TWI454248B - 經驗模態分解之多維度資料之處理方法及經驗模態分解之多維度影像資料之處理方法 - Google Patents

經驗模態分解之多維度資料之處理方法及經驗模態分解之多維度影像資料之處理方法 Download PDF

Info

Publication number
TWI454248B
TWI454248B TW097136535A TW97136535A TWI454248B TW I454248 B TWI454248 B TW I454248B TW 097136535 A TW097136535 A TW 097136535A TW 97136535 A TW97136535 A TW 97136535A TW I454248 B TWI454248 B TW I454248B
Authority
TW
Taiwan
Prior art keywords
dimensional
data
empirical mode
envelope
mode decomposition
Prior art date
Application number
TW097136535A
Other languages
English (en)
Other versions
TW201012439A (en
Inventor
Sun Hua Pao
Yio Wha Shau
Ming Chien Yu
Chien Lun Tseng
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW097136535A priority Critical patent/TWI454248B/zh
Priority to US12/555,158 priority patent/US8428389B2/en
Publication of TW201012439A publication Critical patent/TW201012439A/zh
Application granted granted Critical
Publication of TWI454248B publication Critical patent/TWI454248B/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/40Analysis of texture
    • G06T7/41Analysis of texture based on statistical description of texture
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10132Ultrasound image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20092Interactive image processing based on input by user
    • G06T2207/20108Interactive selection of 2D slice in a 3D data set
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30056Liver; Hepatic

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Probability & Statistics with Applications (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Image Processing (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Description

經驗模態分解之多維度資料之處理方法及經驗模態分解之多維度影像資料之處理方法
本發明是有關於一種影像分析之方法,且特別是有關於一種用於影像紋裡分析之多維度經驗模態分析方法。
由黃鍔(Huang N.E.)等人提出經驗模態分解(Empirical Mode Decomposition,EMD)方法進行非穩態(non-stationary)與非線性(non-linear)的訊號分解。此訊號分解之演算法可以將一與時間相關的訊號分解成有限個本質模態函數(intrinsic mode function,IMF)以及訊號殘餘函數(monotonic function)之疊加。目前一維經驗模態分解已有大量的文獻證明其調適性的訊號分析能力,二維經驗模態分解也有應用於影像處理之上例如:影像紋理分析、影像的邊緣偵測,以及少量的醫學影像運用。
在2000年以後此技術被運用在圖像處理上,圖像處理已經是二維經驗模態分解的運用範疇。從一維進入到二維經驗模態在數學理論上的變化不大。經驗模態分解基本上是從多次的訊號最大與最小值域的包絡線夾擠出特徵波形。因此在二維經驗模態時也僅是採用較複雜的包絡面來替代簡易包絡線的架構。
二維經驗模態採用的包絡面,目前都是從影像網格建構,或是最佳數值插值法來輔助包絡面的建構。然而,目前學界採用的二維經驗模態有三個重要問題待解決。
第一是二維影像的最大與最小值域的很難定義(例如馬鞍形等問題)。第二是目前二維經驗模態是建構在連續的資料,可是影像都是離散不連續的,可能會有失真。第三是包絡面的觀念無法拓展到三維以上。
對於極值(extrema)的定義方式,訊號的極值包含了極大值(maxima)與極小值(minima),極值定義除了傳統以訊號強度(intensity)極值作為定義之外更加入了以訊號曲率(curvature)極值為定義。但先前技術並未討論當訊號的維度大於1時,訊號極值該如何定義,然而實際訊號應用往往都為二維或三維甚至可能到四維,如超音波影像、CT影像與4D超音波影像等。
經驗模態分解法是由篩選程序經過多次的迭代來完成,而篩選程序裡面一個重要的過程就是包絡函數(envelope)的建構方式,當待分析的資料維度為1,已被提出的包絡函數的建構方式,例如是美國專利號碼US5983162之專利所提出的三次樣條函數擬合法:cubic spline以及美國專利號碼US6990436之專利所提出的直線擬合法。
當待分析的資料維度為2,已被提出的包絡函數的建構方式有:黃鍔先生將二維的訊號看成是一維訊號的組成,然後使用經驗模態分解法將一維訊號分解後再組成二維的本質模態函數,如其美國專利號碼US6311130之專利。Y.Xu等人採用三角網格建構在篩選程序中所需要的包絡面。Nunes J.C.等人採用徑向基底函數插值方式完成 包絡面的建構。上述採用網格的方式會有較佳的結果,但是此方法無法拓展至三維的經驗模態分析。採用插值法理論上可以拓展至三維,但是插值的方法在空間上微分連續性較差。另外有研究者Per Cloersen探討二維的經驗模態分析隨著時間軸的變化,並以此申請三維度的經驗模態方法(Pub No.US2002/0186895)。儘管如此,目前並無三維經驗模態分析的方法學。
故此,對於影像分析的應用,例如是現在醫學影像或其他應用及科學研究早已進入三維領域,先前技術並不足以滿足其需求。因此開發三維及以上,更高維度的驗模態分解演算法非常重要。
有鑑於此,本發明係有關於一種多維度經驗模態分析方法,此方法係可應用於影像紋裡分析之中,例如是醫學影像分析之中。此方法可以調適性地對多維度資料分解成數個特徵資料函數,也就是進行資料模態分解,以供分析應用。資料模態分解係應用物理學中「場」的物理概念來達成,並由此可以推廣以達到多維度資料的包絡值與趨勢估計。例如將三維影像分解成數個特徵圖層後,透過使用物理之場的方程式以提取出數個特徵圖像,其中能明顯呈現出不同的紋理圖像,可以作進一步的分析應用。由於資料模態分解採用物理學中的場的概念,上述方法可運用在二維度資料或是多通道資料的時間、頻率分析,而且可以 推展之三維以上的資料模態分解。
根據本發明之第一方面,提出一種經驗模態分解之多維度資料之處理方法,此方法包括:讀取一第一組多維度資料;以及透過經驗模態分解(empirical mode decomposition)以迭代之方式進行篩選(sifting)此第一組多維度資料以分解出至少一本質模態函數(intrinsic mode function)。在進行篩選步驟以得出此本質模態函數之一次迭代過程中包括:映射此第一組多維度資料之各個值至一物理場中的一物理量以得出在此物理場中的此物理量之複數個數值,其中,此物理量係與此第一組多維度資料具有同一維度並為一時間之函數;藉由此第一組多維度資料之值所得知之在此物理場中的此物理量之數值,依據此物理場中有關此物理量之一物理量場的變化關係,決定此物理量之分佈之一平均包絡;以及依據此第一組多維度資料與此平均包絡,決定一下一組多維度資料;針對此下一多維度資料組,執行包括自此映射步驟開始之下一次迭代。
根據本發明之第二方面,提出一種經驗模態分解之多維度影像資料之處理方法,用於影像紋裡分析,此方法包括:(a)讀取一第一組多維影像資料;(b)透過經驗模態分解(empirical mode decomposition)以迭代之方式進行篩選(sifting)此第一組多維影像資料以分解出複數個本質模態函數(intrinsic mode function);以及(c)換轉複數個本質模態函數為複數個特多維影像並輸出這些多維影像,以作影像紋裡分析。在進行篩選步驟以得出此些本質模態函數 之一的一次迭代過程中包括:映射此第一組多維影像資料之各個值至一物理場中的一物理量以得出在此物理場中的此物理量之複數個數值,其中,此物理量係與此第一組多維影像資料具有同一維度並為一時間之函數;藉由此第一組多維影像資料之值所得知之在此物理場中的此物理量之此些數值,依據此物理場中有關此物理量之一物理量場的變化關係,決定此物理量之分佈之一平均包絡;依據此第一組多維影像資料與此平均包絡,決定一下一組多維影像資料;以及針對此下一多維影像資料組,執行包括自此映射步驟開始之下一次迭代。
為讓本發明之上述內容能更明顯易懂,下文特舉一較佳實施例,並配合所附圖式,作詳細說明如下:
第1圖所示係為本發明之一多維度經驗模態分解方法(multi-dimensional EMD)100之一第一實施例,其包括將輸入之複數個資料組視為一多維訊號f(x1,x2,…,xn),也就是一個多變數的函數,例如是三維影像之量度表示為f(x,y,z),以迭代的方式進行篩選過程,以將輸入之多維訊號f(x1,x2,…,xn)分解成有限個本質模態函數(intrinsic mode function,IMF)以及訊號殘餘函數(monotonic function)之疊加,如下式所示:,其中imf i (t)及r n (t)分別表示本質模態函數以及訊號殘餘函數。
其中,多維度經驗模態分解方法100包括篩選步驟20(sifting)以迭代方式求得一本質模態函數,篩選步驟20應用物理學中「場」的概念,例如n維度、時間t的物理量Q:Q=g(x1,x2,…,xn,t),也就是將數複個資料組f(x1,x2,…,xn)對應或映射到相同維度的物理學中的物理量Q之函數g(x1,x2,…,xn,t),並且應用有關此物理量Q之一物理量場的變化關係來進行包絡推估,以決定一平均「包絡」。例如決定出此多維訊號區域極大值之「包絡」及其區域極小值之「包絡」,以更進一步決定平均「包絡」,以更進一步決定平均「包絡」。之後,依據多維訊號及此平均「包絡」得到一分量訊號,以作下一次迭代運算之用。例如,將多維訊號減去此平均「包絡」後所得之一分量訊號h1,針對此一分量訊號在步驟20中以相同方式找出此分量訊號的平均包絡及下一個分量訊號h11,如是經過迭代後,最後所得之分量訊號或平均包絡滿足一條件後,例如是平均包絡接近水平之時,則將最後得到的分量訊號h1j視為對應的一本質模態函數,如步驟40所示。之後,經由步驟60,判斷目前所得之本質模態函數是否代表著一單調函數。若是,則表示此輸入之多維訊號f(x1,x2,…,xn)已分解成有限個本質模態函數以及訊號殘餘函數。若否,則將多維訊號減去本質模態函h1j以視為另一多維訊號,再次執行步驟20。如是,以迭代的方式執行步驟20至60,直至將輸入之多維訊號分解成有 限個本質模態函數以及訊號殘餘函數以及訊號殘餘函數為止。
上述之實施例提出之多維度經驗模態分解方法之中,應用了物理量之場之原理以求得平均包絡,從而決定本質模態函數。由於場之概念能推廣至多維度,能符合對多維資料組進行本質模態函數分解的要求,例如是針對三維影像資料,甚至更高維度之資料組並能產生不同之應用。例如,就醫學影像分析的實際需要,應用上述方式可以調適性地對三維影像分解成數個本質模態函數,再將本質模態函數轉換為數個特徵圖層,基於特徵圖層產生出能較原有影像更明顯呈現出特徵的紋理圖像。
此外,本發明的實施例應用物理學的場的概念,係將經驗模態的數學分解與物理學關聯起來,其中包括將輸入資料與某一物理之場中的物理量產生對應之關係。各種物理學中「場」的概念,例如熱場、電磁場,亦可應用於經驗模態函數的分解。當多維度資料係來自不同的物理現象所之物理量,例如海浪、震動、氣壓、濕度、電磁以及熱之變化之物理量,經驗模態分解係可採用不同的場來決定插值和包絡。在其他的實施方式中,可以根據它們的物理描述,採用物理的「場」來作為包絡會更符合真實的模態分解。
再來,考量到輸入資料組具較大的動態範圍(dynamic range)之情形,應用物理學的場的概念是適切的。例如,第1圖係之一原始影像之直方圖表示之畫素量度之動態範 圍之變化,畫素量度值在0至255之間變化。例如,畫素量度值之分佈係可被視為一熱場中的溫度分佈,從而應用熱場的方程式來決定輸入資料組之平均包絡。
以下之一第二實施例應用熱場於影像模態分解之中來作說明。值得注意的是:「包絡」的觀念在本發明的實施例中可應用在三維以至四維以上的資料組。由於四維及以上的「包絡」並不能以三維圖式能作說明,故以下實施例係以三維資料組及三維的包絡面來方便說明,故四維及以上的應用亦可由此推得。
在說明此實施例以前,先基本假設:所有的資料分佈都是建構在載波。進一步說,任何資料可以拆解成第一個載波上背著一個訊號。而這個訊號若是被提取出來後,又可以視為第二個載波以及上頭背負的訊號。如此一直反覆計算到最後被提取的訊號在也找不到載波後,它就是要尋找的模態。而載波的尋找方式,就是尋找這個資料分佈的趨勢,也就是要決定上述之平均「包絡」。為方便理解此一觀念,請先參見第2A圖所示,資料曲面200為輸入資料分佈在三度空間中連接為一曲面之示意圖,包絡曲面210為輸入資料的區域極大值所組成的曲面(即上包絡),包絡曲面230為輸入資料的區域極小值所組成的曲面(即下包絡)。如第3圖所示,標號250所指的上包絡與下包絡的平均值,即包絡曲面210,包絡曲面230稱為平均包絡250。平均包絡250就是此資料的分佈趨勢或稱為載波。要再進尋找資料的模態就是原資料(即資料曲面200)扣除 扣除平均包絡250。獲得的資料模態必需如上再次檢驗,一直到平均包絡幾乎是水平(無載波)。
請先參考第8圖,其為應用熱場於影像模態分解方法之一實施例的流程圖。步驟810至870係為以迭代方式進行篩選(sifting process)以對於給定(或輸入的)的複數個資料組以決定一本質模態函數,其中,複數個資料組係以三維影像資料Q=f(x,y,z)為例。步驟810及820係為準備以迭代方式進行篩選作之設定。在首次的運算中,首先設定C1為Q,hj-1(t)=Ci,其中j=1、i=1,其後i及j的值將隨著迭代的過程而遞增,如步驟815及825所示;其中,這些設定之步驟係讓迭代演算之進行而使用,對於此領域中的通常知識而言,實可以其他不同的方式或以不同於第8圖中的次序進行。此外,對於求得本質模態函數,先前技術中對於一維的資料可以找到平均包絡線,二維資料可以找到平均包絡面。但三維以上的資料就無法以數學方式建構。本實施例之步驟830、840及850則採用如上述之物理學中的場的觀念,在此係以熱場為例而求得本對應的包絡。
步驟830,對於Ci,在i=1時,Ci即給定之三維資料Q=f(x,y,z),對其尋找可能的極大值域的的位置與資料值max[x,y,z,f(x,y,z)]以及極小值域的位置與資料值min[x,y,z,f(x,y,z)]。第4圖為三維結構的剖面,所謂極大值就是該點資料比鄰近值高,極小值就是該點資料小於鄰近。
步驟840,建立三維度的熱場為例:轉換極值域的位置與資料值f(x,y,z),例如以線性轉換為溫度U(x,y,z),例如第5圖中的像亮度128可以視為128℃。經過此動作後可以將原始資料先映射成物理量--溫度。透過這些有限的極大與極小「溫度」,可以根據熱力學進行包絡推估,也就是應用一物理量場的變化關係來進行包絡推估。所謂的包絡就是熱場分佈,並滿足熱場的計算方程式:Ut=α(Uxx+Uyy+Uzz) (方程式)
至於方程式計算熱分佈的方法,例如:(1)首先將尋找到的極大值,放入數學矩陣運算。如第5A圖為在資料裡尋找到的極大值之示意圖,其中僅有數個已知的點與溫度(它們是資料的值大值),原本之圖式係以不同顏色代表不同溫度,。熱力學就是把第5A圖僅有的資訊,計算出每一個位置都有溫度分佈的場,如第5B圖而示。這裡使用的是教科書裡的熱力學數值演算法-有限差分法(finite difference method),迭代至溫度穩定收斂止。另外,可以用穩態的熱力學方程式直接由矩陣求解,加速求得熱場的分佈。
(2)接著經過數值方法的分析,可以獲得所有位置的溫度,如第4圖所示之分佈400。因此可以將每一個點的溫度還原成圖像數值,例如50℃轉換成圖像亮度50。因此經過換算後的所有影像數值就是由圖像極大值所組成的上包絡,同理也可以圖像極小直計算下包絡。最後,如第4圖剖面,極大值域max[x,y,z,,f(x,y,z)]所構成的熱 場分佈為Cmax為熱場分佈曲面400之上的上包絡410,極小值域min[x,y,z,,f(x,y,z)]所構成的熱場分佈為Cmin為下包絡430。
之後,步驟850,計算平均值包絡就是上下包絡的平均值。平均值為Cmean=(Cmax+Cmin)/2。求得熱場全域的分佈後,再將所有溫度轉成資料之數值。構成第6A圖,經過平滑化處理,讓此包絡函數符合可微分的性質圖,如第6B圖所示者。
為了驗證此經驗模態對於圖像分解的能力,我們以一個簡單的網格圖像說明:原始圖像包含粗與細緻的網格第7A圖,經過經驗模態分解之後,低一個高頻域的經驗模態將原始圖像分解成一個僅包含細緻網格的分離圖,如第7B圖。最後的經驗模態則呈現次低頻與最低頻的分離圖像為第7C圖與第7D圖。
經驗模態的提取是一個個逐步完成第8圖。將一組原始三維度影像資料分解成i個經驗模態(其中包含訊號殘餘函數),而每一個經驗模態的計算過程必須有j次重複迭代以檢查載波是否為水平。在這過程中,步驟870判斷目前之分量訊號h j (t)是否為一本質模態函數。其判斷方式可以有不同的方式實施。例如以目前的分量訊號h j (t)或平均包絡Cmean是否滿足一條件以判斷,如以平均包絡是否接近水平。或是,利用平均包絡的變動是否足夠小,亦即是否低於一門檻值,判斷分量訊號h j (t)是否可視為一本質模態函數。又可以以接下來連續幾個分量訊號是否實質上相等 來判斷。
另外,有關於將輸入資料與物理場中的量的對應方式,在一例子中,係將圖像實際數值經過極值搜尋之後的離散點,以線性變換對應到「物理場」的物理純量(例如強度、密度、溫度),並進行整個場的計算。計算後的純量再反線性變換對應回去影像數值完成多維度包絡。在另一例子中,係將圖像實際數值經過極值搜尋之後的離散點,對應到「物理場」的物理向量,並進行整個場等位面、梯度的計算。計算後的等位面進行數值插值以完成多維度包絡。
此外,在上述應用「物理場」以求得包絡方法中,以熱場為實施例,可以將一維、二維以及三維以上以相同的數學方法、相同的方程式替代採用習知技術中包絡面的問題。而而場計算的邊界條件採用數值插值處理。
以上所列舉的實施例說明了,採用場之概念及其推廣至多維度,能符合對多維資料組進行本質模態函數分解的要求,例如是針對三維影像資料,甚至更高維度之資料組並能產生不同之應用,例如以經驗模態圖像的角度來分析影像之差異及特徵之所在,以據此來作出判斷分析。
以下就以醫學影像處理為例,以說明就醫學影像分析的實際需要,應用上述方式實施例可以調適性地對三維影像分解成數個本質模態函數,再將本質模態函數轉換為數個特徵圖層,基於特徵圖層產生出能較原有影像更明顯呈現出特徵的紋理圖像。
腫瘤在影像學檢查時會顯現病灶的邊界清楚,但有時腫瘤呈浸潤性生長時,會造成邊界模糊不清,所以稱“浸潤性”腫瘤,預後比一般腫瘤來得差。
雖然許多研究人員透過超音波影像與斷層掃瞄不斷努力找出有效的影像特徵或進行影像增強,使得有經驗的醫師能夠從影像中評估腫瘤的浸潤程度與分類,然而對於較為嚴重的狀況仍無法準確的判斷。此外腫瘤的內部還存在許多重要特徵,諸如高回音區域(hyperechoic area)、低回音區域(Hypoechoic area)、組織均質性(Heterogeneity)、微鈣化點(Micro calcification)、纖維化(Fibrosis)等特徵。這些都與腫瘤的惡性程度相關。
二維的影像來自於醫院技術員擷取,存在切面選擇的人為差異性,無法作為未來在大量篩檢或是健檢領域的標準程序。因此必需發展並擷取三維影像作為輔助診斷。同時,影像處裡的技術也必需循此規範而進行更高維度的計算。腫瘤影像的邊緣偵測往往是一個複雜的演算程序,過去採用統計、頻譜以及分類學的方式仍有其限制。因為鮮少有演算法是可以自適性地進行影像分析,而完全不假人為的設定條件。
為了處理更高維度的腫瘤影像分析,尤其是來自於影像背景及易受干擾的超音波影像。必需發展更高維度(至少是三維)的調適性影像處理技術。我們利用經驗模態分解方法,並將此技術推廣至更高維度三維以上以符合目前新世代的醫學影像標準。
由於本發明之技術微調適性的處理方式,適合背景雜訊以及外在干擾無可避免的影像處理,例如超音波醫學影像。
故依據本發明提出一第三實施例之一種多維度影像的影像模態分解方法,至少包含下列步驟:首先,提供影像前處理標準化過程;在模態分解時必需要有多維度(至少二維)以上的包絡方法;最後,模態分解之後,顯示各圖層進行圖像以便作紋裡分析。當中,各圖層可以選擇性地加以運算及作其他影像處理,以助紋理分析之用。
若用於腫瘤圖像之分析,係可以用於包含組織不均質性(Heterogeneity)、微鈣化點(Micro calcification)、纖維化(Fibrosis)特徵之分析。在腫瘤影像的紋裡分析,利用上述本發明之第一或第二實施例之模態分析後的高頻圖層(細節部分)進行原圖的修飾(疊加是最簡單的實施例),強化腫瘤邊緣輔助診斷。
高頻圖層可以進行腫瘤的紋裡亂度(entropy)分析以評估肝纖維化。以超音波肝纖維化影像為例,纖維化較明顯的超音波影像呈現較顆粒狀、不均勻的的紋裡。過去這些現象極易受到訊號隨著掃瞄深度以及穿透不同組織衰減的影響,導致紋裡分析不客觀。以此超音波醫學影像為實施例,將原始超音波肝纖維化切片影像進行經驗模態分解,可以用以比較正常情況(normal)與不正常情況的組織的差異,分別如第9A及9B圖所示者,尤其第9A及9B圖中第二層(IMF2)與第三層(IMF3)經驗模態所對應的圖像 的差異。
IMF3的亂度(Entropy)在描述肝硬化的紋理特徵上有較好之能力(p<0.005,CV<10%),故以經驗模態分解法於肝硬化超音波影像紋理分析是有效的。過去採用醫事專業人員依據肉眼,超音波僅能針對已經發病、或是肝癌甚嚴重的病患進行診斷。若是能夠採取原影像的部分經驗模態分解,進行影像亂度量化的標準方式,確實可以在肝癌初期,或是更早的肝硬化初期及進行篩檢以及術後的長期追蹤等。
低頻圖層(背景)可以進行腫瘤不均質性(Heterogeneity)評估,如第10A及10B圖所示。第10A圖所示為有腫瘤超音波影像,而第10B圖為其低頻模態(即背景),呈現了腫瘤不均質性。
另外,從原始圖像中去掉低頻圖層(背景),可以更清楚呈現鈣化組織。第11A圖為有鈣化腫瘤超音波影像,而第11B圖為去掉低頻模態(背景)之後呈現鈣化的清晰特徵。
在前所述之第三實施例應用於醫學影像的前處理過程中,尤其是超音波醫學影像極易受到深度補償(depth compensation)、訊號衰減(attenuation)導致影像干擾背景不均。影像是離散資料,若是影像在較差的物理量解析度(如強度、密度、溫度等)較差時,會造成模態分解錯誤。因此我們提出醫學影像必需經過pixels-brightness直方圖檢驗。此直方圖可作為取像的參考,在動態範圍(Dynamic Range)內畫素數目大於1的個數n必需高過一個臨界值(例如臨界值約為128)方可進行經驗模態分解。
除此以外,應用本發明之實施例於三維模態分解亦可運用到二維資料f(x,y)在時間序列t下之時頻分析,如第12圖所示,如影像1101至1190,係各為二維資料,例如是某一物件隨時間活動之情況。可將時間t拓展至第三維實體座標,依此方法可以同時分解空間與時間模態特徵分解。應用於醫學影像分析之上,例如是當觀察之影像如心臟或肝臟之影像係隨時間改變之應用之上。如此,更可以用於三維之上隨時間變化的圖像資料之分析之上。
本發明實施例另揭露一種電腦可讀式資訊儲存媒體,其上儲存有程式,此程式可用於執行本發明實施例的多維度經驗模態分解方法。本實施例的電腦可讀式資訊儲存媒體比如但不受限於,光學式資訊儲存媒體,磁式資訊儲存媒體。光學式資訊儲存媒體比如包括CD,DVD,HD-DVD,藍光DVD等。磁式資訊儲存媒體比如包括軟碟機,硬碟機,磁帶機,磁光碟機(Magnetic Optical)等。此外,電腦可讀式資訊儲存媒體亦包括可在網路/傳遞媒介(如空氣等)上傳遞的程式碼等。
本發明實施例另揭露一種電腦程式產品。當具有緩衝記憶體的電子裝置載入此電腦程式產品後,此電子裝置執行多個程式指令,該些程式指令用於執行本發明實施例的多維度經驗模態分解方法。
本發明實施例另揭露一種電子裝置,例如是個人電腦 或筆記型電腦或是手持之運算裝置,以至於具有資料處理器之影像擷取裝置或醫學影像裝置及其分析裝置,當具有緩衝記憶體及資料處理器的電子裝置載入上述電腦程式產品後,此電子裝置執行多個程式指令,該些程式指令用於執行本發明實施例的多維度經驗模態分解方法。此外,此電子裝置更可具有一顯示器以顯示分析之圖層。在其他例子中,此電子裝置更具有輸入裝置以擷取或是自外界讀取多維資料組。在其他例子中,此電子裝置更具有使用者界面,以具選擇性地對分析的圖層作一運算動作或影像處理,以顯示紋理特徵。
以上所列舉的實施例說明了,採用場之概念及其推廣至多維度,能符合對多維資料組進行本質模態函數分解的要求,例如是針對三維影像資料,甚至更高維度之資料組並能產生不同之應用,例如以經驗模態圖像的角度來分析影像之差異及特徵之所在,以據此來作出判斷分析。如上述應用影像的經驗模態函數,能有效描述腫瘤的內部還存在許多重要紋裡特徵,進行客觀的定量分析以早期發現肝纖維化。
綜上所述,雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。
200‧‧‧輸入資料分佈
210、230‧‧‧包絡曲面
250‧‧‧平均包絡
400‧‧‧熱場分佈曲面
410‧‧‧上包絡
420‧‧‧下包絡
1101-1190‧‧‧影像
第1圖所示係為本發明之一多維度經驗模態分解方法之一第一實施例之流程圖。
第2圖為一原始影像的動態範圍分佈圖。
第3A圖示意一資料分佈之上下包絡。
第3B圖示意第3A圖中的資料分佈的平均包絡。
第4圖為三維資料剖面分佈及其上、下包絡。
第5A圖為資料裡尋找到的極大值之示意圖。
第5B圖係示透過熱力學把第5A圖的數個點推估出全部的溫度分佈。
第6A圖示意由一熱場轉換的包絡函數。
第6B圖繪示第6A圖之由熱場轉換的包絡函數經平滑處理之結果。
第7A至7D圖係分別繪示一原始圖像以及其高頻經驗模態、中頻經驗模態及低頻經驗模態之相對應之圖像。
第8圖所示係為本發明之一多維度經驗模態分解方法應用熱場之物理量之一第二實施例之流程圖。
第9A圖係為一正常肝臟的超音波影像,與其本質模態函數IMF1~IMF3之相對應的圖層。
第9B圖係為一為硬化肝臟的超音波影像,與其本質模態函數IMF1~IMF3之相對應的圖層。
第10A圖係為一有腫瘤超音波影像。
第10B圖係第10A圖之低頻模態,其呈現腫瘤不均質性。
第11A圖係為一有鈣化腫瘤超音波影像。
第11B圖係為第11A圖經去掉低頻模態之結果,其能呈現鈣化的清晰特徵。
第12圖係示意本發明之另一實施例,其係以本發明實施例之三維模態分解方法運用到二維資料f(x,y)在時間序列下之分析結構示意圖。

Claims (29)

  1. 一種經驗模態分解之多維度資料之處理方法,此方法包括:讀取一第一組多維度資料;透過經驗模態分解(empirical mode decomposition)以迭代之方式進行篩選(sifting)該第一組多維度資料以分解出至少一本質模態函數(intrinsic mode function),其中,在進行篩選步驟以得出該本質模態函數之一次迭代過程中包括:映射該第一組多維度資料之各個值至一物理場中的一物理量以得出在該物理場中的該物理量之複數個數值,其中,該物理量係與該第一組多維度資料具有同一維度並為一時間之函數;藉由該第一組多維度資料之值所得知之在該物理場中的該物理量之該些數值,依據該物理場中有關該物理量之一物理量場的變化關係,決定該物理量之分佈之一平均包絡;以及依據該第一組多維度資料與該平均包絡,決定一下一組多維度資料;針對該下一多維度資料組,執行包括自該映射步驟開始之下一次迭代。
  2. 如申請專利範圍第1項所述之經驗模態分解之多維度資料之處理方法,其中,該映射步驟係以線性關係方式將該第一組多維度資料之各個值至該物理場中的該物 理量以得出在該物理場中的該物理量之複數個數值。
  3. 如申請專利範圍第1項所述之經驗模態分解之多維度資料之處理方法,其中,該物理場係為一熱場,而該物理量為該熱場中之一溫度值。
  4. 如申請專利範圍第3項所述之經驗模態分解之多維度資料之處理方法,其中,該物理量場的變化關係為一熱場方程式,表示一熱場中隨空間之溫度分佈變化。
  5. 如申請專利範圍第1項所述之經驗模態分解之多維度資料之處理方法,其中,該篩選步驟中之一次迭代過程中更包括:利用平均包絡的變動是否足夠小,判斷該下一組多維資料是否可視為一本質模態函數。
  6. 如申請專利範圍第1項所述之經驗模態分解之多維度資料之處理方法,其中,該下一組多維度資係為該第一組多維度資料之一分量訊號,該篩選步驟中之該些步驟係以迭代方式執行直至接下來該些分量訊號相等。
  7. 如申請專利範圍第1項所述之經驗模態分解之多維度資料之處理方法,其中,該決定該平均包絡之步驟包括:依據該物理場中有關該物理量之該物理量場的變化關係,決定對應到該第一組多維度資料之一上包絡及一下包絡;決定該上包絡及該下包絡之該平均包絡。
  8. 如申請專利範圍第7項所述之經驗模態分解之多 維度資料之處理方法,其中,該上包絡為該第一組多維度資料之極大值域所構成的該物量場之一第一分佈,該下包絡為該第一組多維度資料之極小值域所構成的該物量場之一第二分佈。
  9. 如申請專利範圍第8項所述之經驗模態分解之多維度資料之處理方法,其中,該平均包絡為該上包絡及該下包絡之平均值。
  10. 如申請專利範圍第1項所述之經驗模態分解之多維度資料之處理方法,其中,與該平均包絡,該決定該下一組多維度資料之步驟包括:還原該映射該平均之該物理量為與該第一組多維度資料相對應之數值;該下一多維度資料係為該第一組多維度資料與還原後之該平均包絡之差值。
  11. 如申請專利範圍第1項所述之經驗模態分解之多維度資料之處理方法,其中,該第一組多維度資料係為一三維影像資料。
  12. 如申請專利範圍第1項所述之經驗模態分解之多維度資料之處理方法,其中,該第一組多維度資料係為一在時間序列下之二維影像資料。
  13. 一種經驗模態分解之多維度影像資料之處理方法,用於影像紋裡分析,此方法包括:(a)讀取一第一組多維影像資料;(b)透過經驗模態分解(empirical mode decomposition) 以迭代之方式進行篩選(sifting)該第一組多維影像資料以分解出複數個本質模態函數(intrinsic mode function),其中,在進行篩選步驟以得出該些本質模態函數之一的一次迭代過程中包括:映射該第一組多維影像資料之各個值至一物理場中的一物理量以得出在該物理場中的該物理量之複數個數值,其中,該物理量係與該第一組多維影像資料具有同一維度並為一時間之函數;藉由該第一組多維影像資料之值所得知之在該物理場中的該物理量之該些數值,依據該物理場中有關該物理量之一物理量場的變化關係,決定該物理量之分佈之一平均包絡;依據該第一組多維影像資料與該平均包絡,決定一下一組三維影像資料;以及針對該下一多維影像資料組,執行包括自該映射步驟開始之下一次迭代;以及(c)換轉該些本質模態函數為複數個特多維影像並輸出該些多維影像,以作影像紋裡分析。
  14. 如申請專利範圍第13項所述之經驗模態分解之多維影像資料之處理方法,其中,該映射步驟係以線性關係方式將該第一組多維影像資料之各個值至該物理場中的該物理量以得出在該物理場中的該物理量之複數個數值。
  15. 如申請專利範圍第13項所述之經驗模態分解之多維影像資料之處理方法,其中,該物理場係為一熱場,而該物理量為該熱場中之一溫度值。
  16. 如申請專利範圍第15項所述之經驗模態分解之多維影像資料之處理方法,其中,該物理量場的變化關係為一熱場方程式,表示一熱場中隨時間之溫度分佈變化。
  17. 如申請專利範圍第13項所述之經驗模態分解之多維影像資料之處理方法,其中,該篩選步驟中之一次迭代過程中更包括:判斷該下一組多維資料是否可視為一本質模態函數。
  18. 如申請專利範圍第13項所述之經驗模態分解之多維影像資料之處理方法,其中,該下一組多維度資係為該第一組多維影像資料之一分量訊號,該篩選步驟中之該些步驟係以迭代方式執行直至接下來該些分量訊號相等。
  19. 如申請專利範圍第13項所述之經驗模態分解之多維影像資料之處理方法,其中,該決定該平均包絡之步驟包括:依據該物理場中有關該物理量之該物理量場的變化關係,決定對應到該第一組多維度資料之一上包絡及一下包絡;決定該上包絡及該下包絡之該平均包絡。
  20. 如申請專利範圍第19項所述之經驗模態分解之多維影像資料之處理方法,其中,該上包絡為該第一組多維度資料之極大值域所構成的該物量場之一第一分佈,該 下包絡為該第一組多維度資料之極小值域所構成的該物量場之一第二分佈。
  21. 如申請專利範圍第20項所述之經驗模態分解之多維影像資料之處理方法,其中,該平均包絡為該上包絡及該下包絡之平均值。
  22. 如申請專利範圍第13項所述之經驗模態分解之多維影像資料之處理方法,其中,與該平均包絡,該決定該下一組多維影像資料之步驟包括:還原該映射該平均之該物理量為與該第一組多維影像資料相對應之數值;該下一多維影像資料係為該第一組多維影像資料與還原後之該平均包絡之差值。
  23. 如申請專利範圍第13項所述之經驗模態分解之多維影像資料之處理方法,其中,該些多維影像更經過平滑化處理。
  24. 如申請專利範圍第13項所述之經驗模態分解之多維影像資料之處理方法更包括:依據該些多維影像之至少一者,選擇性地進行一影像處理。
  25. 如申請專利範圍第13項所述之經驗模態分解之多維影像資料之處理方法更包括:依據該第一組多維影像,產生相對應之一直方圖,依據該直方圖決定該第一組多維影像之動態範圍是否符合一個臨界值,從而決定是否適合進行該篩選步驟。
  26. 如申請專利範圍第13項所述之經驗模態分解之多維度資料之處理方法,其中,該第一組多維度資料係為一超音波影像、CT影像或4D超音波影像。
  27. 如申請專利範圍第13項所述之經驗模態分解之多維度資料之處理方法,其中,該第一組多維度資料係為一在時間序列下之二維影像資料。
  28. 如申請專利範圍第13項所述之經驗模態分解之多維度資料之處理方法,其中,該第一組多維影像資料係為腫瘤圖像,該些多維影像為該腫瘤圖像之不同圖層,以用於腫瘤圖像分析。
  29. 如申請專利範圍第28項所述之經驗模態分解之多維度資料之處理方法,係可以用於組織不均質性(Heterogeneity)、微鈣化點(Micro calcification)、或纖維化(Fibrosis)特徵之分析與輔助診斷。
TW097136535A 2008-09-23 2008-09-23 經驗模態分解之多維度資料之處理方法及經驗模態分解之多維度影像資料之處理方法 TWI454248B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW097136535A TWI454248B (zh) 2008-09-23 2008-09-23 經驗模態分解之多維度資料之處理方法及經驗模態分解之多維度影像資料之處理方法
US12/555,158 US8428389B2 (en) 2008-09-23 2009-09-08 Multi-dimensional empirical mode decomposition (EMD) method for image texture analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097136535A TWI454248B (zh) 2008-09-23 2008-09-23 經驗模態分解之多維度資料之處理方法及經驗模態分解之多維度影像資料之處理方法

Publications (2)

Publication Number Publication Date
TW201012439A TW201012439A (en) 2010-04-01
TWI454248B true TWI454248B (zh) 2014-10-01

Family

ID=42037722

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097136535A TWI454248B (zh) 2008-09-23 2008-09-23 經驗模態分解之多維度資料之處理方法及經驗模態分解之多維度影像資料之處理方法

Country Status (2)

Country Link
US (1) US8428389B2 (zh)
TW (1) TWI454248B (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI439874B (zh) * 2009-01-10 2014-06-01 Ind Tech Res Inst 結構化之經驗模態分解之訊號處理方法及其裝置
US8515167B2 (en) * 2009-08-31 2013-08-20 Peking University High dynamic range image mapping with empirical mode decomposition
US8660848B1 (en) * 2010-08-20 2014-02-25 Worcester Polytechnic Institute Methods and systems for detection from and analysis of physical signals
CN102184529B (zh) * 2011-05-12 2012-07-25 西安电子科技大学 基于经验模态分解的边缘检测方法
CN102967868B (zh) 2011-09-01 2015-01-21 神讯电脑(昆山)有限公司 定位装置及其信号处理方法
TWI453404B (zh) * 2011-12-27 2014-09-21 Ind Tech Res Inst 超音波成像系統及其影像處理方法
CN102682439B (zh) * 2012-01-15 2014-04-16 河南科技大学 基于多向经验模式分解的医学图像融合方法
GB201201230D0 (en) * 2012-01-25 2012-03-07 Univ Delft Tech Adaptive multi-dimensional data decomposition
US9013490B2 (en) * 2012-05-17 2015-04-21 The United States Of America As Represented By The Administrator Of The National Aeronautics Space Administration Hilbert-huang transform data processing real-time system with 2-D capabilities
CN103246880B (zh) * 2013-05-15 2016-03-23 中国科学院自动化研究所 基于多阶局部显著模式特征统计的人脸识别方法
CN103473741A (zh) * 2013-09-06 2013-12-25 深圳先进技术研究院 基于bemd的内窥图像去噪算法
US9565040B2 (en) * 2014-07-01 2017-02-07 The University Of New Hampshire Empirical mode decomposition for spectrum sensing in communication systems
CN104138277B (zh) * 2014-07-29 2016-03-16 哈尔滨工业大学 定量超声系统中基于经验模态分解的组织微观结构检测方法
CN104268897A (zh) * 2014-10-28 2015-01-07 天津大学 一种协同本征图像分解方法
CN104504407B (zh) * 2014-12-17 2018-02-13 西南大学 基于多核Fisher判别分析的电子鼻特征选择优化方法
CN104484884A (zh) * 2014-12-30 2015-04-01 天津大学 一种基于多尺度l0稀疏约束的本征图像分解方法
CN104881676B (zh) * 2015-05-05 2018-02-09 昆明理工大学 一种人脸图像凸凹模式纹理特征提取及识别方法
CN104881634B (zh) * 2015-05-05 2018-02-09 昆明理工大学 一种基于完备局部凸凹模式的光照人脸识别方法
CN106203240A (zh) 2015-05-07 2016-12-07 神盾股份有限公司 指纹辨识方法和电子装置
US10997456B2 (en) * 2015-05-11 2021-05-04 Syneren Technologies Corporation Two dimensional Hilbert Huang Transform real-time image processing system with parallel computation capabilities
CN105160674A (zh) * 2015-08-28 2015-12-16 北京联合大学 一种改进的快速二维经验模态分解方法
TWI619475B (zh) * 2017-02-21 2018-04-01 Ultrasonic data analysis system and method for liver fibrosis
CN107748734B (zh) * 2017-10-31 2021-08-27 电子科技大学 一种解析-经验模态分解方法
CN108182415B (zh) * 2017-12-29 2021-05-04 哈尔滨工业大学 基于自滤波变频经验模态分解获得时频分布的方法
WO2019195629A1 (en) * 2018-04-04 2019-10-10 Rxsafe Llc Automatic packager for pharmaceuticals and method of operating the same
CN109767411B (zh) * 2018-12-27 2023-08-04 东南大学 一种用于多图像融合的二维多元经验模态分解算法
CN111275022B (zh) * 2020-03-19 2023-05-16 山东宜佳成新材料有限责任公司 基于遗忘因子型经验模态分解的污渍检测分析方法及应用
CN111616740B (zh) * 2020-05-15 2023-04-28 北京工业大学 基于经验模态分解的超声背散射零差k成像方法
CN116738149B (zh) * 2023-07-06 2024-09-03 中国水利水电科学研究院 一种振冲碎石桩加固地层的智能化识别方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5983162A (en) * 1996-08-12 1999-11-09 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Computer implemented empirical mode decomposition method, apparatus and article of manufacture
US6311130B1 (en) * 1996-08-12 2001-10-30 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Computer implemented empirical mode decomposition method, apparatus, and article of manufacture for two-dimensional signals
US6381559B1 (en) * 1996-08-12 2002-04-30 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Empirical mode decomposition apparatus, method and article of manufacture for analyzing biological signals and performing curve fitting
US6738734B1 (en) * 1996-08-12 2004-05-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Empirical mode decomposition apparatus, method and article of manufacture for analyzing biological signals and performing curve fitting
US6990436B1 (en) * 2003-11-28 2006-01-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Computing frequency by using generalized zero-crossing applied to intrinsic mode functions
CN1988395A (zh) * 2006-11-02 2007-06-27 中山大学 一种基于通信设备客户端的音频去噪方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5983162A (en) * 1996-08-12 1999-11-09 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Computer implemented empirical mode decomposition method, apparatus and article of manufacture
US6311130B1 (en) * 1996-08-12 2001-10-30 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Computer implemented empirical mode decomposition method, apparatus, and article of manufacture for two-dimensional signals
US6381559B1 (en) * 1996-08-12 2002-04-30 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Empirical mode decomposition apparatus, method and article of manufacture for analyzing biological signals and performing curve fitting
US20020186895A1 (en) * 1996-08-12 2002-12-12 National Aeronautics And Space Administration Three dimensional empirical mode decomposition analysis apparatus, method and article manufacture
US6631325B1 (en) * 1996-08-12 2003-10-07 The United States As Represented By The Administrator Of The National Aeronautics And Space Administration Computer implemented empirical mode decomposition method apparatus, and article of manufacture utilizing curvature extrema
US6738734B1 (en) * 1996-08-12 2004-05-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Empirical mode decomposition apparatus, method and article of manufacture for analyzing biological signals and performing curve fitting
US6990436B1 (en) * 2003-11-28 2006-01-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Computing frequency by using generalized zero-crossing applied to intrinsic mode functions
CN1988395A (zh) * 2006-11-02 2007-06-27 中山大学 一种基于通信设备客户端的音频去噪方法

Also Published As

Publication number Publication date
US20100074496A1 (en) 2010-03-25
US8428389B2 (en) 2013-04-23
TW201012439A (en) 2010-04-01

Similar Documents

Publication Publication Date Title
TWI454248B (zh) 經驗模態分解之多維度資料之處理方法及經驗模態分解之多維度影像資料之處理方法
Jose et al. An image quality enhancement scheme employing adolescent identity search algorithm in the NSST domain for multimodal medical image fusion
US10297022B2 (en) Method and system for analysis of volumetric data
Diwakar et al. CT image denoising using multivariate model and its method noise thresholding in non-subsampled shearlet domain
Li et al. Multiplicative intrinsic component optimization (MICO) for MRI bias field estimation and tissue segmentation
Crum et al. Generalized overlap measures for evaluation and validation in medical image analysis
JP5893623B2 (ja) データ・セットにおける異常検出方法およびシステム
Sadri et al. Segmentation of dermoscopy images using wavelet networks
Sawatzky et al. A variational framework for region-based segmentation incorporating physical noise models
Göçeri Fully automated liver segmentation using Sobolev gradient‐based level set evolution
KR101514003B1 (ko) 폐엽 추출 방법 및 그 장치
US20090080741A1 (en) Multi-Scale Analysis of Signal Enhancement in Breast MRI
Bal et al. An efficient wavelet and curvelet-based PET image denoising technique
Chandra et al. Fractional mesh-free linear diffusion method for image enhancement and segmentation for automatic tumor classification
He et al. Three-dimensional empirical mode decomposition (TEMD): A fast approach motivated by separable filters
JP2018538032A (ja) 機能的医用撮像における定量的マップ生成の自動最適化方法
Kaur et al. Computer-aided diagnosis of renal lesions in CT images: a comprehensive survey and future prospects
Diwakar et al. Multi-modal medical image fusion in NSST domain for internet of medical things
Dawood et al. The importance of contrast enhancement in medical images analysis and diagnosis
Wen et al. A novel Bayesian-based nonlocal reconstruction method for freehand 3D ultrasound imaging
CN116342444A (zh) 一种双通道多模态图像融合方法及融合成像终端机
Lepcha et al. Multimodal medical image fusion based on pixel significance using anisotropic diffusion and cross bilateral filter
Qi et al. A quantitative study of motion estimation methods on 4D cardiac gated SPECT reconstruction
Sahu et al. MRI de-noising using improved unbiased NLM filter
Jie et al. Multi-modal medical image fusion via multi-dictionary and truncated Huber filtering

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees