TWI452634B - Fabricating method of a copper indium gallium selenium (cigs) thin-film - Google Patents
Fabricating method of a copper indium gallium selenium (cigs) thin-film Download PDFInfo
- Publication number
- TWI452634B TWI452634B TW099144316A TW99144316A TWI452634B TW I452634 B TWI452634 B TW I452634B TW 099144316 A TW099144316 A TW 099144316A TW 99144316 A TW99144316 A TW 99144316A TW I452634 B TWI452634 B TW I452634B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- copper
- indium gallium
- copper indium
- gallium selenide
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
- Physical Vapour Deposition (AREA)
Description
本發明是有關於一種薄膜,且特別是有關於一種銅銦鎵硒薄膜。This invention relates to a film, and more particularly to a copper indium gallium selenide film.
薄膜太陽能電池依材料技術可分為許多種類,如非晶矽(a-Si)、碲化鎘(CdTe)、銅銦硒(CIS)、銅銦鎵硒(CIGS)薄膜太陽能電池等。其中,銅銦鎵硒(CIGS)薄膜太陽能電池因具有高轉換效率的優點,已成為各國廠商的新寵兒。Thin film solar cells can be classified into many types according to material technology, such as amorphous germanium (a-Si), cadmium telluride (CdTe), copper indium selenide (CIS), and copper indium gallium selenide (CIGS) thin film solar cells. Among them, copper indium gallium selenide (CIGS) thin film solar cells have become the new darling of manufacturers in various countries due to their high conversion efficiency.
銅銦鎵硒(CIGS)薄膜太陽能電池中的光吸收層為銅銦鎵硒薄膜。一般而言,製作銅銦鎵硒(CIGS)薄膜的方法有共蒸鍍(Co-evaporation)法以及二階段硒化(sequential method)法。在共蒸鍍法中,是以高溫同時蒸鍍銅、銦、鎵以及硒等元素於鍍鉬(Mo)基板上,而形成銅銦鎵硒薄膜。在二階段硒化法中,是先在鍍鉬基板上濺鍍鎵化銅(CuGa)以及銦(In)等金屬前驅疊層,再藉由爐管或快速熱製程(Rapid Thermal Process,RTP)進行高溫硒化製程以於鍍鉬基板上形成銅銦鎵硒薄膜。The light absorbing layer in the copper indium gallium selenide (CIGS) thin film solar cell is a copper indium gallium selenide film. In general, a method of producing a copper indium gallium selenide (CIGS) film is a co-evaporation method and a two-stage sequential method. In the co-evaporation method, elements such as copper, indium, gallium, and selenium are simultaneously vapor-deposited on a molybdenum-plated (Mo) substrate at a high temperature to form a copper indium gallium selenide film. In the two-stage selenization method, a metal precursor stack such as gallium arsenide (CuGa) and indium (In) is first sputtered on a molybdenum-plated substrate, and then a furnace tube or a Rapid Thermal Process (RTP) is used. A high temperature selenization process is performed to form a copper indium gallium selenide film on the molybdenum plated substrate.
然而,以共蒸鍍法形成之銅銦鎵硒薄膜雖其品質較佳,但其製程費時。以二階段硒化法形成之銅銦鎵硒薄膜,其製程時間較短,但其所形成之銅銦鎵硒薄膜中易有缺陷(defect),導致電子電洞復合(recombination)機率提高,而降低其光電轉換效率。承上述,如何在較短之製程時間內製作出一高品質的銅銦鎵硒薄膜,實為目前研發者亟欲達成之目標之一。However, the copper indium gallium selenide film formed by the co-evaporation method has a better quality, but the process is time consuming. The copper indium gallium selenide film formed by the two-stage selenization method has a short processing time, but the copper indium gallium selenide film formed by the method is susceptible to defects, resulting in an increase in the probability of electron hole recombination. Reduce its photoelectric conversion efficiency. In view of the above, how to produce a high-quality copper indium gallium selenide film in a short process time is one of the goals that current developers are eager to achieve.
本發明提供一種銅銦鎵硒薄膜的製造方法,其藉由一結晶誘發層使銅銦鎵硒薄膜可以較短之製程時間製作完成,並且具有良好的品質(晶向排列)。The invention provides a method for manufacturing a copper indium gallium selenide film, which can make a copper indium gallium selenide film can be completed in a short process time by a crystal inducing layer, and has good quality (crystal orientation).
本發明提供一種銅銦鎵硒薄膜的製造方法,包括於基板上形成結晶誘發層,於結晶誘發層上形成第一前驅金屬層。第一前驅金屬層之材質包括銅、銦以及鎵。然後,透過升溫製程使結晶誘發層與第一前驅金屬層硒化為一銅銦鎵硒薄膜。The invention provides a method for manufacturing a copper indium gallium selenide film, comprising forming a crystal inducing layer on a substrate, and forming a first precursor metal layer on the crystal inducing layer. The material of the first precursor metal layer includes copper, indium, and gallium. Then, the crystallization inducing layer and the first precursor metal layer are selenized into a copper indium gallium selenide film through a temperature rising process.
本發明提供一種銅銦鎵硒薄膜的製造方法,包括於基板上形成第一結晶誘發層,於第一結晶誘發層上形成第一前驅金屬層。第一前驅金屬層之材質包括銅、銦以及鎵。接著,於第一前驅金屬層上形成第二結晶誘發層。然後,於第二結晶誘發層上形成一第二前驅金屬層。第二前驅金屬層之材質包括銅、銦以及鎵。最後,透過升溫製程使第一結晶誘發層、第一前驅金屬層、第二結晶誘發層與第二前驅金屬層硒化為銅銦鎵硒薄膜。The invention provides a method for manufacturing a copper indium gallium selenide film, comprising forming a first crystal inducing layer on a substrate, and forming a first precursor metal layer on the first crystal inducing layer. The material of the first precursor metal layer includes copper, indium, and gallium. Next, a second crystallization inducing layer is formed on the first precursor metal layer. Then, a second precursor metal layer is formed on the second crystallization inducing layer. The material of the second precursor metal layer includes copper, indium, and gallium. Finally, the first crystal inducing layer, the first precursor metal layer, the second crystal inducing layer and the second precursor metal layer are selenized into a copper indium gallium selenide film by a temperature increasing process.
基於上述,本發明之銅銦鎵硒薄膜的製造方法主要是藉由形成一結晶誘發層以使特定厚度之銅銦鎵硒薄膜能夠在較短時間下製作完成,且此銅銦鎵硒薄膜具有良好的結晶品質(即晶向排列)。Based on the above, the method for manufacturing the copper indium gallium selenide film of the present invention is mainly to form a crystal inducing layer to enable a specific thickness of the copper indium gallium selenide film to be completed in a short time, and the copper indium gallium selenide film has Good crystal quality (ie, crystal orientation).
為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.
圖1為本發明第一實施例之銅銦鎵硒薄膜製作流程剖面示意圖。請參照圖1,首先,於基板110上形成結晶誘發層120。接著,於結晶誘發層120上形成第一前驅金屬層130。然後,透過升溫製程使結晶誘發層120與第一前驅金屬層130硒化(selenization)為銅銦鎵硒薄膜200。1 is a schematic cross-sectional view showing a process for fabricating a copper indium gallium selenide film according to a first embodiment of the present invention. Referring to FIG. 1, first, a crystallization inducing layer 120 is formed on a substrate 110. Next, a first precursor metal layer 130 is formed on the crystallization inducing layer 120. Then, the crystallization inducing layer 120 and the first precursor metal layer 130 are selenized into a copper indium gallium selenide film 200 by a temperature rising process.
在本實施例中,基板110可為表面上已經形成有導電層114之基板。本實施例之基板110包括一基底112,其可為一玻璃或是其他材質之硬質基板,然本發明不限於此。在其他實施例中,基底112亦可為具有可撓性之軟性基板例如塑膠基板或金屬基板(不銹鋼基板、銅基板、鋁合金基板)等。本實施例之導電層114例如為一鉬(Mo)金屬層,可與其上之銅銦鎵硒薄膜200形成良好的歐姆接觸(ohmic contact),並可做為一背電極使用。In the present embodiment, the substrate 110 may be a substrate on the surface on which the conductive layer 114 has been formed. The substrate 110 of the present embodiment includes a substrate 112, which may be a glass or a hard substrate of other materials, but the invention is not limited thereto. In other embodiments, the substrate 112 may be a flexible flexible substrate such as a plastic substrate or a metal substrate (a stainless steel substrate, a copper substrate, an aluminum alloy substrate) or the like. The conductive layer 114 of the present embodiment is, for example, a molybdenum (Mo) metal layer, which can form a good ohmic contact with the copper indium gallium selenide film 200 thereon, and can be used as a back electrode.
本實施例之結晶誘發層120例如為一銅銦鎵硒結晶誘發層,其具有良好晶向排列以使後續形成之第一前驅金屬層130具有較佳之晶向排列。然,本發明不限定結晶誘發層120之材質必須為銅銦鎵硒,在其他可行的實施中,結晶誘發層120亦可為一包含有銦與硒之化合物。舉例而言,可以使用In2 Se3 結晶誘發層或其他適當種類的結晶誘發層。為了以較短之製程時間形成結晶誘發層120,本實施例之結晶誘發層120厚度t小於銅銦鎵硒薄膜200厚度T,舉例而言,結晶誘發層120厚度t可大於或等於T/4並且小於或等於T/3。本實施例中,T的範圍為0.7um≦T≦2.7um。但不以此限制本發明。The crystallization inducing layer 120 of the present embodiment is, for example, a copper indium gallium selenide crystal inducing layer having a good crystal orientation so that the subsequently formed first precursor metal layer 130 has a better crystal orientation. However, the present invention does not limit the material of the crystal inducing layer 120 to be copper indium gallium selenide. In other feasible implementations, the crystal inducing layer 120 may also be a compound containing indium and selenium. For example, an In 2 Se 3 crystal inducing layer or other suitable kind of crystal inducing layer can be used. In order to form the crystallization inducing layer 120 in a shorter process time, the thickness t of the crystallization inducing layer 120 of the present embodiment is smaller than the thickness T of the copper indium gallium selenide film 200. For example, the thickness t of the crystallization inducing layer 120 may be greater than or equal to T/4. And less than or equal to T/3. In this embodiment, the range of T is 0.7 um T ≦ 2.7 um. However, the invention is not limited thereby.
圖2為本實施例之結晶誘發層製作流程剖面示意圖。請參照圖2,本實施例之結晶誘發層120例如為一銅銦鎵硒結晶誘發層,其例如是透過下述方法所形成。首先,於基板110上形成第二前驅金屬層126。接著,利用一慢速升溫硒化製程(selenization)使第二前驅金屬層126硒化為結晶誘發層120。在本實施例中,第二前驅金屬層126之材質包括銅、銦以及鎵,舉例而言,第二前驅金屬層126可為一銅鎵合金層122與銦金屬層124之疊層,其中銦金屬層124位於銅鎵合金層122上。然,本發明不限於此,在其他可行的實施中,第二前驅金屬層126亦可為其他型態之單層或疊層。2 is a schematic cross-sectional view showing the flow of the crystallization inducing layer of the present embodiment. Referring to FIG. 2, the crystallization inducing layer 120 of the present embodiment is, for example, a copper indium gallium selenide crystal inducing layer, which is formed, for example, by the following method. First, a second precursor metal layer 126 is formed on the substrate 110. Next, the second precursor metal layer 126 is selenized into the crystallization inducing layer 120 by a slow temperature selenization process. In this embodiment, the material of the second precursor metal layer 126 includes copper, indium, and gallium. For example, the second precursor metal layer 126 may be a laminate of a copper gallium alloy layer 122 and an indium metal layer 124, wherein the indium Metal layer 124 is on copper gallium alloy layer 122. However, the present invention is not limited thereto. In other feasible implementations, the second precursor metal layer 126 may also be a single layer or a laminate of other types.
需特別說明的是,在上述之慢速升溫硒化製程(selenization)中,升溫速率例如為每秒30 C以下,較佳的是每秒10 C至20 C,其升溫速率遠小於傳統快速升溫硒化製程中的升溫速率每秒100 C。因此,透過此慢速升溫硒化製程(selenization)可形成一緻密(dense)且具良好晶向排列的銅銦鎵硒薄膜,以做為結晶誘發層120使用。然,本發明不限於此,在其他可行的實施中,結晶誘發層120亦可透過共蒸鍍(Co-evaporation)製程或濺鍍(Sputtering)製程製作,同樣可以獲得緻密(dense)且具良好晶向排列的薄膜。Shall be particularly appreciated that the warmed selenization process (selenization) above the slow rate of temperature increase, for example, 3 0 C per second or less, preferably per second to 1 0 C 2 0 C, which heating rate is much less than The heating rate in the traditional rapid heating selenization process is 10 0 C per second. Therefore, through this slow temperature selenization process, a copper indium gallium selenide film having a dense density and a good crystal orientation can be formed to be used as the crystallization inducing layer 120. However, the present invention is not limited thereto. In other feasible implementations, the crystallization inducing layer 120 can also be fabricated by a co-evaporation process or a sputtering process, and can also obtain dense and good. A film arranged in a crystal orientation.
圖3A為本實施例之第一前驅金屬層剖面示意圖。請參照圖3A,本實施例之第一前驅金屬層130,其材質包括銅、銦以及鎵,而形成第一前驅金屬層130方法例如是先於結晶誘發層120上形成銅鎵合金層132,再於銅鎵合金層132上形成銦金屬層134。然,本發明並不限於此,在其他可行的實施中,吾人可先於結晶誘發層120上形成銦金屬層134,再於銦金屬134層上形成銅鎵合金層132,如圖3B所示;或者,先於結晶誘發層120上形成一疊層,此疊層由多層銅鎵合金層132以及多層銦金屬層134交替堆疊而成,其中銅鎵合金層132之層數無須與銦金屬層134之層數相同,如圖3C所示;或者,於結晶誘發層120上形成一銅銦鎵合金層136,如圖3D所示。3A is a schematic cross-sectional view of a first precursor metal layer of the embodiment. Referring to FIG. 3A, the first precursor metal layer 130 of the present embodiment is made of copper, indium, and gallium. The method for forming the first precursor metal layer 130 is to form a copper gallium alloy layer 132 on the crystallization inducing layer 120, for example. An indium metal layer 134 is formed on the copper gallium alloy layer 132. However, the present invention is not limited thereto. In other feasible implementations, the indium metal layer 134 may be formed on the crystallization inducing layer 120, and the copper gallium alloy layer 132 may be formed on the indium metal 134 layer, as shown in FIG. 3B. Or, a laminate is formed on the crystallization inducing layer 120. The laminate is formed by alternately stacking a plurality of layers of copper gallium alloy layer 132 and a plurality of layers of indium metal layer 134, wherein the number of layers of the copper gallium alloy layer 132 does not need to be in the same layer as the indium metal layer. The number of layers of 134 is the same as shown in FIG. 3C; or, a copper indium gallium alloy layer 136 is formed on the crystallization inducing layer 120, as shown in FIG. 3D.
本實施例之銅銦鎵硒薄膜200可做為銅銦鎵硒薄膜太陽能電池中的光吸收層使用。當本實施例之銅銦鎵硒薄膜200被應用於銅銦鎵硒薄膜太陽能電池以當作光吸收層時,其可透過下述製程進行製作。首先,於基板110上形成本實施例之銅銦鎵硒薄膜200後,可透過化學槽水浴法(chemical bath deposition,CBD)於銅銦鎵硒薄膜200上形成緩衝層,緩衝層之材質例如為硫化鎘(CdS)。之後,再於緩衝層上濺鍍一高阻值透明窗層,高阻值透明窗層之材質例如為本徵型氧化鋅(intrinsic-ZnO)。接著,於高阻值透明窗層上濺鍍上一低阻值透明導電層,低阻值透明導電層之材質例如為摻雜鋁之氧化鋅(AZO)以做為透明導電窗口(window layer)。最後,於低阻值透明導電層上可依設計者需求,選擇性鍍上一導線(如鋁導線),即完成一銅銦鎵硒薄膜太陽能電池。在其他實施例中,也可以不鍍上導線,本發明並不加以限制。由於本實施例之銅銦鎵硒薄膜200在製作上所需之時間較短,且銅銦鎵硒薄膜200具有良好的光電轉換效率,故十分適於應用在薄膜太陽能電池之量產上。The copper indium gallium selenide film 200 of the present embodiment can be used as a light absorbing layer in a copper indium gallium selenide thin film solar cell. When the copper indium gallium selenide thin film 200 of the present embodiment is applied to a copper indium gallium selenide thin film solar cell as a light absorbing layer, it can be produced by the following process. First, after the copper indium gallium selenide film 200 of the present embodiment is formed on the substrate 110, a buffer layer may be formed on the copper indium gallium selenide film 200 by chemical bath deposition (CBD). The material of the buffer layer is, for example, Cadmium sulfide (CdS). Thereafter, a high-resistance transparent window layer is sputtered on the buffer layer, and the material of the high-resistance transparent window layer is, for example, intrinsic-type zinc oxide (intrinsic-ZnO). Next, a low-resistance transparent conductive layer is sputtered on the high-resistance transparent window layer, and the material of the low-resistance transparent conductive layer is, for example, aluminum-doped zinc oxide (AZO) as a transparent conductive window (window layer). . Finally, a low-resistance transparent conductive layer can be selectively plated with a wire (such as an aluminum wire) to complete a copper indium gallium selenide thin film solar cell. In other embodiments, the wires may not be plated, and the invention is not limited thereto. Since the copper indium gallium selenide thin film 200 of the present embodiment has a short time required for fabrication, and the copper indium gallium selenide thin film 200 has good photoelectric conversion efficiency, it is very suitable for application in mass production of thin film solar cells.
圖4為本發明第二實施例之銅銦鎵硒薄膜製作流程剖面示意圖。請參照圖4,首先,於基板310上形成第一結晶誘發層320。接著,於第一結晶誘發層320上形成第一前驅金屬層330。然後,於第一前驅金屬層330上形成第二結晶誘發層340。再來,於第二結晶誘發層340上形成第二前驅金屬層350。最後,透過升溫製程使第一結晶誘發層320、第一前驅金屬層330、第二結晶誘發層340與第二前驅金屬層350硒化(selenization)為一銅銦鎵硒薄膜400。4 is a schematic cross-sectional view showing a process for fabricating a copper indium gallium selenide film according to a second embodiment of the present invention. Referring to FIG. 4, first, a first crystallization inducing layer 320 is formed on the substrate 310. Next, a first precursor metal layer 330 is formed on the first crystallization inducing layer 320. Then, a second crystallization inducing layer 340 is formed on the first precursor metal layer 330. Further, a second precursor metal layer 350 is formed on the second crystallization inducing layer 340. Finally, the first crystallization inducing layer 320, the first precursor metal layer 330, the second crystallization inducing layer 340 and the second precursor metal layer 350 are selenized into a copper indium gallium selenide film 400 by a temperature rising process.
在本實施例中,基板310可為表面上已經形成有導電層314之基板。本實施例之基板310與導電層314之材質同第一實施例中所述,於此便不再贅述。In the present embodiment, the substrate 310 may be a substrate on the surface on which the conductive layer 314 has been formed. The materials of the substrate 310 and the conductive layer 314 in this embodiment are the same as those in the first embodiment, and will not be described herein.
在本實施例中,第一結晶誘發層320以及第二結晶誘發層340例如為一銅銦鎵硒結晶誘發層,其具有良好晶向排列以分別使後續形成之第一前驅金屬層330以及第二前驅金屬層350具有較佳之晶向排列。然,本發明不限定第一結晶誘發層320以及第二結晶誘發層340之材質必須為銅銦鎵硒,在其他可行的實施中,第一結晶誘發層320以及第二結晶誘發層340亦可為一包含有銦與硒之化合物。舉例而言,可以使用In2 Se3 結晶誘發層或其他適當種類的結晶誘發層。為了以較短之製程時間形成第一結晶誘發層320以及第二結晶誘發層340,本實施例之第一結晶誘發層320以及第二結晶誘發層340,其厚度d1 以及厚度d2 皆小於銅銦鎵硒薄膜400厚度D,舉例而言,第一結晶誘發層320以及第二結晶誘發層340之厚度d1 、d2 可大於或等於D/4並且小於或等於D/3。In the present embodiment, the first crystallization inducing layer 320 and the second crystallization inducing layer 340 are, for example, a copper indium gallium selenide crystal inducing layer having a good crystal orientation to respectively form the subsequently formed first precursor metal layer 330 and The second precursor metal layer 350 has a preferred crystal orientation. However, the material of the first crystallization inducing layer 320 and the second crystallization inducing layer 340 is not limited to copper indium gallium selenide. In other feasible implementations, the first crystallization inducing layer 320 and the second crystallization inducing layer 340 may also be used. It is a compound containing indium and selenium. For example, an In 2 Se 3 crystal inducing layer or other suitable kind of crystal inducing layer can be used. In order to form the first crystallization inducing layer 320 and the second crystallization inducing layer 340 in a shorter process time, the first crystallization inducing layer 320 and the second crystallization inducing layer 340 of the present embodiment have a thickness d 1 and a thickness d 2 which are both smaller than The thickness of the copper indium gallium selenide film 400, for example, the thicknesses d 1 , d 2 of the first crystallization inducing layer 320 and the second crystallization inducing layer 340 may be greater than or equal to D/4 and less than or equal to D/3.
圖5為本實施例之第一結晶誘發層製作流程剖面示意圖。請參照圖5,本實施例之第一結晶誘發層320例如為一銅銦鎵硒結晶誘發層,其例如是透過下述方法所形成。首先,於基板310上形成第三前驅金屬層326。接著,利用一慢速升溫硒化製程(selenization)使第三前驅金屬層326硒化為結晶誘發層320。在本實施例中,第三前驅金屬層326之材質包括銅、銦以及鎵,舉例而言,第三前驅金屬層326可為一銅鎵合金層322與銦金屬層324之疊層,其中銦金屬層324位於銅鎵合金層322上。然,本發明不限於此,在其他可行的實施中,第三前驅金屬層326亦可為其他型態之單層或疊層。結晶誘發層320亦可透過共蒸鍍(Co-evaporation)製程或濺鍍(Sputtering)製程製作,同樣可以獲得緻密(dense)且具良好晶向排列的薄膜。Fig. 5 is a schematic cross-sectional view showing the manufacturing process of the first crystallization inducing layer of the present embodiment. Referring to FIG. 5, the first crystallization inducing layer 320 of the present embodiment is, for example, a copper indium gallium selenide crystal inducing layer, which is formed, for example, by the following method. First, a third precursor metal layer 326 is formed on the substrate 310. Next, the third precursor metal layer 326 is selenized into the crystallization inducing layer 320 by a slow temperature selenization process. In this embodiment, the material of the third precursor metal layer 326 includes copper, indium, and gallium. For example, the third precursor metal layer 326 may be a laminate of a copper gallium alloy layer 322 and an indium metal layer 324, wherein the indium Metal layer 324 is on copper gallium alloy layer 322. However, the present invention is not limited thereto. In other feasible implementations, the third precursor metal layer 326 may also be a single layer or a laminate of other types. The crystallization inducing layer 320 can also be produced by a co-evaporation process or a sputtering process, and a dense and well-aligned film can also be obtained.
圖6為本實施例之第二結晶誘發層製作流程剖面示意圖。請參照圖6,本實施例之第二結晶誘發層340例如為一銅銦鎵硒結晶誘發層,其可透過共蒸鍍(Co-evaporation)製程或濺鍍(Sputtering)製程在第一前驅金屬層330上形成之。以共蒸鍍(Co-evaporation)製程或濺鍍(Sputtering)製程形成之第二結晶誘發層340亦具有緻密(dense)及良好的晶向排列。本實施例之第一前驅金屬層330以及第二前驅金屬層350其可行之結構與形成方式同第一實施例之第一前驅金屬層130,於此亦不再贅述。Fig. 6 is a schematic cross-sectional view showing the flow of the second crystallization inducing layer in the embodiment. Referring to FIG. 6 , the second crystal inducing layer 340 of the present embodiment is, for example, a copper indium gallium selenide crystal inducing layer, which can pass through a co-evaporation process or a sputtering process on the first precursor metal. Formed on layer 330. The second crystallization inducing layer 340 formed by a co-evaporation process or a sputtering process also has a dense and good crystal orientation. The first precursor metal layer 330 and the second precursor metal layer 350 of the present embodiment have the same structure and formation as the first precursor metal layer 130 of the first embodiment, and will not be further described herein.
本實施例之銅銦鎵硒薄膜400亦可做為銅銦鎵硒薄膜太陽能電池中的光吸收層使用。另外,由於本實施例之銅銦鎵硒薄膜400在製作上所需之時間較短,且銅銦鎵硒薄膜400具有良好的光電轉換效率,故亦十分適於應用在薄膜太陽能電池之量產上。The copper indium gallium selenide film 400 of the present embodiment can also be used as a light absorbing layer in a copper indium gallium selenide thin film solar cell. In addition, since the copper indium gallium selenide film 400 of the present embodiment has a short time required for fabrication, and the copper indium gallium selenide film 400 has good photoelectric conversion efficiency, it is also suitable for mass production of thin film solar cells. on.
綜上所述,本發明在形成前驅金屬層之前先形成一較薄且具有良好晶相之結晶誘發層,以使得前驅金屬層與結晶誘發層可透過製程時間較短的升溫製程形成一高品質之銅銦鎵硒薄膜。In summary, the present invention forms a thin crystal evoked layer having a good crystal phase before forming the precursor metal layer, so that the precursor metal layer and the crystallization inducing layer can form a high quality through a warming process with a short processing time. Copper indium gallium selenide film.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.
110、310...基板110, 310. . . Substrate
112、312...基底112, 312. . . Base
114、314...導電層114, 314. . . Conductive layer
120...結晶誘發層120. . . Crystal evoked layer
122、132、322...銅鎵合金層122, 132, 322. . . Copper gallium alloy layer
124、134、324...銦金屬層124, 134, 324. . . Indium metal layer
126、350...第二前驅金屬層126, 350. . . Second precursor metal layer
130、330...第一前驅金屬層130, 330. . . First precursor metal layer
136...銅銦鎵合金層136. . . Copper indium gallium alloy layer
200、400...銅銦鎵硒薄膜200, 400. . . Copper indium gallium selenide film
320...第一結晶誘發層320. . . First crystal induced layer
326...第三前驅金屬層326. . . Third precursor metal layer
340...第二結晶誘發層340. . . Second crystal induced layer
t、T、d、D...厚度t, T, d, D. . . thickness
圖1為本發明第一實施例之銅銦鎵硒薄膜製作流程剖面示意圖。1 is a schematic cross-sectional view showing a process for fabricating a copper indium gallium selenide film according to a first embodiment of the present invention.
圖2為本發明第一實施例之結晶誘發層製作流程剖面示意圖。2 is a schematic cross-sectional view showing a process of fabricating a crystallization inducing layer according to a first embodiment of the present invention.
圖3A、圖3B、圖3C以及圖3D為本發明一實施例之前驅金屬層剖面示意圖。3A, 3B, 3C, and 3D are schematic cross-sectional views of a prior art metal layer according to an embodiment of the present invention.
圖4為本發明第二實施例之銅銦鎵硒薄膜製作流程剖面示意圖。4 is a schematic cross-sectional view showing a process for fabricating a copper indium gallium selenide film according to a second embodiment of the present invention.
圖5為本發明第二實施例之第一結晶誘發層製作流程剖面示意圖。Fig. 5 is a cross-sectional view showing the flow of the first crystallization inducing layer according to the second embodiment of the present invention.
圖6為本發明第二實施例之第二結晶誘發層製作流程剖面示意圖。Fig. 6 is a cross-sectional view showing the flow of the second crystallization inducing layer in the second embodiment of the present invention.
110...基板110. . . Substrate
112...基底112. . . Base
114...導電層114. . . Conductive layer
120...結晶誘發層120. . . Crystal evoked layer
130...第一前驅金屬層130. . . First precursor metal layer
200...銅銦鎵硒薄膜200. . . Copper indium gallium selenide film
t、T...厚度t, T. . . thickness
Claims (19)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW099144316A TWI452634B (en) | 2010-12-16 | 2010-12-16 | Fabricating method of a copper indium gallium selenium (cigs) thin-film |
CN2011100267305A CN102157611B (en) | 2010-12-16 | 2011-01-20 | Method for manufacturing copper indium gallium selenide thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW099144316A TWI452634B (en) | 2010-12-16 | 2010-12-16 | Fabricating method of a copper indium gallium selenium (cigs) thin-film |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201227838A TW201227838A (en) | 2012-07-01 |
TWI452634B true TWI452634B (en) | 2014-09-11 |
Family
ID=44438935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW099144316A TWI452634B (en) | 2010-12-16 | 2010-12-16 | Fabricating method of a copper indium gallium selenium (cigs) thin-film |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102157611B (en) |
TW (1) | TWI452634B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105070784A (en) * | 2015-07-17 | 2015-11-18 | 邓杨 | New, cheap and efficient CIGS cell absorbent layer preparation process |
CN110257770B (en) * | 2019-06-21 | 2022-02-18 | 铜仁梵晖新能源有限公司 | Method for preparing V-type doped copper indium gallium selenide absorption layer by PVD (physical vapor deposition) method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200703672A (en) * | 2004-11-10 | 2007-01-16 | Daystar Technologies Inc | Thermal process for creation of an in-situ junction layer in CIGS |
CN101299446A (en) * | 2008-05-30 | 2008-11-05 | 南开大学 | Selenide forerunner thin film and method for producing film cell through rapid selenium vulcanizing thermal treatment |
TW201042065A (en) * | 2009-05-22 | 2010-12-01 | Ind Tech Res Inst | Methods for fabricating copper indium gallium diselenide (CIGS) compound thin films |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2435248A2 (en) * | 2009-05-26 | 2012-04-04 | Purdue Research Foundation | Thin films for photovoltaic cells |
-
2010
- 2010-12-16 TW TW099144316A patent/TWI452634B/en not_active IP Right Cessation
-
2011
- 2011-01-20 CN CN2011100267305A patent/CN102157611B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200703672A (en) * | 2004-11-10 | 2007-01-16 | Daystar Technologies Inc | Thermal process for creation of an in-situ junction layer in CIGS |
CN101299446A (en) * | 2008-05-30 | 2008-11-05 | 南开大学 | Selenide forerunner thin film and method for producing film cell through rapid selenium vulcanizing thermal treatment |
TW201042065A (en) * | 2009-05-22 | 2010-12-01 | Ind Tech Res Inst | Methods for fabricating copper indium gallium diselenide (CIGS) compound thin films |
Also Published As
Publication number | Publication date |
---|---|
CN102157611A (en) | 2011-08-17 |
CN102157611B (en) | 2013-04-17 |
TW201227838A (en) | 2012-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006016577A1 (en) | Cis type compound semiconductor thin film solar cell and method for preparing light-absorbing layer of said solar cell | |
JP5873881B2 (en) | Photovoltaic power generation apparatus and manufacturing method thereof. | |
TW201227980A (en) | Thin film solar cell and method for manufacturing the same | |
US20150340515A1 (en) | Reverse stack structures for thin-film photovoltaic cells | |
KR20180034274A (en) | CZTS-based thin film solar cell comprising silver and method the same | |
JP6103525B2 (en) | CIGS film and CIGS solar cell using the same | |
US9818902B2 (en) | Solar cell and method for manufacturing the same | |
US9202943B2 (en) | Niobium thin film stress relieving layer for thin-film solar cells | |
TWI452634B (en) | Fabricating method of a copper indium gallium selenium (cigs) thin-film | |
US9640685B2 (en) | Solar cell and method of fabricating the same | |
US8846438B2 (en) | Method for indium sputtering and for forming chalcopyrite-based solar cell absorber layers | |
KR101293047B1 (en) | Metallic precursor for a czt-based solar cell and manufacturing method thereof, photo absorption layer and solar cell comprising it | |
JP5881717B2 (en) | Solar cell and manufacturing method thereof | |
US20130074933A1 (en) | Photovoltaic device and method for making the same | |
JP5851434B2 (en) | CIGS film manufacturing method and CIGS solar cell manufacturing method using the manufacturing method | |
JP2014506391A (en) | Solar cell and method for manufacturing solar cell | |
US9570636B2 (en) | Solar cell and method of fabricating the same | |
TWI443840B (en) | Quaternary compound thin-film and method for preparing the same | |
JP2016518032A (en) | Manufacturing method of light absorption layer | |
KR101501742B1 (en) | Method for fabricating a thin film solar cell with diffusion barrier and Thin film solar cell produced by the same | |
JP2014503129A (en) | Solar cell and manufacturing method thereof | |
TWI501407B (en) | Enhanced light absorption thin film used in solar cell, solar cell structure and its manufacturing method | |
KR20150119723A (en) | Method of manufacturing solar cell having selenium diffusion barrier layer | |
TWI443841B (en) | Complex compound film with multi-components and method for manufacturing the same | |
KR101349596B1 (en) | Solar cell and method of fabricating the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |