CN101299446A - Selenide forerunner thin film and method for producing film cell through rapid selenium vulcanizing thermal treatment - Google Patents

Selenide forerunner thin film and method for producing film cell through rapid selenium vulcanizing thermal treatment Download PDF

Info

Publication number
CN101299446A
CN101299446A CN 200810053356 CN200810053356A CN101299446A CN 101299446 A CN101299446 A CN 101299446A CN 200810053356 CN200810053356 CN 200810053356 CN 200810053356 A CN200810053356 A CN 200810053356A CN 101299446 A CN101299446 A CN 101299446A
Authority
CN
China
Prior art keywords
film
substrate
thin film
diselenide
precursor
Prior art date
Application number
CN 200810053356
Other languages
Chinese (zh)
Inventor
青 何
刘新路
周志强
孙国忠
超 张
敖建平
李宝璋
杨小锋
Original Assignee
南开大学;孙国忠;敖建平
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南开大学;孙国忠;敖建平 filed Critical 南开大学;孙国忠;敖建平
Priority to CN 200810053356 priority Critical patent/CN101299446A/en
Publication of CN101299446A publication Critical patent/CN101299446A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/52Manufacturing of products or systems for producing renewable energy
    • Y02P70/521Photovoltaic generators

Abstract

The invention relates to a method of a low cost selenide van thin film and the fast selenium sulfuration heat treatment to prepare the solar cell, which can be used in the nm selenide paint roll coating or the electrodeposit method to prepare the selenide van film, through the vacuum flash selenium sulfuration heat treatment, the high efficiency cadmium-free thin film solar cell or the photovoltaic integrated module. The thin film cell adsorption layer band gap is in the v-shaped distribution, and the flash selenium sulfuration heat treatment causes the CuSe in the porous loose thin film fusing, soaking, liquid phase serving the reaction growth of the CIGS film crystal and the self densification of the film with the In4Se3, reactive sputtering In2Se3 or In2S3 to neutralize the excessive CuxSe adsorbed by the film surface layer, going on splashing the micro excessive In2S3 to generate n-high-ohmic resistor Cu(In<1-y>Gay)<3>(SxSe<1-x>)<5> thin film cell shallow burying, then reacting the splashing deposit n-type In(OH,S)/ZnS(O,OH)/Zno(S) buffer layer with the i-layer, linking the slashing transparent conductive film/and laserprocessing collecting ellectrode to complete the preparation of the thin film cell.

Description

硒化物前驱薄膜与快速硒硫化热处理制备薄膜电池方法技术领域 Diselenide precursor film and heat-treated film was prepared quickly selenium sulfide batteries TECHNICAL FIELD

本发明涉及化合物半导体薄膜器件的制备,更具体地说,涉及非真空低成本法制备铜铟镓硒硫[Cu(In。.7, Ga。,3)Se2iSx简写为CIGS]薄膜太阳电池的硒化物前驱薄膜,并对其进行真空快速硒硫化热处理后,直接、连续化地制备出薄膜太阳电池或光伏集成组件的方法。 The present invention relates to a compound semiconductor thin film devices, and more particularly, to a low-cost non-vacuum Preparation CIGS sulfur [Cu (In..7, Ga., 3) Se2iSx abbreviated as the CIGS] selenium thin film solar cells compound precursor film, and subjected to a post curing thermal treatment in vacuo selenium fast, direct, continuous method for the preparation of a thin film solar cell or a photovoltaic module integrated.

背景技术 Background technique

太阳能电池发巾方式是可再生的能源技术,产生电能的过程中对环境影响最小。 The solar cell towel embodiment renewable energy technologies, the process of generating electric energy minimal environmental impact pair. 太阳能发电技术要取得商业h的成功,必须使太阳能电池具有更高的效率、更低的成本、更好的耐候性,并且不增加其它的环境问题。 Solar power technology to the commercial success of h, it is necessary to make solar cells with higher efficiency, lower costs, better weather resistance, and does not add other environmental problems. 传统晶体硅太阳电池技术的发展得益于电子硅半导体材料的不断技术进歩,制造它需要单晶硅卜.游材料中的多晶硅材料,晶体硅太阳能电池的经济附加值并不高,是一种靠长期累积获取收益的产品,大规模地运用分流了硅半导体电子行业 Development of conventional silicon solar cell technology techniques continue to benefit from the crystalline silicon semiconductor material into ho of the electron, it needs to manufacture a silicon single crystal BU. Amusement material polysilicon material, economic value added crystalline silicon solar cells is not high, is a species rely on long-term cumulative obtain benefits of the product, the use of large-scale diversion of silicon semiconductor electronics industry

的材料来源,势必进一步加剧全球性资源性的短缺,促使其价格更加地昂贵;从另一方面来说,今天的晶体硅太阳电池产品与技术还占据着统治地位,它基本能满足上述太阳电池技术提及的多项要求,但却不能以低成本方式生产太阳电池,其在生产过程中硅材料的浪费高达70%,并且还需要消耗大量的一次能源,势必对环境造成不利的影响;相对而言,生产晶体硅太阳电池的能源消耗需要三年多的发电才能回收,即使最便宜的晶体硅太阳能电池每瓦特能量输出的制造成本也要3美元,现阶段制约太阳电池发展的最大瓶颈是过高的原材料成本和生产成本。 The source material is bound to further exacerbate the shortage of global resources to facilitate their price is more expensive; on the other hand, today's crystalline silicon solar cell products and technologies also occupy a dominant position, it can basically meet the solar cell a number of technical requirements mentioned, but not in a way to produce low-cost solar cell, which is a waste of silicon material in the production process up to 70%, and also requires large amounts of primary energy, is bound to have an adverse impact on the environment; relative , the production of crystalline silicon solar cells need to consume energy to power more than three years of recovery, even if the manufacturing cost of the least expensive crystalline silicon solar cell energy output per watt should be $ 300, at this stage the biggest bottleneck restricting the development of solar cells is high raw material costs and production costs.

基于薄膜技术的太阳电池是个正处于发展阶段的技术,它们提供了一种太阳电池成本大幅度降低的技术可能性。 Based thin-film solar cell technology is now at the stage of development of the technology, they offer technical possibilities A solar cell costs significantly reduced. 制造硅薄膜太阳电池的原材料与电子单晶硅半导体器件制造过程所用原材料是一致的,其来源是多晶硅提纯过程中的中间气态产品,制造硅薄膜太阳电池过程的材料利用率较高;但是,硅薄膜太阳电池的光电转换效率较低和耐久性差(使用过程中的性能衰退),虽然通过技术进步缓解了这种缺陷,却无法彻底根治。 High material utilization rate of raw materials for manufacturing a silicon thin film solar cell and an electronic device manufacturing process of the single-crystal semiconductor material is the same, which is the source of purified polysilicon gaseous intermediate products of the process, the process of making silicon thin film solar cell with the; however, silicon lower thin film solar cells photoelectric conversion efficiency and poor durability (performance degradation during use), although this defect eased through technological progress, but can not completely cure. 基于化合物半导体Cu(In, Ga)Se2薄膜太阳电池是一个非常有前途的太阳电池技术,CIGS薄膜的带隙宽度可根据Ga含量在1.04〜1.68eV的范围内变化;对可见光的吸收系数高达105/cm, l-2pm厚的薄膜就可以吸收绝大部分阳光,适合于作为廉价太阳电池的吸收层。 Se2 solar cells based on thin film solar cell technology is a very promising compound semiconductor Cu (In, Ga), the band gap of the CIGS thin film can vary according to the Ga content in the range of 1.04~1.68eV; absorption coefficient for visible light up to 105 / cm, l-2pm thick film can absorb most of the sunlight, suitable as an inexpensive solar cell absorber layer. CIGS薄膜太阳电池具有无衰退、 抗辐射、寿命长等特点,最高效率已达19.9%,接近多晶硅太阳电池20.3%的最高光电转换效率,是所有薄膜太阳电池中最高的。 CIGS thin film solar cell having no recession, anti-radiation, long life, maximum efficiency reached 19.9%, 20.3% near the polycrystalline silicon solar cells the highest photoelectric conversion efficiency is the highest of all thin film solar cells. 并且它可以沉积在大面积廉价衬底-玻璃、不锈钢、钛箔或PI塑料薄膜等基底材料上,与晶体硅太阳电池相比,减少了生产工序,因而在降低成本方面具有独特的优势,如果真空共蒸发和溅射金属预置层技术路线达到生产设计要求,其成本只有晶体硅电池的1/3-1/2。 And it may be deposited on an inexpensive large-area substrate - glass, stainless steel, titanium foil or PI plastic film base material, compared to crystalline silicon solar cells, the production process is reduced, and thus cost reduction has unique advantages, if evaporated in vacuo and co-sputtered metal layer is pre-production design requirements to achieve the technical route, the cost of only a crystalline silicon cell is 1 / 3-1 / 2. 经过二十多年的研究开发,CIGS薄膜太阳电池已基本实现了产业化。 After twenty years of research and development, CIGS thin-film solar cells has been basically achieved industrialization.

虽然CIGS薄膜太阳电池具有低成本的潜力,但是,二十多年高效CIGS薄膜电池开发技术灼是以真空设备为基础,真空溅射金属预置层后硒化技术仅是为了减少共蒸发的控制难度, 适合于大面积制备薄膜电池的均匀性和易于工业化连续地生产而开发成功的,其原材料相对利用率更低、所需真空制造设备更多。 Although CIGS thin film solar cell having a potential of low cost, but, twenty years the development of technology and efficient burning CIGS thin film cells is based on the vacuum apparatus, vacuum sputtered metal selenide layer preset reduction control technique is to co-evaporation only difficulty, suitable for large area film was prepared cell uniformity and easy industrial production and are continuously developed, and the utilization of its raw material is relatively lower, more manufacturing equipment required vacuum. 由于蒸发法和溅射后硒化法都是以真空设备为主,设备庞大、造价昂贵,建立薄膜电池生产线的前期投入大。 After evaporation method and a sputtering method are selenium-based vacuum equipment, the equipment is large, costly, thin film battery production line establishing a large initial investment. 而且,沉积薄膜的原材料利用率仅为30〜60%,其薄膜制备与耙材成本部分就占总成本的45.3%。 Furthermore, utilization of raw materials only 30~60% of the deposited film, which film was prepared on the part of the rake member cost 45.3% of the total cost. 抵消了CIGS薄膜太阳电池可制备成薄膜的低价优势,也是目前CIGS薄膜电池成本没有达到人们预期那么低的主要原因。 Offset the advantage of low-cost CIGS thin-film solar cells can be made into a thin film, CIGS thin film cells is currently the main reason people did not meet the expected costs so low.

低成本法制备CIGS薄膜电池的主要目的是大量减少使用昂贵的真空设备、降低制造过程中一次能源消耗和提高原材料的利用率。 Preparation Method The main purpose of low-cost CIGS thin film cells to substantially reduce the use of expensive vacuum equipment, the manufacturing process to reduce energy consumption and improve the utilization of primary raw materials. 目前,非真空法制备CIGS薄膜主要有两种途径, 一种是先将Cu-In-Ga-Se原料制备成纳米涂料,再用湿法涂覆在合适的衬底上干燥成膜,然后进行热处理;另一种是水浴电沉积制备CIGS薄膜后再热处理。 Currently, non-vacuum CIGS thin film prepared There are two main ways, first one is the preparation of Cu-In-Ga-Se material into nano-coating, and then dried wet coating deposition on a suitable substrate, then heat treatment; the other is electrically water bath deposition heat treatment after preparation of CIGS thin film. 这两种技术途径有着共同的特点,都是从水溶性原料中得到CIGS薄膜的预置层,然后进行加热后处理;共同的优点是:(l)设备简单、投资小、成本低;(2)、原材料利用率高达95%以上;(3)可以大面积、连续、 低温法沉积薄膜前驱物。 Both features have common technical approach, a water-soluble material is obtained from the pre-film CIGS layer, followed by heating treatment; common advantage: simple (l) equipment, small investment, and low cost; (2 ), utilization of raw materials up to 95%; (3) a large area, continuous, low temperature deposited film precursor. 这种方法目前已经取得较大的突破,国外已经有多个公司开始产业化进程。 This approach has been made a major breakthrough, foreign countries have more companies begin the process of industrialization. 但是,这种方法还存在薄膜质量多孔、夹杂,加热硒化处理后出现裂纹等现象。 However, this method there is a porous film quality, inclusions, cracks and other phenomena occur after the heating process selenide.

涂覆法是将Cu-In-Ga-Se以一定的比例混合制成不同组成的纳米粒子涂料,再采用不同的涂覆技术在衬底上干燥形成前驱薄膜。 The coating method is a Cu-In-Ga-Se certain proportions of nanoparticles made of different coating compositions, different coating techniques and then dried to form a precursor film on a substrate. 美国ISET公司的VK Kapur等人将最终薄膜所需Cu、 In、 Ga元素按CuInQ.7GaQ.3Se2化学式计量的Cu/(In+Ga)比例混合物溶解在酸性溶液中, 加入碱溶液中和反应而形成金属氢氧化物,再用水冲洗除去副产物,干燥制成金属氧化物纳米粒子,与水和分散剂混合形成纳米涂料,用印刷滚涂等方式在Mo/玻璃衬底上涂覆成膜与干燥,然后在500〜55(TC的&和N2混合气氛中进行还原反应,得到致密的Cu-In-Ga合金薄膜,再在420〜45(TC的H2Se和N2混合气氛中硒化形成CIGS薄膜。涂覆的湿膜厚度约12pm, 干燥后形成的薄膜结构疏松多孔,厚度约6)am,经氢气还原与硒化处理后约2nm厚。用这种方法制备的CIGS薄膜电池玻璃衬底上的最高效率为13.6%(0.08cm2),柔性衬底Mo箔上的为13.0%[1],面积为65(^112的电池组件效率为8%[2'3]。其美国发明专利为US5985691。美国Nanosokr公司成立于2002年,2003年决定主要研究开 U.S. ISET's VK Kapur et al., The ratio of the mixture according to the formula CuInQ.7GaQ.3Se2 measured Cu / (In + Ga) of the final desired thin Cu, In, Ga elements are dissolved in an acidic solution, an alkaline solution is added and the reaction forming a metal hydroxide, and then rinsed with water to remove by-products, drying a metal oxide nanoparticles, mixed with water and a dispersing agent formed nano-coating, roll coating, etc. by printing on a coated film formation Mo / glass substrate drying, then at 500~55 (TC & mixed atmosphere of N2 and the reduction reaction, to give a dense Cu-in-Ga alloy thin film, and then the 420~45 (TC N2 mixed atmosphere of H2Se and selenium to form a thin film CIGS the wet coating film thickness of about 12pm, loose structure of the porous film formed after drying, a thickness of about 6) am, about 2nm after treatment with a thickness reduction with hydrogen selenide. CIGS thin film cells on a glass substrate prepared by this method maximum efficiency of 13.6% (0.08cm2), a flexible substrate for the Mo foil on 13.0% [1], the area efficiency of the battery pack 65 (8% ^ 112 [2'3] it is U.S. Patent US5985691 US Nanosokr company was founded in 2002, it decided in 2003 to open the main research 非真空法制备CIGS薄膜技术。他们利用不同的化学反应,采用有机金属化合物热分解法、喷雾共沉淀法、溶胶-凝胶法等方法制备出各种非氧化物的纳米粒子,如CuInSe2、 CuGaSe、 CuSe、 In2Se3,通过控制反应过程的条件来控制纳米粒子的大小。以CuSe和In2Se3为核包裹纯硒后制成硒化物纳米粒子, 并与水溶性溶剂调配成液相涂料,将其湿法涂覆(丝网印刷或滚涂印刷法)在已溅射沉积Mo 薄膜的铝箔上干燥成膜,加热挥发掉有机溶剂后,前驱硒化物薄膜经过快速热处理(RTP)制备出PV(光伏)级薄膜材料,它利用了前驱硒化物薄膜中纯Se的18(TC低温熔点和CuxSe的523°C 中温熔点的液相特征,进行了多孔疏松硒化物前驱薄膜快速加热的致密化、二元硒化物合成反应和晶体的液相辅助生长等物理化学过程,制备出柱状致密的大晶粒CIS薄膜太阳电池吸收层,玻璃衬底的单体(0.47 . Preparation of CIGS thin film non-vacuum technique they use different chemical reactions using an organometallic compound thermal decomposition method, a spray method were, precipitation sol - gel method or the like to prepare a variety of non-oxide nanoparticles, such as CuInSe2, CuGaSe , CuSe, In2Se3, the size of nanoparticles is controlled by controlling the reaction conditions of the process. selenide nanoparticles made to the core wrap of CuSe and In2Se3 pure selenium, the water-soluble solvent and formulated into a coating liquid, which was wet coating (screen printing or roller printing) dry film on the aluminum foil sputtered Mo film is deposited, after heating to evaporate the organic solvent, the precursor prepared diselenide film PV (photovoltaic) stage after rapid thermal processing (RTP) film material, which utilizes 18 (TC low melting point and 523 ° phase characteristics CuxSe medium temperature melting point C precursor diselenide film pure Se performs lots of pores diselenide precursor film rapidly heating densification binary selenides phase synthesis and crystal growth of other physical and chemical processes auxiliary prepared large crystal grain CIS thin film solar cell absorber columnar dense glass substrate monomer (0.47 0cm勺CIGS薄膜太阳电池的最高效率达到14.5%[4]。 Nanosolar公司申请有美国专利50多项,与上述相关的专利为US20070092648 (技术说明:CuSe代表富硒纳米微晶颗粒,CuxSe代表薄膜内各类硒化铜成份的总称,Cu2Se代表薄膜内真实的化学成份)。 0cm spoon maximum efficiency CIGS thin film solar cells reached 14.5% [4] Nanosolar Company U.S. Patent Application 50 has a number, relating to the above patent US20070092648 (technical description:. CuSe representative of selenium-enriched nanocrystalline particles within the film representative of CuxSe general term for all types of copper selenide components, Cu2Se represent the true chemical composition within the film).

在日本,T. Wada等人采用球磨法将单质Cu、 In、 Ga和Se的粉末混合物进行研磨,研磨过程中它们反应生成纳米Cu(In,Ga)Se2粉末,再与有机溶剂混合形成纳米颗粒涂料,被涂覆在Mo/玻璃衬底薄膜上,通过加热将有机溶剂除去;在正常大气压的惰性N2气体环境中加热处理,使玻璃衬底上该硒化物薄膜加热到550~570°C,多孔预置层硒化物薄膜烧结成致密的多晶薄膜,制备的电池转换效率为2.7%l5'6j。 Adopted in Japan, T. Wada et al ball milling the powder mixture elemental Cu, In, Ga and Se grinding, milling process they react to form nano Cu (In, Ga) Se2 powder, and then with an organic solvent to form the nanoparticles paint, is coated on a Mo / glass substrate a thin film, the organic solvent was removed by heating; N2 heat treatment in an inert gas atmosphere of normal atmospheric pressure, so that the diselenide film on a glass substrate is heated to 550 ~ 570 ° C, the porous layer pre-diselenide film sintered into a dense polycrystalline thin film, the conversion efficiency of the cells was prepared 2.7% l5'6j.

韩国国家能源研究所的K. Yoon「」所领导的研究小组将Qil、 M3和Gal3溶解在嘧啶中, Na2Se溶解在甲醇中,在低温氮气保护下混合反应生成约15nm的CIGS纳米粒子。 South Korea's National Energy Research Institute, K. Yoon '' led the research team will Qil, M3 and Gal3 dissolved in pyrimidine, Na2Se dissolved in methanol, of about 15nm generation CIGS nanoparticles at a low temperature nitrogen mixed reaction. 用有机溶剂调和成涂料,涂覆在基片的Mo衬底上,在快速热处理炉中进行二段式加热硒化,制备的薄膜电池效率为1.11%。 Blending an organic solvent into the coating, on a Mo coated substrate body, for two-stage heating selenide thin film cell efficiency was 1.11% in the preparation of a rapid thermal processing furnace.

电沉积法制备CIGS前驱硒化物薄膜的工艺是在酸性水溶液中以Mo衬底作为阴极,直接电沉积各类CIGS硒化物前驱薄膜。 Preparation of the CIGS precursor diselenide film in the electrodeposition of an acidic aqueous solution to the substrate Mo as a cathode, electrodeposition of various types directly diselenide CIGS precursor film. 美国国家可再生能源实验室(NREL)的Bhattacharya等人在氯化物溶液体系中,用一步法直接电沉积CIGS各元素而得到了富Cu硒化物前驱薄膜, 在真空硒气氛环境下对它进行热处理,同时蒸发沉积约占薄膜总量中50。 National Renewable Energy Laboratory (NREL) of Bhattacharya et al chloride solution system, with a direct one-step electrodeposition CIGS elements obtained Cu-rich diselenide precursor film, it is heat-treated in a Se atmosphere, a vacuum environment , while accounting for the total evaporative deposition film 50. /。 /. 的In、 Ga来调节薄膜化学成份的配比,使最终薄膜成份符合制备半导体器件的要求,制备的薄膜电池效率达到15.4%[81。 In, Ga, adjusting the chemical composition ratio of the film, the final composition of the film meet the requirements of making a semiconductor device, a thin film prepared in cell efficiency reached 15.4% [81. 但是,这种电沉积溶液不太稳定,放置一天便有大量溶质沉淀析出;另外,电沉积该硒化物前驱薄膜中Ga的含量很低,Ga/(In+Ga)之比仅0.1。 However, the electrodeposition solution is not stable, for one day provides ample precipitation of solute; Further, the electrodeposition diselenide precursor film is very low in content of Ga, Ga / (In + Ga) ratio of only 0.1. 通过加入氨基磺酸和苯二甲酸氢钾pH缓冲溶液后,有效改善了电沉积溶液的稳定性,其在工艺实用性方面获得了突破[9】, 薄膜中Ga/(In+Ga)之比可达到0.3-0.7,硒化物前驱薄膜在真空硒气氛环境下热处理,同时蒸发沉积约占薄膜总量5〜10。 By addition of the sulfamic acid and potassium hydrogen phthalate pH buffer solution, effectively improves the stability of the electrodeposition solution, which is obtained a breakthrough [9] the process in terms of practicality, the film Ga / (In + Ga) ratio up to 0.3 to 0.7, selenide Se precursor film in a vacuum environment, an atmosphere of the heat treatment, vapor deposition while about 5 to 10 of the total film. /。 /. 的In、 Ga来调节薄膜成份接近化学计量比,制备薄膜电池的效率达到9.4%。 In, Ga, adjusting the film composition close to the stoichiometric ratio, the efficiency of thin-film batteries prepared 9.4%. 如果电沉积CIGS前驱硒化物薄膜仅在H2Se气氛中进行热处理,然后用KCN溶液溶解掉薄膜中富Cu相的Cu2Se,不需要真空补充蒸发In、 Ga与Se成份的薄膜太阳电池效率达到6.2%[1()]。 If the electrodeposition CIGS precursor diselenide film only heat treatment in H2Se atmosphere and then dissolved KCN solution out Cu2Se thin film Cu-rich phase does not need to replenish evaporated in vacuo to In, the solar cell efficiency of Ga and Se components of the film is 6.2% [1 ()]. Bhattachaiya等人在美国申请与获得多项发明专利,其中,在中国获得的发明专利号为:96199008.2; Bhattacharya现在美国Solopower公司专门从事电沉积硒化物前驱薄膜与热处理制备CIGS薄膜电池光伏组件生产技术的研究开发,Sol叩ower公司获得风险投资3000万美元,建立了20MW的电沉积CIGS薄膜电池中试生产线。 Bhattachaiya et al in U.S. Application and obtained a number of patents, which patent No. in China obtained as: 96199008.2; Bhattacharya now U.S. Solopower specializes in electrodeposition diselenide precursor film and the heat treatment preparing CIGS thin film cells photovoltaic module production technology research and development, Sol knock ower company received $ 30 million venture, the establishment of a 20MW CIGS thin-film battery electrodeposition pilot production line.

IRDEP(Photovoltai'c Energy Development and Research Institute光伏能源开发研究所)作为法国CNRS(国家科学研究中心)、法国电力公司(EDF)和法国巴黎国立高等化学大学的联合研究单位(Unit6 Mixte de Recherche)成立于2005年。 IRDEP (Photovoltai'c Energy Development and Research Institute Photovoltaic Energy Development Institute) as the French CNRS (National Center for Scientific Research), Electricite de France (EDF) and the French National Higher chemistry at the University of Paris joint research units (Unit6 Mixte de Recherche) established in 2005. IRDEP-光伏能源开发研究所采取的主要工艺路线是电沉积CuInSe2再对其表面进行硫化,形成CnIn(Se,S)2的结构;近期冃标为:(1) 小面积电池的效率大于12%; (2)30x30cm2组件效率大于8%。 IRDEP- primary routing Photovoltaic Energy Development Institute taken electrodeposited CuInSe2 surface thereof and then vulcanized to form a structure CnIn (Se, S) 2; the recent marked Mao: Efficiency (1) a small area of ​​the cell is greater than 12% ; (2) 30x30cm2 assembly efficiency is more than 8%. 主要措施是在CIS中加入Ga 或S[ll'l2]。 The main measures S or Ga is added in the CIS [ll'l2]. 他们采用硫酸盐体系进行电沉积富Cu相CUInSe2薄膜的研究,再在S气氛中进行硫化热处理,获得大晶粒致密的柱状结构薄膜材料,然后用KCN溶液去除富Cu相。 Sulfate they use electrically study Cu rich phases CUInSe2 deposition film, and then heat treatment is performed in the vulcanization S atmosphere, a thin film material to obtain the columnar structure of large grain dense, then removed with a KCN solution Cu rich phase. 制备的电池最好效率为11.5%,衬底面积为30x30cm2时,电沉积的预置层的质量均匀,电池效率可达7%以上。 When the best cell efficiency of 11.5% was prepared, as the substrate area 30x30cm2, uniform quality of the electrical pre-deposited layer, the battery efficiency of up to 7%. 存在问题是:沉积的薄膜一般是富Cu薄膜,经过热处理后需要在KCN溶液中刻蚀或溶解掉薄膜中富Cu相的Cu2Se,它会影响薄膜表面的结构和电池pn结的质量。 Problems are: deposition of Cu-rich films are generally thin, etching or dissolving away the need Cu2Se thin film in the KCN Cu rich phase solution after heat treatment, it will affect the quality and cell structure of a pn junction surface of the film. 另外, 热处理过程中Mo与Se反应易形成较厚的MoSe[13]。 Further, during the heat treatment Mo reacted with Se easy to form a thick MoSe [13].

德国的A. Kampmann等人采用硫酸盐体系,对电化学沉积进行了长期研究,并在CIS Solartechnik公司建立了巻带式连续电沉积中试线。 German A. Kampmann et al kraft system, the research for a long electrochemical deposition, and the establishment of the tape in the CIS Solartechnik Volume continuous electrical company deposited in the test line. 在带宽为100mm金属薄巻带上进行CIGS 薄膜的制备,工艺过程:Mo、 Cu、钢、不锈钢薄作为薄膜电池的衬底,沉积阻挡层、溅射沉积Mo层,按顺序电沉积Cu-In-Ga后再蒸发沉积Se,最后Se层上蒸发沉积Na的化合物,然后进行快速升温热处理,形成CIGS薄膜,其工艺过程与真空溅射后硒化法的技术相似。 100mm bandwidth of a thin metal strip Volume CIGS thin film for preparing process: Mo, Cu, steel, stainless steel thin film batteries as a substrate, depositing a barrier layer, sputter deposited Mo layer, sequentially electrodeposited Cu-In -Ga after evaporation depositing Se, Na compound is deposited on the last evaporating Se layer, followed by flash heating heat treatment, CIGS thin film, which process after vacuum sputtering and selenization technology similar method. 不锈钢薄带上CIGS电池效率为10.4%(面积为1.0cm2),面积为13.3cm2的效率为6.6%[I4]。 CIGS thin stainless steel strip cell efficiency 10.4% (area 1.0cm2), an area of ​​13.3cm2 efficiency of 6.6% [I4].

从以上文献与专利说明书中我们可知,纳米涂料的涂覆过程决定其必须添加各种有机添加剂,以便使纳米粒子能够稳定、均匀地分散于溶剂中,并防止纳米粒子的絮凝,这些添加剂会在半导体薄膜中形成杂质缺陷,形成预置层的多孔、疏松结构。 From the above Patent Document specification we found that the nano-coating the coating process to determine their various organic additives must be added in order to stabilize the nanoparticles can be uniformly dispersed in a solvent, and to prevent flocculation of the nanoparticles, these additives will forming an impurity semiconductor film defects, pre-formed porous layer, loose structure. 涂料涂覆与干燥形成薄 Forming a thin coating is applied and dried

膜后,纳米粒子之间仅是切线式点接触,接触面积相对很小,使加热形成大晶粒致密薄膜时, 其反应动力学受到阻碍而使情况变得很复杂,因而其反应动力学在许多方面与粒子之间接触的表面积总数有关。 After the film, between the nanoparticles only tangential point contact, the contact area is relatively small, so that large grains dense film is formed is heated, the reaction kinetics which impeded the situation becomes very complicated, and therefore the reaction kinetics many aspects of the total surface area of ​​contact between the particles and the related. 氧化物纳米涂料需要两次加热步骤, 一次是疏松结构的氧化物还原成致密的金属合金,然后再加热硒化或在H2Se有毒气体中进一步硒化,制备的光吸收层成份均匀、 半导体带隙平整,硫化处理能够在表层形成梯度带隙和表层高阻的双性能p型半导体薄膜; 但是,其高温氢还原时间长,能源消耗大,存在爆炸的危险,其技术诀窍借鉴了真空溅射金属预置层后硒化制备薄膜电池的技术;硒化物纳米粒子的制备需要在有机溶剂中反应制备, 消耗大量的有机溶剂,易造成环境污染,相对成本较高;在非真空后处理的重熔结晶过程中, 依赖于预置层中低熔点组份的液相辅助再结晶过程的薄膜致密化机理,它借鉴了多元共蒸发气相沉积薄膜时晶体的液相生长技术,最终获得了柱状致密的大晶粒薄膜;但薄膜孔隙中遗留的涂料添加剂与夹杂等缺陷很难完全消除, Oxide nano-coating requires two heating steps, once the oxide is reduced to a loose configuration of dense metal alloy, and then further heated or selenide selenide H2Se the toxic gas, the homogeneous composition prepared light absorption layer, a semiconductor bandgap leveling, curing process can form a double performance p-type semiconductor film and the band gap gradient in the high resistance surface layer of skin; however, high-temperature hydrogen reduction for a long time, energy consumption, potential explosion hazard, know-how which draws vacuum sputtering of metal selenide film preparation techniques after pre-cell layer; prepared in an organic solvent to prepare selenide nanoparticles required, consume large amounts of organic solvents, easily resulting in higher pollution, the relative cost; remelting in a non-vacuum-treated crystallization, depending on the pre-layer of a low melting point component of the liquid phase densification mechanism auxiliary film recrystallization process, which draws the liquid phase crystal growth technique of thin film is deposited when the multicomponent vapor evaporated columnar compact finally obtained a large grain film; however, the pores of the coating film remaining additive inclusions and other defects is difficult to completely eliminate, 快速热处理制备的光吸收层成份均匀性较差, 薄膜表层的结晶质量不高,杂质与晶界复合较多而影响电池pn结的品质,使薄膜电池的开路电压Voc较低。 Rapid thermal light absorbing layer composition prepared poor uniformity, the crystal quality of the film surface layer is not high, the grain boundary impurities affect the quality of the battery more complex pn junction, the film open voltage Voc of the battery is low.

电沉积制备硒化物薄膜的特点:可对被沉积材料进行自纯化作用,可使用较低纯度的原材料,可根据沉积电位来改变预置层薄膜中的成份,便于形成梯度带隙分布,与涂覆法相比其预置层薄膜较致密。 Electrodeposition diselenide film features: the deposition material may be made to be self-purification effect, lower purity materials may be used, components can be changed according to the preset film layer deposition potential, to facilitate the distribution of the band gap gradient is formed, and the coating pre-plating method which compared with the thin film layer denser. 存在的问题是:Mo衬底在沉积初期发生化学置换反应而腐蚀、溶液中溶质的溶解度小,电沉积半导体硒化薄膜的电流密度相对较小,电沉积与涂覆法相比薄膜的沉积速度偏低、薄膜中含有人量的氧、溶液的稳定性依然存在着问题等,只有在H2Se或类H2Se气体中的处理才能有效地除去氧化物,这对消除有毒气体的使用增添了困难。 There is a problem: Mo a chemical displacement reaction substrate in the early deposition and etching, the solubility of the solute small, the current density of the semiconductor thin film electrodeposited copper selenide is relatively small, and the electrodeposition coating method, the deposition speed of the film as compared to partial low, the film containing human amount of oxygen, the stability of the solution problems still exist, processing can only class in H2Se or H2Se gas to efficiently remove the oxide, which adds complications to eliminate the use of toxic gases. 另一方面, 过度地追求电沉积硒化物前驱薄膜的成份要求符合薄膜电池的化学计量比是不恰当的,电沉积硒化物前驱薄膜中过量的高熔点硒化物会阻碍薄膜进一歩地致密化,薄膜中即使存在过量的CuSe(富铜结构),也不能在加热过程中产生明显的液相物聚集或凝聚、包裹其它颗粒而产生滑动、薄膜变形(致密化)或在薄膜表面析出;如果不沉积In、 Ga来中和掉多余Cu2Se,就需要KCN溶液通过浸润、溶解掉薄膜中的Cu2Se。 On the other hand, excessive pursuit of ingredients in claim electrodeposition diselenide precursor film of stoichiometric thin film battery is not appropriate ratio, electrodeposition diselenide precursor film in excess of melting point diselenide hinder film into a ho densified, even if the film excess CuSe (Cu-rich structure) is present, can not produce significant aggregation or agglomeration of the liquid phase, and sliding wrapping other particles, film deformation (densification), or precipitated on the film surface during the heating process; if not deposited in, Ga Cu2Se to neutralize excess, it is necessary KCN solution through infiltration, the film was dissolved out of Cu2Se.

发明内容 SUMMARY

本发明是鉴于上述技术在工业化生产过程中实际存在的问题而构成的,它提供了一种低成本制备CIGS薄膜电池硒化物前驱膜与快速硒硫化热处理直接制备薄膜太阳电池的方法。 The present invention is made in view of the industrial production process of the above technical problems and the actual configuration, it provides a low cost method for preparing CIGS thin film cells selenide, selenium sulfide precursor film rapid heat treatment of thin film solar cells prepared directly. 可用于低成本纳米涂料印刷滚涂法或水浴电沉积前驱硒化物薄膜直接快速硒硫化处理,并连续化地进行薄膜电池后续工序的生产,制备出高效无镉CIGS薄膜太阳电池集成光伏组件。 It can be used for low-cost nano-coating method or a printing roll electric water bath deposition precursor diselenide film directly treated quickly selenium sulfide, and continuous production of thin film batteries perform a subsequent step, the efficient preparation of CIGS thin film solar cell without cadmium integrated photovoltaic components. 该薄膜太阳电池的光吸收层是通过真空快速热处理使疏松或多孔微晶前驱体薄膜熔融、颗粒间浸润、液相辅助晶体合成反应生长的同时,进行金属靶反应溅射In2Se3与/或In2S3,使薄膜整体成份由富铜转变为贫铜结构,微量过剩的In2S3在薄膜电池吸收层的表面生成高阻OVC(有序缺陷黄铜矿)结构的n-Cu(In,Ga)3(Se,S)5,构成了低成本制备薄膜电池的pn浅埋结和双性能光吸收层;由于硒化物前驱薄膜中Ga和S元素分别在Mo背电极处与薄膜表层均有较高含量或其中Ga呈V型分布,快速硒硫化热处理后,该薄膜的半导体带隙在薄膜厚度的纵深方向呈现V型分布,薄膜表面具有pn浅埋结。 The light-absorbing layer film solar cells by vacuum rapid thermal melting microcrystalline precursor thin film or a porous loose, inter-particle infiltration while the auxiliary liquid crystal grown synthesis reaction, the reactive sputtering of metal targets In2Se3 and / or In2S3, the film changes from the overall composition of copper-rich copper-depleted structure, In2S3 generating excessive high resistance trace OVC cell absorber layer surface of the film (the defect chalcopyrite ordered) configuration of n-Cu (in, Ga) 3 (Se, S) 5, constitutes a pn junction produced at low cost in shallow and thin film battery performance dual light absorbing layer; diselenide precursor film because of Ga and S are the elements Mo film and the back surface electrode has a higher content of Ga or wherein V-shaped profile, selenium sulfide after flash heat treatment, the film exhibits a V-type semiconductor band gap in the depth direction distribution of the film thickness, the film having a surface in shallow pn junction. 随着基片温度的降低,再在光吸收层上反应溅射沉积n型高阻本征i-In(OH,S)/ZnS(0,OH)/ZnO(S)透明缓冲层与i层。 As the substrate temperature is lowered, then the light absorbing layer is deposited by reactive sputtering on the n-type high resistance intrinsic i-In (OH, S) / ZnS (0, OH) / ZnO (S) and the i-layer, a transparent buffer layer . 随后溅射沉积低阻透明n-ZnO:Al薄膜构成电池的n型导电层,就完成了此类低成本硒化物前驱薄膜制备CIGS 薄膜电池较完整的pin构造,它与共蒸发最高效率(19.9%)的CIGS薄膜电池理论模型与实际结构呈现了较明显的一致性。 Followed by sputter depositing a transparent low-resistance n-ZnO: n-type conductive layer Al film constituting the battery, to complete the cost of such a precursor film prepared diselenide CIGS thin film cells more complete pin configuration, which co-evaporated highest efficiency (19.9% ) CIGS thin film cells theoretical model and the actual structure presents obvious consistency.

本发明的另外目的是提供一种用于CIGS薄膜太阳电池的制造工艺,与过去的真空法相比,可大幅度降低前期制造设备的投入,大幅度提高薄膜太阳电池制造过程中稀散贵金属原材料的利用率,降低了制造过程的能源消耗,縮短与简化了制造工艺环节,揉合了共蒸发与溅射预置层后硒化制备薄膜电池的技术优势,提升了低成本制备方法生产薄膜电池的品质, 从而降低CIGS类薄膜太阳电池的原材料与制造成本,促使太阳能电池获得更广泛地应用。 Further object of the present invention is to provide a manufacturing process for CIGS thin film solar cell, compared with the previous vacuum method, can significantly reduce the pre-investment in manufacturing equipment, a substantial increase in the use of thin-film solar cell manufacturing process scattered noble metal raw materials rate, reduce the energy consumption of the manufacturing process, the manufacturing process is simplified and shortened links, coevaporated blend of the pre-sputtering technical advantages selenide layer film was prepared cells, enhance the quality of films produced at low cost method for producing a battery , thereby reducing the cost of raw materials and manufacturing CIGS based thin film solar cell, the solar cell causes a more widely used.

为解决上述课题,本发明提供了非真空低成本法制备薄膜电池的硒化物前驱薄膜与快速硒硫化热处理制备薄膜太阳电池的方法,其主要特征在于:(l)在刚性衬底基片的钼电极薄膜上顺序涂覆纳米硒化物涂料与干燥成膜,或顺序电镀(或电沉积)不同组份纳米微晶硒化物前驱薄膜,该硒化物前驱薄膜成份与构造分别是:(CuGaSe2+CuSe)、 (Ga2Se3+CuSe)、 In4Se3(或In2Se3+CuInSe2)、 CuSe[或(CuSe+Ga2Se3)、 (CuSe+CuGaSe2)]的顺序取舍式组合;(2)制备了该硒化物前驱薄膜的一摞刚性基板被放置于真空室内的气密空间中,通过从室温至29(TC高真空加热、注入氢气,再抽至高真空与注入氢气的多次操作和最后注入氩气+氢气的第一氢化预处理工序;(3)第二硒化处理,将该摞基片由上而下或由下而上地平行移动,分别一片片地推入另一相对的气密空间,先启动基片底部的加热,并 In order to solve the above problems, the present invention provides a low cost method for a non-vacuum film diselenide precursor film prepared cell preparation with rapid heat selenium sulfide thin film solar cell, which is primarily characterized by: (l) a rigid substrate in a molybdenum substrate the upper electrode film sequentially coated nano diselenide coating and drying a film, or sequential electroplating (or electrodeposition) different compositions nanocrystalline diselenide precursor film, the precursor film composition and configuration of the selenides they are: (CuGaSe2 + CuSe) , (Ga2Se3 + CuSe), In4Se3 (or In2Se3 + CuInSe2), CuSe [or (CuSe + Ga2Se3), (CuSe + CuGaSe2)] in order to choose the formula composition; (2) a stack of the rigidity of the diselenide precursor film prepared the substrate is placed in an airtight space of the vacuum chamber, the argon gas was injected through the final first hydrogenation + pretreatment hydrogen from room temperature to 29 (TC heating under high vacuum, hydrogen was injected, a high vacuum pulls out multiple operations with injection of hydrogen and step; (3) a second selenization process, the top-down or bottom substrate bundle moved in parallel, respectively, opposite one another felled pushed airtight space, start heating the bottom of the substrate , and 向第二气密空间导入类H2Se气体,在保持足够的硒气压(20〜80kPa)时,对移动中的基片进行上下快速加热或上部扫描式加热与底部随基片移动的固定方式加热、升温,基片木身始终保持在35(TC〜58(rC,基片表层由于高功率辐射热源的移动式扫描加热,前驱硒化物薄膜会快速升温到350'C〜110(TC,促使硒化物前驱薄膜中Cu《Se/与Iri4Se3相受热快速融化(523。C液化),辅助CIGS薄膜晶体液相反应生长和薄膜自身的致密化,大晶粒致密的CIGS薄膜生成后,其表层会渗出微量或吸附着多余液相CuxSe; (4)第三硒硫化处理,基片衬底在52(TC〜58(TC适宜温度时,将基片运动转移至溅射位置,调节气密空间气压至0.3〜25Pa,通过反应溅射In2Se3或In2S3中和反应掉基片表层多余的液相CuxSe,严格控制基片表面CIGS薄膜成份由富铜转变成贫铜结构过程中In2Se3或Iii2S3的溅射量;(5)第四硒化处理, Introducing to the second airtight space based H2Se gas, while maintaining sufficient pressure selenium (20~80kPa), for moving the substrate vertically fixed manner rapid heating or heating the bottom on scan with moving the substrate is heated, heating the substrate in the timber itself remain 35 (TC~58 (rC, the substrate surface since the mobile scanning a radiant heat source heating the high-power, precursor diselenide film quickly warmed to 350'C~110 (TC, prompting selenides after precursor film Cu "Se / Iri4Se3 and heated with rapid melting (523.C liquefaction), the auxiliary liquid crystal CIGS thin film densification reaction itself, large grains generate dense CIGS thin film growth and film, the surface layer will leak trace excess liquid or adsorbed CuxSe; (4) a third processing selenium sulfide, in the base substrate 52 (TC~58 (TC when the appropriate temperature, the substrate was transferred to a sputtering position movement, the air pressure to adjust the air-tight space 0.3~25Pa, or by reactive sputtering In2Se3 In2S3 and reacted in the surface layer of the substrate excess liquid CuxSe, strict control of the surface composition of the substrate CIGS thin film converted into a sputtering amount of copper-rich copper-depleted structure during the In2Se3 or Iii2S3; (5) fourth treatment selenide, 反应溅射结束后,增大气密空间导入类H2Se气体量, 使其环境硒气压达20〜80kPa时,高功率辐射热源对基片进行更快速度的热扫描;(6)第五高温硫化处理,排空类H2Se气体后,重新注入反应溅射气体H2S+Ar,维持气压在0. 3〜25Pa, 基片移动至溅射位置后进行反应溅射Tn2S3,它在薄膜表层生成n型Cu(ImiGajSSe或Cu(Ini-yGay)3(Sei—xSx)5高阻层;在上述快速硒硫化热处理的操作过程中,第二气密空间交替充入类H2Se气体或H2S+Ar气体,中间进行过高真空排气,其气压有升有降;(7)将经过快速硒硫化热处理后的基片转移至第三气密冷却空间;这样,第一空间整摞基片在经过快速硒硫化热处理后归入第三冷却空间,该空间注入有Ar+H2S混合气体,保证基片衬底逐渐由58(TC下降至ll(TC过程中,'CIGS薄膜材料内硒硫元素不流失;(8)降温后的基片分别被推入第四气密空间,进行金属 After completion of the reaction sputtering, increasing the amount of gas introduced into the airtight space based H2Se, so that the ambient pressure of selenium 20~80kPa, high power radiant heat to heat the substrate faster scanning speeds; (6) a fifth high temperature vulcanization after evacuating based H2Se gas, the sputtering gas is reinjected into the reaction H2S + Ar, the pressure is maintained at 0. 3~25Pa, reactive sputtering Tn2S3 after sputtering the substrate is moved to a position, which generates an n-type surface layer of the Cu film ( ImiGajSSe or Cu (Ini-yGay) 3 (Sei-xSx) 5 high resistance layer; selenium sulfide during operation of the rapid heat treatment, are alternately charged into the second airtight space based H2Se gas or H2S + Ar gas intermediate been high vacuum exhaust, an air pressure rise and fall; (7) will be transferred to the cooling space after the third airtight rapid heat selenium sulfide substrate; Thus, the entire space of the first substrate stack after heat treatment is fast selenium sulfide classified third cooling space which is impregnated with a mixed gas of Ar + H2S ensure gradually from the base substrate 58 (TC decreased to ll (TC process, the CIGS thin film material without loss of selenium sulfur '; cooling (8) after the fourth substrate are pushed into the airtight space, metallized 反应溅射沉积薄膜电池的高阻本征In(OH,S)/ZnS(0,OH)/ZnO(S)缓冲层与i 层,二或三对纯金属溅射耙的材质与反应气体的搭配是:In/(Ar、 H2S与H20)、 Zn/(Ar、 H2S 与1120)和Zn/(Ar、 H2S与02或C02),溅射过程中基片衬底的温度控制在11(TC〜350。 In the reaction of the intrinsic high impedance sputter deposition of a thin film battery (OH, S) / ZnS (0, OH) / ZnO (S) buffer layer and the i-layer, two or three pure metal sputtering target material and the reagent gas mix is: in / (Ar, H2S and H20), Zn / (Ar, H2S and 1120) and Zn / (Ar, H2S and 02 or C02), the temperature of substrate during sputtering over the substrate is controlled to 11 (TC ~350. C;溅射完成后气密空间被抽至高真空状态,启动高功率辐射热源快速扫描基片表面;(9)将反应溅射沉积了高阻缓冲层后的基片分别归入第五冷却空间;基片冷却后就可转入下一激光加工处理或机械划线的电池集成组件的电极串联连接工序,或沉积低阻透明导电Zn0:Al薄膜工序。 C; After the completion of sputtering airtight space is evacuated to a high vacuum state, a high-power irradiation start fast scan source substrate surface; (9) the reactive sputtering deposition of the high resistance buffer layer after the substrate are included in the cooling space V ; after cooling, the substrate can be transferred to the next step of series-connected battery electrode assembly integrated laser processing or mechanical scribing, or depositing a transparent conductive low resistance Zn0: Al thin film process.

根据本发明可知,前驱硒化物薄膜是按一定顺序涂覆或滚涂纳米硒化物涂料与干燥成膜的,或顺序水浴电沉积制备纳米微晶硒化物前驱薄膜而获得的,这些硒化物前驱薄膜的成份分别是:CuGaSe2、 Ga2Se:i、 CuInSe2、 CuSe、 I仏Se3或In2Se:1的排列组合,其中仅富硒CuSe和贫硒ImSe3是低熔点(523'C)的硒化物,它们是硒化物前驱薄膜中不可缺少或必备成份,决定着能否让疏松的硒化物薄膜经过快速硒硫化热处理后,直接制备出大晶粒致密的吸收层薄膜。 According to the present inventors, the precursor diselenide film is a certain order coating or roller nano selenide coating and drying a film, or serially water bath electrodeposited nanocrystalline diselenide precursor film obtained by these selenide precursor film ingredients are: CuGaSe2, Ga2Se: i, CuInSe2, CuSe, I Fo Se3 or In2Se: permutations 1, wherein only the lean selenium and selenium-enriched CuSe ImSe3 a low melting point (523'C) selenide, which is Se compound or precursor film indispensable prerequisite components, determine whether to let loose diselenide film after heat treatment quickly selenium sulfide, prepared directly dense absorbent layer film large grains. 也就是说,必须通过多种二元(含少量三元)硒化物微晶颗粒之间进行合成反应,才能使前驱硒化物薄膜最终生成四元柱状、大晶粒致密的PV(光伏)级薄膜,其中均要利用合成反应过程屮较低熔点二元硒化物CuSe和/或In4Se3(523°C)的固液相晶体反应生长机制,并且不能让前驱硒化物薄膜中高熔点固相硒化物(Ga2Se3、 CuInSe2、 CuGaSe2、 In2Se3)阻止薄膜中低熔点硒化物微晶颗粒熔化、浸润、液相包裹着高熔点颗粒所导致的细观滑动、微观孔洞被填平或堵塞等薄膜的塑性变形过程与密实化进程。 That is, the synthesis reaction must be carried out between more dicarboxylic diselenide crystallite particles (containing a small amount of three yuan), to make a final precursor diselenide film generates four yuan columnar, dense large grains PV (photovoltaic) grade film which are to a synthetic reaction Che low melting point binary selenide compound CuSe and / or In4Se3 (523 ° C) of the solid-liquid crystal grown by the reaction mechanism, and does not allow the precursor diselenide film high-melting solid phase selenide (Ga2Se3 , CuInSe2, CuGaSe2, In2Se3) to prevent the low melting point film diselenide crystallite particles melt infiltration, high-melting liquid phase slidably wrapped meso particles caused by the microscopic hole clogging or the filled film and plastic deformation compacting process.

在本发明中,纳米硒化物涂覆、滚涂的前驱薄膜中难免夹杂高分子有机物,水浴电沉积硒化物薄膜中夹杂着约15%以上的氧化物,它们均需要通过从室温至29(TC高真空加热、注入氢气,抽至高真空与注入氢气的多次操作工序和最后注入氩气+氢气的第一氢化预处理工序;硒化物前驱薄膜在29(TC温度以下时,其内部发生合成反应几率较小,有利于多孔薄膜的表面与内部微晶吸附气体被脱附、部分氧化物被还原,加热使夹杂的有机物挥发或脱附等工艺措施均是必须的,硒化物前驱薄膜材料在正式快速加热前被调制到电子级高纯态对后续薄膜的重结晶制备半导体器件是非常有益的。第二气密空间导入类H2Se气体前被抽至IX 10—3Pa以上的高真空,在与第一气密空间气压平衡后,打开两室之间的闸板阀,将第.室内的一片基片推入快速硒硫化热处理室内的气密空间并 In the present invention, the nano-selenide coated roll of precursor film inevitably mixed organic polymer, a water bath electrodeposition diselenide film mixed with about 15% or more of oxides, which are required to pass from room temperature 29 (TC heating under high vacuum, hydrogen was injected, injection of hydrogen to full vacuum with multiple operating step and finally into a first hydrogen + argon hydrogenation pretreatment step; diselenide precursor film 29 (when the temperature TC, its synthesis reaction occurs inside the probability is small, the porous film is conducive to the inner surface of the microcrystalline adsorbed gas is desorbed, part of the oxide is reduced, or heated to desorb volatile organic substances such inclusions process measures are necessary, selenide film material precursor official before rapid heating to a modulated state of high purity electronic grade prepared by recrystallization subsequent thin film semiconductor device it is very useful. IX is evacuated to a high vacuum over 10-3Pa based H2Se gas prior to introduction into the second airtight space, the first an airtight space after the pressure balance, opening the gate valve between the two chambers, the first indoor substrate of a quickly pushed into the airtight space selenium sulfide and a heat treatment chamber 闭闸板阀,继续导入类H2Se气体至50〜80kPa的气压后,就可进行第一硒硫化处理工序;类H2Se气体成份的组成为:30%〜50% 氩气、25%〜35%氢气、15%〜45%H2Se。在保持足够硒气氛的前提下,对移动中的基片先下后上或上下同时快速扫描式加热与升温,基片自身保持在350'C〜58(TC的温度范围,高功率辐射热源使基片表层的前驱硒化物薄膜快速升温到35(TC〜110(TC,促使硒化物前驱薄膜中间的微晶CuSe和/或In4Se3快速受热融化(523'C液化)辅助CIGS薄膜晶体的液相反应生长,薄膜自身经历着重熔与再结晶的致密化过程,快速加热促进了前驱硒化物薄膜内发生化学合成反应,最终生成高熔点、大晶粒致密的CIGS薄膜。由于制备硒化物前驱薄膜时对成份严格要求为富铜结构,表层有意识地安排较多的微晶CuSe,快速加热后表层会渗出微量液相CuxSe,此时衬底基片应该维持在520'C〜58 After closing the gate valve, the air injection pressure continues to 50~80kPa based H2Se gas, the process can be a first step selenium sulfide; H2Se gas component class consisting of: 30% ~ 50% argon, 25% ~ 35% hydrogen , 15% ~45% H2Se. selenium in maintaining adequate atmosphere, or rear vertical rapid heating and temperature rise of the scanning movement of the first substrate, the substrate is itself held in 350'C~58 (TC of temperature range, high power radiant heat source substrate surface layer precursor diselenide film quickly warmed to 35 (TC~110 (TC, causes the intermediate selenide film precursor microcrystalline CuSe and / or fast heat melting In4Se3 (523'C liquefaction) the reaction liquid crystalline auxiliary CIGS thin film growth, the film itself undergoing densification and reflow recrystallization, chemically synthesized to promote rapid heating reaction within a precursor diselenide film ultimately produce high melting point, large grains CIGS thin film dense. Since the preparation of the precursor film diselenide stringent requirements on the composition of the copper-rich structure, a surface layer arranged more conscious microcrystalline CuSe, seeps skin after rapid heating trace liquid CuxSe, this time should be maintained in the substrate body 520 ' C~58 (TC,基片底部加热器处于恒功率控制状态。3 整个基片完全生成CIGS大晶粒致密薄膜时,其表面会吸附着多余的液相Cu2Se,降低环境中硒气压至0.3〜15Pa,基片转移至反应溅射区域,进行反应溅射In2Se3或In2S3,严格监控基片表层多余液相Cu2Se被反应中和掉时或薄膜中铜含量降低到24.5%时,恒功率加热条件下基片薄膜表面的物理状态会出现非常明显的变化,即CIGS薄膜成份由富铜转变成贫铜结构的过程中溅射In2Se3或In2S3的量需要精确地监控。 When (the TC, a bottom substrate heater constant power control state in the entire substrate .3 CIGS large grain generated completely dense film, the surface will Cu2Se adsorbed excess liquid, to reduce the ambient pressure selenium 0.3~15Pa, group sheet transferred to the reaction zone sputtering, reactive sputtering or In2Se3 In2S3, strict monitoring of the surface layer when the substrate is Cu2Se excess liquid out of the reaction and the film or when the copper content is reduced to 24.5%, the substrate film at a constant heating power the physical state of the surface will be very significant changes, i.e., CIGS thin-film component by the transition process to the copper poor copper-rich structure in an amount of sputtering or In2Se3 In2S3 requires precise monitoring.

由于硒化物前驱薄膜木身是疏松结构,其传导热的性能被限制;本发明优选先从底部加热与升温,硒化物前驱薄膜中接近钼薄膜的CuGaSe2+CuSe与Ga2Se3在38(TC开始合成反应, 薄膜屮少量CuGaSe2作为高熔点硒化物的仔晶,诱导CuxSe与Ga2Se3在其周围反应生成宽带隙CuGaSe2大晶粒薄膜,致使基片的钼薄膜被大晶粒CuGaSe2相互连接成片而覆盖;另一方面, CUGaSe2屮微量镓与钼容易反应生成金属化合物,极大地改善CIGS薄膜与背电极钼薄膜之间的接合力,阻止背电极钼元素继续与过量的硒反应生成MoSe。如果此时上部(或外部)的高功率辐射热源快速扫描硒化物前驱薄膜,其表面就会产生融熔、颗粒间浸润、塌陷或收縮等现象,高熔点Cu(In, Ga)Se2微晶会诱导低熔点液相CuxSe和ImSe:,与Ga2Se3在其周围反应生长成CIGS大晶体薄膜,各大晶粒间的晶界被消融,前驱薄膜底部与表层Ga与I Since diselenide precursor film wood itself is a loose structure, which conducts heat performance is limited; the present invention preferably start with bottom heating and warming, diselenide precursor film close molybdenum films CuGaSe2 + CuSe and Ga2Se3 in 38 (TC starts synthesis reaction , a small amount of CuGaSe2 high melting point film Che selenide of seed, induction CuxSe reacted with a wide band gap Ga2Se3 CuGaSe2 film around the large grains, resulting in a molybdenum film substrate are interconnected into large grains CuGaSe2 and the cover sheet; other in one aspect, CuGaSe2 Che micro gallium readily reacts with the molybdenum metal compound, greatly improving bonding force between the CIGS thin film and the molybdenum back electrode film, a molybdenum back electrode elements continue to prevent excessive selenium reacts with MoSe. If the upper case ( or external) source of high-power irradiation fast scan diselenide precursor film, the surface thereof will have melted, infiltrated between particles, shrinkage or collapse phenomena, high-melting Cu (in, Ga) Se2 crystallites induces a low melting point liquid phase CuxSe ImSe :, and Ga2Se3 and at around the reaction grown into large crystals CIGS film grain boundaries between the grains of the major ablated, the precursor film and the bottom surface of Ga and I n元素相互扩散, 在大晶粒薄膜深度方向自然形成平滑的成份梯度分布与半导体梯度带隙,多余或过量的液相Cu2Se吸附在大晶粒CIGS薄膜的表层,被随后溅射的Iri2Se3或In^中和反应掉;加大注入类H2Se气体的量,使环境气压达20〜80kPa时,再次启动高功率辐射热源快速扫描基片表面, 基片表层的薄膜快速熔融削除了各大晶粒间的晶界,晶粒内Cu2Se、 In2Se3等杂相物被溶解, 填平了晶界之间低洼处与抹平了大晶粒表面的凸起部,使CIGS薄膜断面的晶体非常完整、薄膜的微观表面也很平滑,降低了薄膜电池中有效的晶界复合,提高了电池开路屯压Voc;排空类貼e气体后重新注入H2S气体,溅射沉积Iri2S3后的薄膜表层生成n型Cu (In^Ga,)SSe或Cu(In卜yGay)3(SeH,Sx)5高阻层,其厚度大约20〜40nm,形成薄膜电池同质浅埋结或双性能光吸收层,改善了薄膜电池结特性与抑制漏电流, n interdiffusion of elements, ingredients naturally smooth surface gradient distribution of the semiconductor band gap gradient, redundant or excess liquid absorbed Cu2Se thin film CIGS large grains in the film depth direction of the large grains, or by subsequent sputtered In Iri2Se3 ^ and reacted; when increasing the injection amount based H2Se gas, so that the ambient pressure of 20~80kPa, high-power irradiation start source again quickly scan the surface of the substrate, the substrate surface layer between the thin film in addition to major fast fusing die cut grain boundaries, the grain Cu2Se, In2Se3 other hetero phase was taken up, filled with a low-lying portion of the projection smooth surface between a large crystal grain boundary, the crystal cross-section is complete CIGS thin film, the film microscopic surface is very smooth, reduces the effective grain boundary in the composite thin film battery, the battery open circuit increases the voltage Voc village; H2S gas reinjected e paste based gas evacuation, the film surface after the sputter deposition Iri2S3 generating an n-type Cu ( In ^ Ga,) SSe or Cu (In BU yGay) 3 (SeH, Sx) 5 high resistance layer having a thickness of approximately 20~40nm, a thin film battery homogenous performance in shallow junctions or light absorbing double layer film is improved batteries junction leakage current suppression characteristics, 高了薄膜电池光电转换效率。同理,随着基片CIGS薄膜的自然冷却,启动溅射电池缓冲层的n型本征高阻In(OH,S)/ZnS(0,OH)/ZnO(S) 薄膜后,第四气密空间抽至高真空后,启动高功率辐射热源快速扫描基片表面,使溅射沉积缓冲层材料中的气体脱附、薄膜晶粒间更密实和锌硫元素向P型CIGS薄膜表层扩散,改善了薄膜电池pn结内建电场区的品质。 High photoelectric conversion efficiency thin film battery. Likewise, with the natural cooling of the substrate film CIGS, starting intrinsic high resistance n-type buffer layer In the battery sputtering (OH, S) / ZnS (0, OH) / ZnO ( S) after the film, after the fourth full vacuum airtight space, a high-power irradiation start heat quickly scan the surface of the substrate, the gas desorption sputter deposited buffer layer material, more dense and zinc to sulfur between the film grain P-type diffusion CIGS thin film surface, improving the quality of the built-in pn junction thin-film batteries field region.

在本发明第一氢化预处理过程中,也可以加设遮断氢气供给,快速丌启气密空间阀门的真空排气工序;通过该真空排气工序,气密空间暂时会成为高真空状态,加热与高真空使硒化物前驱薄膜中夹杂的有机物再次挥发或脱附,重新注入氢气使活性高的氢气与硒化物前驱膜中的氧化物反应,使硒化物前驱薄膜材料尽可能地被还原成电子级高纯态,彻底削除薄膜中有机物的夹杂,减少氧化物的存在。 In the first pre-hydrogenation process of the present invention, it may be added provided the hydrogen supply shut off, the rapid start evacuation step Ji valve airtight space; through the evacuation process, the airtight space temporarily becomes a high vacuum state, heating high vacuum so diselenide precursor film entrained organics again volatilized or desorbed, re-implantation of hydrogen in the oxide highly reactive hydrogen selenide precursor film, so selenide precursor film material is reduced to electrons as possible grade high-purity state, mixed thoroughly deleted organic film, reducing the presence of oxides. 同理,第二、三、四气密空间的真空室内同样也设有真空排气机构,可以进行真空排气操作程序,它被用来调整薄膜中的某些状态。 Similarly, the second, three, four vacuum chamber is also provided with the airtight space vacuum evacuation means may be a vacuum vent operating program, which is used to adjust some of the state of the film.

因此,通过本发明制造的低成本硒化物前驱薄膜经过快速硒硫化热处理制备的CIGS薄膜人阳电池,能够可靠地获得黄铜矿型薄膜太阳电池特征性的光电转换效率,随着技术的不断完善,其性能将达到真空共蒸发制备薄膜电池的水平。 Thus, the CIGS thin film human cost diselenide precursor film produced by the present invention, the heat treatment after the rapid preparation of selenium sulfide male cell, can be reliably obtained photoelectric conversion efficiency of the solar cell characteristics of the chalcopyrite thin film, as technology continues to improve , its performance will reach the vacuum level of co-evaporated thin film battery was prepared.

木发明的其它目的、优点和新特征的部分将在下面的说明书中陈述,并且该部分对本领域的技术人员来说,通过对下面附图说明、具体实施方法和案例的研究是容易了解的。 Other portions of objects, advantages and novel features of the invention will be set forth in the wood in the following specification and the portion of skill in the art that, by the following accompanying drawings in the case study of specific embodiments and methods are easy to understand.

附图说明 BRIEF DESCRIPTION

图1所示是一般CIGS类薄膜太阳电池各层结构的简图; As shown in FIG. 1 is a schematic configuration of a solar cell layers generally CIGS-based thin film;

图2是本发明低成本前驱硒化物薄膜与快速硒硫化处理制备的薄膜太阳电池结构简图; 图3所示是本发明的低成本硒化物前驱薄膜进行快速硒硫化热处理制备CIGS薄膜太阳 FIG 2 is a configuration diagram of a low-cost thin film solar cell of the present invention, the precursor vulcanization diselenide film prepared selenium rapid processing; FIG. 3 is the preparation of CIGS thin film solar heat cost diselenide precursor film of the present invention is shown in fast selenium sulfide

电池的光吸收层的原理简图; Simplified schematic of the light absorbing layer cell;

图4所示是本发明制备CIGS薄胰太阳电池光伏集成组件生产工序的主流程简图。 Figure 4 shows the preparation of the present invention is a main flow diagram of CIGS thin integrated photovoltaic solar cell module production trypsin step. 其中, among them,

图4(a)反应溅射金属硅、钛靶制备SiO、 TN与SiN等碱阻挡层;图4(b)溅射制备Mo电极层;图4(c)激光切割钼薄膜均分背电场制备各子电池的电极;图4(d)纳米涂料顺序滚涂制备或顺序电沉积制备硒化物前驱薄膜;图4(e)硒化物前驱薄膜氢化预处理;图4(f)硒化物前驱薄膜在硒气氛环境中重熔再结晶;图4(g)液相Cu2Se被反应溅射In2Se3或Iri2S3中和掉、高功率辐射热源快速扫描后重熔消除晶粒间晶界与抹平薄膜的高低凹凸表面,然后溅射In2S3生成高阻n 型Cu(InGa)3(SeS)5;图4(h)反应溅射铟锌靶制备In(OH,S)/ZnS(0,OH)/ZnO(S)薄膜电池的缓冲层;图4(i)激光照射处理接触电极;图4(j)溅射透明导电ZnO:Al层;图4(k)激光照射反爆冲切割透明电极层;图4(1)CIGS薄膜电池光伏集成组件电极引线、封装。 FIG. 4 (a) reactive sputtering of metal silicon, titanium target was prepared SiO, TN and a base such as SiN barrier layer; FIG Preparation 4 (b) sputtered Mo electrode layer; preparing a molybdenum thin film back-surface field average FIG. 4 (c) laser cutting electrode of each sub-cell; FIG. 4 (d) nano-coating sequentially roll prepared or sequential electrical prepared selenide sediment precursor film; FIG. 4 (e) selenide precursor film hydrogenation pretreatment; FIG. 4 (f) selenide precursor film Se atmosphere environment remelting recrystallization; FIG. 4 (g) is a liquid phase reactive sputtering Cu2Se and In2Se3 Iri2S3 or off the high power radiant heat to eliminate the fast scan reflowed height of the textured grain boundary film with smooth surface, and then generates a high-resistance n-type sputtering In2S3 Cu (InGa) 3 (SeS) 5; (h) in FIG. 4 reactive sputtering indium zinc target was prepared In (OH, S) / ZnS (0, OH) / ZnO (S ) buffer layer thin film battery; FIG. 4 (i) contacting the laser irradiation treatment electrode; FIG. 4 (j) sputtering a transparent conductive ZnO: Al layer; FIG. 4 (k) anti-blowup irradiating laser cutting the transparent electrode layer; FIG. 4 ( 1) CIGS thin-film solar cell integrated electrode lead assembly, packaging.

图5(a)所示是纳米涂料印刷滚涂法或水浴电沉积法制备前驱硒化物薄膜快速硒硫化热处理制备薄膜电池光吸收层、缓冲层与i层装置的原理结构简图;图5(b)硒化物前驱薄膜通过(本发明方法制作的)直列式快速硒硫化热处理装置的原理简图;图5(c)薄膜电池光吸收层的表面连续地制备高阻缓冲层与本征i层;图5(b)、图5(c)分别是图5(a)大系统装置中32a和34a两个部件的放大图。 FIG 5 (a) is shown in nano-coating method or a printing roll Preparation of water bath electrodeposition precursor diselenide film heat-treated film was prepared quickly selenium sulfide cell light-absorbing layer, the principle structure diagram of the buffer layer and the i-layer of the device; FIG. 5 ( b) selenide film precursor by (made by the method of the present invention) inline rapid thermal processing apparatus selenium sulfide principle sketch; FIG surface 5 (c) thin film cell light-absorbing layer is continuously high resistance buffer layer and the intrinsic i-layer preparation ; FIG. 5 (b), FIG. 5 (c) are (a) a large system of apparatus 32a in FIG. 5 and an enlarged view of two members 34a.

具体实施方法 DETAILED DESCRIPTION Method

本发明制造的低成木前驱硒化物薄膜太阳电池(图2所示)与传统黄铜矿型类CIGS薄膜太阳电池的基木结构(图1所示)是相同的,仅在制造途径或方法上存在一些差异,用非真空低成本方法先制备出硒化物前驱薄膜,再进行真空快速硒硫化热处理直接地制造出薄膜电池p 型光吸收层(图3所示)、薄膜电池pn结区的缓冲层与i层,就可转入薄膜太阳电池集成组件的内联式电极串联连接的划线工序(电池底电极与面电极串联连接),或继续沉积n型低阻透明的窗口层ZiiO:Al,制备出常规实验室检测用单体薄膜太阳电池。 Low-cost wood diselenide precursor thin film solar cell with a chalcopyrite-type conventional CIGS based thin film solar cells based wood structure (FIG. 2) (FIG. 1) of the present invention is manufactured by the same, the only route or method of manufacture some differences exist, prepared by the method of low-cost non-vacuum-first-out diselenide precursor film, and then subjected to vacuum heat treatment fast selenium sulfide layer directly manufactured (FIG. 3), a thin film battery cell pn junction region of p-type thin film light absorption the buffer layer and the i-layer, can be integrated into the thin film solar cell module scribing step inline electrodes are connected in series (battery bottom electrode and the surface electrode are connected in series), or a continuation of the deposition of low resistance n-type transparent window layer ZiiO: al, prepared in a conventional laboratory testing monomers thin film solar cells.

当使用质量均匀性较差的普通钠钙浮法玻璃或批次不问、质量参差不齐的玻璃时,玻璃表面碱成份是严重不均匀的,随着薄膜电池制备工艺的进行,会有其它杂质通过Mo薄膜电极层lc向光吸收层ld中扩散,影响光吸收层的品质和大面积结晶的均匀性;另外,电池工艺的实施会造成玻璃表面的碱爆,使Mo电极层薄膜与光吸收层之间的结合力减弱,导致薄膜电池吸收层与Mo薄膜的分离与脱落,影响薄膜电池的光电转换效率与填充因子FF。 When a poor quality uniformity of ordinary soda-lime float glass batch or do not ask, the mass uneven glass surface of the base glass ingredients is a serious uneven, prepared as a thin film battery process, there will be other impurity diffused by Mo thin film electrode layer lc to the light absorbing layer ld, the influence of the light absorbing quality layers and large area uniformity crystals; Further, cell process embodiment causes the base critical the glass surface of the Mo electrode layer film and the light bonding force between the absorbing layer decrease, resulting in a thin film battery and the absorbent layer is separated off and the Mo film, the photoelectric conversion efficiency and impact fill factor FF of a thin film battery. 为了获得均质、优良的薄膜电池光伏集成组件,本发明优选在碱石灰玻璃(也称普通钠钙玻璃,英文縮写SLG)基片la上顺序沉积碱阻挡层lb和Mo电极薄膜层lc,碱阻挡层由反应溅射金属硅或金属钛靶制备SiO、 TiN、 SiN等构成;另一原因是本发明硒化物前驱薄膜中含有CIGS 薄膜光学吸收层在重熔再结品过程中所需要的钠盐,SLG基片中钠通过Mo电极薄膜层扩散进入吸收层不是非常必需的。 In order to obtain a homogeneous, excellent in thin-film integrated solar cell assembly, the present invention is preferably in the soda-lime glass (also called soda-lime glass, abbreviation SLG) layer sequentially deposited alkali barrier layer lb and lc Mo electrode film on the substrate La, alkaline a barrier metal layer is composed of metal silicon or titanium sputtering target prepared by reacting SiO, TiN, SiN and the like; another reason is that the present invention is a selenide film precursor comprising CIGS thin film layer on the optical sodium recrystallized product during remelting required absorption salts, SLG-yl sodium diffusion sheet through the Mo electrode layer film is not required to enter the absorber layer. 图3表示本发明优选纳米涂料顺序滚涂或电化学逐层沉积硒化物前驱薄膜各层的构造, 以及快速硒硫化热处理时,硒化物前驱薄膜受热重熔再结晶的原理简图,与图4(f)相关。 Figure 3 shows a simplified schematic of a preferred configuration of the present invention, the nano order roll coating or electrochemical deposition layer by layer diselenide precursor film layers, and rapid heat selenium sulfide, selenide precursor film is heated remelting recrystallization, and FIG. 4 (f) relevant.

图5(a)表示预制好硒化物前驱薄膜后的SLG基片放入快速硒硫化热处理装置内进行薄膜电池光吸收层与缓冲层与i层制备的装置原理简图,与图4(e)、图4(f)、图4(g)和图4(h)所示的前驱硒化物薄膜快速硒硫化热处理工序相对应,是经由闸板阀320、 321、 340、 341将氢化预处理室31a、快速硒硫化热处理室32a、储片冷却室33a、溅射沉积室34a、取片室35a分别连通的直列式快速硒硫化热处理装置的原理性简图,在此装置上的各室31a、 32a、 33a、 34a 上分别连接着未图示的真空排气机构。 FIG 5 (a) represents prefabricated diselenide precursor film after the SLG substrate into the rapid thermal processing apparatus selenium sulfide thin film battery and the light-absorbing layer and the buffer layer principle means the i-layer produced a diagram of FIG. 4 (e) , FIG. 4 (f), FIG. 4 (g) and Fig. (h) 4 diselenide film precursor rapid heat treatment step corresponds selenium sulfide, via gate valves 320, 321, 340, 341 hydrogenated pretreatment chamber 31a, selenium sulfide rapid thermal processing chamber 32a, the cooling chamber stockers 33a, sputtering deposition chamber 34a, the unload chamber schematic diagram of an inline selenium sulfide rapid heat treatment apparatus 35a, respectively, communicating, and on this device the chambers 31a, 32a, upper 33a, 34a are connected to a vacuum exhaust means (not shown). 如果再联接图4(i)、图4(j)和图4(k)的真空设备,就可以连续制备出薄膜电池的光伏集成组件。 If the coupling again FIG. 4 (i), FIG. 4 (j) and 4 (k) of the vacuum device, a thin film can be continuously prepared a photovoltaic cell integrated component.

图5(a)中的31a装置与图4(e)所示前驱硒化物薄膜氢化预处理工序相对应,在氢化预处理室31a的内部搭载着可收纳以批为单位的多个基片3a,基片3a放置在可上下升降、整体被搬运的支承机构上(未图示),支承架放置在气密空间312内,气密空间外侧有加热器311和热辐射屏蔽板310,以及基片推送机构313,在气密空间中还有氢气、氩气共用导入管和可控的排气阀门(未图示)。 Means 31a and FIG 5 (a) in the 4 (e) diselenide film precursor as shown in the pretreatment step corresponding hydrogenated, in hydrogenation pretreatment chamber 31a mounted inside the housing may be a plurality of substrates in a batch units 3a , 3a placed on the substrate (not shown), the support frame 312 is placed within an airtight space on a vertically movable, the entire support mechanism is conveyed outside the airtight space heater 311 and the thermal radiation shield plate 310, and a base Pusher plate 313, as well as hydrogen, argon inlet and a common controllable exhaust valve in an airtight space (not shown). 收纳在氢化预处理室内的一摞基片3a已进行了Mo电极薄膜层上的纳米硒化物前驱薄膜的顺序滚涂与烘干,或电化学顺序电沉积硒化物前驱薄膜,其中Mo底电极薄膜已被激光切割成被均分的薄膜单体;在以批为单位的基片3a中,经过加热氢化处理的基片3a保存于基片的可升降操作、水平搁置的搬运架上(未图示),它可由基片推送机构313与升降支承机构共同协作情况下,把基片3a—个个地经由闸板阀320推运至快速硒硫化热处理室32a的小车323上。 In the pretreatment chamber accommodating a bundle hydrogenation substrate 3a has been roll sequence nano diselenide precursor film on the Mo electrode film layer and drying, electrodeposition or electrochemical order diselenide precursor film, wherein the bottom electrode film Mo has been laser cut film monomers are equally divided; substrate 3a in each lot, the hydrotreatment heated substrate 3a can be stored in the substrate lift operation, the level of the conveying frame rests (not shown below), which may be the substrate with the lifting mechanism 313 pushes the support mechanism work together situation, all the substrate via gate valves 3a- auger 320 on carriage 323 to quickly heat selenium sulfide chamber 32a.

图5(b)是本发明快速硒硫化热处理硒化物前驱薄膜制备薄膜电池吸收层装置的原理简图,它与图4①前驱硒化物薄膜在硒气氛环境中进行重熔再结晶工序和图4(g)反应溅射In2Se3 或In2S3中和掉重熔再结晶吸收层表面的吸附CuxSe与溅射In2S3生成高阻n-Cu(Ini.xGax)SSe 或Cu(InLyGay)3(Se^S》5的工序相对应。在快速硒硫化热处理室32a中,可控制移动距离、速度的小车323上放置着基片3b,基片3b下均匀布置着电阻加热装置与基片3b接触的多对热电偶,可进行基片背部可控温度或恒功率方式的加热;可控制移动距离、速度和功率的高功率热辐射源324能对基片3b表面进行快速扫描式加热;在可移动小车323两侧安装有固定的H2Se或类H2Se气体导入管,在气体导入管靠近小车323的单侧壁上设有多个均匀布置的喷嘴孔,H2Se或类H2Se气体从喷嘴孔流向移动的基片3b的表面(未图示);在32a室中安 FIG. 5 (b) that the present invention is fast selenium principle sketch sulfide heat diselenide prepared precursor thin film cell absorber means, which precursor selenide film is remelted in a selenium atmosphere environment recrystallization step and FIG. 4 and FIG 4① ( g) or reactive sputtering In2Se3 In2S3 neutralize remelting recrystallization absorbent layer adsorbing the sputtering surface CuxSe In2S3 generating high resistance n-Cu (Ini.xGax) SSe or Cu (InLyGay) 3 (Se ^ S "5 of step corresponds. selenium sulfide rapid thermal processing chamber 32a, the moving distance can be controlled, 3b disposed on the substrate 323 trolley speed, the lower substrate 3b is disposed a plurality of uniformly thermocouple resistance heating means in contact with the substrate 3b, controlled temperature or constant power heating mode may be a back substrate; a high power thermal radiation source 324 to control the moving distance, speed and power can be heated rapidly scanning the surface of the substrate 3b; 323 mounted on a movable carriage on both sides a fixed type or H2Se H2Se gas introduction pipe introducing tube near one side wall of the carriage 323 is provided with a plurality of nozzle holes uniformly arranged in a gas, or a class H2Se H2Se gas flow surface of the moving substrate from the nozzle hole 3b ( not shown); An in chamber 32a 有一对金属铟反应溅射靶325,其上面分别安装有氩气和溅射反应气体导入管的两套气路;上述装置均被安置在气密空间326中,气密空间326上安装有可快速开启排气或调节气压的阀门和检测气体压力的真空裸规管(未图示)。打开闸板阀321,基片3b被储片冷却室33a内的取片机构331纳入可水平升降的基片承载机构333上(未图示)。 A pair of metallic indium reactive sputtering target 325, respectively mounted thereon two road argon gas and a sputtering gas introduction the reaction tube; said apparatus are arranged in 326 mounted on an airtight space 326 may be an airtight space rapid opening pressure regulating valve or the exhaust gas and vacuum bare detected gas pressure regulation (not shown) to open the gate valve 321, the substrate sheet 3b is taken in the stocker mechanism 33a 331 into the cooling chamber may be horizontal lifting on 333 (not shown) of the substrate carrier means.

在储片冷却室33a中,基片3c上的硒化物前驱薄膜经过加热、溅射In2Se3/In2S3己成功转变成贫铜、大晶粒致密的光学吸收层,其基片3c的温度将由转入时的54(TC〜58(TC逐渐降低至IO(TC,储片冷却室内始终充有0. 5〜30Pa的H2S+Ar气体,保证基片3c上光学吸收层在温度下降过程中不会挥发或逸失掉硒硫元素;随着基片3c逐渐增多,在闸板阀321关闭状态时,打开闸板阀340,利用基片推送机构332将基片3c推运至溅射沉积室34a的小车342上。 Stocker 33a in the cooling chamber, the precursor selenide film on a substrate heated 3c, sputtering In2Se3 / In2S3 been successfully converted to a copper depleted, a large optical absorption layer is densified grains, the temperature of which will be transferred to the substrate 3c at 54 (TC~58 (TC gradually decreased to IO (TC, stockers the cooling chamber is always filled with the H2S 0. 5~30Pa + Ar gas, to ensure that the substrate 3c of the optical absorption layer does not volatilize during the temperature drop Yi lost selenium or sulfur; 3c gradually increased as the substrate, when the gate valve 321 closed, the gate valve 340 is opened, the base sheet pusher unit 332 to the substrate 3c auger 34a of sputtering deposition chamber 342 on the car.

图5(c)是溅射沉积缓冲层与i层室34a装置的原理简图,它与图4(h)的CIGS薄膜电池吸收层上直接反应溅射金属铟锌靶制备In(OH,S)/ZnS(0,OH)/ZnO(S)缓冲层与i层的工序相对应。 FIG. 5 (c) is a schematic diagram of apparatus 34a sputter deposited buffer layer and the i-layer chamber, which reacted directly indium zinc metal sputtering target prepared In (OH absorbent layer on the CIGS thin film cells and FIG. 4 (h) is, S ) / ZnS (0, OH) / ZnO (S) buffer layer and the step corresponding to the i-layer. 在溅射沉积室34a内,可控制移动距离、速度的小车343与快速硒硫化热处理室的小车323基本结构相同,放置基片3d的下面均匀布置着电阻加热装置和两对测温热电偶,由软编织导线将它与真空室外部的控制器相连接,对基片表面进行缓冲层与i层溅射时,基片温度被控制在8(TC〜35(TC,优选10(TC〜18(TC;在34a室中安装有一.〜三对中频交流或直流脉冲反应溅射金属靶343、 345和346,它们分别是高纯铟和锌金属对靶,每对靶上分别安装有两套气路管线,供应工作所需的溅射与反应气体,溅射沉积区被多孔金属网罩住,单独与地线连接而不与机壳相连,其作用是屏蔽两靶之间的溅射离子,防止带电离子轰击基片3d而破坏薄膜电池pn结的构造;同样,在溅射室34a中安装有固定型高功率辐射热源344,它们也被安置在气密空间347中,气密空问347上安装有可快速开启排气或 In the sputtering deposition chamber 34a, the moving distance can be controlled, the same trolley carriage 343 and the fast speed selenium sulfide basic structure of heat treatment chamber 323, the substrate is placed uniformly 3d disposed below the resistance heating means and the two pairs of thermocouple, when the flexible braided wire are connected by its vacuum chamber with an external controller, to the substrate surface of the buffer layer and the i-layer deposition, the substrate temperature is controlled at 8 (TC~35 ​​(TC, preferably 10 (TC~18 (the TC; a .~ mounted three pairs of frequency AC or pulsed DC reactive sputtering of metal targets 343, 345 and 346 in chamber 34a, which are of high purity indium and zinc metal target, are mounted on each of the two sets of target gas lines, a desired sputtering gas and supply of the reaction, sputter deposition zone is porous metal covering, individually connected to the ground is connected to the housing without its shielding effect between the two target sputter ion preventing charged ions bombarding the substrate 3d is configured destroyed pn junction thin film battery; similarly mounted in the sputtering chamber 34a has a fixed high-power radiation source 344, which are also disposed in the airtight space 347, the airtightness space 347 may be mounted on the quick opening or vent 节气压的可控阀门, 以及检测气休压力的真空裸规管(未图示)。缓冲层与i层溅射完成后,进行高真空表层的快速热处理后的基片3d经由闸板阀341被取片室35a内的取片机构351收入基片承载机构(未图示)352的支架上,在取片室35a内搭载有与氢化预处理室31a的结构相同的基片可搬运的支承机构,可将相当于以批为单位的多个基片3e收纳在支承机构的水平架上,开启真空取片室35a的大门,就可用搬运叉车将整批基片3e的支承机构从真空取片室中直接运出,转入下道生产工序。 Section pressure controllable valve, and a vacuum regulation bare pressure off gas detector (not shown). After completion of the buffer layer and the i-layer sputtered, after the rapid thermal annealing of the substrate surface a high vacuum gate valve 341 via 3d bracket 352 is mounted revenue-piece mechanism 351 of the substrate carrier mechanism (not shown) in the unload chamber 35a in the unload chamber 35a has the same configuration as the supporting substrate and the pre-hydrogenation of the transportable chamber 31a mechanism, may be equivalent to each lot of a plurality of substrates 3e housed in the horizontal frame support mechanism to open the door to take the vacuum chamber 35a of sheet, it can be transported with a forklift bulk substrate support from the vacuum pick mechanism 3e sheet directly out of the chamber, into the next production process.

实施例1 Example 1

当用纳米硒化物涂料制作CulnSe2.xSx薄膜太阳电池时,SLG基片表面分别溅射碱阻挡层和Mo背电极薄膜,在该基片表面分别实施滚涂硒化物涂料CuSe、 Iti4Se3(或In2Se3)与CuSe 各一次,本发明优选贫硒的Iti4Se3(熔点520。C)纳米涂料;每次滚涂涂料后立即烘干,硒化物前驱薄膜呈现CuSe/In4Se3(或ln2Se3)/CuSe构造'薄膜总Cu/In>1.06,表面CuSe〉底部CuSe,最佳比1.1〜1.5,烘干后总厚度约4〜7pm(要求最终快速硒硫化热处理后制备的吸收层厚度约0.9~1.8pm),三层硒化物薄膜的成份结构比约4:10:6.1,在前驱硒化物薄膜最后一次烘干前, 需要均匀喷淋一定量的钠盐,它可在较低条件下辅助硒化物前驱薄膜快速硒硫化热处理时获得大晶粒致密薄膜。 When the nano-coating production CulnSe2.xSx selenide thin film solar cell, SLG substrate surface are sputtered Mo alkali barrier layer and a back electrode film, in this embodiment each surface of the substrate coating roll selenides CuSe, Iti4Se3 (or In2Se3) and CuSe each time, Iti4Se3 the present invention is preferably depleted of selenium (mp 520.C) nano-coating; roll coating immediately after each drying, selenide film precursor exhibits CuSe / In4Se3 (or ln2Se3) / CuSe configured 'total film Cu /In>1.06, surface CuSe> bottom CuSe, 1.1~1.5 optimal alignment, dried and total thickness of about 4~7pm (required final thickness of the absorbent layer was prepared from about 0.9 ~ 1.8pm fast selenium sulfide after heat treatment), three selenium structured thin film composition ratio of about 4: 10: 6.1, before the final precursor diselenide film drying time, need a certain amount of sodium uniform spray, which can assist in rapid diselenide selenium sulfide precursor film at a lower heat treatment conditions obtaining large grain dense film. 将烘干后的前驱硒化物薄膜的基片3a按规定片数装入到图5(a)所示的氢化预处理室内水平承载机构的支架上,关闭真空室的门。 The precursor selenide film after drying the substrate 3a by the predetermined number of sheets loaded to FIG. 5 (a) stand on the horizontal support means pretreatment chamber hydrogenated shown, the door is closed the vacuum chamber.

本发明的前驱硒化物薄膜快速硒硫化热处理标准工艺程序为:开启氢化预处理室31a真空排气装置与其内气密空间312的阀门,同时,加热器311将气密空间内部温度从室温升至290'C,纳米前驱硒化物或电沉积前驱硒化物的优选温度范围分别是:3(TC〜18(TC和3(TC〜 290'C,抽至高真空lXl(T'Pa以上后,关闭气密空间的阀门,注入氢气使气密空间的气压维持在30〜60kPa之间,保持3〜5分钟后排空,抽至高真空后重新注入氢气,循环3~5次,使纳米硒化物涂料中有机添加剂彻底脱附与挥发或氢化分解(电沉积前驱硒化物薄膜中15%~18% 的氧化物被部分还原),硒化物前驱薄膜中的材料呈纯净的电子纯级,最后一次排空后注入Ar+H2气体(分别是:50~70%和30~50%),降底气密空间的气压至0.3~20Pa,并与32a室的气压平衡后打开闸板阀320,将基片3a推送至快速硒硫化热处理室32a的小车323」:, Diselenide film precursor selenium sulfide rapid heat treatment process of the standard program of the present invention is: opening a vacuum exhaust means 312 with an inner space airtight valve hydrogenation pretreatment chamber 31a, while the airtight space inside the heater 311 liters from room temperature to 290'C, selenide or nano precursor electrodeposition preferred temperature range precursor selenides are: after 3 (TC~18 (TC and 3 (TC~ 290'C, full vacuum LXL (above T'Pa, closed valve airtight space, so that the injection pressure of hydrogen is maintained between the airtight space 30~60kPa, three to five minutes holding emptied again after full vacuum with hydrogen injection, 3 to 5 times the cycle, the nano coating selenides in complete desorption with volatile organic additives or hydrogenolysis (electrodeposition diselenide film precursor 15% to 18% of the partially reduced oxide), selenide film precursor material in pure electronic grade pure, final evacuation after injection of Ar + H2 gas (respectively: 50 to 70% and 30 to 50%), lung pressure-tight space down to 0.3 ~ 20Pa, and the shutter opening 32a and the pressure balance valve chamber 320, the substrate 3a selenium sulfide push to rapid thermal processing chamber 32a of the carriage 323 ':, 闭闸板阀320。 And closing gate valve 320.

经过氢化预处理的基片3a放置于小车323上后就改称为3b,启动小车基片3b背部加热装置,升温至350~550°C (或450〜580。C为含Ga硒化物的优选),同时开启小车两侧气路的阀门,注入类H2Se气体,气密空间326内硒气氛维持在30~80kPa的气压下,小车移动后启动高功率辐射热源对基片3b进行扫描式快速硒化热处理,玻璃基片的温度控制在530〜58(TC , 基片表面的硒化物被快速加热到550°C~1100°C,硒化物前驱薄膜被充分反应生成大晶粒致密的CIS(或CIGS)薄膜,由于硒化物前驱薄膜自身是富铜结构,快速硒化热处理后表面会吸附着多余的液相Cu2Se,关闭类H2Se气体管路阀门,打开气密空间的排气阀门,降低环境硒气压至0. 5〜25Pa,小车323移动至反应溅射靶的位置,小车323上的基片3b底部加热器处于恒功率控制状态。当基片3b上进行反应溅射Iri2Se3或In2S3中和反应掉液相Cu2Se时, Hydrogenated pretreated substrate 3a is placed on the trolley 323 after renamed 3b, 3b back to start the car the substrate heating apparatus, heated to 350 ~ 550 ° C (or Ga-containing 450~580.C selenide preferably) while opening the valve on both sides of car air passage, based H2Se gas injection, the airtight space 326 is maintained at a selenium atmosphere pressure of 30 ~ 80kPa, high-power irradiation start of the heat source for the substrate 3b scanning carriage moves quickly after selenization heat treatment temperature of the glass substrate is controlled 530~58 (TC, selenide substrate surface is rapidly heated to 550 ° C ~ 1100 ° C, diselenide precursor film is sufficiently dense reaction product of large grains CIS (or CIGS ) film, since the film itself diselenide precursor is a copper-rich structure, after the heat treatment the surface will flash selenide adsorbed excess liquid Cu2Se, based H2Se gas line valve closed, the exhaust valve is opened airtight space, reducing the environmental pressure selenium to 0. 5~25Pa, carriage 323 is moved to the position of the sputtering target of the reaction, the substrate 323 on the carriage 3b in the bottom of the heater constant power control state. Iri2Se3 or reactive sputtering In2S3 and reacted when the substrate 3b when the liquid phase Cu2Se, 测小车323上基片3b底部多对热电偶差值的变化,由它决定反应溅射In2Se3或In2S3的单位功率或单位面积上的沉积量,以及精确控制小车323的移动速度;严格控制基片3b表面硒化物薄膜由于反应溅射沉积1〜Se3或In2S3,薄膜整体成份由富铜转变成贫铜结构过程中此薄膜物理状态(测试温度)的突变,也就是铜占薄膜成份比《24.5%时的关键变化点。小车基片3b始终维持恰当的移动速度和溅射Iri2Se3或Iri2S3合适的沉积量,就完成了整个基片3b表面均匀、 完全地转变成CIGS薄膜电池的吸收层,关闭溅射电源、溅射氣气和反应气体H2Se或H2S,关闭小车323的加热器,并将它移动、退回高功率辐射热源处,开启小车两侧气路的阀门,注入类H2Se气体至30〜80kPa,重新开启高功率辐射热源对基片3b表面进行更快速地扫描,小车323与高功率辐射热源装置324同时进行着相对运动,基片3b Measuring carriage 3b on the bottom of the substrate 323 changes plurality of thermocouples difference, which is determined by the unit power, or reactive sputtering, or In2Se3 deposit amount per unit area of ​​In2S3, and accurately controls the moving speed of the carriage 323; a strict control of the substrate 3b the surface due to the reaction diselenide film or sputter deposition 1~Se3 In2S3, the overall composition of the film to change from a copper-rich copper-depleted film structure during this physical state (test temperature) mutations, accounting for the thin film component is a copper ratio "24.5% the key point when the change. carriage substrate 3b is always maintained proper moving speed and sputtering or Iri2S3 Iri2Se3 suitable deposition amount, to complete the entire substrate surface uniformly 3b, completely converted into the absorbent layer CIGS thin film cells, splashing off radio power, sputtering gas and a reaction gas H2Se gas or H2S, the car off the heater 323 and move it, returned to the high-power irradiation heat sources, on both sides of the gas passage valve open car, based H2Se gas is injected to 30~80kPa , reopen high power radiation source 3b of the surface of the substrate more quickly scan, carriage 323 with the high power radiant heat source 324 simultaneously with the relative movement of the substrate 3b 面大晶粒CIS或CIGS的晶界与晶粒表面凸起部被重熔,降低了薄膜电池的有效晶界复合和溶解了晶体中的杂相,达到薄膜电池开路电压Voc被提高的目的。基片移动至溅射位置附近,降低气密空间的气压至0.5~25Pa,并更换溅射反应气体为H2S,启动小车加热电源、移动机构和反应溅射电源,反应溅射In2S3至基片3b表层均匀地沉积,基片3b表面生成高阻n-CuInS2或n-CuIn3(Sei_x,Sx)5, 厚度大约20〜40nra,此时基片3b的温度大约为480°C〜550°C。 CIS or CIGS large grain boundary surface and a convex surface portion is remelted grains, reducing the effective grain boundary of the composite thin film battery and heteroaryl dissolved crystal phase, to a thin film battery open voltage Voc is increased purpose. sputtering the substrate is moved to a position near the reduced pressure airtight space to 0.5 ~ 25Pa, and replace the sputter reactor gas is H2S, start heating power car, the moving mechanism and reactive sputtering power, reactive sputtering to the substrate 3b In2S3 surface uniformly deposited, 3b surface of the substrate to generate a high resistance n-CuInS2 or n-CuIn3 (Sei_x, Sx) 5, a thickness of about 20~40nra, 3b when the temperature of the substrate is about 480 ° C~550 ° C. 开启闸板阀321,将己硒硫化处理完毕的基片3b送入储片冷却室33a的承载支架上,在0. 5〜30Pa的Ar+H2S气氛保护下自然冷却。 Open gate valve 321, the process has been completed selenium sulfide substrate stocker 3b into the cooling chamber 33a of the carrying bracket, cooled at + H2S in Ar 0. 5~30Pa atmosphere protection.

冷却到IO(TC以下的基片3c被输送至溅射沉积室34a的小车342上,开启小车342上的加热器与密闭空间347的排气阀门,基片3c被加热到80。C〜350。C'优选100°C〜180°C,气密空间被抽至高真空1X10—3Pa以上,开启各反应溅射靶上的反应气体与溅射氩气的阀门,维持气密空间在0.2〜25Pa的气压,调节各靶上反应与溅射气体为恰当配比与流量,第一溅射耙位的耙材是纯金属铟,反应气体貼+貼,溅射产物是In(OH,S),其中包含少量的ln20:,; 第二、三溅射耙位的材料均是金属纯锌,反应气体分别是H2S+H20与H2S+02或C02,溅射产物分别是ZnS(0,0H)与ZnO(S), 二、三耙位上的反应气体H2S的流量是不同的,溅射功率也不相同;缓冲层溅射顺序为:In(OH,S)/ZnS(0,OH)/ZnO(S),它们不能被颠倒或产生其它的组合。 小午基片3c接近各溅射靶位前开启溅射电源,顺序溅射薄膜电池的缓冲层与i层薄 Cooled to 3c is delivered to the sputter deposition chamber 34a of the carriage 342 IO (TC below the substrate, the heater is turned on and the sealed space 342 on the carriage of the exhaust valve 347, the substrate is heated to 3c 80.C~350 .C 'is preferably 100 ° C~180 ° C, air-tight space is evacuated to a high vacuum 1X10-3Pa above, the reaction gas and the open valve argon sputtering on each of the reactive sputtering target, maintaining an airtight space 0.2~25Pa pressure, adjusting each target sputtering gas is reacted with the appropriate ratio of the flow rate, the first bit rake sputtering target material is a pure metal indium, the reaction gas stickers affixed +, sputtering is the product in (OH, S), which contain small amounts of ln20:,; material of the second and third sputtering target bits are pure zinc metal, the reaction gases are H2S + H20 or C02 and H2S + 02, sputtered product are ZnS (0,0H) and ZnO (S), two, H2S reaction gas flow on the rake three bits are different, the sputtering power is not the same; the buffer layer deposition sequence is: in (OH, S) / ZnS (0, OH) / ZnO (S), they can not be reversed or other combinations to produce small afternoon substrate 3c proximity of the sputter target before sputtering power source is turned on, the order of the sputtered thin film batteries thinner buffer layer i ,其厚度分别是:15〜25nin、 20〜30nm和50〜75nm,合计约90〜130nm;基片表面全部沉积完各层薄膜后,关闭小车342上的加热电源,完全打开气密空间347上的气压控制阀,抽至高真空1X10—3pa后,开启小车的运动装置和高功率辐射热源344,对基片表面的CIS薄膜、缓冲层与i层进行闪速热处理,其热影响的区域仅占薄膜表层厚度的1〜2拜,促使溅射薄膜内的吸附气体脱附、晶粒间更密实和锌硫元素向CIS薄膜的表层扩散。打开闸板阀341,基片3c被取片室35a内的取片机构351收入基片承载机构352的支架上,直至基片达到一定数量后, 整个承载架被取出真空室,基片转入下一操作工序。 Which thicknesses are: 15~25nin, 20~30nm and 50~75nm, a total of about 90~130nm; End all rear surface of the substrate layers are deposited film off the heating power in the car 342, the airtight space 347 is fully opened area pressure control valve, the high vacuum pump 1X10-3pa, the opening movement of the trolley means and high-power radiation source 344, on the surface of the CIS film substrate, the buffer layer and the i-layer is a flash heat treatment, the heat affected only a film thickness of 1 to 2 skin thanks to promote desorption of the adsorbed gas in the sputtered film, more dense and diffused into the surface layer of zinc sulfur CIS film grain. gate valve 341 is opened, the substrate is taken up chamber 3c take the holder mechanism in the sheet 35a 351 income substrate carrier mechanism 352 until after a certain number of substrates, the whole carrier is taken out of the vacuum chamber, the substrate transferred to the next operation step.

实施例1可以制备出两种类型薄膜太阳电池,用Iri2S3中和液相CiuSe的CuInSeS薄膜电池的开路电压Voc和光电转换效率相对较高。 Example 1 can be prepared by two types of thin film solar cells, and a liquid phase with Iri2S3 CuInSeS CiuSe of a thin film battery open voltage Voc and the photoelectric conversion efficiency is relatively high.

实施例2 Example 2

当用纳米硒化物涂料制作CuIna.7GaMSe2-xSx薄膜太阳电池时,需要四种纳米硒化物涂料,它们分别是:(CuSe+CuGaSe2)、 Ga2Se3、 IruSe3(或In2Se3+CuInSe2)、 CuSe,分别调制它们到恰当的粘度,连续性地在基片Mo薄膜上实施滚涂与烘干,四种硒化物涂料可连续地一次性成膜,其前驱硒化物薄膜构造为:(CuSe+CuGaSe2)/Ga2Se3/In4Se3(或In2Se3+CuInSe2)/CuSe, 薄膜总Cu/(In+Ga)>1.06,四层薄膜成份的原子结构比为:(4+4):l:3.5:12.1,前驱硒化物薄膜厚度约4〜7ixm,其中薄膜中各元素成份比Ga/(In+Ga)》0.3、 Se/M<l,表面CuSe〉底部CuSe。 When nano diselenide coating film solar cells produced CuIna.7GaMSe2-xSx, requires four kinds of nano-selenide coating, they are: (CuSe + CuGaSe2), Ga2Se3, IruSe3 (or In2Se3 + CuInSe2), CuSe, respectively modulate them to the appropriate viscosity, continuously performed on the substrate and the Mo film roll drying, four, selenides coating can be continuously forming a disposable, its precursor diselenide film configured to: (CuSe + CuGaSe2) / Ga2Se3 / In4Se3 (or In2Se3 + CuInSe2) / CuSe, total film Cu / (in + Ga)> 1.06, the structure than the four film layered components atoms: (4 + 4): l: 3.5: 12.1, precursor diselenide film thickness of about 4~7ixm, wherein the film composition ratio of each element Ga / (in + Ga) "0.3, Se / M <l, the surface CuSe> bottom CuSe. 该种CIGS薄膜电池的特点是硒化物前驱薄膜中镓元素集中在底层,贫硒的铟硒化合物相在镓硒化合物相之上,快速硒硫化热处理工艺与实施例1基本相同;基片底部预先加热后再启动高功率辐射热源,由于硒化物前驱薄膜的热传导特性和铟镓元素扩散系数的差异,底层优先生成高镓的CGS半导体薄膜,再进行铟镓元素之间的互扩散,最终CIGS薄膜中铟镓元素在厚度方向不是均匀分布,自然形成镓元素的梯度分布与薄膜电池的背电场,背电场的形成改善了薄膜电池载流子的收集与电池转换效率,再加上表层掺杂硫元素所形成的浅埋结, CIGS薄膜电池的吸收层半导体带隙呈V型分布,制造的薄膜电池与实施例1相比,大幅度提高了其性价比。 The kind of features CIGS thin film cells is diselenide precursor of gallium film concentration at the bottom, poor of selenium indium selenide compound phase on gallium-selenide compound phase, rapid selenium sulfide heat treatment process of Example 1 is substantially the same; bottom substrate in advance after heating start high power radiant heat source, since the difference in heat transfer characteristics and indium gallium diffusion coefficient diselenide precursor film, the underlying priority generating CGS semiconductor film having a high gallium, then interdiffusion between indium gallium final CIGS thin film the indium gallium element is not uniformly distributed in the thickness direction, a gradient distribution and nature of the thin film battery back-surface field of gallium, forming the back of the field of thin-film batteries improved carrier collection efficiency of the battery, plus the sulfur-doped surface layer Shallow junction element is formed, the semiconductor bandgap absorbing layer of CIGS thin film cells V-shaped profile, a thin film battery fabricated in Example 1 as compared to the substantial increase in its cost. 实施例3 Example 3

电化学沉积硒化物前驱薄膜制各CuInSe2.xSx薄膜太阳电池。 Electrochemical deposition diselenide film precursor thin film solar cells made of each CuInSe2.xSx. 其电沉积溶液成份的配比为: 2.6函01丄"CuCl2-2H20, 9.6mMol丄—1 InCl3和5.5 mM ol-L—1 H2Se03, LiCl 0.236Mol-L";并添 The ratio of its components electrodeposition solution is: 2.6 01 Shang letter "CuCl2-2H20, 9.6mMol Shang -1 InCl3 and 5.5 mM ol-L-1 H2Se03, LiCl 0.236Mol-L"; and add

加邻苯二甲酸氢钾和氨基磺酸组成的ph=3缓冲剂,测得电镀溶液的PH~2.6,采用三电极的恒电位体系,参比电极为饱和甘汞电极(SCE)。 Potassium hydrogen phthalate plus and sulfamic acid buffer ph = 3 composition, measured plating solution PH ~ 2.6, potentiostatic three-electrode systems, the reference electrode is a saturated calomel electrode (SCE). 将溅射沉积了碱阻挡层与Mo背电极薄膜的SLG基片放入上述电镀溶液中,在-0.5V预先处理基片Mo背电极薄膜1分钟,基片取出后用去离子水冲洗与高纯氮气吹干,搁置一定时间后,再次放入电镀溶液中进行电沉积,先-0.2V 预沉积5~8分钟Cu2-xSe,在-0.5V沉积15分钟,在-0.6V沉积45分钟,再在-0.2V沉积5~8 分钟;取出的基片冲洗干净后用高纯氮气吹干,硒化物前驱物薄膜的表面呈银灰色,具有光滑、致密的外观,厚度约1.8-2.4nm,薄膜成份结构为:Cu2.xSe/CuInSe2/Cu2—xSe, Cu/In>1.06, 薄膜中氧含量约15%,表层Qi2—xSe〉底部Cu2_xSe,将基片放入图5的快速硒硫化热处理装置的氢化预处理室31a前喷淋一定量的钠盐,按照实施例l标准工艺程序进行,得到的基片经过集成电池的电极串联连接操作-激光划线热处理制备接触电极、溅射ZnO:Al低阻透明窗口层和激光反爆冲压分割面电极等 The sputter deposition of the alkali-barrier layer and the Mo back electrode SLG substrate film into the plating solution, the substrate pretreatment -0.5V Mo back electrode film for 1 minute, rinsed with deionized water and the substrate was taken after a high pure dry nitrogen, after a certain time on hold, again placed in the electroplating solution for electrodeposition, to -0.2V predeposition 5 to 8 minutes Cu2-xSe, deposited -0.5V 15 minutes deposited -0.6V 45 minutes. redeposition -0.2V 5 ~ 8 min; dried in high purity nitrogen gas taken out of the clean substrate, the surface of the precursor film was silver selenide, with a smooth, dense appearance, a thickness of about 1.8-2.4nm, ingredients film structure: Cu2.xSe / CuInSe2 / Cu2-xSe, Cu / in> 1.06, the film from about 15% oxygen content, surface Qi2-xSe> bottom Cu2_xSe, the substrate is placed in vulcanization selenium rapid heat treatment apparatus 5 of FIG. hydrogenated pretreatment chamber 31a before spray a certain amount of salt, as described in Example l standard process procedures, the electrode substrate obtained through the integrated operation of the series connected cells - preparation of heat Treatment laser scribing contact electrode, sputtered ZnO: Al low resistance transparent window layer and the anti-explosion press laser dividing plane electrodes 艺程序,就基本算得到CIS薄膜电池的集成组件,清理大面积薄膜电池的周边与焊接电极引线,就可以进行大面积组件光电转换效率的测试,进行光伏组件的封装工艺操作。 Arts program, the basic count obtained integration component CIS thin film battery, a lead welding electrode cleaning periphery of large area thin film battery may be a large area photoelectric conversion efficiency of the test assembly, encapsulating the photovoltaic module process operation. 实施例4电化学沉积硒化物前驱薄膜制备CuInGaSe2-xSx薄膜太阳电池,其中前驱硒化物薄膜仅是依赖于沉积电位控制薄膜中的成份与半导体带隙呈V型,薄膜是一步法获得富Cu硒化物前驱薄膜。 Embodiment CuInGaSe2-xSx film solar cell precursor thin films prepared in Example 4 Electrochemical Deposition selenides, wherein the precursor diselenide film is only dependent on the film composition and the semiconductor bandgap of a V-type deposition potential control, one step is to obtain a thin film of selenium-rich Cu compound precursor film. 其电沉积溶液成份的配比为:2.0mMol'I/1 CuCl2, lO.OmMol丄-1 InCl3、 lS-OmMol'L" GaCl3和5.0 mM ol.L" H2Se03, 0.236Mol'U1 LiCl,添加邻苯二甲酸氢钾和氨基磺酸ph=3缓冲剂,测得电解槽中溶液的PH~2.6,采用三电极的恒电位体系,参比电极为饱和甘汞电极(SCE)。 The ratio of its components electrodeposition solution is: 2.0mMol'I / 1 CuCl2, lO.OmMol Shang -1 InCl3, lS-OmMol'L "GaCl3 and 5.0 mM ol.L" H2Se03, 0.236Mol'U1 LiCl, adding o sulfamic acid and potassium hydrogen phthalate buffer ph = 3, the solution in the cell was measured pH ~ 2.6, potentiostatic three-electrode systems, the reference electrode is a saturated calomel electrode (SCE). 将基片先浸入专用预处理电解槽液中,在-0.5V预先处理基片上背电极Mo薄膜1分钟,Mo与溶液中CuxSe发生化学置换反应,并沉积较薄一层CuxSe,取出后用去离子水冲洗与高纯氮气吹干,搁置一定时间后,再次放入专用电解槽液中进行电沉积;先-0.2V电位预沉积5〜8分钟(Cu2-xSe+CuGaSe2),在-0.75V电位沉积25分钟获得高镓[Cu2—xSe+Cu(Ino.5, Ga0.5)Se2 ],在-0.5V电位沉积35分钟,再在-0.2V电位沉积5分钟和-0.8V电位沉积3分钟, 硒化物前驱薄膜在底层和表面均为高镓含量,由于含镓硒化物均是高熔点固相物,薄膜内Ga 元素的扩散相对较困难,决定了它在硒化物前驱薄膜的重熔再结晶过程中起着框架作用;控制沉积电位的一次性电沉积基片取出后冲洗干净,用高纯氮气吹干并放置烘箱中烘干,该电沉积薄膜表面呈现光滑、致密的银灰色外观,厚度约1.8〜2.4pm,薄膜成份的层状结 The substrate was immersed in the first specific cell pretreatment liquid, the pretreatment -0.5V back electrode Mo film on the substrate 1 minute, CuxSe Mo and chemical substitution reaction solution, and depositing a thin layer of CuxSe, after removing spent DI water rinse and dry high purity nitrogen, after a certain time on hold, again placed in a dedicated cell electrodeposition solution; to 5 ~ 8 minute pre-deposition potential of -0.2V (Cu2-xSe + CuGaSe2), at -0.75V 25 minutes to obtain a high deposition potential of the gallium [Cu2-xSe + Cu (Ino.5, Ga0.5) Se2], deposition potential -0.5V for 35 minutes and then the deposition potential of -0.2V and -0.8V five minutes deposition potential 3 minutes, selenide precursor film are high gallium content base layer and the surface, since the gallium diselenide are high-melting solid phase, diffusion of Ga element in the film is relatively difficult to decide remelting it diselenide precursor film recrystallization plays an role in the frame; disposable after controlling the deposition potential electrodeposition substrate was taken rinse, blown dry with pure nitrogen and placed in a drying oven, the electrodeposited film surface presented a smooth, dense silver appearance , a thickness of about 1.8~2.4pm, junction layer film components 分布为: (Cu2.xSe+CuGaSe2)/[Cu(In0.5,Ga0.5)Se2]/Cu(Ina8Ga0.2)Se2/(Cu2-xSe+CuGaSe2)/CuIn0.4Ga0.6Se,薄膜中Cu/(In+Ga)>1.06, Se/M<l,总成份CuSe+CuIn0.7Ga0.3Se2,其中表层CuSe〉底部CuSe,表面层Ga元素〈底部Ga元素,薄膜中氧含量约15〜17%;按照实施例1的标准工艺程序进行, 就可得到致密大晶粒、带隙呈V型分布的优质CIGS薄膜太阳电池。 Distribution: (Cu2.xSe + CuGaSe2) / [Cu (In0.5, Ga0.5) Se2] / Cu (Ina8Ga0.2) Se2 / (Cu2-xSe + CuGaSe2) /CuIn0.4Ga0.6Se, a thin film of Cu /(In+Ga)>1.06, Se / M <l, the total ingredients CuSe + CuIn0.7Ga0.3Se2, wherein the surface layer CuSe> CuSe bottom, surface layer of a Ga element <bottom Ga element, a thin film oxygen content of about 15~17% ; standard process procedure according to Example 1 were used, large grains can be obtained dense, high band gap CIGS thin film solar cell as a V-shaped profile.

实施例5 Example 5

电化学沉积硒化物前驱薄膜制备双面可透光型CUInGaSe2.xSx薄膜太阳电池。 Electrochemical deposition diselenide precursor film may be prepared in a double-sided light-transmitting thin film solar CUInGaSe2.xSx. 选用商用ITO玻璃衬底进行硒化物前驱薄膜的电沉积。 Selection of commercial ITO glass substrate electrodeposition diselenide precursor film. 沉积前ITO玻璃在异丙醇中超声清洗10min和进行激光划线分割透明导电膜的操作,选用硫酸盐电化学沉积体系,参比电极为饱和硫酸汞电极(MSE相对标准氢电极的电位为+650mV),在80'C、无搅拌、高纯氮气除氧的水溶液中恒电位电沉积Ga2SedP CuIno.7Gao.3Se2。 Ultrasonic cleaning prior to deposition ITO glass 10min and laser scribing a transparent conductive film dividing operation in isopropanol, optionally treated with sulfate electrochemical deposition system, the reference electrode (MSE relative standard hydrogen electrode potential of a saturated mercury sulfate electrode + 650mV), at 80 'C., without stirring, an aqueous solution of high purity nitrogen oxygen potentiostatic electrodeposition Ga2SedP CuIno.7Gao.3Se2. 先在ITO上电沉积0.2~0.3^mi厚的Ga2Se3,沉积电位为-l.lV(相对于饱和tT汞电极MSE),溶液组成为:lmM的Se02, lmM的Ga2(S04)3禾口0.3MK2SO4, pH值用硫酸调到2.4。 ITO is deposited on the first electrically 0.2 ~ 0.3 ^ mi thick Ga2Se3, deposition potential -l.lV (tT mercury electrode relative to the saturated MSE), a solution consisting of: lmM of Se02, lmM of Ga2 (S04) 3 0.3 Hekou MK2SO4, pH adjusted to 2.4 with sulfuric acid. 再沉积CIGS,沉积工艺:溶液配比:0.3MK2SO4(pH2.4,H2SO4 调节),1.0mMCuSO4, 3.0mMIn2(SO4)3、 3.0mMGa2(SO4)3和1.7mMSe02;沉积电位为-0.9V,薄膜厚度约1.8~2.4,薄膜中Cu/(In+Ga)〉1.06, Se/M<l,表层Cu2-xSe〉底部Cu2-xSe,表层Ga 元素〈底部Ga元素。 Redeposition CIGS, deposition processes: solution ratio: 0.3MK2SO4 (pH2.4, H2SO4 adjustment), 1.0mMCuSO4, 3.0mMIn2 (SO4) 3, 3.0mMGa2 (SO4) 3 and 1.7mMSe02; deposition potential of -0.9V, film a thickness of about 1.8 to 2.4, the film Cu / (in + Ga)> 1.06, Se / M <l, the surface Cu2-xSe> bottom Cu2-xSe, skin and Ga <bottom Ga element. 按照实施例1标准快速硒硫化热处理工艺程序进行,得到的基片经过集成电池的电极连接操作-激光划线热处理制备接触电极、溅射ZnO:Al低阻透明窗口层、激光反爆冲压分割电极和电极引线与封装等工艺操作程序,就得到了特殊用途CIS薄膜电池集成组件的玻璃发电幕墙部件,其正面透射阳光发电,反面接受散射的红外光,可叠加双面吸收的光能发电。 Selenium sulfide rapid thermal treatment process standard procedures as in Example 1, an electrode substrate obtained through the operation of the integrated battery connection - Preparation laser scribing heat contact electrode, sputtered ZnO: Al low resistivity transparent window layer, the anti-explosive laser punching divided electrodes and the like and the electrode lead packaging process procedure, the power generation is obtained glass wall member special purpose integrated CIS thin-film battery assembly, the front sun power transmission, receiving back scattering of infrared light, solar power generation can be superimposed sided absorption. 实施例6 Example 6

本实施例是纳米硒化物涂料制作CuIn().7Ga().3Se2-xSx薄膜太阳电池中的优选方案。 In this embodiment, the nano coating production diselenide CuIn (). Preferred embodiment (). 3Se2-xSx Solar Cells 7Ga. 它与实施例2的方法基本相同,也需要四种纳米硒化物涂料,在基片Mo电极薄膜h实施滚涂与烘干,可分步连续性地一次性成膜,四种硒化物涂料分别是:CuSe+CuGaSe2、 Ga2Se3、 In4Se3(或In2Se3+CuInSe2)、 (CuSe+CuGaSe2);其前驱薄膜构造为:(CuSe+CuGaSe2)/Ga2Se3/In4Se3/(CuSe +CuGaSe2),薄膜总的CuZ(In+Ga)>1.06,四层薄膜成份中原子结构比为:(4+3):l:3.5:(12.1+1), 前驱硒化物薄膜厚度约4~7pm,其中薄膜中各主要元素成份比Ga/(In+Ga)》0.3、 Se/M<l, 表层CuSe〉底部CuSe,表层Ga元素<底部Ga元素。 It is substantially the same as the method of Example 2, four kinds of nano need diselenide coating, roll coating and dried in an embodiment of the substrate Mo electrode film H, separable disposable continuously forming step, four kinds of coating are selenides is: CuSe + CuGaSe2, Ga2Se3, In4Se3 (or In2Se3 + CuInSe2), (CuSe + CuGaSe2); its precursor film configured to: (CuSe + CuGaSe2) / Ga2Se3 / In4Se3 / (CuSe + CuGaSe2), total CuZ film (in + Ga)> 1.06, a four-layer film composition in atomic structure ratio: (4 + 3): l: 3.5: (12.1 + 1), the precursor diselenide film thickness of about 4 ~ 7pm, wherein the film of each major element composition ratio Ga / (In + Ga) "0.3, Se / M <l, the surface CuSe> bottom CuSe, skin and Ga <bottom Ga element. 其快速硒硫化热处理工艺与实施例2 相同,薄膜电池的开路电压Voc比实施例2的少高,薄膜电池的半导体带隙呈V型分布。 Selenium sulfide which rapid heat treatment process the same as in Example 2, a thin film battery open voltage Voc less high, the band gap of a semiconductor thin film batteries V-shaped profile than that of Example 2.

实施例7 Example 7

三步电沉积(Cu^Se+CuGaSe2)/In4Se3/Cu2-xSe硒化物前驱薄膜制备CuInGaSe2_xSx薄膜太阳电池,电沉积采用标准的三电极体系,阳电极用石墨纤维布、参比电极用Ag/AgCl电极, 采用可循环流动电解槽结构,电解液使用循环泵供给并形成环流。 Preparation of three-step electrodeposition (Cu ^ Se + CuGaSe2) / In4Se3 / Cu2-xSe CuInGaSe2_xSx diselenide film solar cell precursor thin film, the electrodeposition using a standard three-electrode system, graphite cloth anode electrode, reference electrode Ag / AgCl electrode circulation cell structure may be employed, and the electrolytic solution circulation pump is supplied from circulating. 第一歩沉积的溶液配比: 0.3MK2SO4, 1.0mMCuSO4, 5.0mMGa2(SO4)3和1.7mMSe02, H2S04调节pH=2.2±0.2;沉积由恒电位过程控制,相对于Ag/AgCl电极的沉积电位为-0.75—1.0V,可调节[Cu]/[Ga]的比例为富Cu或贫Cu;第二步沉积的溶液配比:lmM的Se02, ImM的In2(S04)3、 0.3MK2SO^[I 适当有机添加剂,pH值用硫酸调到2.2,沉积贫硒的In4Se3依赖于溶液中ppm量的添加剂来控制;第三歩更换电沉积溶液,进行CiikSe的电沉积。 Ho deposition ratio of the first solution: 0.3MK2SO4, 1.0mMCuSO4, 5.0mMGa2 (SO4) 3 and 1.7mMSe02, H2S04 adjusted pH = 2.2 ± 0.2; potentiostatic deposition process is controlled by the relative deposition potential of the Ag / AgCl electrode is ratio -0.75-1.0V, adjustable [Cu] / [Ga] is Cu Cu rich or lean; Step deposition solution ratio: lmM of Se02, ImM of In2 (S04) 3, 0.3MK2SO ^ [I appropriate organic additive, pH adjusted to 2.2 with sulfuric acid, selenium deposited In4Se3 lean solution depends on the amount of additive is controlled ppm; ho replace a third electrodepositing solution, the electrodeposition CiikSe. 硒化物前驱薄膜CU/(In+Ga)>1.06, Se/M《l, Ga/(Ga+In)=0.3〜0.36,表层Cii2—xSe〉底部Cu2—xSe,表层Ga元素<底部Ga元素, 薄膜中氧含量约15%以上。 Diselenide precursor film CU / (In + Ga)> 1.06, Se / M "l, Ga / (Ga + In) = 0.3~0.36, surface Cii2-xSe> bottom Cu2-xSe, skin and Ga <Ga element bottom, film oxygen content of about 15% or more. 按照实施例1标准工艺程序进行硒化物前驱薄膜的快速硒硫化热处理,再进行后续其它沉积工艺与操作,就可得到与实施例2相似的CIGS薄膜太阳电池, 如果第三步电沉积过程添加Ga2(S04)3,就可得到实施例6的薄膜电池。 For diselenide precursor film of Example 1 according to standard procedures fast selenium sulfide heat treatment process, then other deposition process and subsequent operation, can be obtained CIGS thin film solar cell similar to Example 2, if the third step of the electrodeposition process was added Ga2 (S04) 3, can be obtained a thin film battery of Example 6.

实施例8 Example 8

前面所述前驱硒化物薄膜的电池基片均是水平放置进行快速硒硫化热处理与溅射沉积等相关操作的,依据木发明核心技术的范围,也可以设计与制作立式放置基片的设备,分别将图4光伏组件生产工序主流程与图5直列式快速硒硫化热处理装置中基片直立操作,其它设备做出与此相对应的调整,它并没有超出本发明核心技术的范围。 The foregoing precursor cells diselenide film substrate are positioned horizontally with the rapid heat treatment selenium sulfide sputter deposition and other related operations, according to the scope of the invention the wood core technology, design and production can also be vertical placement of the device substrate, FIG 4 respectively photovoltaic module production process of the main flow of FIG. 5-line rapid heat treatment apparatus selenium sulfide substrate erecting operation, and other equipment to make corresponding adjustments to this, and it is not beyond the scope of the present invention, the core technology. 这样,第一氢化预处理室内的基片均呈直立式放置,氢化预处理室每次可推入二片硒化物前驱薄膜基片进入第二快速硒硫化处理室,第二室小车上的基片架也呈直立式放置,基片架的中间安置加热器,可烘烤外部两侧的基片,并布置多对热电偶,同时可测量两侧基片上多点的温度值,比水平放置的工作效率更高和节省能源;基片架小车的两侧分别对称安置两个可移动的高功率辐射热源,它们可同时开启与移动;可移动辐射热源旁安置两个对称放置的高纯金属铟反应溅射对靶装置,它们按照面向小车基片架的对称位置立式安装;与此相对应各室的闸板阀开启的门将更宽, 一次有两片基片同时进出,取、送片机构耍对两张基片进行着同时操作。 Thus, the first pre-hydrogenation substrate showed chamber disposed upright, the hydrogenation may be pushed into the pre-chamber per two diselenide film substrate precursor into the second processing chamber quickly selenium sulfide, a second compartment small car group carrier sheet was also placed upright, the frame is disposed intermediate the substrate heater, the substrate may be baked outer sides, and arranging a plurality of thermocouples, the temperature can be measured while the value of the substrate on both sides of the multi-point than horizontally higher efficiency and energy saving; substrate holder on both sides of the car are symmetrically disposed two movable high power radiant heat source, they may be moved simultaneously with the opening; radiant heat source disposed near the movable purity metal two symmetrically placed indium target to reactive sputtering apparatus, which is mounted in a symmetric vertical position facing the substrate holder carriage; and this corresponds to gate valve opening of each chamber is wider keeper, there are two primary substrates in parallel and out, taking, send means for playing two sheet substrates for the simultaneous operation. 同理,第三基片冷却室、第四溅射室和第五取片室全部与第一、第二室作相应的变动,内部从水平工作状态变更为垂直状态;其中,第四溅射室中需添置近一倍装置, 共有四至六对金属反应溅射对靶,它们呈现对称与竖向安置, 一对高功率辐射热源也呈对称与垂直状态,对基片呈现横向移动式扫描。 Similarly, the third substrate cooling chamber, the fourth and fifth sputtering chamber unload chamber correspondingly changes all the first and second chamber, the internal operation state changes from the horizontal to the vertical state; wherein the fourth sputter need to purchase nearly doubled chamber means, a total of four to six pairs of reactive sputtering of a metal target, they exhibit symmetry and disposed vertically, a pair of high-power radiation source is also symmetrical to the vertical, lateral movement of the substrate exhibits scanning. 其操作程序与工艺与实施例1的硒化物前驱薄膜快速硒硫化热处理标准工艺基本相同,其工作效率比水平放置基片装置的作业方式高一倍, 更适合于大基片或超大基片薄膜电池光伏组件的制造。 Its procedure and process as in Example diselenide 1 precursor film quickly selenium sulfide standard heat treatment process is essentially the same, its efficiency twice as high as work type substrate means than horizontally, is more suitable for large substrates or large substrate film manufacturing of PV modules.

工业上的可利用性 The availability of the industry

本发明适用于由纳米硒化物涂料滚涂或水浴电化学沉积制备硒化物前驱薄膜,通过对硒化物前驱薄膜的快速硒硫化热处理,可以直接、连续化地制备CIGS薄膜电池光学吸收层、 缓冲层与i层,再通过后续的单体电池电极串联连接的方式(内联式集成组件),就可作为光电转换效率高的大面积光伏组件而被利用,用于光伏电站或建筑一体化的并网发电。 The present invention is applicable to nano diselenide coating roll or water bath electrochemical preparation selenide deposition precursor film, by flash selenium sulfide heat-treated precursor film of selenide, direct, continuous to CIGS thin film cells of the optical absorption layer was prepared, a buffer layer and the i-layer, then by method (in-line integrated assembly) subsequent cell electrodes connected in series, can be used as high photoelectric conversion efficiency of a large area photovoltaic module, or for building-integrated photovoltaic power plant and grid.

尽管本发明参照优选实施方案和说明书附图以及实施例进行/详细地说明,对本领域的技术人员来说,本发明的各种用途和变形可以不偏离本发明的实质与范围而完成。 While the embodiments of the present invention with reference to accompanying drawings and preferred embodiments and / described in detail, those skilled in the art, various applications and variations of the present invention may not departing from the spirit and scope of the present invention is completed. 因此,可以认为在此详细的说明书和附图不是对本发明范围的限定,它可以从前面的权利要求书中推导,11 i来,并目.它们在法律上是等效的。 Accordingly, it is considered that this detailed description and drawings are not to limit the scope of the present invention, it can be deduced from the foregoing claims claim, 11 i, the head and they are legally equivalent.

附图标记说明 REFERENCE NUMERALS

<table>table see original document page 24</column></row> <table><table>table see original document page 25</column></row> <table> <Table> table see original document page 24 </ column> </ row> <table> <table> table see original document page 25 </ column> </ row> <table>

参考文献 references

[I] M. Kaelin et al. Low cost processing of CIGS thin film solar cells. Solar Energy 77 (2004) 749-756 [I] M. Kaelin et al. Low cost processing of CIGS thin film solar cells. Solar Energy 77 (2004) 749-756

[2] VK Kapur, M. Fisher and R. Roe, "Nanoparticle Oxides Precursor Inks for Thin Film Copper Indium Gallium Selenide (CIGS) Solar Cells", Mat. Res. Soc. Proc, Vol.668, (2001) [2] VK Kapur, M. Fisher and R. Roe, "Nanoparticle Oxides Precursor Inks for Thin Film Copper Indium Gallium Selenide (CIGS) Solar Cells", Mat. Res. Soc. Proc, Vol.668, (2001)

[3] V. Kapur, A. Bansal, B. Gergen and P. Le. Commercialization of Mnk baesd' CIGS solar cells/modules. Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, 6O陽Al卜05,462〜463 [4]丄KJ van Durcn, C. Leidholm, A, Pudov, MR Robinson, and Y. Roussillon. HIGH-PERFORMANCE THIN-FILM PHOTOVOLTAICS USING LOW-COST PROCESS TECHNOLOGY. Technical Digest of the International PVSEC陽17, Fukuoka, Japan, 2007. PL5-3: 48〜51 [3] V. Kapur, A. Bansal, B. Gergen and P. Le. Commercialization of Mnk baesd 'CIGS solar cells / modules. Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, 6O male Al Bu 05 , 462~463 [4] Shang KJ van Durcn, C. Leidholm, A, Pudov, MR Robinson, and Y. Roussillon. HIGH-PERFORMANCE THIN-FILM PHOTOVOLTAICS USING LOW-COST PROCESS TECHNOLOGY. Technical Digest of the International PVSEC male 17 , Fukuoka, Japan, 2007. PL5-3: 48~51

[5] T. Wada, Y. Matsuo, S. Nomura, Y. Nakamura, A. Miyamura, Y. Chiba, A. Yamada, and M. Konagai. Fabrication of Cu(In,Ga)Se2 thin films by a combination of mechanochemical and screen-printing/sintering processes, phys. stat. sol. (a) 203, No. 11, 2593— 2597 (2006) [5] T. Wada, Y. Matsuo, S. Nomura, Y. Nakamura, A. Miyamura, Y. Chiba, A. Yamada, and M. Konagai. Fabrication of Se2 thin films Cu (In, Ga) by a combination of mechanochemical and screen-printing / sintering processes, phys. stat. sol. (a) 203, No. 11, 2593- 2597 (2006)

[6] Y.Chiba, A. Yamada, M, Konagai, Y. Matsuo, T. Wada. Photoluminecence study of CIGS thin films grown by mechanochemical process. Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007,5P-P3-15. 802〜803 [6] Y.Chiba, A. Yamada, M, Konagai, Y. Matsuo, T. Wada. Photoluminecence study of CIGS thin films grown by mechanochemical process. Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007,5P -P3-15. 802~803

[7] SeJin Ahna, KiHyun Kimb, KyungHoon Yoon, Nanoparticle derived Cu(In, Ga)Se2 absorber layer for thin film solar cells. Colloids and Surfaces A: Physicochem. Eng. Aspects 313—314 (2008) 171—174 [8] RNBhattacharya, J,F.Hiltner, W.Batchelor et al., 15,40/o CuIn^xGaxSe2國based photovoltaic cells from solution-based precursor films, Thin Solid Films, 361-362(2000)396 [7] SeJin Ahna, KiHyun Kimb, KyungHoon Yoon, Nanoparticle derived Cu (In, Ga) Se2 absorber layer for thin film solar cells Colloids and Surfaces A:. Physicochem Eng Aspects 313-314 (2008) 171-174 [8.. ] RNBhattacharya, J, F.Hiltner, W.Batchelor et al., 15,40 / o CuIn ^ xGaxSe2 country based photovoltaic cells from solution-based precursor films, Thin Solid Films, 361-362 (2000) 396

[9] RaghuN. Bhattacharya, Arturo M. Fernandez. CuInl-xGaxSe2-based photovoltaic cells from electrodeposited precursor films. Solar Energy Materials & Solar Cells 76 (2003) 331 - 337 . [9] RaghuN Bhattacharya, Arturo M. Fernandez CuInl-xGaxSe2-based photovoltaic cells from electrodeposited precursor films Solar Energy Materials & Solar Cells 76 (2003) 331 -.. 337

[10] Calixto ME, Dobson KD, McCandless BE, et aL Controlling growth chemistry and morphology of single-bath electrodeposited Cu(In,Ga) Se2 thin films for photovoltaic application. Journal of the Electrochemical Society 2006; 153(6): 521-528. . [10] Calixto ME, Dobson KD, McCandless BE, et aL Controlling growth chemistry and morphology of single-bath electrodeposited Cu (In, Ga) Se2 thin films for photovoltaic application Journal of the Electrochemical Society 2006; 153 (6): 521 -528.

[II] M. Alonso, M. Garriga, C, Durante Rinc6n, E.Herndndez, M. Le6n, Appli. Phys. A 74 (2002) 659; . [II] M. Alonso, M. Garriga, C, Durante Rinc6n, E.Herndndez, M. Le6n, Appli Phys A 74 (2002) 659.;

[12] AV Mudryi, IA Victorov, VF Gremenok, AI,Patuk, IA Shakin, MV Yakushev, Thin Solid Films431-432(2003)197 [12] AV Mudryi, IA Victorov, VF Gremenok, AI, Patuk, IA Shakin, MV Yakushev, Thin Solid Films431-432 (2003) 197

[13] 0, Ramdani, E. Chassaing, B. Canava, P.-P. Grand, O. Roussel, M Lamirand, E. Rzepka, A. Etcheberry, J.-F. Guillemoles, D. Lincot, O. Kerrec. Electrochemical Cementation Phenomena on Polycrystalline Molybdenum Thin Films from Cu(II)—In(111)—Se(IV) Acidic Solutions. Journal of The Electrochemical Society, 154-8-D383-D393(2007) [13] 0, Ramdani, E. Chassaing, B. Canava, P.-P. Grand, O. Roussel, M Lamirand, E. Rzepka, A. Etcheberry, J.-F. Guillemoles, D. Lincot, O. Kerrec. Electrochemical Cementation Phenomena on Polycrystalline Molybdenum Thin Films from Cu (II) -In (111) -Se (IV) Acidic Solutions. Journal of The Electrochemical Society, 154-8-D383-D393 (2007)

[14] A. Kampmann, J. Rechid, S. Wulff, M. Mihhailova, R. Thyen and A, Lossin, Low cost processing of CIGS solar cells on flexible metal substrates, l她European Photovoltaic Solar Energy Conference, 7-11 June 2004, Paris, France. 1806-1808 [14] A. Kampmann, J. Rechid, S. Wulff, M. Mihhailova, R. Thyen and A, Lossin, Low cost processing of CIGS solar cells on flexible metal substrates, l she European Photovoltaic Solar Energy Conference, 7-11 june 2004, Paris, France. 1806-1808

Claims (10)

1. 一种非真空低成本法制备CIGS薄膜太阳电池的硒化物前驱薄膜与快速硒硫化热处理的方法,其特征在于,包括:(1)在刚性衬底基片的钼电极薄膜上顺序涂覆纳米硒化物涂料与干燥成膜,或顺序电镀(或电沉积)不同组份纳米微晶硒化物前驱薄膜,该硒化物前驱薄膜成份与构造分别是:(CuGaSe2+CuSe)、(Ga2Se3+CuSe)、In4Se3(或In2Se3+CuInSe2)、CuSe[或(CuSe+Ga2Se3)、(CuSe+CuGaSe2)]的顺序取舍式组合;(2)制备了该硒化物前驱薄膜的一摞刚性基片被放置于真空室内的气密空间中,通过从室温至290℃高真空加热、注入氢气,再抽至高真空与注入氢气的多次操作,最后再注入氩气+氢气的第一氢化预处理;(3)第二硒化处理,将该摞基片由上而下或由下而上地平行移动,分别一片片地推入另一相对的气密空间,先启动基片底部的加热,并向第二气密空间导入类H2Se气体,在保持足够的 Diselenide CIGS thin film solar cell precursor film preparation 1. A low-cost non-vacuum selenium sulfide SYSTEM AND flash heat process, characterized by comprising: (1) coating the molybdenum electrode film sequentially on a rigid substrate body nano-diselenide coating and drying a film, or sequential electroplating (or electrodeposition) different compositions nanocrystalline diselenide precursor film, the precursor film composition and configuration of the selenides are: (CuGaSe2 + CuSe), (Ga2Se3 + CuSe) , In4Se3 (or In2Se3 + CuInSe2), CuSe [or (CuSe + Ga2Se3), (CuSe + CuGaSe2)] in order to choose the formula composition; (2) the selenide precursor film of a stack of rigid base prepared to be placed in a vacuum an airtight space in the room, from the room temperature to 290 ℃ by high vacuum heating, hydrogen was injected, and pulls out a high vacuum multiple hydrogen injection operation, and then injected into the first pre-hydrogenation of argon and hydrogen; (3) diselenide treatment, the top-down or bottom substrate bundle moved in parallel, respectively, opposite one another felled pushed airtight space, start heating the bottom of the substrate, and a second gas H2Se gas-tight space to import classes, maintaining a sufficient 气压(20~80kPa)时,对移动中的基片进行上下快速加热或上部扫描式加热与底部随基片移动的固定方式加热与升温,基片本身始终保持在350℃~580℃,基片表层由于高功率辐射热源的移动式扫描加热,前驱硒化物薄膜会快速升温到350℃~1100℃,促使硒化物前驱薄膜中CuxSe/与In4Se3相受热快速融化(523℃液化),辅助CIGS薄膜晶体液相反应生长和薄膜自身的致密化,大晶粒致密的CIGS薄膜生成后,其表层会渗出微量或吸附着多余液相CuxSe;(4)第三硒硫化处理,基片衬底在520℃~580℃适宜温度时,将基片运动转移至溅射位置,调节气密空间气压至0.3~25Pa,通过反应溅射In2Se3或In2S3中和反应掉基片表层多余的液相CuxSe,严格控制基片表面CIGS薄膜成份由富铜转变成贫铜结构过程中,反应溅射In2Se3或In2S3的量;(5)第四硒化处理,反应溅射结束后增大气密空间导入类H2Se Gas pressure (20 ~ 80kPa), the movement of the substrate in fixed manner vertically rapid heating or upper scan heating the bottom with the moving substrate heating and temperature rise, the substrate itself is kept at 350 ℃ ~ 580 ℃, the substrate skin since the mobile scanning high heating power irradiation heat source precursor diselenide film quickly raised to 350 ℃ ~ 1100 ℃, prompting diselenide precursor films CuxSe / and In4Se3 with heated quickly thawed (523 ℃ liquefaction), the auxiliary CIGS thin film transistor growth liquid phase reaction and densification of the film itself, the large grains generate dense CIGS thin film, the surface layer will leak trace or adsorbed excess liquid CuxSe; (4) a third selenium sulfide process, the base substrate 520 in ℃ ~ 580 ℃ when the appropriate temperature, the substrate was transferred to a sputtering position movement, to adjust the airtight space pressure 0.3 ~ 25Pa, or by reactive sputtering In2Se3 In2S3 and reacted in the surface layer of the substrate excess liquid CuxSe, strict control CIGS thin film substrate surface composition changes from a lean structure to copper-rich copper process, the amount of reactive sputtering In2Se3 or In2S3; (5) a fourth selenization reaction airtight space is increased after the introduction sputtering class H2Se 体量,使其环境硒气压达20~80kPa时,高功率辐射热源对基片进行更快速度的热扫描;(6)第五高温硫化处理,排空类H2Se气体后,重新注入反应溅射气体H2S+Ar,维持气压在0.3~25Pa,基片移动至溅射位置后进行反应溅射In2S3,In2S3在薄膜的表层生成n型Cu(In1-xGax)SSe或Cu(In1-yGay)3(Se1-xSx)5高阻层;在上述快速硒硫化热处理的操作过程中,第二气密空间交替充入类H2Se气体或H2S+Ar气体,其中间进行过高真空排气工序,气压有升有降;(7)将经过快速硒硫化热处理后的基片转移至第三气密冷却空间;这样,第一空间整摞基片在经过快速硒硫化处理后归入第三冷却空间,该空间注入有Ar+H2S混合气体,保证基片衬底逐渐由580℃下降至110℃过程中,CIGS薄膜材料内硒硫元素不流失;(8)降温后的基片分别被推入第四气密空间,进行金属靶反应溅射沉积薄膜电池的高阻本征In(OH, When the amount of the body, so that the pressure of the environment Selenium 20 ~ 80kPa, high power radiant heat to heat the substrate faster scanning speeds; (6) a fifth high temperature curing process, after evacuation based H2Se gas, reactive sputtering reinjected gas H2S + Ar, the pressure is maintained at 0.3 ~ 25Pa, reactive sputtering the substrate is moved to a sputtering position after In2S3, In2S3 generating an n-type Cu (In1-xGax) SSe or Cu (In1-yGay) in the surface layer of the film 3 ( Se1-xSx) 5 high resistance layer; selenium sulfide during operation of the rapid heat treatment, are alternately charged into the second airtight space based H2Se gas or H2S + Ar gas, wherein the evacuation step performed between the high, pressure goes up have lower; (7) will be transferred to the cooling space after the third airtight rapid heat selenium sulfide substrate; Thus, the entire stack of the first space included in the third substrate after rapid cooling space selenium vulcanized, the space implanted with a mixed gas of Ar + H2S to ensure the base substrate 580 is gradually decreased during deg.] C to 110 deg.] C, the CIGS thin film material of the selenium elemental sulfur is not lost; after (8) cooling the substrate are pushed into a fourth air-tight space, a metal film is deposited by reactive sputtering target cell intrinsic high impedance in (OH, S)/ZnS(O,OH)/ZnO(S)缓冲层与i层,二或三对纯金属溅射靶的靶材与反应气体的搭配是:In/(Ar、H2S与H2O)、Zn/(Ar、H2S与H2O)和Zn/(Ar、H2S与O2或CO2),溅射过程中基片衬底的温度控制在110℃~350℃;溅射完成后气密空间被抽至高真空状态,启动高功率辐射热源快速扫描基片表面;(9)将反应溅射沉积了高阻缓冲层与i层后的基片分别归入第五冷却空间;基片冷却后就可转入下一激光加工处理或机械划线的电池集成组件的电极串联连接工序,或沉积低阻透明导电ZnO:Al薄膜工序。 S) / ZnS (O, OH) / ZnO (S) buffer layer and the i-layer, and the target reaction gas two or three pure metal sputtering target mix is: In / (Ar, H2S and H2O), Zn / (Ar, H2S and H2O) and Zn / (Ar, H2S and O2 or CO2), over the substrate during sputtering, the substrate temperature was controlled at 110 ℃ ~ 350 ℃; airtight space is evacuated to a high vacuum sputtering completion state, the high-power irradiation start the fast scan source substrate surface; (9) the reaction after the sputter deposition of high resistance buffer layer and the i-layer of the substrate are grouped on the fifth cooling space; the latter can be transferred to the substrate cooling a battery integrated tandem electrode assembly laser processing or mechanical scribing connecting step, or depositing a transparent conductive low-resistance ZnO: Al thin film process.
2. 根据权利要求1所叙述的非真空低成本法制备CIGS薄膜太阳电池的硒化物前驱薄膜与快速硒硫化热处理制备薄膜太阳电池的方法,其硒化物前驱薄膜可以采用六种纳米微晶硒化物涂料组合的顺序取舍来构成涂覆硒化物前驱薄膜材料的组成与各层结构,即在基片Mo 背电极薄膜上顺序涂覆与干燥制成硒化物前驱薄膜,其特征在于,硒化物前驱薄膜中存在富硒的CuSe层湘)或/与贫硒的In4Se3层(相),该低熔点CuSe或/与In4Se3的纳米硒化物材料在硒化物前驱薄膜中所占体积比>30%;硒化物前驱膜中的Cu/(In+Ga)=1.01〜1.3,优选Ga/(Ga+In)=0. 15〜0. 35, Se/M《l;硒化物前驱薄膜中表层的CuSe〉底部CuSe,最佳比1. l〜 1.5,靠近钼电极薄膜处不能够缺少CuSe;硒化物前驱薄膜中底部Ga元素〉表面Ga元素,最佳比9. 0〜10. 0,或Ga元素仅分布在靠近钼电极的薄膜处。 The method for preparing CIGS thin film solar cells at low cost a non-vacuum Legal diselenide precursor film described in one heat treatment and rapid preparation of the selenium sulfide thin film solar cell as claimed in claim diselenide precursor film may employ six kinds selenide nanocrystals composition and structure of layers in order to choose the coating composition constituting the coating film diselenide precursor material, i.e., a back electrode film sequentially coated with a dried film formed diselenide precursor, wherein the precursor film selenide substrate Mo In4Se3 layer is present selenium enriched in CuSe BEDS) or / and poor selenium (phase), the low melting point CuSe or / and nano-diselenide material In4Se3 occupied volume ratio of> 30% diselenide precursor film; diselenide . precursor film Cu / (in + Ga) = 1.01~1.3, preferably Ga / (Ga + in) = 0 15~0 35, Se / M "l; in the surface layer selenide film precursor CuSe> bottom CuSe , optimal alignment 1. l~ 1.5, close to the molybdenum electrode film can not be missing CuSe;. diselenide film in the bottom of the Ga element precursor> surface Ga element, the optimum ratio of 0 ~ 10 0 9, or distributed only in the element Ga a molybdenum film near the electrode.
3. 根据权利要求1所叙述的硒化物前驱薄膜与快速硒硫化热处理制备薄膜太阳电池的方法,其电沉积硒化物前驱薄膜的构造特征在于:可采用控制沉积电位的一歩顺序电沉积或更换不同电解液成份的分步顺序电沉积来制备硒化物前驱薄膜,薄膜中存在独立的Cu2-xSe 相,允许电沉积硒化物前驱薄膜中直接沉积一定量的四元CuInGaSe2微晶颗粒,电沉积薄膜中Cu/(In+Ga)=1.01〜1.3,优选Ga/(Ga+In) =0. 15〜0. 35, Se/M《l;电沉积硒化物前驱薄膜中表层012—xSe〉底部CUhSe,最佳比1. 1〜1. 5,靠近钼电极薄膜处不应该缺少Cu2-xSe,低熔点Cu2.xSe所占硒化物前驱薄膜的体积比>20%。 3. The method diselenide precursor film 1 described with rapid selenium sulfide heat-treated film was prepared a solar cell as claimed in claim configured characterized electrodeposition diselenide precursor film are that: may be employed to control the deposition potential of a ho sequential electrodeposition or switch to a different fractional order electrodeposition the electrolyte component prepared diselenide precursor film, there is a separate Cu2-xSe film phase, allows electrodeposition diselenide precursor film directly deposited amount of quaternary CuInGaSe2 crystallite particles, electrodeposition film Cu / (in + Ga) = 1.01~1.3, preferably Ga / (Ga + in) = 0 15~0 35, Se / M "l;.. diselenide electrodeposition in the surface layer 012-xSe> bottom CUhSe precursor film, 1. the optimum ratio of 1~1. 5, close to the molybdenum electrode film should not lack Cu2-xSe, the volume occupied by the low melting point Cu2.xSe diselenide film precursor ratio> 20%.
4. 根据权利要求1所叙述的非真空低成本法制备CIGS薄膜太阳电池的硒化物前驱薄膜与快速硒硫化热处理制备薄膜太阳电池的方法,其特征在于,快速硒硫化热处理工艺均在真空室内的气密空间中进行,它加设有遮断类H2Se气体或Ar+H2S气体供给的阀门,可进行气密空间内真空排气的操作工序。 4. A method according diselenide precursor prepared by a non-vacuum film CIGS thin film solar cells at low cost Method 1 described heat treatment and rapid preparation of the selenium sulfide thin film solar cell as claimed in claim, characterized in that the selenium sulfide rapid heat treatment process are in a vacuum chamber for airtight space, which has a plus or blocked based H2Se gas Ar + H2S gas supply valve can be operated step of evacuating the airtight space.
5. 根据权利要求1所叙述的非真空低成本法制备CIGS薄膜太阳电池的硒化物前驱薄膜与快速硒硫化热处理制备薄膜太阳电池的方法,其特征在于,硒化热处理使用的类H2Se气体成份的组成为:(30%〜50%)Ar+(25%〜35%)H2+(15%〜45%)H2Se;反应溅射In2Se3的溅射气体是氩气,反应气体是H2Se或类H2Se气体;反应溅射In2S3的溅射气体是氩气,反应气体是H2S气体;硒化物前驱薄膜和完全转变成致密的大晶粒、略微贫铜结构CIGS薄膜开始闪速热处理时,其气密空间环境内的硒气压维持在20〜80kPa,但是热处理CIGS薄膜电池的缓冲层与i层时,却处在高真空环境中进行。 5. The method diselenide precursor film prepared by a non-vacuum CIGS thin film solar cells at low cost Method 1 described heat treatment and rapid preparation of the selenium sulfide thin film solar cell as claimed in claim, wherein the selenide-based H2Se gas component using heat treatment consisting of: (30% ~50%) Ar + (25% ~35%) H2 + (15% ~45%) H2Se; In2Se3 reactive sputtering of a sputtering gas is argon, the reaction gas is a type H2Se or H2Se gas; reaction In2S3 sputtering the sputtering gas is argon, the reaction gas is H2S gas; diselenide precursor film dense and completely converted to large grains, slightly poor CIGS thin film copper structure starts a flash heat treatment, in which the airtight space environment selenium pressure is maintained at 20~80kPa, but the buffer layer and the i-layer heat CIGS thin film cells, but in a high vacuum environment.
6. 根据权利要求1所叙述的非真空低成本法制备CIGS薄膜太阳电池的硒化物前驱薄膜与快速硒硫化热处理制备薄膜太阳电池的方法,硒化物前驱薄膜均为富铜结构,薄膜中铜含量的大小均不能被精确地控制,需要快速硒硫化热处理来精确地调整薄膜中最终的铜含量, 使它适合于制备高效率CIGS薄膜电池半导体器件的要求,其吸收层中铜含量应该严格控制的范围为20%~24.0%。 The method for preparing CIGS thin film solar cells at low cost a non-vacuum Legal diselenide precursor film described in one heat treatment and rapid preparation of the selenium sulfide thin film solar cell as claimed in claim diselenide precursor film are copper-rich structure, a thin film copper content size can not be precisely controlled, it is necessary to quickly heat selenium sulfide precisely adjust the copper content in the final film, making it suited for producing high efficiency semiconductor device CIGS thin film cells, which absorber layer copper content should be strictly controlled in the range of 20% to 24.0%. 其特征在于,硒化物前驱薄膜经过快速加热后的表层会渗出或吸附着微量液相CuxSe,基片衬底温度维持在52(TC〜58(TC,底部的加热处于恒功率控制状态时, 通过反应溅射沉积In2Se3或In2S3与薄膜表层液相CuxSe中和反应的方法来控制薄膜成份中的铜含量;严格监控基片薄膜表面液相CuxSe被中和反应掉或薄膜成份中铜含量下降越过CIGS 半导体材料特征的理论铜含量24.5%时,以恒功率加热条件下基片硒化物薄膜的底部测试温度值出现明显的突变为标识,精确地决定着通过热处理与溅射沉积In2Se3或In2S3使硒化物前驱薄膜完全转变成略为贫铜结构的CIGS吸收层薄膜材料时所需要In2Se3或In2S3的量。 Wherein diselenide precursor film surface after the rapid heating or adsorbed trace exude liquid CuxSe, the base substrate is maintained at a temperature of 52 (TC~58 (TC, heating at the bottom of the constant power control state, controlling the copper content in the composition of the film deposited by sputtering or In2Se3 In2S3 and a thin film surface and the reaction in the liquid phase reaction CuxSe; strict monitoring of the substrate film surface and the liquid phase is reacted CuxSe film or decreased over the copper content of component theoretical copper content of the material characteristics of the CIGS semiconductor when 24.5%, to the bottom of the test temperature of the substrate diselenide film at constant power heating apparent mutated to identify accurately determine by heat treatment and sputter deposition In2Se3 or In2S3 selenium compound precursor film completely converted to a copper depleted slight amount In2Se3 or CIGS structure In2S3 required the absorbent layer of the film material.
7. 根据权利要求1所叙述的非真空低成本法制备CIGS薄膜太阳电池的硒化物前驱薄膜与快速硒硫化热处理制备薄膜太阳电池的方法,在背电极钼薄膜上的硒化物前驱薄膜通过快速硒硫化热处理转变成大晶粒致密PV(光伏)级薄膜晶体完全依赖于本发明独特的真空加热方式,其特征在于,硒化物前驱薄膜的基片底部采用始终跟随基片移动的固定加热器的方式加热,或不跟随基片移动却保持下部加热量始终均匀、大面积均衡供热的方式加热;硒化物前驱薄膜的上部或外部采用相对运动或脉冲方式的高功率辐射热源对硒化物薄膜进行扫描或动态方式的加热,有一维方向的加热始终是均匀的,另一维运动方向的加热始终是脉冲或动态的,其大面积加热的累加热量应该是均匀的,当上部或外部高功率辐射热源加热时,硒化物薄膜与基片所处的温度在绝大多数情况下 The method for preparing CIGS thin film solar cells at low cost a non-vacuum Legal diselenide precursor film described in one heat treatment and rapid preparation of the selenium sulfide thin film solar cell as claimed in claim selenide precursor film on the back electrode by flash molybdenum films of selenium heat curing mode change to a large dense grain PV (photovoltaic) completely dependent on a thin film transistor stage unique vacuum heating method of the present invention, wherein the base precursor film selenide substrate heater fixed always follow the movement of the substrate heating, or does not follow the moving substrate has maintained a lower amount of heat is always uniform, large area balanced heating mode heat; the upper or outer selenide precursor film using relative movement or pulse high power radiant heat source diselenide film scanning or heating in a dynamic manner, there is one-dimensional direction of heating is always uniform, heating other dimensional motion direction is always a pulse, or dynamic, its large heat accumulating heat should be uniform, when the upper or external high-power radiation source upon heating, diselenide film and the substrate temperature in which the vast majority of cases 不同的,存在着明显的差异,上部或外部的脉冲或扫描方式的加热量仅对硒化物薄膜有很大的影响,对基片的影响相对较小;基片的底部始终存在着三个以上的测温点,测温点的排列方向与基片运动方向一致,获取的温度值被用来进行基片底部加热状态的控制,或其它与该薄膜相关物理量的控制。 Different, there is a clear difference in the amount of heat only the upper or diselenide film external pulses or scanning system has a great influence, the influence on relatively small substrates; base sheet there is always more than three temperature measurement point, the measurement points arrangement direction coincides with the direction of movement of the substrate, the acquired temperature value is used for controlling the state of the bottom heating of the substrate, with the film or other control-related quantities.
8. 根据权利要求1所叙述的非真空低成本法制备CIGS薄膜太阳电池的硒化物前驱薄膜与快速硒硫化热处理制备薄膜太阳电池的方法,硒化物前驱薄膜在高硒压的气氛环境中被重熔再结晶,表层吸附或渗出的液相CuxSe被反应溅射的In2Se3或In2S3中和反应掉,其特征在于,表层液相CuxSe被反应溅射的In2Se3或In2S3中和反应掉时,控制基片底部加热功率的温度测试曲线会出现明显的拐点,说明该硒化物薄膜已完全转变成符合化学计量比、呈略微贫铜结构的半导体材料,已完全符合制备薄膜电池吸收层的必备条件;溅射沉积的Iri2Se3使硒化物薄膜表层半导体带隙平滑下降,溅射沉积的In2S3使硒化物薄膜表层半导体带隙平滑上升,其厚度约40〜60nm;随后,薄膜表面继续反应溅射In2S3,将在硒化物薄膜的表层生成n 型高阻CU(Ini.yGay)3(SxSei-x)5的薄膜材料,形成所要制备薄膜电池 8. A method for preparing CIGS thin film solar cells at low cost a non-vacuum Legal diselenide precursor film described in one heat treatment and rapid preparation of the selenium sulfide thin film solar cell as claimed in claim diselenide precursor film is re selenium in an atmosphere of high pressure in the environment when melting recrystallization, adsorption or liquid exuded CuxSe surface is reactively sputtered or In2Se3 In2S3 and reacted, characterized in that the liquid surface is sputtered In2Se3 CuxSe In2S3 or reacted in the reaction and the control group temperature test curve bottom piece of the heating power will be significant inflection point, indicating that the selenide film has been completely converted into stoichiometric ratio, as a semiconductor material is slightly lean copper structure, completely meet the prerequisites film was prepared cell absorber layer; Iri2Se3 sputter deposition surface so diselenide film semiconductor bandgap drops smoothly, so that sputter deposition In2S3 diselenide film surface rises smoothly bandgap semiconductor, a thickness of about 40~60nm; subsequently, the reaction was continued sputtering film surface In2S3, the to be prepared to generate an n-type high resistance thin film battery CU (Ini.yGay) 3 (SxSei-x) film on the surface layer material 5 selenide film is formed 同质浅埋结,其厚度约20〜40腦。 Shallow junction homogenous thickness of about 20~40 brain.
9. 根据权利要求1所叙述的非真空低成本法制备CIGS薄膜太阳电池的硒化物前驱薄膜与快速硒硫化热处理制备薄膜太阳电池的方法,硒化物前驱薄膜经过快速硒硫化热处理后已转变成大晶粒致密的PV级薄膜晶体,紧接着再连续地沉积薄膜电池的缓冲层与i层,保证薄膜电池的pn结不暴露在大气中形成杂质污染和表面氧化,影响薄膜电池的器件质量,其特征在于,CIGS薄膜电池的吸收层表面直接、连续地反应溅射沉积In(OH, S)/ZnS(0, OH)/ZnO(S) 三种成份的薄膜材料构成了薄膜电池的缓冲层与i层,其厚度分别是:15〜25nm、 20〜30nm 和50〜75mn,合计约85〜130咖,各薄膜材料的沉积顺序不能改变,材料成份的界限可以较模糊,其中硫含量逐渐降低、氧含量逐渐增加;二或三对反应溅射对靶的靶材分别是金属纯铟和纯锌,反应溅射方式采用平面对靶或双圆柱形旋转磁控 9. A method for preparing CIGS thin film solar cells at low cost a non-vacuum Legal diselenide precursor film described in one heat treatment and rapid preparation of the selenium sulfide thin film solar cell as claimed in claim diselenide precursor film after heat treatment is rapid change to a large selenium sulfide dense grain crystal film PV level, then followed continuously deposited buffer layer and the i-layer thin-film batteries, thin film batteries to ensure a pn junction is formed without exposure to the atmosphere and surface oxide contaminated with impurities, it affects the quality of the thin film device battery, characterized in that the surface of the CIGS thin film cells directly absorbing layer is continuously deposited by reactive sputtering in (OH, S) / ZnS (0, OH) film material of the three components / ZnO (S) forms the buffer layer and the thin film battery i-layer, the thickness thereof are: 15~25nm, 20~30nm and 50~75mn, a total of about 85~130 coffee, order of deposition of thin film materials can not be changed, the boundaries may be more vague material composition, wherein the sulfur content gradually decreases, gradually increasing the oxygen content; two or three of the reactive sputtering target of pure metal targets are pure indium and zinc, the reaction planar sputtering target or the rotary cylindrical magnetron bis 对耙,溅射电源采用直流脉冲或中频交流工作方式的电源,多孔金属屏蔽网罩住该对靶溅射沉积的工作区域,不带电荷的沉积物穿过细薄金属网而沉积在吸收层上形成缓冲层与i层。 To rake, sputtering or DC pulse power supply using power frequency AC mode of operation, the porous metallic screen covering the work area to a target sputter deposited through the deposit uncharged thin metal layer is deposited on the absorbent forming a buffer layer and the i-layer.
10. 根据权利要求1所叙述的非真空低成本法制备CIGS薄膜太阳电池的硒化物前驱薄膜与快速硒硫化热处理制备薄膜太阳电池的方法,依据该方法可以组建沉积有硒化物前驱薄膜的基片经过快速硒硫化热处理装置内的连续加工,直接制备CIGS薄膜太阳电池光学吸收层、 缓冲层和i层的第一模式生产线,以及大基片、超大基片滚涂或电沉积硒化物前驱薄膜后, 以双基片直立方式进入快速硒硫化热处理装置、溅射制备缓冲层与i层和真空室内激光电极集成联接加工与溅射透明导电薄膜的一体化装置,直接一步完成CIGS薄膜电池光伏集成组件所有工序的第二模式生产线,其特征在于,(l)第一种模式生产线结构为:①氢化预处理室、 ②快速硒硫化热处理室、③储片冷却室、④溅射缓冲层与i层室和⑤取片室等五个相对独立工作单元通过闸板阀串接而成;其中,①氢 10. A method as described in Preparation diselenide precursor film CIGS thin film solar cells at low cost a non-vacuum SYSTEM vulcanization heat and rapid preparation of the selenium thin film solar cell according to claim, according to this method may form the substrate deposited film precursor diselenide after continuous processing in rapid thermal processing apparatus selenium sulfide, the CIGS thin film solar cells prepared directly from the optical absorption layer, the buffer layer and the first line pattern i-layer, and a large substrate, the large substrate roller or electrodeposition selenide film precursor to the upright position into the two-substrate selenium sulfide rapid thermal processing apparatus, sputtering and the i-layer, the buffer layer and integration means coupled to the vacuum chamber integrated laser machining electrode and the transparent conductive thin film sputtering, direct one step integration component PV CIGS thin film cells a second step of all lines mode, wherein, (l) a first pattern line structure as follows: ① hydrogenated pretreatment chamber, selenium sulfide ② rapid thermal processing chamber, the cooling chamber stocker ③, ④ and the i-layer, the buffer layer sputtered ⑤ chamber and the unload chamber five independent units of work by the concatenation of the gate valve; wherein, ① hydrogen 化预处理室内的气密空间中安置可上下升降、整体能被搬运的支承机构,外侧有加热装置与热辐射屏蔽板,气体导入管、阔门与可真空排气的机构;②快速硒硫化热处理室的气密空间中安装有可控制移动距离与速度的小车,小车上放置待处理的基片,小车基片底部均匀地布置着电阻加热装置与基片接触的多对热电偶,可进行基片背部可控温度或恒定功率的方式加热,小车上部安装着可控制移动距离、速度和能量的高功率辐射热源,它能对基片上表层薄膜进行快速扫描式加热,小车两侧安装有固定的气体导入管,导入管面向小车方向的管壁上开设有多个均匀布置的喷嘴孔,气体从喷嘴孔流向移动的基片上表面,小车上部还安装有一组反应溅射对靶装置和溅射与反应气体的两套管路;④溅射缓冲层与i层室的气密空间中同样安装有与快速硒硫化热处理室 An airtight space pretreatment chamber disposed in a vertically movable, the support means can be integrally handling, the outer heating means and the heat radiation shielding plate, a gas inlet tube, with a gate width of the evacuation means; ② Quick selenium sulfide heat treatment chamber airtight space is mounted in carriage moving distance and speed can be controlled, and the bottom of the substrate to be processed is placed a small car, the car with the substrate uniformly arranged plurality of resistance heating means in contact with the substrate thermocouples, can be a temperature controlled substrate back or constant power heating mode, the upper trolley mounted may control the moving distance, the speed and energy of the high power radiant heat source, heating it rapidly scanning the surface of the substrate film, on both sides of the car is mounted with a fixed a gas introduction pipe introduced into the pipe wall defines a direction facing the car plurality of nozzle holes uniformly arranged in the gas flow onto the moving substrate surface from the nozzle holes, the upper portion of the car is also equipped with a set of reaction apparatus and the sputtering of the sputtering target two sets of reaction gas conduit; ④ airtight space buffer layer and the i-layer sputtering chamber and quickly attached to the same heat treatment chamber selenium sulfide 内相同规格的小车,小车上部顺序安装二或三组反应溅射对靶和溅射与反应气体的两套管路,溅射靶的材料分别是金属纯铟和纯锌,溅射对靶的中间靠前安装着固定式高功率辐射热源。 The trolley of the same size, the order of the upper trolley mounted two or three reactive sputtering of a sputtering target and two lines with the reaction gas, the material of the sputtering target are indium and the pure zinc pure metal, a sputtering target of front mounted intermediate power irradiation fixed high heat. (2)第二种模式生产线结构为:①氢化预处理室、②快速晒硫化热处理室、③储片冷却室、④溅射缓冲层与i层室、⑤激光集成电极联接加工与溅射透明导电薄膜室和⑥取片室等六个相对独立工作单元通过闸板阀串接而成;其中,①氢化预处理室内的基片均呈竖直放置,其气密空间中安装着可左右移动竖直基片、整体可被搬运的支承机构,其它部件与前述氢化预处理室的设置相对应;②快速硒硫化热处理室内的气密空间中安装有可控制移动距离与速度的小车,小车上竖立放置着背靠背待处理的两片基片,小车上基片靠架呈现竖立放置,基片竖立着的靠架中间布置着电阻加热装置与两侧基片相接触的多对热电偶,可同时对两侧基片的背部进行可控温度或恒定功率方式的加热,可移动小车两侧还分别对称安装着可控制移动距离、速度和能量的两个高功率 (2) The second model line structure as follows: ① hydrogenated pretreatment chamber, ② quick drying chamber heat curing, ③ stocker cooling chamber, ④ a sputtering chamber i-layer and the buffer layer, ⑤ integrated laser transparent electrode coupled to the sputtering process ⑥ conductive thin film chamber and the unload chamber six independent working unit connected in series via the gate valve formed; wherein, hydrogenated ① pretreatment chamber substrate showed upright, mounted airtight space which can move around vertical substrate, the entire support mechanism may be transported, provided with the other member corresponding to the pretreatment chamber hydride; selenium sulfide airtight space ② rapid heat treatment chamber is mounted in the car may control the moving distance and speed of the trolley placed upright with the two substrates to be processed back to back, on the substrate holder carriage exhibits placed upright, erect the substrate holder disposed on the intermediate resistance heating means in contact with both sides of the substrate a plurality of thermocouples can be simultaneously on the back sides of the substrate a controlled temperature or constant power heating mode, both the movable carriages, respectively, may further control the moving distance, the speed and energy of the two symmetrically mounted high-power 射热源,可同时对小车基片靠架上的基片的表面薄膜进行纵向均匀、横向快速扫描式的加热,小车两侧的上下分别安装有固定的气体导入管,导入管靠近小车基片方向的管壁上开设有多个均匀布置的喷嘴孔,气体从喷嘴孔流向移动基片的表面,可移动高功率辐射热源的运动方向前后同样安装有二路硒气体的喷嘴管路,保证快速加热区域有效、均匀地硒元素的供给,小车靠片架的两侧还安装有两个对称放置的高纯金属铟靶的反应溅射对靶装置和溅射与反应气体的两套管路,它们按照面向小车靠架基片的对称位置竖直方式的安装; ④溅射缓冲层与i层室内的小车靠架同样也是竖直式放置,与快速硒硫化热处理室的小车功能相近,小车靠架基片的两侧以竖立方式安装四、六组面朝基片方向、对称放置的反应溅射对耙装置和溅射与反应气体的两套管路,对 Emitting source, which can stand against a surface of the film substrate the substrate carriage longitudinally uniform transverse vertical scanning fast heating, are mounted on both sides of the car with a fixed gas inlet tube, inlet tube close to the substrate direction of the trolley the wall defines a plurality of nozzle holes are arranged uniformly, the surface of the gas flow moving the substrate from the nozzle holes, the direction of back and forth movement of the movable high power radiant heat source mounted in the same nozzle line Road selenium gas to ensure rapid heating effective area, uniformly supplied selenium, on both sides of the trolley plate is also mounted holder reactive sputtering target of high purity indium two symmetrically placed on two sets of conduit means and a sputtering target with the reaction gas, which trolley according facing against the substrate holder mounted vertically symmetrical positions embodiment; ④ sputtering chamber i-layer and the buffer layer against the car frame is also vertically disposed type, similar to the function of the car quickly selenium sulfide heat treatment chamber, by the trolley frame on both sides of the substrate mounted upright four, six groups facing the direction of the substrate, placed symmetrically to the reactive sputtering apparatus and the sputtering rake two sets of reaction gas conduit, for 靶中间靠前有两个面向基片以竖直方式安装着的高功率辐射热源固定装置;⑤激光集成电极联接加工与溅射透明导电薄膜室内同样有着小车,小车直立的靠架上无加热与测温装置,真空室的两侧对称地安装着可上下快速移动与可自适应控制精密歩进的两台激光加工装置,通过真空室腔壁的透明窗口,激光可对基片表面进行接触电极的预处理和反爆冲切割面电极薄膜的加工,小车靠架的基片两侧安装有多组竖向与对称放置的溅射对靶,可进行ZnO:Al陶瓷靶的透明导电薄膜的溅射;该模式生产线中间有多组可同时进行两片基片的推送或取回、转移的机械手。 Target intermediate power irradiation source with a high front fixing means for the two substrates mounted in a vertical manner; ⑤ integrated electrode coupled to a laser processing chamber and sputtering the transparent conductive film also has a car, car standing on shelves without heating and temperature measuring means on both sides of the vacuum chamber be symmetrically mounted with two vertically moving quickly the laser processing apparatus may be adaptively controlled ho into the precision, the laser may be in contact with the surface of the substrate electrode of the vacuum chamber through a transparent window in the chamber wall and anti-explosion pretreatment punch processing the cut surface of the electrode film, on both sides of car frame substrate mounting a plurality of sets of vertical symmetrically placed with a sputtering target, may be ZnO: Al sputtering the transparent conductive thin film of a ceramic target exit; the middle of the line pattern can be a plurality of sets of two substrates push or retrieved, the transfer robot simultaneously.
CN 200810053356 2008-05-30 2008-05-30 Selenide forerunner thin film and method for producing film cell through rapid selenium vulcanizing thermal treatment CN101299446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200810053356 CN101299446A (en) 2008-05-30 2008-05-30 Selenide forerunner thin film and method for producing film cell through rapid selenium vulcanizing thermal treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200810053356 CN101299446A (en) 2008-05-30 2008-05-30 Selenide forerunner thin film and method for producing film cell through rapid selenium vulcanizing thermal treatment

Publications (1)

Publication Number Publication Date
CN101299446A true CN101299446A (en) 2008-11-05

Family

ID=40079197

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200810053356 CN101299446A (en) 2008-05-30 2008-05-30 Selenide forerunner thin film and method for producing film cell through rapid selenium vulcanizing thermal treatment

Country Status (1)

Country Link
CN (1) CN101299446A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101937943A (en) * 2010-08-30 2011-01-05 浙江尚越光电科技有限公司 Preparation method of thin-film solar cell absorption layer with gradient gallium-indium atomic ratio distribution
CN102157611A (en) * 2010-12-16 2011-08-17 友达光电股份有限公司 Manufacturing method of CIGS films
CN102468367A (en) * 2010-11-18 2012-05-23 财团法人工业技术研究院 Manufacturing method for light absorption layer and solar cell structure body using same
CN102649542A (en) * 2011-02-23 2012-08-29 威奈联合科技股份有限公司 Production method of chalcopyrite type compound
CN102649543A (en) * 2011-02-23 2012-08-29 威奈联合科技股份有限公司 Manufacture method of chalcopyrite type compounds
CN102074615B (en) 2009-11-20 2012-10-03 正峰新能源股份有限公司 Non-vacuum coating method for absorption layer of solar battery
CN102985358A (en) * 2010-06-29 2013-03-20 株式会社钢臂功科研 Powder, sintered body and sputtering target, each containing elements Cu, In, Ga and Se, and method for producing the powder
CN103132023A (en) * 2011-11-21 2013-06-05 绿阳光电股份有限公司 Rapid thermal processing system and sulfidation method thereof
CN103178162A (en) * 2013-03-26 2013-06-26 无锡舒玛天科新能源技术有限公司 Method for producing copper indium gallium selenium thin film by using rotary copper indium gallium selenium alloy sputtering target material
CN103258899A (en) * 2012-02-17 2013-08-21 任丘市永基光电太阳能有限公司 Method for preparing Cu(In1-xGax)Se2 (CIGS) absorbing layer on flexible stainless steel substrate
CN103258898A (en) * 2012-02-17 2013-08-21 任丘市永基光电太阳能有限公司 Method for preparing CIGS absorbing layer on soda-lime glass substrate
CN103296130A (en) * 2012-03-05 2013-09-11 任丘市永基光电太阳能有限公司 Na doping method for CIGS absorbing layer on flexible stainless steel substrate
TWI411121B (en) * 2010-03-11 2013-10-01 Ind Tech Res Inst Method of forming light absorption layer and solar cell structure using the same
CN103400899A (en) * 2013-08-07 2013-11-20 研创应用材料(赣州)有限公司 Film flattening method for preparing porous preceding layer and absorption layer
CN103548153A (en) * 2011-05-31 2014-01-29 韩国能源技术研究院 Method of manufacturing CIGS thin film with uniform Ga distribution
CN104518052A (en) * 2013-10-08 2015-04-15 台积太阳能股份有限公司 Method of making photovoltaic device having high quantum efficiency
CN104934498A (en) * 2014-03-18 2015-09-23 台积太阳能股份有限公司 Deposition Process For Solar Cell Front Contact
CN105899462A (en) * 2013-11-15 2016-08-24 纳米技术有限公司 Preparation of copper-rich copper indium (gallium) diselenide/disulfide nanoparticles
CN106433646A (en) * 2016-11-30 2017-02-22 南方科技大学 Photo-conversion quantum dot, solar light collector and solar light collection device
CN106531845A (en) * 2016-12-08 2017-03-22 福建师范大学 Method for preparing absorption layer CuInS<2> thin film for solar cell by chemical water bath
CN106611800A (en) * 2015-10-19 2017-05-03 陈柏颕 Solar film structure and manufacturing method and device thereof
CN106716646A (en) * 2013-12-23 2017-05-24 蚌埠玻璃工业设计研究院 Layer system for thin-film solar cells

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074615B (en) 2009-11-20 2012-10-03 正峰新能源股份有限公司 Non-vacuum coating method for absorption layer of solar battery
TWI411121B (en) * 2010-03-11 2013-10-01 Ind Tech Res Inst Method of forming light absorption layer and solar cell structure using the same
CN102985358A (en) * 2010-06-29 2013-03-20 株式会社钢臂功科研 Powder, sintered body and sputtering target, each containing elements Cu, In, Ga and Se, and method for producing the powder
CN102985358B (en) * 2010-06-29 2015-07-08 株式会社钢臂功科研 Powder, sintered body and sputtering target, each containing elements Cu, In, Ga and Se, and method for producing the powder
CN101937943A (en) * 2010-08-30 2011-01-05 浙江尚越光电科技有限公司 Preparation method of thin-film solar cell absorption layer with gradient gallium-indium atomic ratio distribution
CN102468367A (en) * 2010-11-18 2012-05-23 财团法人工业技术研究院 Manufacturing method for light absorption layer and solar cell structure body using same
CN102468367B (en) * 2010-11-18 2014-02-26 财团法人工业技术研究院 Manufacturing method for light absorption layer and solar cell structure body using same
CN102157611B (en) * 2010-12-16 2013-04-17 友达光电股份有限公司 Manufacturing method of CIGS films
CN102157611A (en) * 2010-12-16 2011-08-17 友达光电股份有限公司 Manufacturing method of CIGS films
TWI452634B (en) * 2010-12-16 2014-09-11 Au Optronics Corp Fabricating method of a copper indium gallium selenium (cigs) thin-film
CN102649543A (en) * 2011-02-23 2012-08-29 威奈联合科技股份有限公司 Manufacture method of chalcopyrite type compounds
CN102649542A (en) * 2011-02-23 2012-08-29 威奈联合科技股份有限公司 Production method of chalcopyrite type compound
CN103548153A (en) * 2011-05-31 2014-01-29 韩国能源技术研究院 Method of manufacturing CIGS thin film with uniform Ga distribution
CN103548153B (en) * 2011-05-31 2016-08-31 韩国能源技术研究院 There is the manufacture method of the CIGS thin film of uniform Ga distribution
CN103132023A (en) * 2011-11-21 2013-06-05 绿阳光电股份有限公司 Rapid thermal processing system and sulfidation method thereof
CN103258898A (en) * 2012-02-17 2013-08-21 任丘市永基光电太阳能有限公司 Method for preparing CIGS absorbing layer on soda-lime glass substrate
CN103258899A (en) * 2012-02-17 2013-08-21 任丘市永基光电太阳能有限公司 Method for preparing Cu(In1-xGax)Se2 (CIGS) absorbing layer on flexible stainless steel substrate
CN103296130A (en) * 2012-03-05 2013-09-11 任丘市永基光电太阳能有限公司 Na doping method for CIGS absorbing layer on flexible stainless steel substrate
CN103178162A (en) * 2013-03-26 2013-06-26 无锡舒玛天科新能源技术有限公司 Method for producing copper indium gallium selenium thin film by using rotary copper indium gallium selenium alloy sputtering target material
CN103178162B (en) * 2013-03-26 2015-11-18 无锡舒玛天科新能源技术有限公司 A kind of method utilizing copper-indium-gallium-selenium alloy rotatable sputtering target production of copper indium gallium selenium film
CN103400899A (en) * 2013-08-07 2013-11-20 研创应用材料(赣州)有限公司 Film flattening method for preparing porous preceding layer and absorption layer
CN103400899B (en) * 2013-08-07 2015-11-04 研创应用材料(赣州)有限公司 A kind of method preparing porousness precursor layer and absorbed layer thin film planarization
CN104518052A (en) * 2013-10-08 2015-04-15 台积太阳能股份有限公司 Method of making photovoltaic device having high quantum efficiency
CN104518052B (en) * 2013-10-08 2017-06-13 台湾积体电路制造股份有限公司 The method of photovoltaic device of the manufacture with high-quantum efficiency
CN105899462A (en) * 2013-11-15 2016-08-24 纳米技术有限公司 Preparation of copper-rich copper indium (gallium) diselenide/disulfide nanoparticles
CN105899462B (en) * 2013-11-15 2018-06-22 纳米技术有限公司 The preparation of copper and indium (gallium) diselenide/disulphide nano-particle of copper-rich
CN106716646A (en) * 2013-12-23 2017-05-24 蚌埠玻璃工业设计研究院 Layer system for thin-film solar cells
CN104934498A (en) * 2014-03-18 2015-09-23 台积太阳能股份有限公司 Deposition Process For Solar Cell Front Contact
CN104934498B (en) * 2014-03-18 2017-09-19 台湾积体电路制造股份有限公司 Depositing operation for solar battery front side contact layer
CN106611800A (en) * 2015-10-19 2017-05-03 陈柏颕 Solar film structure and manufacturing method and device thereof
CN106433646A (en) * 2016-11-30 2017-02-22 南方科技大学 Photo-conversion quantum dot, solar light collector and solar light collection device
CN106531845B (en) * 2016-12-08 2018-02-06 福建师范大学 Chemical bath prepares solar battery obsorbing layer CuInS2The method of film
CN106531845A (en) * 2016-12-08 2017-03-22 福建师范大学 Method for preparing absorption layer CuInS<2> thin film for solar cell by chemical water bath

Similar Documents

Publication Publication Date Title
Shafarman et al. Cu (InGa) Se2 Solar Cells
Birkmire et al. Polycrystalline thin film solar cells: present status and future potential
Suryawanshi et al. CZTS based thin film solar cells: a status review
Araki et al. Preparation of Cu2ZnSnS4 thin films by sulfurizing electroplated precursors
Jiang et al. Pure sulfide Cu2ZnSnS4 thin film solar cells fabricated by preheating an electrodeposited metallic stack
Wu High-efficiency polycrystalline CdTe thin-film solar cells
US8093096B2 (en) Method of successive high-resistance buffer layer/window layer (transparent conductive film) formation for CIS based thin-film solar cell and apparatus for successive film formation for practicing the method of successive film formation
Kaelin et al. Low cost processing of CIGS thin film solar cells
McCandless et al. Cadmium telluride solar cells
Abermann Non-vacuum processed next generation thin film photovoltaics: towards marketable efficiency and production of CZTS based solar cells
Contreras et al. High efficiency Cu (In, Ga) Se/sub 2/-based solar cells: processing of novel absorber structures
CN101589472B (en) Multi-layer structure and method for forming absorbing layers of solar battery
Bosio et al. Polycrystalline CdTe thin films for photovoltaic applications
Ramanujam et al. Copper indium gallium selenide based solar cells–a review
KR101633388B1 (en) A Method for Preparing Light Absorption Layer of copper-indium-gallium-sulfur-selenium Thin Film Solar Cells
CA2239786C (en) Preparation of cuxinygazsen (x=0-2, y=0-2, z=0-2, n=0-3) precursor films by electrodeposition for fabricating high efficiency solar cells
Mitzi et al. The path towards a high-performance solution-processed kesterite solar cell
Saji et al. Progress in electrodeposited absorber layer for CuIn (1− x) GaxSe2 (CIGS) solar cells
KR20110009151A (en) Manufacturing method of cis thin-film solar cell
Bhattacharya et al. CuIn1− xGaxSe2-based photovoltaic cells from electrodeposited precursor films
US8691619B2 (en) Laminated structure for CIS based solar cell, and integrated structure and manufacturing method for CIS based thin-film solar cell
CN102034898B (en) Preparation method of Cu-In-S photoelectric film material for solar cells
US10347473B2 (en) Synthesis of high-purity bulk copper indium gallium selenide materials
Wang Progress in thin film solar cells based on
Shi et al. Deposition of Cu2ZnSnS4 thin films by vacuum thermal evaporation from single quaternary compound source

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C02 Deemed withdrawal of patent application after publication (patent law 2001)