 21). When the read operation ends (block 26 - no, block 27 - no, and block 28 - no), other operations can continue to be processed (block 29).

參考圖4,當快閃記憶體裝置接收位址邊界可配置的(ABC)讀取指令時,快閃記憶體裝置將檢查位址邊界可配置的(ABC)讀取指令的位址欄位以識別位址邊界的類型(方塊31),由此可測定最適合位址邊界的內部感應時間(方塊32)。另一方面,在比位址邊界可配置的(ABC)讀取指令先發出的配置指令(未繪示)中可指定位址邊界給快閃記憶體裝置,由此可測定最佳的內部感應時間(方塊32)。接著感應快閃位元方塊(方塊33)且提供資料(方塊34)。雖然圖4繪示在一感應之後且在下一個感應之前提供資料,但是亦可在下一個感應期間提供資料。後續的感應操作發生(方塊35-否、方塊32、方塊33、方塊34)直到讀取結束為止(方塊35-是)。雖然位址邊界是藉由位址邊界可配置的(ABC)讀取指令的位址予以確定(方塊31)且維持整個讀取操作期間,但是可根據感應序列的感應的位置來改變內部感應時間。內部感應時間可在整個讀取操作期間都相同或在部分的讀取操作期間相同,在此情況下將不再執行測定內部感應時間的動作(方塊32)。可繼續處理其他的操作(方塊36)。Referring to FIG. 4, when the flash memory device receives an address boundary configurable (ABC) read command, the flash memory device will check the address field of the address boundary configurable (ABC) read command. The type of address boundary is identified (block 31), from which the internal sensing time that best fits the address boundary can be determined (block 32). On the other hand, an address boundary can be specified in the configuration command (not shown) issued earlier than the address boundary configurable (ABC) read command to the flash memory device, thereby determining the optimal internal sensing. Time (block 32). The flash bit block is then sensed (block 33) and the data is provided (block 34). Although FIG. 4 illustrates the provision of data after an induction and prior to the next sensing, the data may also be provided during the next sensing. Subsequent sensing operations occur (block 35-no, block 32, block 33, block 34) until the end of the reading (block 35-Yes). Although the address boundary is determined by the address of the address boundary configurable (ABC) read command (block 31) and the entire read operation period is maintained, the internal sensing time can be changed according to the sensed position of the sense sequence. . The internal sensing time may be the same during the entire read operation or during a partial read operation, in which case the act of determining the internal sensing time will not be performed (block 32). Other operations can continue to be processed (block 36).

圖5繪示基於位址邊界及感應序列的「內部感應時間」配置之位址邊界可配置的(ABC)讀取指令EBh_QPI之例子。內部感應時間的配置可藉由配置指令或起始位址的位址邊界(例如位元組、字組、雙字組),其可藉由位址邊界可配置的(ABC)讀取指令的起始位址的最低有效位元予以識別。讀取指令EBh_QPI可引起不同的內部感應時間以改善讀取效能。根據起始位址的最低有效位元來測定內部感應時間之一種適當方式是利用適當邏輯電路來計算,其中此計算是根據位址的最低有效位元及感應序列。測定內部感應時間的另一種適當方式是具有多個儲存值(亦即多個儲存感應時間)之查找表(look-up table),其中根據位址的最低有效位元及感應序列從查找表選擇適當的數值(亦即適當的感應時間)。而測定內部感應時間的另一種適當方式是藉由多工器從可根據位址的最低有效位元及感應序列來選擇之預先決定的及內部可用的內部感應時間當中選取。FIG. 5 illustrates an example of an address boundary configurable (ABC) read command EBh_QPI based on an address boundary and an "internal sensing time" configuration of the sensing sequence. The internal sensing time can be configured by the configuration instruction or the address boundary of the starting address (eg, byte, block, double word), which can be read by the address boundary configurable (ABC) The least significant bit of the starting address is identified. The read command EBh_QPI can cause different internal sensing times to improve read performance. One suitable way to determine the internal sensing time based on the least significant bit of the starting address is to compute using appropriate logic circuitry, where the calculation is based on the least significant bit of the address and the sensing sequence. Another suitable way to determine the internal sensing time is a look-up table with multiple stored values (ie, multiple storage sensing times), where the least significant bit and the sensing sequence are selected from the lookup table based on the address. The appropriate value (ie the appropriate induction time). Another suitable way to determine the internal sensing time is by the multiplexer selecting from among the predetermined and internally available internal sensing times that can be selected based on the least significant bit of the address and the sensing sequence.

雖然第一及後續的內部感應時間可相同,在實際考量下後續的感應時間可能必須大於第一感應時間。這是因為實際上,快閃記憶體裝置在後續的感應操作期間由於輸出切換而遭遇更多的雜訊。相反地,快閃記憶體裝置在第一感應期間因不會輸出切換而不致於遭遇此種雜訊。因為在後續感應期間的這雜訊及其他設計考量,最好使後續的感應時間大於第一感應時間;也請參閱圖7。Although the first and subsequent internal sensing times may be the same, the subsequent sensing time may have to be greater than the first sensing time under actual considerations. This is because, in effect, the flash memory device encounters more noise during subsequent sensing operations due to output switching. Conversely, the flash memory device does not encounter such noise during the first sensing period because it does not output a switch. Because of this noise and other design considerations during subsequent sensing, it is preferable to make the subsequent sensing time greater than the first sensing time; see also Figure 7.

各種時間預算在圖5中顯而易見。時間預算可考慮到第一感應、第二感應、以及其間的間隔。第一感應及第二感應的末端分別發生於已經發出8個虛擬時脈給位址邊界40/50/60之後大約2/4/8時脈週期。這是因為第二感應群快閃記憶胞(32位元)的資料分別於已經發出8個虛擬時脈之後2/4/8時脈週期開始輸出。由於這考量,「已組合的第一感應時間及第二感應時間」(如圖5所示)的預算分別是9.5Tcc /11.5Tcc /15.5Tcc ,其中Tcc 是時脈週期。這預算也包括第一感應時間與第二感應時間之間的間隔(無感時間)。一般而言,時間預算可視為「虛擬時脈數目」加上「輸出第一感應資料所要求的時脈數目」減去半個時脈。以兩個虛擬時脈為例,此預算對於位元組/字組/雙字組邊界將分別是3.5Tcc /5.5Tcc /9.5Tcc 。以四個虛擬時脈為例,此預算對於位元組/字組/雙字組邊界將分別是5.5Tcc /7.5Tcc /11.5Tcc 。以六個虛擬時脈為例,此預算對於位元組/字組/雙字組邊界將分別是7.5Tcc /9.5Tcc /13.5Tcc 。以八個虛擬時脈為例,此預算對於位元組/字組/雙字組邊界將分別是9.5Tcc /11.5Tcc /13.5Tcc (參閱圖5)。以上所述闡明不同的位址邊界具有不同的預算。一般而言,雙字組邊界的預算大於字組邊界的預算,並且字組邊界的預算大於位元組邊界的預算,因而可對於相同的虛擬位元組數目啟用快閃記憶體裝置之較高頻率的操作,或可對於相同頻率的操作使用較小的虛擬位元組數目。Various time budgets are evident in Figure 5. The time budget can take into account the first sense, the second sense, and the spacing therebetween. The ends of the first sense and the second sense occur, respectively, after approximately 8/4/8 clock cycles have elapsed after 8 virtual clocks have been sent to the address boundary 40/50/60. This is because the data of the second inductive group flash memory cell (32 bits) is output starting at 2/4/8 clock cycles after 8 virtual clocks have been issued. Due to this consideration, the budget of the "combined first sensing time and second sensing time" (as shown in FIG. 5) is 9.5T cc /11.5T cc /15.5T cc , respectively, where T cc is the clock cycle. This budget also includes the interval between the first sensing time and the second sensing time (no sense time). In general, the time budget can be regarded as the "number of virtual clocks" plus "the number of clocks required to output the first sensing data" minus half the clock. Taking two virtual clocks as an example, this budget will be 3.5T cc /5.5T cc /9.5T cc for the byte/word/double word boundary, respectively. Taking four virtual clocks as an example, this budget will be 5.5T cc /7.5T cc /11.5T cc for the byte/word/double word boundary, respectively. Taking six virtual clocks as an example, this budget will be 7.5T cc /9.5T cc /13.5T cc for the byte/word/double word boundary, respectively. Taking eight virtual clocks as an example, this budget will be 9.5T cc /11.5T cc /13.5T cc for the byte/word/double word boundary (see Figure 5). The above illustrates that different address boundaries have different budgets. In general, the budget for the double-word boundary is greater than the budget for the block boundary, and the budget for the block boundary is greater than the budget for the byte boundary, so that the higher the number of virtual bytes can be enabled for the same number of virtual bytes. The operation of the frequency, or the number of smaller virtual tuples can be used for operations of the same frequency.

由於各種設計選擇的限制,無法在所有的快閃記憶體設計中或對於虛擬位元組及邊界條件的所有組合實現位址邊界可配置的(ABC)讀取指令改善所提供的讀取效能改善潛能。並且,「第一內部感應時間及第二內部感應時間」預算特別分割成第一內部感應時間及第二內部感應時間是基於設計選擇及例如雜訊之其他考量。如圖5及圖7所示,9.5Tcc /11.5Tcc /15.5Tcc 的預算分別對於第一內部感應時間分割成4.5Tcc /4.5Tcc /6.5Tcc 且對於第二內部感應時間分割成4.5Tcc /5.5Tcc /6.5Tcc 。第一內部感應時間及第二內部感應時間並未精確地達到上述預算,這是由於分配一些時間(0.5Tcc /1.5Tcc /2.5Tcc )給第一內部感應時間與第二內部感應時間之間的間隔。間隔將分配到任何兩個連續的感應之間(例如在第一感應與第二感應之間)以提供時間給內部位址改變、電壓充電、以及電壓放電等等。因此,此間隔容許在下一個感應操作之前有準備的時間。Due to various design choices, it is not possible to achieve address-border configurable (ABC) read instruction improvements in all flash memory designs or for all combinations of dummy byte and boundary conditions. Potential. Moreover, the "first internal sensing time and the second internal sensing time" budget is particularly divided into the first internal sensing time and the second internal sensing time based on design choices and other considerations such as noise. As shown in Figure 5 and Figure 7, the budget of 9.5T cc /11.5T cc /15.5T cc is divided into 4.5T cc /4.5T cc /6.5T cc for the first internal sensing time and time split for the second internal sensing time. Into 4.5T cc /5.5T cc /6.5T cc . The first internal sensing time and the second internal sensing time do not accurately reach the above budget because some time (0.5T cc / 1.5T cc / 2.5T cc ) is allocated to the first internal sensing time and the second internal sensing time. The interval between. The interval will be distributed between any two consecutive senses (eg, between the first sense and the second sense) to provide time for internal address changes, voltage charging, and voltage discharge, and the like. Therefore, this interval allows for a preparation time before the next sensing operation.

圖6繪示如何使用多工器來測定適當內部感應時間之例子。在此舉多工器為例,然而亦可設計成其他的適當邏輯電路且用以根據位址的最低有效位元及感應序列來產生或選擇內部感應時間。多工器58在六個不同的感應時間X1、Y1、Z1、X2、Y2、以及Z2之間經由選擇邏輯(select logic)59作選擇。選擇邏輯評估位址的最低有效位元連同感應序列的感應位置,並且根據評估結果提供輸入選擇訊號給多工器58以便選擇適當的內部感應時間。因此讀取效能取決於起始位址及感應序列。Figure 6 shows an example of how to use a multiplexer to determine the appropriate internal sensing time. In this case, the multiplexer is taken as an example, but it can also be designed as other suitable logic circuits and used to generate or select the internal sensing time according to the least significant bit and the sensing sequence of the address. Multiplexer 58 is selected via select logic 59 between six different sensing times X1, Y1, Z1, X2, Y2, and Z2. The least significant bit of the logical evaluation address is selected along with the sensed position of the sense sequence, and an input selection signal is provided to the multiplexer 58 based on the evaluation result to select an appropriate internal sensing time. Therefore, the read performance depends on the start address and the sense sequence.

參考圖5及圖6,圖中繪示一組感應時間如下所述。可從位元組邊界之感應時間X1、字組邊界之感應時間Y1、以及雙字組邊界之感應時間Z1選擇第一內部感應時間。選擇邏輯59根據位址的最低有效位元及感應序列的感應的位置來產生第一選擇訊號給多工器58,以便從感應時間X1、Y1、以及Z1選擇第一內部感應時間,亦即第一感應操作。選擇邏輯59進一步根據位址的最低有效位元及感應序列來產生後續的選擇訊號給多工器58,以便從感應時間X2、Y2、以及Z2選擇所有的後續內部感應時間,亦即接續第一感應操作的所有感應。Referring to Figures 5 and 6, a set of sensing times is as follows. The first internal sensing time can be selected from the sensing time X1 of the byte boundary, the sensing time Y1 of the block boundary, and the sensing time Z1 of the double word boundary. The selection logic 59 generates a first selection signal to the multiplexer 58 according to the least significant bit of the address and the sensed position of the sensing sequence to select the first internal sensing time from the sensing times X1, Y1, and Z1, that is, the first A sensing operation. The selection logic 59 further generates a subsequent selection signal to the multiplexer 58 according to the least significant bit of the address and the sensing sequence to select all subsequent internal sensing times from the sensing times X2, Y2, and Z2, that is, to continue the first All sensing of the sensing operation.

如圖5所示之訊號波形及其相關內部感應時間序列適用於四元週邊介面。在四元週邊介面中,所有的介面(例如8位元的指令、位址、選擇性虛擬位元組、以及資料)是在4位元基礎上完成。以此方式,四元週邊介面可於兩個時脈週期提供8位元指令,如圖5所示。當接收位址邊界可配置的(ABC)讀取指令、位址、以及虛擬位元組時,快閃記憶體裝置開始送出輸出資料給使用者。如圖所示,指令及位址被閂鎖在時脈的上升邊緣,而快閃記憶體裝置在時脈的下降邊緣送出輸出資料。The signal waveform and its associated internal sensing time series as shown in Figure 5 apply to the quaternary peripheral interface. In the quaternary peripheral interface, all interfaces (eg, 8-bit instructions, addresses, selective dummy bytes, and data) are done on a 4-bit basis. In this way, the quaternary peripheral interface can provide 8-bit instructions in two clock cycles, as shown in FIG. When receiving an address boundary configurable (ABC) read command, address, and dummy byte, the flash memory device begins to send output data to the user. As shown, the command and address are latched on the rising edge of the clock, and the flash memory device sends the output data at the falling edge of the clock.

內部感應時間的訊號波形及其相關序列分別繪示為位元組邊界條件40、字組邊界條件50、以及雙字組邊界條件60。所繪示之訊號波形包含八個虛擬時脈。位元組邊界條件40之感應序列的第一個位元組資料42只輸出兩個時脈,因而減少第一內部感應時間及第二內部感應時間可用的時間預算。所減少的預算對快閃記憶體裝置的最大時脈頻率施加限制。字組邊界條件50之感應序列的最初兩個位元組資料52輸出四個時脈,因而減少第一內部感應時間及第二內部感應時間可用的時間預算,但是所減少的預算少於位元組邊界條件40之感應序列。雙字組邊界條件60之感應序列的最初四個位元組資料62輸出八個時脈,其提供大的時間預算給第一內部感應時間及第二內部感應時間。在第一感應操作期間,相同大小群組的快閃位元(例如4位元組)之感應操作於內部同時完成時,對於位元組/字組/雙字組位址邊界實例快閃記憶體裝置分別只送出最後一個位元組、最後兩個位元組、以及所有的四個位元組作為輸出。對於所有的位址邊界40、50、以及60,資料將循序感應然後以連續的32位元(4位元組)群且每一群八個時脈輸出。然而,從位元組邊界到字組邊界到雙字組邊界其內部感應時間通常逐步增加,由此可知雙字組邊界具有最佳讀取效能,接著是字組邊界,最後是具有最差讀取效能之位元組邊界。這種基於使用者應用(例如位址邊界)之可調式內部感應時間,可提供不同且最佳的讀取效能。The signal waveform of the internal sensing time and its associated sequence are depicted as a byte boundary condition 40, a block boundary condition 50, and a double word boundary condition 60, respectively. The signal waveform shown contains eight virtual clocks. The first byte data 42 of the sense sequence of the byte boundary condition 40 outputs only two clocks, thereby reducing the time budget available for the first internal sensing time and the second internal sensing time. The reduced budget imposes a limit on the maximum clock frequency of the flash memory device. The first two byte data 52 of the sensing sequence of the block boundary condition 50 outputs four clocks, thereby reducing the time budget available for the first internal sensing time and the second internal sensing time, but the reduced budget is less than the bit. The sensing sequence of the group boundary condition 40. The first four byte data 62 of the sensing sequence of the double word boundary condition 60 outputs eight clocks, which provide a large time budget for the first internal sensing time and the second internal sensing time. During the first sensing operation, when the sensing operation of the flash bit (eg, 4-byte) of the same size group is completed internally, the flash memory is decoded for the byte/word/double word address boundary instance. The body device sends only the last byte, the last two bytes, and all four bytes as outputs. For all address boundaries 40, 50, and 60, the data will be sequentially sensed and then output in a continuous 32-bit (4-byte) group with eight clocks per group. However, the internal sensing time from the byte boundary to the block boundary to the double word boundary is usually gradually increased, so that the double word boundary has the best read performance, followed by the block boundary, and finally the worst read. Take the byte boundary of the performance. This adjustable internal sensing time based on user applications (such as address boundaries) provides different and optimal read performance.

藉由使用者發出適當的指令可配置虛擬位元組數目給快閃記憶體裝置。雖然虛擬位元組可能是「不必理會的」位元組(例如輸入的資料1或無效的0),但當在此使用時術語「虛擬位元組(Dummy Bytes)」可包括例如模式位元組(Mode bytes)之輔助位元組。當所有其他條件相同時,減少虛擬位元組數目可改善系統讀取效能。可使用任何適當指令來設定虛擬位元組數目,並且此指令可特別用以設定虛擬位元組數目,或可包括配置位址邊界,以及設定例如包裹式突發讀取(burst read with wrap)指令的包裹長度(wrap length)的位元組數目之額外讀取參數。虛擬位元組數目,連同位址的最低有效位元的數值及感應序列,也改變第一內部感應時間及後續的內部感應時間的預算。虛擬位元組數目可在應用的所有讀取操作之前只配置一次,或可在應用期間配置任意次。The number of virtual byte groups can be configured to the flash memory device by the user issuing appropriate instructions. Although a virtual byte may be a "don't care" byte (such as input data 1 or invalid 0), the term "dummy Bytes" as used herein may include, for example, mode bits. Auxiliary byte of the group (Mode bytes). When all other conditions are the same, reducing the number of virtual bytes can improve system read performance. The number of virtual bytes can be set using any suitable instruction, and this instruction can be used in particular to set the number of virtual bytes, or can include configuring address boundaries, and setting up, for example, burst read with wrap An additional read parameter for the number of bytes of the wrap length of the instruction. The number of virtual bytes, along with the value of the least significant bit of the address and the sensing sequence, also changes the budget for the first internal sensing time and subsequent internal sensing time. The number of virtual bytes can be configured only once before all read operations of the application, or can be configured any number of times during the application.

圖7是繪示各種位址邊界、感應序列數目、以及虛擬時脈數目之最大操作頻率實例之表格。如圖所示,虛擬位元組數目在通電時可具有預設值,例如2個虛擬位元組,但是可藉由發出適當的指令在任何時間予以手動配置(在發出任何讀取指令之前配置一次,亦或在應用期間不時配置)成為4、6、8、或其他數目的虛擬位元組。圖7的表格所示之配置只是例子,並且可使用許多不同的變例來達成相似程度的最佳化。為了解釋的緣故,假定所關注的特殊快閃記憶體裝置的感應之最小時間需求是35奈秒。對於這35奈秒需求,此表格所示之具有多重時脈週期Tcc 的感應時間可轉換成最大操作頻率。為了簡化起見,進一步假定最大操作頻率是第一感應操作頻率與後續感應操作頻率(在圖7的表格中以雙星號表示)之間較低者。實際上,由於雜訊及其他考量可加入大於10百萬赫(MHz)的保護頻帶(guard band)。如圖7的表格所示,不論其位址邊界為何,兩個虛擬時脈適合於大約30MHz(Tcc =33(ns))之應用,。四個虛擬時脈適合於大約50MHz(Tcc =20(ns))之位元組位址邊界應用,並且適合於80MHz(Tcc =12(ns))之字組及雙字組位址邊界應用。六個虛擬時脈適合於80百萬赫MHz(Tcc =12(ns))之位元組位址邊界應用,並且適合於高達大約104MHz(Tcc =10(ns))之字組位址及雙字組位址邊界應用。八個虛擬時脈適合於高達大約104MHz(Tcc =10(ns))之位元組及字組位址邊界應用,並且當操作頻率可用時適合於高達大約166MHz(Tcc =6(ns))之雙字組位址邊界應用。7 is a table showing examples of maximum operating frequencies for various address boundaries, number of sensing sequences, and number of virtual clocks. As shown, the number of virtual bytes can have a preset value when powered up, such as 2 virtual bytes, but can be manually configured at any time by issuing appropriate instructions (configured before any read commands are issued) Once, or configured from time to time during the application, it becomes 4, 6, 8, or other number of virtual bytes. The configuration shown in the table of Figure 7 is only an example, and many different variations can be used to achieve a similar degree of optimization. For the sake of explanation, it is assumed that the minimum time requirement for induction of a particular flash memory device of interest is 35 nanoseconds. For this 35 nanosecond demand, the induction time with multiple clock cycles T cc shown in this table can be converted to the maximum operating frequency. For the sake of simplicity, it is further assumed that the maximum operating frequency is the lower of the first sensing operating frequency and the subsequent sensing operating frequency (indicated by a double asterisk in the table of Figure 7). In fact, guard bands greater than 10 megahertz (MHz) can be added due to noise and other considerations. As shown in the table of Figure 7, the two virtual clocks are suitable for applications of approximately 30 MHz (T cc = 33 (ns)) regardless of their address boundaries. Four virtual clocks are suitable for byte address boundary applications of approximately 50 MHz (T cc = 20 (ns)) and are suitable for 80 MHz (T cc = 12 (ns)) block and double word address boundary application. Six virtual clocks are suitable for byte address boundary applications of 80 megahertz MHz (T cc = 12 (ns)) and are suitable for block addresses up to approximately 104 MHz (T cc = 10 (ns)) And double word address boundary application. Eight virtual clocks are suitable for byte and block address boundary applications up to approximately 104 MHz (T cc = 10 (ns)) and are suitable for up to approximately 166 MHz when operating frequency is available (T cc = 6 (ns) ) The double word address boundary application.

須知當在此討論時最大操作頻率與各種虛擬時脈實例有關,並且不考慮由於邏輯方塊設計之其他限制。雖然目前許多快閃記憶體裝置的最大操作頻率受限於大約104MHz,因而使得目前無法提供166MHz時脈速率,也使得八個虛擬時脈實例目前比較少實際的應用價值,但是最大操作頻率可預期將會繼續增加使得未來可預期八個虛擬時脈實例將具有實用價值。現在,四個虛擬時脈實例及六個虛擬時脈實例具備最大的實用價值。It should be noted that the maximum operating frequency is discussed in this discussion with various virtual clock instances, and other limitations due to the logic block design are not considered. Although the maximum operating frequency of many flash memory devices is currently limited to about 104 MHz, the current 166 MHz clock rate is not available, and the eight virtual clock instances are currently less practical, but the maximum operating frequency is expected. It will continue to increase so that eight virtual clock instances can be expected to be of practical value in the future. Now, four virtual clock instances and six virtual clock instances have the most practical value.

一個改善讀取效能的例子如下所述。對於未針對位址邊界最佳化之設計,速率效能可能是以位元組為基礎(亦即最慢的),而不論事實上,應用的位址邊界可能是字組或雙字組,或使用六個虛擬位元組。然而,若是針對雙字組邊界應用最佳化之設計,則可使用具有可調式之四個虛擬時脈實例來提供優越的讀取效能。因此,對於最佳化位址邊界之設計,在具有位元組位址邊界之應用中可使用具有六個虛擬位元組之相同讀取指令以80百萬赫(MHz)的時脈來讀取快閃記憶體裝置,在具有雙字組位址邊界之另一個應用中可使用具有四個虛擬位元組之相同讀取指令以80百萬赫的時脈來讀取快閃記憶體裝置。這對於只有一種讀取指令(亦即位址邊界可配置的(ABC)讀取指令)提供極大的彈性。例如,當實現八個虛擬時脈實例之應用時,將不需要針對八個虛擬時脈實例使用另一個讀取指令。An example of improving read performance is as follows. For designs that are not optimized for address boundaries, rate performance may be based on a byte (ie, the slowest), regardless of the fact that the address boundary of the application may be a block or a doubleword, or Use six virtual bytes. However, if the design is optimized for a double-word boundary, then four virtual clock instances with tunable can be used to provide superior read performance. Therefore, for the design of optimized address boundaries, the same read instruction with six dummy bytes can be read in 80 megahertz (MHz) clocks in applications with byte address boundaries. Taking a flash memory device, in another application with a double word address boundary, the same read command with four dummy bytes can be used to read the flash memory device with a clock of 80 megahertz . This provides great flexibility for only one read instruction (ie, address boundary configurable (ABC) read instructions). For example, when implementing an application of eight virtual clock instances, there would be no need to use another read instruction for eight virtual clock instances.

另一個讀取效能改善的例子如下所述。參考八個虛擬時脈實例,針對雙字組邊界應用之6.5×Tcc 的內部感應時間(針對位址邊界最佳化之設計),可能在無位址最佳化的益處使用下,大於使用4.5×Tcc 的內部感應時間約40%。在無位址最佳化的設計中,內部感應時間通常是以位元組為基礎,而不論其位址邊界是字組或雙字組邊界。Another example of read performance improvement is as follows. Referring to the eight virtual clock instances, the internal sensing time of 6.5×T cc for the double-word boundary application (designed for address boundary optimization) may be greater than the use of the benefits of no address optimization. The internal sensing time of 4.5 × T cc is about 40%. In an addressless design, the internal sensing time is usually based on a byte, regardless of whether the address boundary is a block or a double block boundary.

另一個讀取效能改善的例子如下所述。對於無位址限制的讀取指令,快閃記憶體裝置的最大讀取頻率是2個虛擬時脈之30MHz、4個虛擬時脈之50MHz、6個虛擬時脈之80MHz、以及8個虛擬時脈之104MHz。然而,對於有雙字組邊界限制的讀取指令,快閃記憶體裝置的最大讀取頻率是2個虛擬時脈之30MHz、4個虛擬時脈之80MHz、6個虛擬時脈之104MHz、以及8個虛擬時脈之104MHz。在有雙字組位址邊界限制的應用中,讀取效能的改善對於四個虛擬時脈實例及六個虛擬時脈實例明顯可見。Another example of read performance improvement is as follows. For address-free read commands, the maximum read frequency of the flash memory device is 30 MHz for 2 virtual clocks, 50 MHz for 4 virtual clocks, 80 MHz for 6 virtual clocks, and 8 virtual times. 104MHz pulse. However, for a read command having a double word boundary limit, the maximum read frequency of the flash memory device is 30 MHz for 2 virtual clocks, 80 MHz for 4 virtual clocks, 104 MHz for 6 virtual clocks, and 10 virtual clocks of 104MHz. In applications with double-word address boundary constraints, the improvement in read performance is clearly visible for four virtual clock instances and six virtual clock instances.

圖8是適合執行位址邊界可配置的(ABC)讀取指令之快閃記憶體裝置結構的方塊圖。許多其他類型快閃記憶體裝置可根據在此所述之內容予以修改,以便執行位址邊界可配置的(ABC)讀取指令。快閃記憶胞陣列78藉由列解碼電路77及行解碼電路75來編列位址,後者包含用以寫入快閃記憶胞陣列78之256位元組頁緩衝器及用以讀取快閃記憶胞陣列78之三十二個感應放大器所屬方塊。對應於狀態暫存器70,寫入保護邏輯77用以避免在確定情況下寫入快閃記憶胞陣列78。指令及控制邏輯71控制高電壓產生器72及頁位址閂鎖及計數器73,用以控制列解碼電路77。指令及控制邏輯71也控制位元組位址閂鎖及計數器74,其用以控制行解碼電路75。指令及控制邏輯71包括四個輸入/輸出腳位IO0-IO3、串列時脈輸入腳位CLK、以及晶片選擇輸入腳位/CS。8 is a block diagram of a flash memory device architecture suitable for performing address boundary configurable (ABC) read instructions. Many other types of flash memory devices can be modified in accordance with what is described herein to perform address boundary configurable (ABC) read instructions. The flash memory cell array 78 is provided with an address by a column decoding circuit 77 and a row decoding circuit 75. The latter includes a 256-bit page buffer for writing to the flash memory cell array 78 and for reading flash memory. The thirty-two sense amplifiers of the cell array 78 belong to the block. Corresponding to the state register 70, the protection logic 77 is written to avoid writing to the flash memory cell array 78 in certain cases. The command and control logic 71 controls the high voltage generator 72 and the page address latch and counter 73 for controlling the column decode circuit 77. The instruction and control logic 71 also controls a byte address latch and counter 74 for controlling the row decoding circuit 75. The instruction and control logic 71 includes four input/output pins IO0-IO3, a serial clock input pin CLK, and a wafer select input pin/CS.

如圖所示,多工器79配置於指令及控制邏輯71,用以提供內部感應時間控制訊號給三十二個感應放大器所屬方塊75。選擇的邏輯是由指令及控制邏輯71完成。不論位址邊界為何,都可使用所有的三十二個感應放大器。As shown, the multiplexer 79 is disposed in the command and control logic 71 for providing an internal sense time control signal to the block 75 of the thirty-two sense amplifiers. The logic selected is accomplished by instruction and control logic 71. All thirty-two sense amplifiers can be used regardless of the address boundary.

圖8的快閃記憶體裝置支援串列週邊介面(SPI)及四元週邊介面操作,包括標準串列週邊介面(SPI)指令、雙串列週邊介面指令、四串列週邊介面指令、以及四元週邊介面指令。當此裝置利用「Enable QPI(38h)」指令從標準/雙/四串列週邊介面模式切換到四元週邊介面(QPI)模式時將支援四元週邊介面(QPI)操作。此裝置可利用「Disable QPI(FFh)」指令切換回到標準/雙/四串列週邊介面模式。The flash memory device of Figure 8 supports serial peripheral interface (SPI) and quaternary peripheral interface operations, including standard serial peripheral interface (SPI) instructions, dual serial peripheral interface instructions, four serial peripheral interface instructions, and four Meta peripheral interface instructions. The device will support quad-peripheral interface (QPI) operation when switching from the standard/dual/quad serial interface mode to the quad peripheral interface (QPI) mode using the "Enable QPI (38h)" command. This device can be switched back to the standard / dual / quad series peripheral interface mode using the "Disable QPI (FFh)" command.

雖然圖8的快閃記憶體裝置只有在四元週邊介面模式中使用位址邊界可配置的讀取指令,但是位址邊界可配置的讀取指令可在不同於四元週邊介面之模式中使用,例如各種串列週邊介面模式。所繪示之位址邊界可配置的讀取指令可包括快速讀取四輸入/輸出(EBh_QPI)四元週邊介面(QPI)模式指令、快速讀取(0Bh_QPI)四元週邊介面(QPI)模式指令、以及包裹式突發讀取(0Ch_QPI)指令。虛擬時脈數目可藉由「Set Read Parameters(C0h)」指令予以配置為2、4、6、或8。類似的位址邊界可配置的指令可支援四串列週邊介面模式。Although the flash memory device of FIG. 8 only uses the address boundary configurable read command in the quaternary peripheral interface mode, the address boundary configurable read command can be used in a mode different from the quaternary peripheral interface. For example, various serial peripheral interface modes. The addressable boundary configurable read commands may include a fast read four input/output (EBh_QPI) quaternary peripheral interface (QPI) mode instruction, a fast read (0Bh_QPI) quaternary peripheral interface (QPI) mode instruction. And the package burst read (0Ch_QPI) instruction. The number of virtual clocks can be configured as 2, 4, 6, or 8 by the "Set Read Parameters (C0h)" command. Similar address boundary configurable instructions support four serial peripheral interface modes.

在此參考附圖說明本發明及其應用和優點,然而此說明並非用以限定本發明,故本發明之保護範圍當視申請專利範圍所界定者為準。在此所揭露之實施例可能改變及修改,任何所屬技術領域中具有通常知識者研讀本專利文件之後將明瞭該些實施例的各種元件之實際替換及等效。並且,在此所給予的特定數值僅用以說明,其可依需求而變化。所參考之某一範圍的各種數值將包括此範圍內的所有數值。在不脫離本發明之範圍內,當可進行在此所揭露之實施例的這些及其他改變及修改,包含該些實施例的各種元件之替換及等效。The invention and its applications and advantages are described herein with reference to the accompanying drawings, however, this description is not intended to limit the invention, and the scope of the invention is defined by the scope of the claims. The embodiments disclosed herein may be changed and modified, and the actual replacement and equivalents of the various elements of the embodiments will be apparent to those skilled in the art. Also, the specific numerical values given herein are for illustrative purposes only and may vary as needed. Various values in a range that are referenced will include all values within the range. These and other variations and modifications of the embodiments disclosed herein may be made without departing from the scope of the invention.

20、21、22、23、24、25、26、27、28、29...步驟20, 21, 22, 23, 24, 25, 26, 27, 28, 29. . . step

30、31、32、33、34、35、36...步驟30, 31, 32, 33, 34, 35, 36. . . step

40...位元組邊界條件40. . . Byte boundary condition

42...感應序列的第一個位元組42. . . The first byte of the sense sequence

44...感應序列的第二個位元組44. . . The second byte of the sensing sequence

46...感應序列的第三個位元組46. . . The third byte of the sense sequence

50...字組邊界條件50. . . Block boundary condition

52...感應序列的第一個雙位元組52. . . The first double byte of the sensing sequence

54...感應序列的第二個雙位元組54. . . The second double byte of the sensing sequence

56...感應序列的第三個雙位元組56. . . The third double byte of the sensing sequence

58、79...多工器(MUX)58,79. . . Multiplexer (MUX)

59...選擇邏輯59. . . Selection logic

60...雙字組邊界條件60. . . Double word boundary condition

62...感應序列的第一個四位元組62. . . The first four bytes of the sensing sequence

64...感應序列的第二個四位元組64. . . The second quaternion of the sensing sequence

66...感應序列的第三個四位元組66. . . The third octet of the sensing sequence

70...狀態暫存器70. . . Status register

71...指令及控制邏輯71. . . Instruction and control logic

72...高電壓產生器72. . . High voltage generator

73...頁位址閂鎖及計數器73. . . Page address latch and counter

74...位元組位址閂鎖及計數器74. . . Byte address latch and counter

75...行解碼電路75. . . Row decoding circuit

76...寫入控制邏輯76. . . Write control logic

77...列解碼電路77. . . Column decoding circuit

78...快閃記憶胞陣列78. . . Flash memory cell array

CLK...串列時脈輸入腳位CLK. . . Serial clock input pin

/CS...晶片選擇輸入腳位/CS. . . Chip selection input pin

IO0、IO1、IO2、IO3...輸入/輸出腳位IO0, IO1, IO2, IO3. . . Input/output pin

X1、X2...位元組邊界的感應時間X1, X2. . . Sensing time of the byte boundary

Y1、Y2...字組邊界的感應時間Y1, Y2. . . Sensing time of the word boundary

Z1、Z2...雙字組邊界的感應時間Z1, Z2. . . Induction time of double word boundary

圖1是一種指令訊號的波形圖。Figure 1 is a waveform diagram of a command signal.

圖2是另一種指令訊號的波形圖。Figure 2 is a waveform diagram of another command signal.

圖3是一種位址邊界可配置的讀取操作的流程圖。3 is a flow diagram of a read operation with configurable address boundaries.

圖4是一種快閃記憶體裝置處理位址邊界可配置的讀取指令的流程圖。4 is a flow diagram of a read command configurable by a flash memory device processing address boundary.

圖5是一種具有各種位址邊界之指令及其相關的內部感應時序的波形圖。Figure 5 is a waveform diagram of an instruction with various address boundaries and its associated internal sensing timing.

圖6是一種用以選擇感應時間之多工器電路的實施說明的方塊圖。6 is a block diagram of an implementation of a multiplexer circuit for selecting an induction time.

圖7是各種位址邊界條件及操作頻率之內部感應時序及適當虛擬時脈數目的表格。Figure 7 is a table of internal sensing timings and the number of appropriate virtual clocks for various address boundary conditions and operating frequencies.

圖8是快閃記憶體裝置結構的電路圖。Figure 8 is a circuit diagram showing the structure of a flash memory device.

30、31、32、33、34、35、36...步驟30, 31, 32, 33, 34, 35, 36. . . step

Claims (15)

一種記憶體裝置之操作方法,其中該記憶體裝置包括快閃記憶胞陣列,該記憶體裝置之操作方法經由一讀取指令提供資料的應用,其中該應用具有一位址邊界,該記憶體裝置之操作方法包括:接收包括起始位址之讀取指令;針對該應用的該位址邊界來配置該記憶體裝置;以及經由該讀取指令對該快閃記憶胞陣列執行一序列的感應操作,該序列包括:執行該快閃記憶胞陣列的第一感應以獲得輸出的第一資料,該第一感應具有該序列的第一位置且發生於第一內部感應時間;提供該第一資料作為該記憶體裝置的輸出;執行該快閃記憶胞陣列的第二感應以獲得輸出的第二資料,該第二感應具有該序列的第二位置且發生於第二內部感應時間;以及提供該第二資料作為該記憶體裝置的輸出,其中為了改善讀取效能,可根據該應用的該位址邊界與該第一感應及該第二感應的時間預算來改變該第一內部感應時間及該第二內部感應時間。A method of operating a memory device, wherein the memory device comprises a flash memory cell array, the method of operating the memory device provides an application of data via a read command, wherein the application has a bit boundary, the memory device The operating method includes: receiving a read instruction including a start address; configuring the memory device for the address boundary of the application; and performing a sequence of sensing operations on the flash memory cell array via the read command The sequence includes: performing a first sensing of the flash memory cell array to obtain an output first data, the first sensing having a first location of the sequence and occurring at a first internal sensing time; providing the first data as An output of the memory device; performing a second sensing of the flash memory cell array to obtain an output second data, the second sensing having a second position of the sequence and occurring at a second internal sensing time; and providing the first The second data is used as an output of the memory device, wherein in order to improve the read performance, the address boundary and the first sensing and the Two induction time budget to change the first sensing time and the second inner sensing time internal. 如申請專利範圍第1項所述之記憶體裝置之操作方法,其中根據該序列的該第一感應及該第二感應的個別位置來改變該第一內部感應時間及該第二內部感應時間。The method of operating the memory device of claim 1, wherein the first internal sensing time and the second internal sensing time are changed according to the first sensing and the second sensing individual positions of the sequence. 如申請專利範圍第1項所述之記憶體裝置之操作方法,其中該序列更包括:執行該快閃記憶胞陣列的第三感應以獲得輸出的第三資料,該第三感應具有該序列的第三位置且發生於第三內部感應時間;以及提供該第三資料作為該記憶體裝置的輸出。The method of operating the memory device of claim 1, wherein the sequence further comprises: performing third sensing of the flash memory cell array to obtain an output third data, the third sensing having the sequence a third location and occurring at a third internal sensing time; and providing the third data as an output of the memory device. 如申請專利範圍第3項所述之記憶體裝置之操作方法,其中該第一內部感應時間可小於或等於該第二內部感應時間及該第三內部感應時間。The method of operating a memory device according to claim 3, wherein the first internal sensing time is less than or equal to the second internal sensing time and the third internal sensing time. 如申請專利範圍第4項所述之記憶體裝置之操作方法,其中該第二內部感應時間與該第三內部感應時間可相等或不相等。The method of operating a memory device according to claim 4, wherein the second internal sensing time and the third internal sensing time are equal or unequal. 如申請專利範圍第1項所述之記憶體裝置之操作方法,其中該配置步驟包括根據該起始位址的一個或多個最低有效位元針對該應用的該位址邊界來配置該記憶體裝置。The method of operating a memory device according to claim 1, wherein the configuring step comprises configuring the memory according to the address boundary of the application according to one or more least significant bits of the start address. Device. 如申請專利範圍第1項所述之記憶體裝置之操作方法,更包括:在接收該讀取指令的該步驟之前接收配置指令,該配置指令包括位址邊界參數;其中該配置步驟包括根據該位址邊界參數針對該應用的該位址邊界來配置該記憶體裝置。The method of operating the memory device of claim 1, further comprising: receiving a configuration command, the configuration command comprising an address boundary parameter, before the step of receiving the read command, wherein the configuring step comprises The address boundary parameter configures the memory device for the address boundary of the application. 如申請專利範圍第1項所述之記憶體裝置之操作方法,更包括:在接收該讀取指令的該步驟之前接收配置指令,該配置指令包括虛擬時脈數目參數;以及根據該虛擬時脈數目參數來配置該記憶體裝置以便在接收該讀取指令時插入虛擬時脈。The operating method of the memory device of claim 1, further comprising: receiving a configuration command including the virtual clock number parameter before the step of receiving the read command; and according to the virtual clock The number parameter configures the memory device to insert a virtual clock when the read command is received. 一種記憶體裝置之操作方法,其中該記憶體裝置包括快閃記憶胞陣列,該記憶體裝置之操作方法經由一讀取指令提供資料的應用,其中該應用在第一時間具有第一位址邊界,且在不同於該第一時間之第二時間具有第二位址邊界,該記憶體裝置之操作方法包括:接收包括第一起始位址之第一讀取指令;針對該應用的該第一位址邊界來配置該記憶體裝置;經由該讀取指令對該快閃記憶胞陣列執行第一序列的感應操作,該第一序列包括:執行該快閃記憶胞陣列的第一感應以獲得輸出的第一資料,該第一感應具有該第一序列的第一位置且發生於第一內部感應時間;提供該第一資料作為該記憶體裝置的輸出;執行該快閃記憶胞陣列的第二感應以獲得輸出的第二資料,該第二感應具有該第一序列的第二位置且發生於第二內部感應時間;以及提供該第二資料作為該記憶體裝置的輸出,其中該第一內部感應時間及該第二內部感應時間取決於該應用的該第一位址邊界與該第一感應及該第二感應的時間預算;接收包括第二起始位址之第二讀取指令;針對該應用的該第二位址邊界來配置該記憶體裝置;以及經由該第二讀取指令對該快閃記憶胞陣列執行第二序列的感應操作,其中該第二序列包括:執行該快閃記憶胞陣列的第三感應以獲得輸出的第三資料,該第三感應具有該第二序列的第一位置且發生於第三內部感應時間;提供該第三資料作為該記憶體裝置的輸出;執行該快閃記憶胞陣列的第四感應以獲得輸出的第四資料,該第四感應具有該第二序列的第二位置且發生於第四內部感應時間;以及提供該第四資料作為該記憶體裝置的輸出,其中該第三內部感應時間及該第四內部感應時間取決於該應用的該第二位址邊界與該第三感應及該第四感應的時間預算。A method of operating a memory device, wherein the memory device comprises a flash memory cell array, the method of operation of the memory device providing an application of data via a read command, wherein the application has a first address boundary at a first time And having a second address boundary at a second time different from the first time, the method of operating the memory device includes: receiving a first read instruction including a first start address; the first for the application Addressing the memory device; performing a first sequence of sensing operations on the flash memory cell array via the read command, the first sequence comprising: performing a first sensing of the flash memory cell array to obtain an output First information, the first sensing has a first position of the first sequence and occurs at a first internal sensing time; providing the first data as an output of the memory device; performing a second of the flash memory cell array Sensing to obtain a second data of the output, the second sensing having a second position of the first sequence and occurring at a second internal sensing time; and providing the second data as The output of the memory device, wherein the first internal sensing time and the second internal sensing time are dependent on the first address boundary of the application and the time budget of the first sensing and the second sensing; the receiving includes the second a second read command of the start address; configuring the memory device for the second address boundary of the application; and performing a second sequence of sensing operations on the flash memory cell array via the second read command, The second sequence includes: performing third sensing of the flash memory cell array to obtain an output third data, the third sensing having a first position of the second sequence and occurring at a third internal sensing time; providing the The third data is used as an output of the memory device; performing a fourth sensing of the flash memory cell array to obtain an output fourth data, the fourth sensing having the second position of the second sequence and occurring in the fourth internal sensing And providing the fourth data as an output of the memory device, wherein the third internal sensing time and the fourth internal sensing time are dependent on the second address boundary of the application The third induction time budget and the fourth induction. 如申請專利範圍第9項所述之記憶體裝置之操作方法,其中:針對該應用的該第一位址邊界來配置該記憶體裝置之該步驟包括根據該第一起始位址的一個或多個最低有效位元針對該應用的該第一位址邊界來配置該記憶體裝置;以及針對該應用的該第二位址邊界來配置該記憶體裝置之該步驟包括根據該第二起始位址的一個或多個最低有效位元針對該應用的該第二位址邊界來配置該記憶體裝置。The method of operating a memory device according to claim 9, wherein the step of configuring the memory device for the first address boundary of the application comprises one or more according to the first start address The least significant bit configures the memory device for the first address boundary of the application; and the step of configuring the memory device for the second address boundary of the application includes the second start bit The one or more least significant bits of the address configure the memory device for the second address boundary of the application. 如申請專利範圍第9項所述之記憶體裝置之操作方法,更包括:在接收該第一讀取指令的該步驟之前接收第一配置指令,該第一配置指令包括第一位址邊界參數;其中針對該應用的該第一位址邊界來配置該記憶體裝置之該步驟包括根據該第一位址邊界參數針對該應用的該第一位址邊界來配置該記憶體裝置;以及在接收該第二讀取指令之該步驟之前接收第二配置指令,該第二配置指令包括第二位址邊界參數;其中針對該應用的該第二位址邊界來配置該記憶體裝置之該步驟包括根據該第二位址邊界參數針對該應用的該第二位址邊界來配置該記憶體裝置。The operating method of the memory device of claim 9, further comprising: receiving the first configuration instruction, the first configuration instruction including the first address boundary parameter, before receiving the step of the first read instruction The step of configuring the memory device for the first address boundary of the application includes configuring the memory device for the first address boundary of the application based on the first address boundary parameter; and receiving Receiving, by the second read instruction, the second configuration instruction, the second configuration instruction includes a second address boundary parameter; wherein the step of configuring the memory device for the second address boundary of the application comprises The memory device is configured for the second address boundary of the application based on the second address boundary parameter. 如申請專利範圍第9項所述之記憶體裝置之操作方法,更包括:在接收該第一讀取指令之該步驟之前接收第一配置指令,該第一配置指令包括虛擬時脈數目參數;根據該虛擬時脈數目參數來配置該記憶體裝置以便將虛擬時脈插入該第一讀取指令;在接收該第一讀取指令之該步驟之前接收第二配置指令,該第二配置指令包括虛擬時脈數目參數;以及根據該虛擬時脈數目參數來配置該記憶體裝置以便將虛擬時脈插入該第二讀取指令。The operating method of the memory device of claim 9, further comprising: receiving a first configuration instruction, the first configuration instruction including a virtual clock number parameter, before receiving the step of the first read instruction; Configuring the memory device to insert a virtual clock into the first read command according to the virtual clock number parameter; receiving a second configuration command prior to the step of receiving the first read command, the second configuration command including a virtual clock number parameter; and configuring the memory device to insert a virtual clock into the second read command based on the virtual clock number parameter. 一種讀取數位記憶體的方法,包括:以記憶體裝置的多個可能操作頻率當中選取一選定的操作頻率來操作該記憶體裝置,該記憶體裝置具有在多個感應操作中予以感應之快閃記憶胞陣列,更具有該些感應操作的多個內部感應時間,其取決於不同位址邊界條件的多個感應序列;根據該選定的操作頻率來提供配置指令給具有讀取虛擬位元組數目參數之該快閃記憶體裝置;提供配置指令給該快閃記憶體裝置,以便設定該應用的位址邊界參數;提供具有起始位址之讀取指令給該記憶體裝置;以及利用時間預算從該記憶體裝置接收資料,該時間預算是藉由該讀取虛擬位元組數目參數以及藉由與該位址邊界參數的該位址邊界條件的該些感應序列之一相對應的該些內部感應時間之一個或多個予以確定。A method of reading a digital memory, comprising: operating a memory device by selecting a selected one of a plurality of possible operating frequencies of the memory device, the memory device having a sensitivity in a plurality of sensing operations The flash memory cell array further has a plurality of internal sensing times of the sensing operations, which are dependent on a plurality of sensing sequences of different address boundary conditions; providing configuration instructions to the read virtual byte according to the selected operating frequency a flash memory device of a number parameter; providing configuration instructions to the flash memory device to set an address boundary parameter of the application; providing a read command having a start address to the memory device; and utilizing time The budget receives data from the memory device, the time budget being by the read virtual byte number parameter and the one of the sensing sequences corresponding to the address boundary condition of the address boundary parameter One or more of these internal sensing times are determined. 一種記憶體裝置,包括:快閃記憶胞陣列;位址邊界測定電路,用以從讀取指令的起始位址的多個不同潛在位址邊界測定一位址邊界;內部感應時間確定電路,與該位址邊界測定電路耦合,用以分別根據該些不同潛在位址邊界來確定與該快閃記憶胞陣列的多個不同感應序列之一相對應的內部感應時間序列;多個感應放大器,與該內部感應時間確定電路及該快閃記憶胞陣列耦合,用以根據該些多個內部感應時間對該快閃記憶胞陣列執行該些多個循序感應操作以便從該快閃記憶胞陣列獲得資料;以及指令及控制邏輯,與該些感應放大器耦合,用以藉由該記憶體裝置的輸出提供所獲得之該資料。A memory device includes: a flash memory cell array; an address boundary determining circuit for determining an address boundary from a plurality of different potential address boundaries of a start address of the read command; an internal sensing time determining circuit, And the address boundary determining circuit is coupled to determine an internal sensing time sequence corresponding to one of the plurality of different sensing sequences of the flash memory cell array according to the different potential address boundaries; a plurality of inductive amplifiers, And the internal sensing time determining circuit and the flash memory cell array are coupled to perform the plurality of sequential sensing operations on the flash memory cell array according to the plurality of internal sensing times to obtain from the flash memory cell array Data and instructions and control logic coupled to the sense amplifiers for providing the obtained data by the output of the memory device. 一種記憶體裝置,包括:快閃記憶胞陣列;指令及控制邏輯,用以測定讀取指令的起始位址的位址邊界,該指令及控制邏輯包括多工器,該多工器用以選擇在一序列的感應當中感應該快閃記憶胞陣列之內部感應時間,對於至少兩個感應序列將根據該位址邊界與該些感應序列的該些感應的個別位置來確定該些內部感應時間;以及多個感應放大器,與該多工器及該快閃記憶胞陣列耦合,用以感應該快閃記憶胞陣列以便獲得資料,以及該指令及控制邏輯進一步與該些感應放大器耦合,以便藉由該記憶體裝置的輸出提供所獲得之該資料。A memory device includes: a flash memory cell array; instruction and control logic for determining an address boundary of a start address of a read command, the command and control logic including a multiplexer for selecting Sensing the internal sensing time of the flash memory cell array in a sequence of sensing, and determining the internal sensing time for the at least two sensing sequences according to the address boundary and the sensed individual positions of the sensing sequences; And a plurality of sense amplifiers coupled to the multiplexer and the flash memory cell array for sensing the flash memory cell array for obtaining data, and the command and control logic is further coupled to the sense amplifiers for The output of the memory device provides the obtained data.
TW100140172A 2011-11-03 2011-11-03 Method of operating a memory device, method of reading a digital memory, and memory device thereof TWI454910B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100140172A TWI454910B (en) 2011-11-03 2011-11-03 Method of operating a memory device, method of reading a digital memory, and memory device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100140172A TWI454910B (en) 2011-11-03 2011-11-03 Method of operating a memory device, method of reading a digital memory, and memory device thereof

Publications (2)

Publication Number Publication Date
TW201319806A TW201319806A (en) 2013-05-16
TWI454910B true TWI454910B (en) 2014-10-01

Family

ID=48872497

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100140172A TWI454910B (en) 2011-11-03 2011-11-03 Method of operating a memory device, method of reading a digital memory, and memory device thereof

Country Status (1)

Country Link
TW (1) TWI454910B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI575376B (en) * 2015-03-12 2017-03-21 美光科技公司 Apparatuses and methods for data movement
US10074416B2 (en) 2016-03-28 2018-09-11 Micron Technology, Inc. Apparatuses and methods for data movement
US10324654B2 (en) 2016-02-10 2019-06-18 Micron Technology, Inc. Apparatuses and methods for partitioned parallel data movement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200707190A (en) * 2005-05-31 2007-02-16 Intel Corp Partial page scheme for memory technologies
US20090268543A1 (en) * 2008-04-28 2009-10-29 Macronix International Co., Ltd. Memory control circuit and memory accessing method
TW201030515A (en) * 2009-01-12 2010-08-16 Micron Technology Inc Systems and methods for monitoring a memory system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200707190A (en) * 2005-05-31 2007-02-16 Intel Corp Partial page scheme for memory technologies
US20090268543A1 (en) * 2008-04-28 2009-10-29 Macronix International Co., Ltd. Memory control circuit and memory accessing method
TW201030515A (en) * 2009-01-12 2010-08-16 Micron Technology Inc Systems and methods for monitoring a memory system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI575376B (en) * 2015-03-12 2017-03-21 美光科技公司 Apparatuses and methods for data movement
US10365851B2 (en) 2015-03-12 2019-07-30 Micron Technology, Inc. Apparatuses and methods for data movement
US10936235B2 (en) 2015-03-12 2021-03-02 Micron Technology, Inc. Apparatuses and methods for data movement
US11614877B2 (en) 2015-03-12 2023-03-28 Micron Technology, Inc. Apparatuses and methods for data movement
US10324654B2 (en) 2016-02-10 2019-06-18 Micron Technology, Inc. Apparatuses and methods for partitioned parallel data movement
US10915263B2 (en) 2016-02-10 2021-02-09 Micron Technology, Inc. Apparatuses and methods for partitioned parallel data movement
US11513713B2 (en) 2016-02-10 2022-11-29 Micron Technology, Inc. Apparatuses and methods for partitioned parallel data movement
US10074416B2 (en) 2016-03-28 2018-09-11 Micron Technology, Inc. Apparatuses and methods for data movement
US10482948B2 (en) 2016-03-28 2019-11-19 Micron Technology, Inc. Apparatuses and methods for data movement

Also Published As

Publication number Publication date
TW201319806A (en) 2013-05-16

Similar Documents

Publication Publication Date Title
US11094375B2 (en) Concurrent read and reconfigured write operations in a memory device
US8667368B2 (en) Method and apparatus for reading NAND flash memory
US9978430B2 (en) Memory devices providing a refresh request and memory controllers responsive to a refresh request
US10509589B2 (en) Support for improved throughput in a memory device
TWI512755B (en) Method and system to access memory
US8737135B2 (en) Method for and flash memory device having improved read performance
TWI547807B (en) Apparatus and method for a reduced pin count (rpc) memory bus interface including a read data strobe signal
JP2008276809A (en) Coded write masking
US20130318321A1 (en) Buffer control circuit of semiconductor memory apparatus
TWI534615B (en) Serial peripheral interface (spi) controller, serial peripheral interface flash memory and access method and access control method thereof
TWI454910B (en) Method of operating a memory device, method of reading a digital memory, and memory device thereof
JP5420827B2 (en) Address counter, semiconductor memory device having the same, and data processing system
TWI497495B (en) Method and apparatus for reading nand flash memory
EP1486878B1 (en) Semiconductor memory device and information processing unit
JP2006139879A (en) Semiconductor memory
US8614920B2 (en) Method and apparatus for logic read in flash memory
JP5467134B1 (en) Flash memory device and method of operating memory device
US10997097B2 (en) Enabling high speed command address interface for random read
TWI501240B (en) Flash memory and method for operating memory device
TWI546810B (en) Methods of reading memory and digital memory devices
JP2005141696A (en) Fifo memory controller and fifo memory control method