TWI447480B - Multi-domain vertical alignment liquid crystal displays using pixels having fringe field amplifying regions - Google Patents
Multi-domain vertical alignment liquid crystal displays using pixels having fringe field amplifying regions Download PDFInfo
- Publication number
- TWI447480B TWI447480B TW099107313A TW99107313A TWI447480B TW I447480 B TWI447480 B TW I447480B TW 099107313 A TW099107313 A TW 099107313A TW 99107313 A TW99107313 A TW 99107313A TW I447480 B TWI447480 B TW I447480B
- Authority
- TW
- Taiwan
- Prior art keywords
- pixel structure
- color
- pixel
- discrete field
- field amplification
- Prior art date
Links
Landscapes
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Liquid Crystal Display Device Control (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
Description
本發明係關於一種液晶顯示器,特別是指一種可以平滑型基板製造的大畫素多區域垂直配向液晶顯示器。The present invention relates to a liquid crystal display, and more particularly to a large pixel multi-region vertical alignment liquid crystal display that can be fabricated on a smooth substrate.
當初使用在如計算機與電子錶的簡單單色顯示器的液晶顯示器(Liquid Crystal Display,LCD),如今已變成最優勢的顯示科技。液晶顯示器常用來取代陰極射線管(Cathode Ray Tube,CRT)在電腦顯示與電視顯示上的應用。傳統液晶顯示器的各種缺點已經被克服以改善液晶顯示器的品質。舉例來說,廣泛地取代被動矩陣顯示器的主動矩陣顯示器,相對於被動矩陣顯示器具有降低鬼影(Ghosting)且改善解析度(Resolution)、色階(Color Gradation)、視角(Viewing Angle)、對比(Contrast Ratio)以及反應時間(Response Time)的成效。Liquid crystal displays (LCDs), which were originally used in simple monochrome displays such as computers and electronic watches, have become the most advantageous display technology. Liquid crystal displays are often used to replace the use of cathode ray tubes (CRTs) in computer displays and television displays. Various shortcomings of conventional liquid crystal displays have been overcome to improve the quality of liquid crystal displays. For example, active matrix displays that widely replace passive matrix displays have reduced ghosting and improved resolution, color gradation, viewing angle, contrast (relative to passive matrix displays). Contrast Ratio) and the response time (Response Time).
然而,傳統扭轉向列液晶顯示器(Twisted Nematic LCD)仍有非常窄的視角以及非常低的對比的主要缺點。甚至主動式矩陣的視角更窄於陰極射線管的視角。尤其是當觀看者直接在液晶顯示器前面收看一高畫質影像時,在液晶顯示器旁側的其他觀看者則無法看到此一高畫質影像。多區域垂直配向液晶顯示器(Multi-domain Vertical Alignment Liquid Crystal Display,MVA LCD)即是發展來改善傳統液晶顯示器的視角寬度以及對比度。請參考圖1(a)-1(c),用以表示一垂直配向液晶顯示器100的畫素基本功能。為了清楚地解說,圖1的液晶顯示器僅使用單一區域(Single Domain)。再者,為了清楚地解說,圖1(a)-1(c)(以及圖2)的液晶顯示器將依據灰階操作來敘述。However, conventional twisted nematic LCDs still have a very narrow viewing angle and a major disadvantage of very low contrast. Even the perspective of the active matrix is narrower than the viewing angle of the cathode ray tube. Especially when the viewer directly views a high-quality image directly in front of the liquid crystal display, other high-quality images cannot be seen by other viewers on the side of the liquid crystal display. Multi-domain Vertical Alignment Liquid Crystal Display (MVA LCD) is developed to improve the viewing angle and contrast of conventional liquid crystal displays. Please refer to FIG. 1(a)-1(c) for showing the basic functions of the pixels of a vertical alignment liquid crystal display 100. For clarity of illustration, the liquid crystal display of Figure 1 uses only a single domain (Single Domain). Furthermore, for clarity of illustration, the liquid crystal display of Figures 1(a)-1(c) (and Figure 2) will be described in terms of grayscale operation.
液晶顯示器100具有一第一偏光片105、一第一基板110、一第一電極120、一第一配向層125、多個液晶130、一第二配向層140、一第二電極145、一第二基板150以及一第二偏光片155。一般而言,第一基板110與第二基板150係由透明玻璃所製成。第一電極120與第二電極145係由如氧化銦錫(Indium Tin Oxide,ITO)之透明導電材質所製成。第一配向層125與第二配向層140係由聚醯亞氨(Polyimide,PI)所製成,且與在靜止態之液晶130垂直地配向。在操作時,一光源(圖未示)係從貼附在第一基板110之在下面的第一偏光片105射出光線。第一偏光片105係通常在一第一方向偏振,且貼附在第二基板150的第二偏光片155係與第一偏光片104垂直地偏振。因此,從光源而來的光線並不會同時穿透第一偏光片105與第二光偏光片155,除非光線的偏振在第一偏光片105與第二偏光片155之間旋轉90度。為了清楚說明,並未顯示很多的液晶。在實際的顯示器中,液晶係為棒狀分子(rod like molecules),其直徑大約為5埃(Angstrom,),長度大約20-25埃。因此,在一畫素中有超過一千兩百萬的液晶分子,其中畫素的長、寬、高分別為300微米(micrometer,μm)、120微米、3微米。The liquid crystal display 100 has a first polarizer 105, a first substrate 110, a first electrode 120, a first alignment layer 125, a plurality of liquid crystals 130, a second alignment layer 140, a second electrode 145, and a first Two substrates 150 and a second polarizer 155. In general, the first substrate 110 and the second substrate 150 are made of transparent glass. The first electrode 120 and the second electrode 145 are made of a transparent conductive material such as Indium Tin Oxide (ITO). The first alignment layer 125 and the second alignment layer 140 are made of polyimide (PI) and are aligned perpendicularly to the liquid crystal 130 in a stationary state. In operation, a light source (not shown) emits light from a first polarizer 105 attached to the underlying substrate 110. The first polarizer 105 is generally polarized in a first direction, and the second polarizer 155 attached to the second substrate 150 is vertically polarized with the first polarizer 104. Therefore, the light from the light source does not penetrate the first polarizer 105 and the second polarizer 155 at the same time unless the polarization of the light is rotated by 90 degrees between the first polarizer 105 and the second polarizer 155. For the sake of clarity, many liquid crystals are not shown. In practical displays, the liquid crystal is rod like molecules with a diameter of about 5 angstroms (Angstrom, ), about 20-25 angstroms in length. Therefore, there are more than 12 million liquid crystal molecules in one pixel, wherein the length, width and height of the pixels are 300 micrometers (micrometers), 120 micrometers, and 3 micrometers, respectively.
在圖1中,液晶130係為垂直配向。在垂直配向中,液晶130並不會將從光源的偏振極光轉向。因此,從光源來的光線並不會穿過液晶顯示器100,且對所有顏色及所有間隙晶胞(cell gap)而言,提供一個完全地光學暗態(optical black state)及非常高的的對比(contrast ratio)。因此,多區域垂直配向液晶顯示器相對傳統的低對比之扭轉式向列型液晶顯示器而言,係在對比上提供一個顯著的改善。然而,如圖1(b)所示,當在第一電極120與第二電極145之間加入一個電場(electric field)時,液晶130即重新定向到一傾斜位置(tilted position)。在傾斜位置的液晶係將從第一偏光片105而來的偏振光線之偏振轉向90度,以致光線可以穿過第二偏光片155。而傾斜的大小,即控制光線穿過液晶顯示器的多寡(如畫素的亮度),係與電場強度成正比。一般而言,單一個薄膜電晶體,係用在每一個畫素上。然而對彩色顯示器而言,各別的薄膜電晶體係用在每一色分量(color component,典型地為、綠及藍)。In Fig. 1, the liquid crystal 130 is vertically aligned. In the vertical alignment, the liquid crystal 130 does not divert the polarized aurora from the light source. Therefore, the light from the light source does not pass through the liquid crystal display 100, and provides a completely optical black state and a very high contrast for all colors and all cell gaps. (contrast ratio). Therefore, the multi-zone vertical alignment liquid crystal display provides a significant improvement in comparison with the conventional low contrast twisted nematic liquid crystal display. However, as shown in FIG. 1(b), when an electric field is applied between the first electrode 120 and the second electrode 145, the liquid crystal 130 is redirected to a tilted position. The liquid crystal in the tilted position turns the polarization of the polarized light from the first polarizer 105 by 90 degrees so that the light can pass through the second polarizer 155. The size of the tilt, that is, the amount of light that passes through the liquid crystal display (such as the brightness of the pixels), is proportional to the electric field strength. In general, a single thin film transistor is used on each pixel. For color displays, however, individual thin film electro-crystal systems are used in each color component (typically, green and blue).
然而,對不同角度的觀看者而言,光線通過液晶顯示器120並不是相同的。如圖1(c)所示,在中央左邊的觀看者172會看到亮畫素(bright pixel),因為液晶顯示器130寬闊(光線轉向)的一側係面對觀看者172。位在中央的觀看者174會看到灰畫素(gray pixel),因為液晶顯示器130寬闊的一側係僅部分地面對觀看者174。而位在中央右側的觀看者176會看到暗畫素(dark pixel),因為液晶顯示器130寬闊的一側幾乎沒有面對觀看者176。However, for viewers of different angles, the light passing through the liquid crystal display 120 is not the same. As shown in FIG. 1(c), the viewer 172 on the left side of the center will see a bright pixel because the side of the liquid crystal display 130 that is wide (light turning) faces the viewer 172. The centrally located viewer 174 will see gray pixels because the wide side of the liquid crystal display 130 is only partially facing the viewer 174. The viewer 176 located on the right side of the center will see the dark pixel because the wide side of the liquid crystal display 130 barely faces the viewer 176.
多區域垂直配向液晶顯示器(MVA LCDs)係被發展來改善單區域垂直配向液晶顯示器(single-domain vertical alignment LCD)的視角問題。請參考圖2,係表示一多區域垂直配向液晶顯示器(MVA LCDs)200的畫素。多區域垂直配向液晶顯示器200係包括一第一偏光片205、一第一基板210、一第一電極220、一第一配向層225、若干液晶235、237、若干突起物260、一第二配向層240、一第二電極245、一第二基板250以及一第二偏光片255。液晶235係形成畫素的第一區域(first domain),而液晶237則形成畫素的第二區域(second domain)。當在第一電極220與第二電極245之間施加一電場時,突起物260會導致液晶235相對液晶237而傾斜一不同的方向。因此,中央偏左的觀看者會看到左邊區域(液晶235)呈現黑色(black)而右邊區域(液晶237)呈現白色(white)。在中央的觀看者則會同時看到兩個區域而呈現灰色。中央偏右的觀看者則會看到左邊區域呈現白色而右邊區域呈現黑色。然而,因為個別單獨的畫素很小,因此三個觀看者都認為畫素是灰色的。如上所述,液晶的傾斜的大小,係由在電極220與245之間的電場大小所控制。觀看者所感知的灰階係與液晶傾斜大小相關聯。多區域垂直配向液晶顯示器也可以擴大到使用四個區域,以便在一畫素中的液晶方向被區分為四個主區域,以提供同時在垂直與水平方向上之寬大且對稱的視角。Multi-region vertical alignment liquid crystal displays (MVA LCDs) have been developed to improve the viewing angle of single-domain vertical alignment LCDs. Referring to FIG. 2, a pixel of a multi-region vertical alignment liquid crystal display (MVA LCDs) 200 is shown. The multi-zone vertical alignment liquid crystal display 200 includes a first polarizer 205, a first substrate 210, a first electrode 220, a first alignment layer 225, a plurality of liquid crystals 235, 237, a plurality of protrusions 260, and a second alignment. The layer 240, a second electrode 245, a second substrate 250, and a second polarizer 255. The liquid crystal 235 forms a first domain of pixels, and the liquid crystal 237 forms a second domain of pixels. When an electric field is applied between the first electrode 220 and the second electrode 245, the protrusion 260 causes the liquid crystal 235 to be tilted in a different direction with respect to the liquid crystal 237. Therefore, the center-left viewer will see that the left area (liquid crystal 235) appears black and the right area (liquid crystal 237) appears white. Viewers in the center will see two areas at the same time and appear gray. The center-right viewer will see the left area appear white and the right area appear black. However, because the individual pixels are small, all three viewers consider the pixels to be gray. As described above, the magnitude of the tilt of the liquid crystal is controlled by the magnitude of the electric field between the electrodes 220 and 245. The gray level perceived by the viewer is related to the tilt of the liquid crystal. The multi-zone vertical alignment liquid crystal display can also be expanded to use four regions so that the liquid crystal direction in one pixel is divided into four main regions to provide a wide and symmetrical viewing angle in both the vertical and horizontal directions.
因此,傳統多區域垂直配向液晶顯示器能夠提供寬大且對稱之視角,成本卻非常高,這是來自於製程中將突起物增加到上、下基板的困難,以及將突起物正確地配向到上、下基板的困難。尤其是在下基板的一突起物必須設置在上基板的二突起物中央;任何在上、下基板之間的配向,都將使得生產良率降低。在基板上使用其他物理構型的技術,如:已用來取代或結合突起物使用之氧化銦錫間隙(ITO slits),在製造上非常昂貴。再者,突起物與氧化銦錫間隙會干擾光線傳輸,也因此降低多區域垂直配向液晶顯示器的亮度(brightness)。因此,需要其他方法或系統可以提供給多區域垂直配向液晶顯示器,使得無需製造如突起物及氧化銦錫間隙之物理構型,以及無需上、下基板上,進行極度精準的配向。Therefore, the conventional multi-zone vertical alignment liquid crystal display can provide a wide and symmetrical viewing angle, and the cost is very high, which is due to the difficulty of adding protrusions to the upper and lower substrates in the process, and correctly aligning the protrusions to the upper side, Difficulties in the lower substrate. In particular, a protrusion on the lower substrate must be placed in the center of the two protrusions of the upper substrate; any alignment between the upper and lower substrates will result in a decrease in production yield. Techniques that use other physical configurations on the substrate, such as ITO slits that have been used to replace or bond protrusions, are very expensive to manufacture. Furthermore, the gap between the protrusions and the indium tin oxide interferes with light transmission, and thus reduces the brightness of the multi-region vertical alignment liquid crystal display. Therefore, other methods or systems are required to provide a multi-zone vertical alignment liquid crystal display, eliminating the need to fabricate physical structures such as protrusions and indium tin oxide gaps, and eliminating the need for extremely precise alignment on the upper and lower substrates.
本發明目的在於,提供一種放大本質離散電場多區域垂直配向液晶顯示器(Amplified Intrinsic Fringe Field MVA LCD,AIFF MVA LCD),其特點是不需要突起物或氧化銦錫間隙。因此,依據本發明所製造的放大本質離散電場多區域垂直配向液晶顯示器係比傳統的多區域垂直配向液晶顯示器更便宜、也提供較高的製程良率。尤其是本發明的實施例係使用較新穎的畫素設計,即提供放大本質離散電場,以在放大本質離散電場多區域垂直配向液晶顯示器中創造出多個區域。舉例來說,依據本發明的一個實證,畫素係被再細分成具有多個色點(color dots,CDs)的色分量。再者,畫素包含沿一色點之一第一側與一第二側延伸的離散場放大區域域。當色點具有一第二極性以放大色點的離散電場時,離散場放大區域域係設置有一第一極性。It is an object of the present invention to provide an Amplified Intrinsic Fringe Field MVA LCD (AIFF MVA LCD) that is characterized by the absence of protrusions or indium tin oxide gaps. Therefore, the amplified intrinsic discrete electric field multi-region vertical alignment liquid crystal display fabricated in accordance with the present invention is less expensive than conventional multi-region vertical alignment liquid crystal displays and also provides higher process yield. In particular, embodiments of the present invention use a relatively novel pixel design that provides an amplified essentially discrete electric field to create multiple regions in a magnified intrinsic discrete electric field multi-region vertical alignment liquid crystal display. For example, in accordance with an embodiment of the present invention, a pixel is subdivided into color components having a plurality of color dots (CDs). Furthermore, the pixels include discrete field amplification regions extending along a first side and a second side of a color point. When the color point has a second polarity to amplify the discrete electric field of the color point, the discrete field amplification region is provided with a first polarity.
在本發明的實施例中,一畫素包括有一第一色分量,該第一色分量具有一第一色點及一第二色點。該第一色分量的該第二色點係在如垂直方向上的一第一度空間(first dimension)與該第一色分量的該第一色點相互配向。該畫素也包括一第一離散場放大區域域,具有一垂直放大部及一水平放大部,該第一垂直放大部係沿該第一色分量之該第一色點的一第一側垂直地延伸,該第一水平放大部係沿該第一色分量之該第一色點的一第二側水平地延伸。In an embodiment of the invention, a pixel includes a first color component having a first color point and a second color point. The second color point of the first color component is aligned with a first color point such as a vertical direction and the first color point of the first color component. The pixel also includes a first discrete field amplification region having a vertical amplification portion and a horizontal amplification portion, the first vertical amplification portion being perpendicular to a first side of the first color point of the first color component Extendingly, the first horizontal amplifying portion extends horizontally along a second side of the first color point of the first color component.
在本發明的實施例中,該第一離散場放大區域的水平放大部係沿該第一色分量的該第二色點之一第一側延伸,該第一離散場放大區域的垂直放大部係沿該第一色分量的該第二色點之一第二側延伸。In an embodiment of the invention, the horizontal amplification portion of the first discrete field amplification region extends along a first side of the second color point of the first color component, and the vertical amplification portion of the first discrete field amplification region Extending along a second side of one of the second color points of the first color component.
再者,在本發明的實施例中,該第一離散場放大區域也可以包含一第二水平放大部及一第三水平放大部,該第二水平放大部係沿該第一色分量的該第一色點之一第三側延伸,該第三水平放大部係沿該第一色分量的該第二色點之一第三側延伸。Furthermore, in the embodiment of the present invention, the first discrete field amplification region may further include a second horizontal amplification portion and a third horizontal amplification portion, the second horizontal amplification portion being along the first color component. One of the first color points extends on a third side, and the third horizontal magnification portion extends along a third side of the second color point of the first color component.
藉由下列的描述與圖式,將會對本發明更加了解。The invention will be more fully understood from the following description and drawings.
如上所述,傳統的多區域垂直配向液晶顯示器在製造上是非常昂貴的,係因為使用如突起物或氧化銦錫間隙之物理特性,以使每一畫素產生多區域。然而,依據本發明的方法,多區域垂直配向液晶顯示器係使用離散電場來產生多區域,且不需要在基板上使用額外物理構型(如突起物或氧化銦錫間隙)。再者,因為不需要額外物理構型,因此也可排除上、下基板校準物理特性的困難。所以,依據本發明的多區域垂直配向液晶顯示器在製造上相對於傳統的多區域垂直配向液晶顯示器,具有更高的良率且更加便宜。As described above, the conventional multi-zone vertical alignment liquid crystal display is very expensive to manufacture because of the physical characteristics such as protrusions or indium tin oxide gaps, so that each pixel produces a plurality of regions. However, in accordance with the method of the present invention, a multi-region vertical alignment liquid crystal display uses discrete electric fields to create multiple regions without the need to use additional physical configurations (such as protrusions or indium tin oxide gaps) on the substrate. Furthermore, since no additional physical configuration is required, the difficulty of calibrating the physical properties of the upper and lower substrates can also be eliminated. Therefore, the multi-zone vertical alignment liquid crystal display according to the present invention has higher yield and is cheaper in manufacturing than a conventional multi-region vertical alignment liquid crystal display.
請參考圖3(a)及圖3(b),係表示依據本發明基本概念,無須在基板上使用額外物理構型,以產生一多區域垂直配向液晶顯示器(MVA LCD) 300的示意圖。而圖3(a)及圖3(b)係顯示出在一第一基板305與一第二基板355之間,具有畫素310、320及330。一第一偏光片302係黏貼到第一基板305,且一第二偏光片357係黏貼到第二基板355。畫素310包含有一第一電極311、若干液晶312、313以及一第二電極315。畫素320包含有一第一電極321、若干液晶322、323以及一第二電極325。相似地,畫素330包含有一第一電極331、若干液晶332、333以及一第二電極335。所有電極一般地架構係使用如氧化銦錫(ITO)之透明導電材質。再者,一第一配向層307係覆蓋在第一基板305上的電極之上。相似地,一第二配向層352係覆蓋在第二基板355上的電極之上。二液晶配向層307及352係提供一垂直液晶配向。為了下列的更加詳細敘述,電極315、325及335係維持在一共同電壓(common voltage) V_Com。因此,為了容易製造,電極315、325及335係為一單一結構(如圖3(a)及圖3(b)所示)。多區域垂直配向液晶顯示器300係使用交替偏振以操作畫素310、320及330。舉例來說,若畫素310與330之偏振為正(positive)的話,則畫素320的偏振為負(negative)。相反地,若畫素310與330之偏振為負(negative)的話,則畫素320的偏振為正(positive)。一般來說,每一畫素的偏振係在頁框(frames)間切換,但交替偏振的圖案(pattern)係維持在每一頁框中。在圖3(a)中,畫素310、320及330係在「關閉(OFF)」狀態,意即關閉在第一與第二電極之間的電場(electric field)。在關閉狀態下,某些殘餘電場可能存在第一與第二基板之間。然而,一般而言,殘餘電場太小而無法使液晶傾斜。Referring to Figures 3(a) and 3(b), there is shown a schematic diagram of a multi-region vertical alignment liquid crystal display (MVA LCD) 300 in accordance with the basic concepts of the present invention without the need to use additional physical configurations on the substrate. 3(a) and 3(b) show pixels 310, 320 and 330 between a first substrate 305 and a second substrate 355. A first polarizer 302 is adhered to the first substrate 305, and a second polarizer 357 is adhered to the second substrate 355. The pixel 310 includes a first electrode 311, a plurality of liquid crystals 312, 313, and a second electrode 315. The pixel 320 includes a first electrode 321, a plurality of liquid crystals 322, 323, and a second electrode 325. Similarly, the pixel 330 includes a first electrode 331, a plurality of liquid crystals 332, 333, and a second electrode 335. All electrodes are generally constructed using a transparent conductive material such as indium tin oxide (ITO). Furthermore, a first alignment layer 307 is overlying the electrodes on the first substrate 305. Similarly, a second alignment layer 352 overlies the electrodes on the second substrate 355. The two liquid crystal alignment layers 307 and 352 provide a vertical liquid crystal alignment. For the more detailed description below, electrodes 315, 325, and 335 are maintained at a common voltage V_Com. Therefore, for ease of fabrication, the electrodes 315, 325, and 335 are of a single structure (as shown in Figures 3(a) and 3(b)). The multi-zone vertical alignment liquid crystal display 300 uses alternating polarization to operate the pixels 310, 320, and 330. For example, if the polarization of pixels 310 and 330 is positive, then the polarization of pixel 320 is negative. Conversely, if the polarization of pixels 310 and 330 is negative, the polarization of pixel 320 is positive. In general, the polarization of each pixel is switched between frames, but alternately patterned patterns are maintained in each page frame. In Fig. 3(a), pixels 310, 320, and 330 are in an "OFF" state, that is, an electric field between the first and second electrodes is turned off. In the off state, some residual electric field may exist between the first and second substrates. However, in general, the residual electric field is too small to tilt the liquid crystal.
在圖3(b)中,畫素310、320及330係處在「開啟(ON)」狀態。而圖3(b)係使用「+」及「-」代表電極的電壓極性(voltage polarity)。因此,電極311及331具有正電壓極性,而電極321具有負電壓極性。基板355與電極315、325及335係保持在共同電壓V_Com。電壓極性係相對共同電壓V_Com來定義,其中一正極性係其電壓高於共同電壓V_Com,一負極性係其電壓低於共同電壓V_Com。在電極321與325之間的電場327(以電力線表示)係造成液晶322與323傾斜。一般而言,沒有突起物或其他物理特性,液晶的傾斜方向不會被在一垂直的液晶配向層307與352之液晶所固定。然而,在畫素邊緣的離散電場會影響到液晶的傾斜方向。舉例來說,在電極321與325之間的電場327,係垂直圍繞畫素320中心,但傾斜到畫素左半部的左邊,以及傾斜到畫素右半部的右邊。因此,在電極321與325之間的離散電場係造成液晶323傾斜到右邊而形成一第一區域,且造成液晶322傾斜到左邊而形成一第二區域。因此,畫素320係為具有對稱寬視角的多區域畫素。In FIG. 3(b), the pixels 310, 320, and 330 are in an "ON" state. In Fig. 3(b), "+" and "-" are used to represent the voltage polarity of the electrode. Therefore, the electrodes 311 and 331 have a positive voltage polarity, and the electrode 321 has a negative voltage polarity. The substrate 355 and the electrodes 315, 325, and 335 are maintained at a common voltage V_Com. The voltage polarity is defined with respect to the common voltage V_Com, wherein a positive polarity is higher than the common voltage V_Com, and a negative polarity is lower than the common voltage V_Com. The electric field 327 (indicated by the power line) between the electrodes 321 and 325 causes the liquid crystals 322 and 323 to tilt. In general, without protrusions or other physical properties, the tilt direction of the liquid crystal is not fixed by the liquid crystals in a vertical liquid crystal alignment layer 307 and 352. However, the discrete electric field at the edge of the pixel affects the tilt direction of the liquid crystal. For example, the electric field 327 between the electrodes 321 and 325 is vertically centered around the pixel 320, but is tilted to the left of the left half of the pixel and to the right of the right half of the pixel. Therefore, the discrete electric field between the electrodes 321 and 325 causes the liquid crystal 323 to tilt to the right to form a first region, and causes the liquid crystal 322 to tilt to the left to form a second region. Therefore, the pixel 320 is a multi-region pixel having a symmetric wide viewing angle.
相似地,在電極311與315之間的電場(圖未示)係具有離散電場,此離散電場係造成液晶313重新定位,且傾斜到畫素310右側的右邊,也造成液晶312傾斜到畫素310左測的左邊。相似地,在電極331與335之間的電場(圖未示)係具有離散電場,此離散電場係造成液晶333重新定位,且傾斜到畫素330右側的右邊,也造成液晶332傾斜到畫素330左測的左邊。Similarly, the electric field between the electrodes 311 and 315 (not shown) has a discrete electric field that causes the liquid crystal 313 to reposition and tilt to the right of the right side of the pixel 310, causing the liquid crystal 312 to tilt to the pixel. 310 left to the left of the test. Similarly, the electric field (not shown) between electrodes 331 and 335 has a discrete electric field that causes liquid crystal 333 to reposition and tilt to the right of the right side of pixel 330, also causing liquid crystal 332 to tilt to the pixel. 330 left to the left of the test.
鄰近畫素的交替極性係放大每一畫素離散場效(fringe field effect)。因此,藉由在每列的畫素(或每欄的畫素)之間重覆交替極性圖案,即可無須額外物理構型而達到一多區域垂直配向液晶顯示器。再者,可以使用交替極性棋盤圖案,以在每一畫素產生四個區域。The alternating polarity of adjacent pixels amplifies the fringe field effect of each pixel. Therefore, by repeating the alternating polarity pattern between the pixels of each column (or the pixels of each column), a multi-region vertical alignment liquid crystal display can be achieved without an additional physical configuration. Furthermore, alternating polarity checkerboard patterns can be used to create four regions per pixel.
然而,一般而言,離散場效係相對地小且微弱。所以,當畫素變較大時,在畫素邊緣的離散電場係無法傳遞到在一畫素中的所有液晶。因此,在大畫素中,對於遠離畫素邊緣之液晶的傾斜方向係隨意變化,且不會產生一多區域畫素。一般而言,當畫素變得大於40-60微米(micrometer,μm)時,畫素的離散場效係不會影響控制液晶傾斜。故,對大畫素液晶顯示器而言,使用一新穎的畫素區分方法來達到多區域畫素。尤其是對彩色液晶顯示器而言,畫素係區分成色分量。每一色分量係由如薄膜電晶體(thin-film transistor,TFT)的一個別的切換裝置所控制。一般而言,色分量係為紅色、綠色及藍色。依據本發明,一畫素的色分量係進一步區分成色點(color dots)。However, in general, the discrete field effect system is relatively small and weak. Therefore, when the pixels become larger, the discrete electric field at the edge of the pixel cannot be transmitted to all the liquid crystals in one pixel. Therefore, in the large pixel, the tilt direction of the liquid crystal far from the edge of the pixel is arbitrarily changed, and a multi-region pixel is not generated. In general, when the pixel becomes larger than 40-60 micrometers (micrometer, μm), the discrete field effect of the pixel does not affect the control liquid crystal tilt. Therefore, for large pixel liquid crystal displays, a novel pixel distinction method is used to achieve multi-region pixels. Especially for color liquid crystal displays, the pixels are distinguished by the color component. Each color component is controlled by a separate switching device such as a thin-film transistor (TFT). In general, the color components are red, green, and blue. According to the invention, the color component of a pixel is further distinguished by color dots.
每一畫素的極性係在影像的之每一連續頁框之間做切換,以避免圖像品質的降低,而圖像品質的降低係因為在每一頁框中液晶在相同方向扭曲。然而,若是所有的切換元件係為相同極性者,則色點極性圖案切換係可能造成其他如閃爍(flicker)之圖像品質問題。為了降低閃爍,切換元件(如電晶體)係配置在一切換元件驅動模式中,此機制包括正、負極性。再者,為了降低串音(cross talk),切換元件的正、負極性係被配置在一固定圖案中,此固定圖案係提供一更穩定的配電。不同的切換元件驅動模式係使用在本發明的實施例中。有三個主要的切換元件驅動模式,係為切換元件點反轉驅動模式(switching element point inversion driving scheme)、切換元件列反轉驅動模式(switching element row inversion driving scheme)以及切換元件行反轉驅動模式(switching element column inversion driving scheme)。在切換元件點反轉驅動模式中,切換元件係形成一交替極性的棋盤圖案。在切換元件列反轉驅動模式中,在每一列的切換元件具有相同極性;然而,在一列上的一切換元件相對於鄰近列之切換元件的極性而具有相反極性。在切換元件行反轉驅動模式中,在每一行的切換元件具有相同極性;然而,在一行上的一切換元件相對於鄰近行之切換元件的極性而具有相反極性。當切換元件點反轉驅動模式提供最穩定的配電時,切換元件點反轉驅動模式的複雜性與額外的成本,相比較切換元件列反轉驅動模式與切換元件行反轉驅動模式而言,是不划算的。因此,當切換元件點反轉驅動模式通常保持在高性能應用時,對於大部分低成本與低電壓應用之液晶顯示器的製造,係使用切換元件列反轉驅動模式。The polarity of each pixel is switched between each successive page of the image to avoid degradation of image quality, and the quality of the image is reduced because the liquid crystal is distorted in the same direction in each page frame. However, if all of the switching elements are of the same polarity, the color point polarity pattern switching may cause other image quality problems such as flicker. In order to reduce flicker, switching elements (such as transistors) are arranged in a switching element drive mode, which includes positive and negative polarity. Furthermore, in order to reduce cross talk, the positive and negative polarities of the switching element are arranged in a fixed pattern which provides a more stable power distribution. Different switching element drive modes are used in embodiments of the present invention. There are three main switching element driving modes, which are switching element point inversion driving scheme, switching element row inversion driving scheme, and switching element row inversion driving mode. (switching element column inversion driving scheme). In the switching element dot inversion driving mode, the switching elements form a checkerboard pattern of alternating polarity. In the switching element column inversion driving mode, the switching elements in each column have the same polarity; however, one switching element in one column has opposite polarities with respect to the polarity of the switching elements of adjacent columns. In the switching element row inversion driving mode, the switching elements in each row have the same polarity; however, one switching element on one row has opposite polarities with respect to the polarity of the switching elements of adjacent rows. When the switching element dot inversion driving mode provides the most stable power distribution, the complexity of the switching element dot inversion driving mode and the additional cost are compared with the switching element column inversion driving mode and the switching element row inversion driving mode. It is not cost-effective. Therefore, when the switching element dot inversion driving mode is generally maintained in high performance applications, the switching element column inversion driving mode is used for the manufacture of liquid crystal displays for most low cost and low voltage applications.
依據本發明實施例的畫素,係包括以新穎配置之不同的主要元件,以達到高品質、低成本的顯示單元。舉例來說,畫素可以包括色分量、色點、離散場放大區域(fringe field amplifying regions,FFAR)、切換元件、裝置元件區域(device component area)以及關聯點(associated dots)。此裝置元件區域係包含佔用切換元件及/或儲存電容的區域,而且此區域係被用來製造切換元件及/或儲存電容。為了清楚說明,一不同的裝置元件區域係由每一切換元件所界定。The pixels according to the embodiments of the present invention include different main components in a novel configuration to achieve a high quality, low cost display unit. For example, pixels can include color components, color points, fringe field amplifying regions (FFARs), switching elements, device component areas, and associated dots. This device component area contains areas occupying switching elements and/or storage capacitors, and this area is used to fabricate switching elements and/or storage capacitors. For clarity of illustration, a different device component area is defined by each switching element.
關聯點與離散場放大區域係為電性偏振區域(electrically polarized area),而並未是色分量的一部分。在本發明許多的實施例中,關聯點係覆蓋裝置元件區域。對這些實施例而言,關聯點係由將一絕緣層沉積覆蓋在切換元件及/或儲存電容上所製成。接著,藉由沉積一電性導電層以形成所述的關聯點。此關聯點係電性地連接到特定的切換元件及/或其他偏振元件(例如色點)。儲存電容係電性地連接到特定的切換元件及色點電極(color dot electrodes),以在液晶胞打開(switching-on)或是關掉(switching off)的過程期間補償並抵銷在液晶胞上的電容值變化。因此,儲存電容係用來在液晶胞打開或是關掉的過程期間減低串音效應(cross talk effect)。一圖案化光罩(patterning mask)係使用在當關聯點需要形成圖案化電極(patterned electrode)之時。一般而言,係附加一黑色矩陣層(black matrix layer)以形成對關聯點的一光屏蔽(light shield)。然而,在本發明的某些實例中,一色彩層(color layer)係附加到關聯點上,以改善色彩表現(color performance)或是達到一所欲的色彩圖案(color pattern)或色差(color shading)。在本發明某些實施例中,色彩層係製造在切換元件的之上或之下。其他實施例可能也將色彩層置放在顯示器的玻璃基板之上。The associated point and the discrete field amplification region are electrically polarized regions and are not part of the color component. In many embodiments of the invention, the associated points cover the device component area. For these embodiments, the associated points are made by depositing an insulating layer over the switching elements and/or storage capacitors. Next, the associated points are formed by depositing an electrically conductive layer. This associated point is electrically connected to a particular switching element and/or other polarizing element (eg, a color point). The storage capacitor is electrically connected to a specific switching element and color dot electrodes to compensate and offset the liquid crystal cell during the process of switching-on or switching off of the liquid crystal cell. The capacitance value on the change. Therefore, the storage capacitor is used to reduce the cross talk effect during the process of turning on or off the cell. A patterned mask is used when the associated point needs to form a patterned electrode. In general, a black matrix layer is attached to form a light shield to the associated points. However, in some embodiments of the invention, a color layer is attached to the associated point to improve color performance or to achieve a desired color pattern or color difference (color) Shading). In some embodiments of the invention, the color layer is fabricated above or below the switching element. Other embodiments may also place a color layer on top of the glass substrate of the display.
在本發明其他實施例中,關聯點係為與切換元間相互獨立的一區域。再者,本發明的某些實施例具有額外的關聯點,此等關聯點並不直接地與切換元件相關。一般而言,關聯點係包括如氧化銦錫(ITO)或其他導電層的一主動電極層(active electrode layer),且連接到一附近的色點或者是以其他手段供電。對不透明的關聯點而言,一黑色矩陣層可以被附加在導電層的底部上,以形成不透明區域(opaque area)。在本發明某些實施例中,黑色矩陣可以被製造在氧化銦錫(ITO)玻璃基板側上,以簡化製程(fabrication process)。額外的關聯點係改善顯示區域有效的使用,藉以改善開口率(aperture ratio)且在色點內形成多個液晶區域(liquid crystal domains)。本發明的某些實施例使用關聯點以改善色彩表現。舉例來說,關聯點的小心佈局(careful placement)可以允許附近色點的顏色從有用的色彩圖案進行修飾。In other embodiments of the invention, the associated point is an area that is independent of the switching element. Moreover, certain embodiments of the present invention have additional points of association that are not directly related to the switching elements. In general, the associated points include an active electrode layer such as indium tin oxide (ITO) or other conductive layer and are connected to a nearby color point or powered by other means. For opaque associated points, a black matrix layer can be attached to the bottom of the conductive layer to form an opaque area. In some embodiments of the invention, a black matrix can be fabricated on the indium tin oxide (ITO) glass substrate side to simplify the fabrication process. Additional points of association improve the effective use of the display area, thereby improving the aperture ratio and forming a plurality of liquid crystal domains within the color point. Certain embodiments of the present invention use association points to improve color performance. For example, a careful placement of associated points may allow the colors of nearby color points to be modified from useful color patterns.
離散場放大區域(FFARs)係比關聯點更加多功能。特別是,離散場放大區域係可以具有非矩形形狀,雖然一般來說璃散場放大區域的整體形狀可以被劃分成一矩形形狀組。再者,離散場放大區域係沿著多於一色點的一側而延伸。而且,在本發明某些實施例中,離散場放大區域可以被用來取代關聯點。尤其是,在這些實施例中,離散場放大區域不僅覆蓋裝置元件區域,而且沿著多於鄰近裝置元件區域之色點一側而延伸。Discrete field amplification regions (FFARs) are more versatile than associated points. In particular, the discrete field magnifying region may have a non-rectangular shape, although in general the overall shape of the magenta field magnified region may be divided into a rectangular shape group. Furthermore, the discrete field amplification region extends along one side of more than one color point. Moreover, in some embodiments of the invention, discrete field amplification regions may be used in place of associated points. In particular, in these embodiments, the discrete field magnified region not only covers the device component region, but also extends along more than one color dot side of the adjacent device component region.
一般而言,色點、裝置元件區域以及關聯點,係配置在格狀圖案,且以一水平點間距(horizontal dot spacing) HDS以及一垂直點間距(vertical dot spacing) VDS而相互鄰近分開。當離散場放大區域被使用來取代關聯點時,部分的離散場放大區域也會安置在格狀圖案中。在本發明某些實施例中,係可能使用到多個垂直點間距及多個水平點間距。每一色點、關聯點以及裝置元件區域,係在一第一維度(如垂直方向)有二個與其相互鄰接元件(例如色點、關聯點或者是裝置元件區域),且在一第二維度(如水平方向)有二個與其相互鄰接元件(adjacent neighbors)。再者,二個與其相互鄰接元件可以被配向或是移動。每一色點具有一色點高度CDH以及一色點寬度CDW。相似地,每一關聯點具有一關聯點高度ADH以及一關聯點寬度ADW。再者,每一裝置元件區域具有一裝置元件區域高度DCAH以及一裝置元件區域寬度DCAW。在本發明某些實施例中,色點、關聯點以及裝置元件區域係為相同尺寸。然而,在本發明某些實施例中,色點、關聯點以及裝置元件區域係可為不同尺寸或形狀。舉例來說,在本發明的許多實施例中,關聯點具有色點較小的高度。在許多應用中,增加色點的高度以改善多區域垂直配向(MVA)結構的穩定度(stability),並改善光學傳輸以增加顯示亮度。In general, the color point, the device component area, and the associated point are arranged in a lattice pattern and are separated from each other by a horizontal dot spacing HDS and a vertical dot spacing VDS. When the discrete field amplification region is used instead of the associated point, a portion of the discrete field amplification region is also placed in the lattice pattern. In some embodiments of the invention, multiple vertical dot pitches and multiple horizontal dot pitches may be used. Each color point, associated point, and device component area has two elements adjacent to each other (eg, a color point, an associated point, or a device component area) in a first dimension (eg, a vertical direction), and in a second dimension ( As in the horizontal direction, there are two adjacent neighbors. Furthermore, two adjacent elements can be aligned or moved. Each color point has a color point height CDH and a color point width CDW. Similarly, each associated point has an associated point height ADH and an associated point width ADW. Furthermore, each device component region has a device component region height DCAH and a device component region width DCAW. In some embodiments of the invention, the color points, associated points, and device component regions are the same size. However, in certain embodiments of the invention, the color points, associated points, and device component regions may be of different sizes or shapes. For example, in many embodiments of the invention, the associated points have a height that is less colored. In many applications, the height of the color point is increased to improve the stability of the multi-region vertical alignment (MVA) structure and to improve optical transmission to increase display brightness.
圖4(a)及圖4(b)係表示一畫素設計410(如後述的編號410+及410-)不同的點極性圖案,此畫素設計410通常被使用在具有一切換元件列反轉驅動模式的顯示器上。在實際的操作上,一畫素將在每一影像頁框間之一第一點極性圖案與一第二點極性圖案之間做切換。為了清楚說明,第一色分量的第一色點具有一正極性之點極性圖案,指的是正點極性圖案(positive dot polarity pattern)。相反地,第一色分量的第一色點具有一負極性之點極性圖案,指的是負點極性圖案(negative dot polarity pattern)。尤其是,在圖4(a)中,畫素設計410具有一正點極性圖案(係標示為410+),且畫素設計410具有一負點極性圖案(係標示為410-)。再者,在不同畫素設計中每一被極化元件的極性係以”+”表示正極性,以”-”表示負極性。4(a) and 4(b) show different dot polarity patterns of a pixel design 410 (such as numbers 410+ and 410- described later), which is typically used in a row with a switching element. Turn the drive mode on the display. In actual operation, a pixel will switch between a first dot polarity pattern and a second dot polarity pattern between each image frame. For clarity, the first color point of the first color component has a positive polarity dot pattern, referring to a positive dot polarity pattern. Conversely, the first color point of the first color component has a negative polarity dot pattern, referring to a negative dot polarity pattern. In particular, in Figure 4(a), the pixel design 410 has a positive dot polarity pattern (labeled 410+) and the pixel design 410 has a negative dot polarity pattern (labeled 410-). Furthermore, in the different pixel designs, the polarity of each polarized element is represented by "+" for positive polarity and "-" for negative polarity.
畫素設計410具有三個色分量CC_1、CC_2及CC_3(未標示在圖4(a)-4(b))。每一色分量包括有二色點(color dots)。為了清楚說明,將色點表示為CD_X_Y,其中,X代表一色分量(如圖4(a)-4(b)所示從1到3),且Y表示一點數字(如圖4(a)-4(b)所示從1到2)。畫素設計410也包括作為每一色分量的一切換元件(標示為SE_1、SE_2及SE_3)以及做為每一色分量的一離散場放大區域(標示為FFAR_1、FFAR_2及FFAR_3)。切換元件SE_1、SE_2及SE_3係設置成一列。圍繞每一切換元件的裝置元件區域係被離散場放大區域所覆蓋,因此並未在圖4(a)及圖4(b)中特別標示。離散場放大區域FFAR_1、FFAR_2及FFAR_3係也設置成一列,且在圖4(c)中進行詳細描述。The pixel design 410 has three color components CC_1, CC_2, and CC_3 (not shown in Figures 4(a)-4(b)). Each color component includes color dots. For clarity of explanation, the color point is represented as CD_X_Y, where X represents a color component (from 1 to 3 as shown in Figures 4(a)-4(b)), and Y represents a point number (Fig. 4(a)- 4(b) shows from 1 to 2). The pixel design 410 also includes a switching element (labeled SE_1, SE_2, and SE_3) as a component of each color and a discrete field amplification region (labeled FFAR_1, FFAR_2, and FFAR_3) as each color component. The switching elements SE_1, SE_2, and SE_3 are arranged in a column. The device component area surrounding each switching element is covered by the discrete field amplification region and is therefore not specifically labeled in Figures 4(a) and 4(b). The discrete field amplification areas FFAR_1, FFAR_2, and FFAR_3 are also arranged in a column, and are described in detail in FIG. 4(c).
畫素設計410的第一色分量CC_1係具有二色點CD_1_1及CD_1_2。色點CD_1_1及CD_1_2係形成一欄且被一垂直點間距VDS1所分隔。換句話說,色點CD_1_1及CD_1_2係水平配向且垂直地被垂直點間距VDS1所分隔。再者,色點CD_1_1及CD_1_2係由垂直點偏移量VDO1所垂直地抵銷,而垂直點偏移量VDO1係等於垂直點間距VDS1加上色點高度CDH。切換元件SE_1係設置在色點CD_1_1及CD_1_2之間,以使色點CD_1_1在切換元件欄的一第一側上,使色點CD_1_2在切換元件欄的一第二側上。切換元件SE_1係耦接到色點CD_1_1及CD_1_2的電極,以控制色點CD_1_1及CD_1_2的電壓極性與電壓量。The first color component CC_1 of the pixel design 410 has two color points CD_1_1 and CD_1_2. The color points CD_1_1 and CD_1_2 form a column and are separated by a vertical dot pitch VDS1. In other words, the color points CD_1_1 and CD_1_2 are horizontally aligned and vertically separated by the vertical dot pitch VDS1. Furthermore, the color points CD_1_1 and CD_1_2 are vertically offset by the vertical dot offset VDO1, and the vertical dot offset VDO1 is equal to the vertical dot pitch VDS1 plus the color point height CDH. The switching element SE_1 is disposed between the color points CD_1_1 and CD_1_2 such that the color point CD_1_1 is on a first side of the switching element column such that the color point CD_1_2 is on a second side of the switching element column. The switching element SE_1 is coupled to the electrodes of the color points CD_1_1 and CD_1_2 to control the voltage polarity and voltage amount of the color points CD_1_1 and CD_1_2.
相似地,畫素設計410的第二色分量CC_2係具有二色點CD_2_1及CD_2_2。色點CD_2_1及CD_2_2係形成一第二欄,且被垂直點間距VDS1所分隔。因此,色點CD_2_1及CD_2_2係水平地配向且被垂直點間距VDS1所垂直地分隔。切換元件SE_2係設置在色點CD_2_1及CD_2_2之間,以使色點CD_2_1在切換元件欄的一第一側上,使色點CD_2_2在切換元件欄的一第二側上。切換元件SE_2係耦接到色點CD_2_1及CD_2_2的電極,以控制色點CD_2_1及CD_2_2的電壓極性與電壓量。第二色分量CC_2係與第一色分量CC_1垂直地配向,且以一水平點間距HDS1而與第一色分量CC_1相互分隔,因此色分量CC_2及CC_1係由一水平點偏移量HDO1所抵消,而水平點偏移量HDO1係等於水平點間距HDS1加上色點寬度CDW。尤其是就色點而論,色點CD_2_1係垂直地與色點CD_1_1配向,且以水平點間距HDS1而水平地分隔。相似地,色點CD_2_2係與色點CD_2_1垂直地配向,且以水平點間距HDS1所水平地分隔。因此色點CD_1_1及色點CD_2_1係形成一第一色點列(a first row of color dots),色點CD_1_2及色點CD_2_2係形成一第二色點列(a second row of color dots)。Similarly, the second color component CC_2 of the pixel design 410 has two color points CD_2_1 and CD_2_2. The color points CD_2_1 and CD_2_2 form a second column and are separated by a vertical dot pitch VDS1. Therefore, the color points CD_2_1 and CD_2_2 are horizontally aligned and vertically separated by the vertical dot pitch VDS1. The switching element SE_2 is disposed between the color points CD_2_1 and CD_2_2 such that the color point CD_2_1 is on a first side of the switching element column such that the color point CD_2_2 is on a second side of the switching element column. The switching element SE_2 is coupled to the electrodes of the color points CD_2_1 and CD_2_2 to control the voltage polarity and voltage amount of the color points CD_2_1 and CD_2_2. The second color component CC_2 is vertically aligned with the first color component CC_1 and separated from the first color component CC_1 by a horizontal dot pitch HDS1, so the color components CC_2 and CC_1 are offset by a horizontal dot offset HDD1. The horizontal point offset HDD1 is equal to the horizontal point spacing HDS1 plus the color point width CDW. In particular, as far as the color point is concerned, the color point CD_2_1 is vertically aligned with the color point CD_1_1 and horizontally separated by the horizontal dot pitch HDS1. Similarly, the color point CD_2_2 is vertically aligned with the color point CD_2_1 and horizontally separated by the horizontal dot pitch HDS1. Therefore, the color point CD_1_1 and the color point CD_2_1 form a first row of color dots, and the color point CD_1_2 and the color point CD_2_2 form a second row of color dots.
相似地,畫素設計410的第三色分量CC_3係具有二色點CD_3_1及CD_3_2。色點CD_3_1及CD_3_2係形成一第三欄,且被一垂直點間距VDS1所分隔。因此色點CD_3_1及CD_3_2係水平地配向,且以垂直點間距VDS1所垂直地分隔。切換元件SE_3係設置在色點CD_3_1及CD_3_2之間,以使色點CD_3_1在切換元件欄的一第一側上,使色點CD_3_2在切換元件欄的一第二側上。切換元件SE_3係偶接到色點CD_3_1及CD_3_2的電極,以控制色點CD_3_1及CD_3_2的電壓極性與電壓量。第三色分量CC_3係與第二色分量CC_2垂直地配向,且被水平點間距HDS1所分隔,因此色分量CC_3及CC_2係被一水平點偏移量HDO1所垂直地抵消。尤其是就色點而論,色點CD_3_1係與色點CD_2_1垂直地配向,且以水平點間距HDS1所水平地分隔。相似地,色點CD_3_2係與色點CD_2_2垂直地配向,且以水平點間距HDS1所水平地分隔。因此,色點CD_3_1係在第一色點列上,且色點CD_3_2係在第二色點列上。Similarly, the third color component CC_3 of the pixel design 410 has two color points CD_3_1 and CD_3_2. The color points CD_3_1 and CD_3_2 form a third column and are separated by a vertical dot pitch VDS1. Therefore, the color points CD_3_1 and CD_3_2 are horizontally aligned and vertically separated by a vertical dot pitch VDS1. The switching element SE_3 is disposed between the color points CD_3_1 and CD_3_2 such that the color point CD_3_1 is on a first side of the switching element column such that the color point CD_3_2 is on a second side of the switching element column. The switching element SE_3 is coupled to the electrodes of the color points CD_3_1 and CD_3_2 to control the voltage polarity and voltage amount of the color points CD_3_1 and CD_3_2. The third color component CC_3 is vertically aligned with the second color component CC_2 and is separated by the horizontal dot pitch HDS1, so the color components CC_3 and CC_2 are vertically cancelled by a horizontal dot offset amount HDO1. In particular, as far as the color point is concerned, the color point CD_3_1 is vertically aligned with the color point CD_2_1 and horizontally separated by the horizontal dot pitch HDS1. Similarly, the color point CD_3_2 is vertically aligned with the color point CD_2_2 and horizontally separated by the horizontal dot pitch HDS1. Therefore, the color point CD_3_1 is on the first color point column, and the color point CD_3_2 is on the second color point column.
為了清楚說明,畫素設計410的色點係以圖闡釋色點具有相同的色點高度CDH。然而,在本發明的某些實施例可有不同色點高度的色點。舉例來說,對在本發明一實施例中畫素設計410的一變量(variant)而言,色點CD_1_1、CD_2_1及CD_3_1具有小於色點CD_1_2、CD_2_2及CD_3_2的色點高度。For clarity of illustration, the color point of the pixel design 410 is to illustrate that the color points have the same color point height CDH. However, some embodiments of the invention may have color points of different color point heights. For example, for a variant of the pixel design 410 in an embodiment of the invention, the color points CD_1_1, CD_2_1, and CD_3_1 have color point heights that are smaller than the color points CD_1_2, CD_2_2, and CD_3_2.
畫素設計410也包括離散場放大區域FFAR_1、FFAR_2及FFAR_3。圖4(c)係表示畫素設計410的離散場放大區域之一更詳細視圖。為了清楚說明,離散場放大區域FFAR_1係概念上分割成一垂直放大部(vertical amplifying portion) VAP及一水平放大部(horizontal amplifying portion) HAP。在圖4(c)中,係把水平放大部HAP垂直地放在垂直放大部VAP的中央,且延伸到垂直放大部VAP的左邊。水平放大部與垂直放大部的使用,係給予離散場放大區域FFAR_1之設置+的更加清楚描述。在本發明大部份的實施例中,離散場放大區域的電極係由一相接的導體所形成。水平放大部HAP係具有一水平放大部寬度HAP_W及一水平放大部高度HAP_H。相似地,垂直放大部VAP係具有一垂直放大部寬度VAP_W及一垂直放大部高度VAP_H。離散場放大區域FFAR_2及FFAR_3具有與離散場放大區域FFAR_1相同的形狀。在本發明具有不同尺寸之色點的實施例中,水平放大部HAP係設置在色點之間,而不是被放在垂直放大部VAP的中央上。The pixel design 410 also includes discrete field amplification regions FFAR_1, FFAR_2, and FFAR_3. 4(c) is a more detailed view showing one of the discrete field magnified regions of the pixel design 410. For clarity of explanation, the discrete field amplification region FFAR_1 is conceptually divided into a vertical amplifying portion VAP and a horizontal amplifying portion HAP. In FIG. 4(c), the horizontal amplifying portion HAP is vertically placed at the center of the vertical amplifying portion VAP and extends to the left of the vertical amplifying portion VAP. The use of the horizontal amplifying portion and the vertical amplifying portion is a clearer description of the setting + of the discrete field magnifying region FFAR_1. In most embodiments of the invention, the electrodes of the discrete field amplification region are formed by a connected conductor. The horizontal amplifying portion HAP has a horizontal amplifying portion width HAP_W and a horizontal amplifying portion height HAP_H. Similarly, the vertical amplifying portion VAP has a vertical amplifying portion width VAP_W and a vertical amplifying portion height VAP_H. The discrete field amplification areas FFAR_2 and FFAR_3 have the same shape as the discrete field amplification area FFAR_1. In the embodiment of the present invention having color points of different sizes, the horizontal amplifying portion HAP is disposed between the color points instead of being placed on the center of the vertical amplifying portion VAP.
如圖4(a)所示,離散場放大區域FFAR_1、FFAR_2及FFAR_3係設置在畫素設計410的色點之間。特別是,離散場放大區域FFAR_1被配置,以使離散場放大區域FFAR_1的水平放大部位在色點CD_1_1與CD_1_2之間,且被以一垂直離散場放大區域間距VFFARS而與色點CD_1_1及CD_1_2相分隔。離散場放大區域FFAR_1的垂直放大部係設置在色點CD_1_1與CD_1_2的右邊,且被以一水平離散場放大區域間距HFFARS而與色點CD_1_1與CD_1_2相分隔。因此,離散場放大區域FFAR_1,係沿色點CD_1_1的右側底部與色點CD_1_2右側頂部而延伸。再者,此配置也造成離散場放大區域FFAR_1的垂直放大部在色點CD_1_1與CD_2_1之間,以及在色點CD_1_2與CD_2_2之間。As shown in FIG. 4(a), the discrete field amplification areas FFAR_1, FFAR_2, and FFAR_3 are disposed between the color points of the pixel design 410. In particular, the discrete field amplification region FFAR_1 is configured such that the horizontally amplified portion of the discrete field amplification region FFAR_1 is between the color points CD_1_1 and CD_1_2, and is separated from the color points CD_1_1 and CD_1_2 by a vertical discrete field amplification region spacing VFFARS. Separate. The vertical amplification portion of the discrete field amplification region FFAR_1 is disposed to the right of the color points CD_1_1 and CD_1_2, and is separated from the color points CD_1_1 and CD_1_2 by a horizontal discrete field amplification region pitch HFFARS. Therefore, the discrete field amplification area FFAR_1 extends along the right bottom of the color point CD_1_1 and the top right side of the color point CD_1_2. Furthermore, this configuration also causes the vertical amplification portion of the discrete field amplification region FFAR_1 to be between the color points CD_1_1 and CD_2_1 and between the color points CD_1_2 and CD_2_2.
相似地,離散場放大區域FFAR_2係被設置,以使離散場放大區域FFAR_2的水平放大部位在色點CD_2_1與CD_2_2之間,且被以一垂直離散場放大區域間距VFFARS所分隔。離散場放大區域FFAR_2的垂直放大部係設置在色點CD_2_1與CD_2_2的右邊,且被以一垂直離散場放大區域間距VFFARS所分隔。因此,離散場放大區域FFAR_1係沿色點CD_2_1右邊底部,及色點CD_2_2右邊頂部而延伸。此配置也造成離散場放大區域FFAR_2的垂直放大部在色點CD_2_1與CD_3_1之間,以及在色點CD_2_2與CD_3_2之間。Similarly, the discrete field amplification area FFAR_2 is set such that the horizontal amplification portion of the discrete field amplification area FFAR_2 is between the color points CD_2_1 and CD_2_2, and is separated by a vertical discrete field amplification area spacing VFFARS. The vertical amplifying portion of the discrete field magnifying region FFAR_2 is disposed to the right of the color points CD_2_1 and CD_2_2, and is separated by a vertical discrete field magnifying region pitch VFFARS. Therefore, the discrete field amplification area FFAR_1 extends along the right bottom of the color point CD_2_1 and the top of the right side of the color point CD_2_2. This configuration also causes the vertical amplification portion of the discrete field amplification region FFAR_2 to be between the color points CD_2_1 and CD_3_1, and between the color points CD_2_2 and CD_3_2.
離散場放大區域FFAR_3係被設置,以使離散場放大區域FFAR_3的水平放大部位在色點CD_3_1與CD_3_2之間,且被以一垂直離散場放大區域間距VFFARS所分隔。離散場放大區域FFAR_3的垂直放大部係設置在色點CD_3_1與CD_3_2的右邊,且被以一水平離散場放大區域間距HFFARS而與色點CD_3_1與CD_3_2相分隔。因此,離散場放大區域FFAR_3係沿色點CD_3_1的右側底部,以及沿色點CD_3_2右側頂部而延伸。The discrete field amplification area FFAR_3 is set such that the horizontal amplification portion of the discrete field amplification area FFAR_3 is between the color points CD_3_1 and CD_3_2, and is separated by a vertical discrete field amplification area spacing VFFARS. The vertical amplification portion of the discrete field amplification region FFAR_3 is disposed to the right of the color points CD_3_1 and CD_3_2, and is separated from the color points CD_3_1 and CD_3_2 by a horizontal discrete field amplification region pitch HFFARS. Therefore, the discrete field amplification area FFAR_3 extends along the right bottom of the color point CD_3_1 and along the top right side of the color point CD_3_2.
色點、離散場放大區域及切換元件的極性,係以正號”+”及負號”-”表示。因此在圖4(a)中,顯示畫素設計410+的正點極性、所有的切換元件(如切換元件SE_1、SE_2及SE_3)及所有的色點(例如色點CD_1_1、CD_1_2、CD_2_1、CD_2_2、CD_3_1及CD_3_2),係具有正極性。然而,所有的離散場放大區域(例如離散場放大區域FFAR_1、FFAR_2及FFAR_3)係具有負極性。The color point, the discrete field amplification area, and the polarity of the switching element are indicated by a positive sign "+" and a negative sign "-". Therefore, in FIG. 4(a), the punctual polarity of the pixel design 410+, all switching elements (such as switching elements SE_1, SE_2, and SE_3) and all color points (such as color points CD_1_1, CD_1_2, CD_2_1, CD_2_2, CD_3_1 and CD_3_2) have positive polarity. However, all discrete field amplification regions (eg, discrete field amplification regions FFAR_1, FFAR_2, and FFAR_3) have negative polarity.
圖4(b)係表示具有負點極性圖案的畫素設計410。對負點極性圖案而言,所有的切換元件(例如切換元件SE_1、SE_2及SE_3)以及所有的色點(例如色點CD_1_1、CD_1_2、CD_2_1、CD_2_2、CD_3_1及CD_3_2),係具有負極性。然而,所有的離散場放大區域(例如離散場放大區域FFAR_1、FFAR_2及FFAR_3)係具有正極性。Figure 4(b) shows a pixel design 410 having a negative dot polarity pattern. For the negative dot polarity pattern, all switching elements (such as switching elements SE_1, SE_2, and SE_3) and all color points (such as color points CD_1_1, CD_1_2, CD_2_1, CD_2_2, CD_3_1, and CD_3_2) have negative polarity. However, all of the discrete field amplification regions (for example, the discrete field amplification regions FFAR_1, FFAR_2, and FFAR_3) have positive polarity.
如上所述,若鄰近元件具有相反極性者,在每一色點的離散場會被放大。畫素設計410係利用離散場放大區域來強化並穩定在液晶結構中之多區域的形成。一般而言,已偏極元件的極性係被指定,以使一第一極性的色點具有第二極性的鄰近已偏極元件。舉例來說,對畫素設計410(如圖4(a)所示)而言,色點CD_2_2具有正極性。然而,鄰近已偏極元件(離散場放大區域FFAR_2與FFAR_1)係具有負極性。因此色點CD_2_2的離散場被放大。再者,如下所述,極性反轉模式係也在顯示層級(display level)中實現,以使其他鄰靠色點CD_1_2之畫素的色點具有負極性(請參考圖4(d))。As noted above, if adjacent elements have opposite polarities, the discrete fields at each color point will be amplified. The pixel design 410 utilizes discrete field amplification regions to enhance and stabilize the formation of multiple regions in the liquid crystal structure. In general, the polarity of the biased component is specified such that a color point of a first polarity has a second polarized adjacent polarized component. For example, for the pixel design 410 (shown in Figure 4(a)), the color point CD_2_2 has a positive polarity. However, the adjacent polarized elements (the discrete field amplification areas FFAR_2 and FFAR_1) have a negative polarity. Therefore, the discrete field of the color point CD_2_2 is amplified. Furthermore, as described below, the polarity inversion mode is also implemented in the display level so that the color points of other pixels adjacent to the color point CD_1_2 have a negative polarity (refer to FIG. 4(d)).
因為在畫素設計410中所有的切換元件具有相同極性,且離散場放大區域需要相反極性,因此離散場放大區域係由一外部極性源(external polarity source),例如從畫素設計410之特定畫素外側的一極性源。相反極性的不同來源係被使用在依據本發明的不同實施例中。舉例來說,特定離散場放大區域切換元件可被使用(如圖4(d)所示),或具有一相反點極性附近畫素的切換元件也可以被使用來驅動離散場放大區域(如圖5(c)所示)。Because all of the switching elements in the pixel design 410 have the same polarity and the discrete field amplification regions require opposite polarities, the discrete field amplification region is comprised of an external polarity source, such as a particular painting from the pixel design 410. A source of polarity outside the prime. Different sources of opposite polarity are used in different embodiments in accordance with the present invention. For example, a particular discrete field amplification region switching element can be used (as shown in Figure 4(d)), or a switching element having a pixel near the opposite polarity can also be used to drive the discrete field amplification region (as shown) 5(c))).
使用圖4(a)與圖4(b)之畫素設計的畫素,可被使用在利用切換元件列反轉模式之顯示器。圖4(d)係表示顯示器420的一部分,顯示器420係使用畫素設計410的畫素P(0,0)、P(1,0)、P(0,1)及P(1,1),而畫素設計410係具有一切換元件列反轉驅動模式。顯示器420可具有數千列,且每一列上具有數千畫素。列與行係以如圖4(d)所示的方式從如圖4(d)所示的部份連續。為了清楚說明,控制切換元件的閘極線(gate line、scan line)與源極線(source line、data line)係在圖4(d)中被省略。閘極線(gate line、scan line)與源極線(source line、data line)係繪示在圖4(e)中。再者,為了更好以圖闡釋每一畫素,每一畫素的區域係被遮蔽,此遮蔽在圖4(d)中係僅為繪圖目的,並沒有功能上的意義。在此所述的顯示器,一畫素P(x,y)係在第x行(從左邊算起)及第y列(從最底算起),即畫素P(0,0)係在最下最左角落。在顯示器420中,畫素係被配置以使在一列的所有畫素具有相同的點極性圖案(正或負),且每一連續的列應該在正、負點極性圖案之間交替。因此,在第一列的畫素P(0,0)及P(1,0)具有正點極性圖案,在第二列的畫素P(0,1)與P(1,1)具有負點極性圖案。然而,在下一個頁框中,畫素係將切換點極性圖案。因此一般而言,一畫素P(x,y)在當y為偶數時具有一第一點極性圖案,在當y為奇數時具有一第二點極性圖案。The pixels designed using the pixel elements of FIGS. 4(a) and 4(b) can be used in a display using the switching element column inversion mode. 4(d) shows a part of the display 420, and the display 420 uses the pixels P(0, 0), P(1, 0), P(0, 1), and P(1, 1) of the pixel design 410. The pixel design 410 has a switching element column inversion driving mode. Display 420 can have thousands of columns with thousands of pixels on each column. The columns and rows are continuous from the portion shown in Fig. 4(d) in the manner shown in Fig. 4(d). For clarity of explanation, the gate line, scan line, and source line, data line of the control switching element are omitted in FIG. 4(d). The gate line, the scan line, and the source line (data line) are shown in FIG. 4(e). Furthermore, in order to better illustrate each pixel, each region of the pixel is obscured. This masking is only for drawing purposes in Figure 4(d) and has no functional significance. In the display described herein, a pixel P(x, y) is in the xth row (from the left) and the yth column (from the bottom), that is, the pixel P(0, 0) is The bottom leftmost corner. In display 420, the pixels are configured such that all pixels in a column have the same dot polarity pattern (positive or negative), and each successive column should alternate between positive and negative dot polarity patterns. Therefore, the pixels P(0,0) and P(1,0) in the first column have a punctual polarity pattern, and the pixels P(0,1) and P(1,1) in the second column have negative points. Polar pattern. However, in the next page frame, the pixel will switch the dot polarity pattern. Thus, in general, a pixel P(x, y) has a first dot polarity pattern when y is even and a second dot polarity pattern when y is odd.
在每一畫素列上的畫素係垂直地配向,且被以垂直點間距HDS1而與一鄰靠畫素之最左邊色點相互分隔。在一畫素行上的畫素係水平地配向,且被以一垂直點間距VDS2所分隔。The pixels on each pixel column are vertically aligned and separated from the leftmost color point of a neighboring pixel by a vertical dot pitch HDS1. The pixels on a line of pixels are horizontally aligned and separated by a vertical dot pitch VDS2.
如上所述,畫素設計410之畫素的離散場放大區域係從畫素外接收正確極性。因此在顯示器420中,畫素的每一列具有一相對應的離散場放大區域切換元件(fringe field amplifying region switching element),係耦接到延伸經過顯示器420之一離散場放大電極(fringe field amplifying electrode)。相對應畫素列之畫素的離散場放大區域,係耦接到相對應的離散場放大電極,以從離散場放大區域切換元件接收電壓極性與電壓量。尤其是對列0而言,離散場放大區域切換元件FFARSE_0係在顯示器420的右側之上。離散場放大區域電極FFARE_0係耦接到離散場放大區域切換元件FFARSE_0,並延伸經過顯示器420。在列0之畫素上的離散場放大區域係耦接到離散場放大區域切換元件FFARSE_0。特別是,畫素P(0,0)及畫素P(1,0)的離散場放大區域,係耦接到離散場放大區域切換元件FFARSE_0。對列1而言,離散場放大區域切換元件FFARSE_1係在顯示器420的右側之上。離散場放大區域電極FFARE_1係耦接到離散場放大區域切換元件FFARSE_1,並延伸經過顯示器420。在列1之畫素上的離散場放大區域,係耦接到離散場放大區域電極FFARE_1。特別是,畫素P(0,1)及畫素P(1,1)的離散場放大區域,係耦接到離散場放大區域電極FFARE_1。在圖4(d)中,離散場放大區域切換元件FFARSE_0及FFARSE_1係分別具有負極性與正極性。然而在下一頁框中,極性是相反的。在本發明某些實施例可以將所有的離散場放大區域切換元件放置在顯示器的相同側。As described above, the discrete field amplification region of the pixel design pixel 410 receives the correct polarity from outside the pixel. Thus, in display 420, each column of pixels has a corresponding fringe field amplifying region switching element coupled to a fringe field amplifying electrode extending through display 420 ). The discrete field amplification region of the pixel corresponding to the pixel sequence is coupled to the corresponding discrete field amplification electrode to receive the voltage polarity and the voltage amount from the discrete field amplification region switching component. Especially for column 0, the discrete field amplification region switching element FFARSE_0 is above the right side of the display 420. The discrete field amplification region electrode FFARE_0 is coupled to the discrete field amplification region switching element FFARSE_0 and extends through the display 420. The discrete field amplification region on the pixel of column 0 is coupled to the discrete field amplification region switching element FFARSE_0. In particular, the discrete field amplification regions of the pixels P(0, 0) and the pixels P(1, 0) are coupled to the discrete field amplification region switching element FFARSE_0. For column 1, the discrete field amplification region switching element FFARSE_1 is above the right side of the display 420. The discrete field amplification area electrode FFARE_1 is coupled to the discrete field amplification area switching element FFARSE_1 and extends through the display 420. The discrete field amplification region on the pixel of column 1 is coupled to the discrete field amplification region electrode FFARE_1. In particular, the discrete field amplification regions of the pixels P(0, 1) and the pixels P(1, 1) are coupled to the discrete field amplification region electrode FFARE_1. In FIG. 4(d), the discrete field amplification area switching elements FFARSE_0 and FFARSE_1 have negative polarity and positive polarity, respectively. However, in the next page box, the polarity is reversed. All of the discrete field amplification area switching elements can be placed on the same side of the display in certain embodiments of the invention.
由於顯示器420中每一列上的極性切換,若是一色點具有第一極性的話,則任何與其鄰接的已偏極元件具有第二極性。舉例來說,當畫素P(0,1)的離散場放大區域FFAR_2及FFAR_3具有正極性時,畫素P(0,1)的色點CD_3_2具有負極性。在本發明特定的實施例中,每一色點具有40微米(micrometers)的寬度及60微米的高度。每一離散場放大區域具有5微米的一垂直放大部寬度、145微米的一垂直放大部高度、45微米的一水平放大部寬度以及5微米的一水平放大部高度。水平點間距HDS1係為15微米,垂直點間距VDS1係為25微米,水平離散場放大區域間距HFFARS係為5微米,垂直離散場放大區域間距VFFARS係為5微米。Due to the polarity switching on each column of display 420, if a color point has a first polarity, then any of the biased elements adjacent thereto have a second polarity. For example, when the discrete field amplification regions FFAR_2 and FFAR_3 of the pixel P(0, 1) have positive polarity, the color point CD_3_2 of the pixel P(0, 1) has a negative polarity. In a particular embodiment of the invention, each color point has a width of 40 microns and a height of 60 microns. Each discrete field amplification region has a vertical magnification width of 5 microns, a vertical magnification height of 145 microns, a horizontal magnification width of 45 microns, and a horizontal magnification height of 5 microns. The horizontal point spacing HDS1 is 15 microns, the vertical point spacing VDS1 is 25 microns, the horizontal discrete field amplification area spacing is HFFARS is 5 microns, and the vertical discrete field amplification area spacing VFFARS is 5 microns.
圖4(e)係闡述如圖4(d)之顯示器420的相同部分(即畫素P(0,0)、P(1,0)、P(0,1)、P(1,1)),且使用電晶體當作切換元件。然而,圖4(e)係強調閘極線與源極線,且因此(為了清楚說明)在圖4(e)中省略某些畫素細節(如圖4(d)所示的極性)。為了更好闡述每一畫素,係遮蔽每一畫素的區域;在圖4(e)中的此等遮蔽係僅為說明的目的而已。圖4(e)係繪示出源極線(S_0_1、S_0_2、S_0_3、S_1_1、S_1_2及S_1_3)及閘極線(G_0及G_1)。一般而言,源極線S_X_Y及閘極線G_Y係用在畫素P(X,Y)的色分量CC_Y。電晶體的源極端(source terminal)係耦接到源極線(source line/data line),而電晶體的閘極端(gate terminal)係耦接到閘極線(gate line/scan line)。電晶體的汲極端(drain terminal)係耦接到不同色點的電極。為了清楚說明,在顯示器430中用來當作切換元件的電晶體,係以電晶體T(S_X_Y,G_Y)當作參考,其中,S_X_Y係源極線耦接到電晶體,G_Y係閘極線耦接到電晶體。因為電晶體451的源極端係耦接到源極線S_1_3且電晶體451的閘極端係耦接到閘極線G_1,因此在圖4(e)中的電晶體451係以電晶體T(S_1_3,G_1)當作參考。在由閘極線G_1與源極線S_0_1、S_0_2、S_0_3控制的畫素P(0,1)中,電晶體T(S_0_1,G_1)的汲極端係耦接到色分量CC_1(如色點CD_1_1及CD_1_2)的電極。相似地,電晶體T(S_0_2,G_1)的汲極端係耦接到色分量CC_2(如色點CD_2_1及CD_2_2)的電極,且電晶體T(S_0_3,G_1)的汲極端係耦接到色分量CC_3(如色點CD_3_1及CD_3_2)的電極。再者,電晶體T(S_0_1,G_1)、T(S_0_2,G_1)及T(S_0_3,G_1)的閘極端,係耦接到閘極線G_1,電晶體T(S_0_1,G_1)、T(S_0_2,G_1)及T(S_0_3,G_1)的源極端,係分別地耦接到源極線S_0_1、S_0_2、S_0_3。相似地,畫素P(1,1)的元件係耦接到閘極線G_1及源極線S_1_1、S_1_2、S_1_3。畫素P(0,0)的元件係耦接到閘極線G_0及源極線S_0_1、S_0_2、S_0_3,且畫素P(1,0)的元件係耦接到閘極線G_0及源極線S_1_1、S_1_2、S_1_3。Figure 4(e) illustrates the same portion of the display 420 of Figure 4(d) (i.e., pixels P(0,0), P(1,0), P(0,1), P(1,1). And use a transistor as a switching element. However, FIG. 4(e) emphasizes the gate line and the source line, and thus (for clarity of explanation) some pixel details (such as the polarity shown in FIG. 4(d)) are omitted in FIG. 4(e). In order to better illustrate each pixel, the area of each pixel is masked; such masking in Figure 4(e) is for illustrative purposes only. 4(e) shows the source lines (S_0_1, S_0_2, S_0_3, S_1_1, S_1_2, and S_1_3) and the gate lines (G_0 and G_1). In general, the source line S_X_Y and the gate line G_Y are used in the color component CC_Y of the pixel P(X, Y). The source terminal of the transistor is coupled to the source line/data line, and the gate terminal of the transistor is coupled to the gate line/scan line. The drain terminal of the transistor is coupled to electrodes of different color points. For clarity of description, the transistor used as the switching element in the display 430 is referenced by the transistor T (S_X_Y, G_Y), wherein the S_X_Y source line is coupled to the transistor, and the G_Y system gate line is used. Coupled to the transistor. Since the source terminal of the transistor 451 is coupled to the source line S_1_3 and the gate terminal of the transistor 451 is coupled to the gate line G_1, the transistor 451 in FIG. 4(e) is a transistor T (S_1_3). , G_1) as a reference. In the pixel P(0,1) controlled by the gate line G_1 and the source lines S_0_1, S_0_2, S_0_3, the 汲 extreme of the transistor T(S_0_1, G_1) is coupled to the color component CC_1 (such as the color point CD_1_1) And the electrode of CD_1_2). Similarly, the 汲 extremes of the transistor T(S_0_2, G_1) are coupled to the electrodes of the color components CC_2 (such as the color points CD_2_1 and CD_2_2), and the 汲 extremes of the transistors T(S_0_3, G_1) are coupled to the color components. Electrodes for CC_3 (such as color points CD_3_1 and CD_3_2). Furthermore, the gate terminals of the transistors T(S_0_1, G_1), T(S_0_2, G_1) and T(S_0_3, G_1) are coupled to the gate line G_1, the transistors T(S_0_1, G_1), T(S_0_2). The source terminals of , G_1) and T(S_0_3, G_1) are respectively coupled to the source lines S_0_1, S_0_2, S_0_3. Similarly, the elements of the pixel P(1,1) are coupled to the gate line G_1 and the source lines S_1_1, S_1_2, S_1_3. The components of the pixel P(0, 0) are coupled to the gate line G_0 and the source lines S_0_1, S_0_2, S_0_3, and the elements of the pixel P(1, 0) are coupled to the gate line G_0 and the source. Lines S_1_1, S_1_2, S_1_3.
每一掃瞄線係從顯示器420的左側延伸到右側,並控制在顯示器420之一列上的所有畫素。對每一畫素列而言,顯示器420具有一閘極線。每一源極線從顯示器420的頂部延伸到底部。顯示器420的源極線數量係為每一列上畫素數量的三倍(例如在一畫素列中,每一畫素之每一色分量的一源極線)。在操作期間,每次僅有單一閘極線啟動。在啟動列的所有電晶體,係藉由正閘極從啟動源極線刺激而處於導電狀態。在其他列的電晶體係藉由接地的非啟動閘極線而被封鎖。所有的源極線係在同一時間啟動,且每一源極線提供影像資料(video data)給在啟動列(如藉由啟動閘極線進行控制)上的一電晶體。由於閘極線與源極線的操作方式,因此,閘極線通常稱為匯流排線(bus line),而源極線通常稱為資料線(data line)。電壓對色分量之電極進行充電,以產生所欲的灰階(顏色係由彩色光片所提供)。當不啟動時,色點的電極係電絕緣,因此可以維持電壓以控制液晶。然而,寄生漏電(parasitic leakage)是無法避免的,因此充電最終仍會浪費。對具有較少列之小螢幕而言,此寄生漏電是不會有問題的,因為列通常很快被刷新(refreshed)。然而對有較多列的大螢幕而言,在刷新之間有一較長的期間。因此本發明某些實施例在每一色點包括有一或一以上的儲存電容(storage capacitors)。儲存電容係由色點的切換元件進行充電,且當列不啟動時提供一維持電壓(“maintenance”voltage)。一般而言,資料線與匯流排線係使用不透光導體所製造,例如鋁(Aluminum,Al)或鉻(Chromium,Cr)。Each scan line extends from the left to the right of display 420 and controls all of the pixels on one of the columns of display 420. For each pixel list, display 420 has a gate line. Each source line extends from the top to the bottom of display 420. The number of source lines of display 420 is three times the number of pixels on each column (e.g., one source line for each color component of each pixel in a pixel column). During operation, only a single gate line is activated at a time. All of the transistors in the startup column are in a conducting state by stimulating the source line from the source. The electro-crystalline system in the other columns is blocked by the grounded non-activated gate line. All of the source lines are activated at the same time, and each source line provides video data to a transistor in the startup column (eg, by controlling the gate line). Due to the mode of operation of the gate line and the source line, the gate line is often referred to as a bus line, and the source line is commonly referred to as a data line. The voltage charges the electrodes of the color components to produce the desired gray level (the color is provided by the color light film). When not activated, the electrodes of the color point are electrically insulated, so the voltage can be maintained to control the liquid crystal. However, parasitic leakage is unavoidable, so charging is ultimately wasted. For small screens with fewer columns, this parasitic leakage is not a problem because the columns are usually refreshed quickly. However, for large screens with more columns, there is a longer period between refreshes. Thus, certain embodiments of the present invention include one or more storage capacitors at each color point. The storage capacitor is charged by the switching element of the color point and provides a sustain voltage ("maintenance" voltage) when the column is not activated. In general, data lines and bus bars are made using opaque conductors such as aluminum (Aluminum, Al) or chromium (Chromium, Cr).
如上所述,用在畫素設計410之一畫素的離散場放大區域,係接收從畫素外的正確極性。因此在顯示器420中,畫素的每一列具有一相對應的離散場放大區域電晶體,此離散場放大區域電晶體係耦接到延伸經過顯示器420的一離散場放大電極。在相對應畫素列之畫素的離散場放大區域係耦接到相對應的離散場放大電極,以從離散場放大區域電晶體接收電壓極性與電壓量。特別是對列0而言,離散場放大區域電晶體FFAR_T_0係在顯示器420的左側之上。離散場放大區域電極FFARE_0係耦接到離散場放大區域電晶體FFAR_T_0的汲極端,並延伸經過顯示器420。在列0之畫素中的離散場放大區域係耦接到離散場放大區域電極FFARE_0。尤其是,畫素P(0,0)及畫素P(1,0)係耦接到離散場放大區域電極FFARE_0。離散場放大區域電晶體FFAR_T_0的控制端(control terminal)係耦接到閘極線G_0,且離散場放大區域電晶體FFAR_T_0的源極端係耦接到一離散場放大區域偶數源極線S_FFAR_E。離散場放大區域的電極係設定為色點的相反極性,以強化並穩定在液晶結構中多區域(multiple domains)的構成(formation)。因此,在離散場放大區域偶數源極線S_FFAR_E上的極性係與耦接到色點之電晶體上的源極線極性相反。一般而言,離散場放大區域偶數源極線S_FFAR_E上的電壓大小係設定為一固定電壓。為了降低用電量(power usage),離散場放大區域偶數源極線S_FFAR_E上的固定電壓係設定為一低電壓(low voltage)。在本發明某些實施例中,離散場放大區域偶數源極線S_FFAR_E係由在顯示器邊緣的一電晶體所控制。在本發明其他實施例中,離散場放大區域偶數源極線S_FFAR_E係由控制其他源極線之驅動電路所控制。As described above, the discrete field amplification region of one of the pixels in the pixel design 410 receives the correct polarity from the pixel. Thus, in display 420, each column of pixels has a corresponding discrete field amplification region transistor that is coupled to a discrete field amplification electrode that extends through display 420. The discrete field amplification region of the pixel of the corresponding pixel is coupled to the corresponding discrete field amplifying electrode to receive the voltage polarity and the voltage amount from the discrete field amplifying region transistor. In particular for column 0, the discrete field amplification region transistor FFAR_T_0 is above the left side of display 420. The discrete field amplification region electrode FFARE_0 is coupled to the 汲 terminal of the discrete field amplification region transistor FFAR_T_0 and extends through the display 420. The discrete field amplification region in the pixel of column 0 is coupled to the discrete field amplification region electrode FFARE_0. In particular, the pixels P(0, 0) and the pixels P(1, 0) are coupled to the discrete field amplification region electrode FFARE_0. The control terminal of the discrete field amplification region transistor FFAR_T_0 is coupled to the gate line G_0, and the source terminal of the discrete field amplification region transistor FFAR_T_0 is coupled to a discrete field amplification region even source line S_FFAR_E. The electrode system of the discrete field amplification region is set to the opposite polarity of the color point to enhance and stabilize the formation of multiple domains in the liquid crystal structure. Therefore, the polarity on the even source line S_FFAR_E in the discrete field amplification region is opposite to the source line on the transistor coupled to the color point. In general, the magnitude of the voltage on the even source line S_FFAR_E of the discrete field amplification region is set to a fixed voltage. In order to reduce power usage, the fixed voltage on the even source line S_FFAR_E of the discrete field amplification region is set to a low voltage. In some embodiments of the invention, the discrete field amplification region even source line S_FFAR_E is controlled by a transistor at the edge of the display. In other embodiments of the invention, the discrete field amplification region even source line S_FFAR_E is controlled by a drive circuit that controls other source lines.
對列1而言,離散場放大區域電晶體FFAR_T_1係在顯示器420的右側之上。離散場放大區域電極FFARE_1係耦接到離散場放大區域電晶體FFAR_T_1的汲極端且延伸經過顯示器420。在列1之畫素中的離散場放大區域係耦接到離散場放大區域電極FFARE_1。特別是畫素P(0,1)及畫素P(1,1)的離散場放大區域係耦接到離散場放大區域電極FFARE_1。離散場放大區域電晶體FFAR_T_1的控制端(control terminal)係耦接到閘極線G_1,且離散場放大區域電晶體FFAR_T_1的源極端係耦接到一離散場放大區域奇數源極線S_FFAR_O。離散場放大區域的電極係設定為色點的相反極性,以強化並穩定在液晶結構中多區域(multiple domains)的構成(formation)。因此,在離散場放大區域奇數源極線S_FFAR_O上的極性係與耦接到色點之電晶體上的源極線極性相反。一般而言,離散場放大區域奇數源極線S_FFAR_O上的電壓大小係設定為一固定電壓。為了降低用電量,離散場放大區域奇數源極線S_FFAR_O上的固定電壓係設定為一低電壓。在本發明某些實施例中,離散場放大區域奇數源極線S_FFAR_O係由在顯示器邊緣的一電晶體所控制。在本發明其他實施例中,離散場放大區域奇數源極線S_FFAR_O係由控制其他源極線之驅動電路所控制。For column 1, the discrete field amplification region transistor FFAR_T_1 is above the right side of display 420. The discrete field amplification region electrode FFARE_1 is coupled to the 汲 terminal of the discrete field amplification region transistor FFAR_T_1 and extends through the display 420. The discrete field amplification region in the pixel of column 1 is coupled to the discrete field amplification region electrode FFARE_1. In particular, the discrete field amplification regions of the pixels P(0, 1) and the pixels P(1, 1) are coupled to the discrete field amplification region electrode FFARE_1. The control terminal of the discrete field amplification region transistor FFAR_T_1 is coupled to the gate line G_1, and the source terminal of the discrete field amplification region transistor FFAR_T_1 is coupled to a discrete field amplification region odd source line S_FFAR_O. The electrode system of the discrete field amplification region is set to the opposite polarity of the color point to enhance and stabilize the formation of multiple domains in the liquid crystal structure. Therefore, the polarity on the odd source line S_FFAR_O in the discrete field amplification region is opposite to the source line on the transistor coupled to the color point. In general, the magnitude of the voltage on the odd source line S_FFAR_O in the discrete field amplification region is set to a fixed voltage. In order to reduce the power consumption, the fixed voltage on the odd source line S_FFAR_O in the discrete field amplification region is set to a low voltage. In some embodiments of the invention, the odd field amplification region odd source line S_FFAR_O is controlled by a transistor at the edge of the display. In other embodiments of the invention, the odd field amplification region odd source line S_FFAR_O is controlled by a drive circuit that controls other source lines.
在顯示器420中,離散場放大區域電晶體係同時置放在顯示器的左側與右側上,以改善在顯示器420中的配電(power distribution)。然而本發明的某些實施例可以將所有離散場放大區域電晶體放到顯示器的一單一側上。在這些實施例中,所有的離散場放大區域電晶體的源極端可以耦接到一單一離散場放大區域電晶體S_FFAR。In display 420, discrete field amplification region electro-crystal systems are placed simultaneously on the left and right sides of the display to improve power distribution in display 420. However, certain embodiments of the present invention may place all discrete field amplification area transistors on a single side of the display. In these embodiments, the source terminals of all of the discrete field amplification region transistors may be coupled to a single discrete field amplification region transistor S_FFAR.
圖4(f)及圖4(g)係表示一畫素設計430(標示430+及430-)之不同點極性圖案,其畫素設計430係為畫素設計410的變異。因為在畫素設計430與畫素設計410中色點、切換元件極離散場放大區域的佈局及極性相同,故不再重複敘述。在畫素設計430與畫素設計410之間的主要差異,係在畫素設計430中的離散場放大區域係在畫素中以導體耦接在一起。特別是,一導體432係將離散場放大區域FFAR_1的電極耦接到離散場放大區域FFAR_2的電極。相似地,一導體434係將離散場放大區域FFAR_2的電極耦接到離散場放大區域FFAR_3的電極。再者,耦接到離散場放大區域FFAR_3的一導體436,係延伸到離散場放大區域FFAR_3右邊。導體436係用來連接到一鄰近畫素(請參考圖4(h))的一離散場放大區域。在本發明其他實施例中,代替耦接到離散場放大區域FFAR_3,導體436係耦接到離散場放大區域FFAR_1,且延伸到離散場放大區域FFAR_1左邊。藉由離散場放大區域間包含內部連接,係簡化離散場放大區域到外部極性源的連接。4(f) and 4(g) show different dot polarity patterns of a pixel design 430 (labeled 430+ and 430-), and the pixel design 430 is a variation of the pixel design 410. Since the layout and polarity of the color point and the switching element extremely discrete field amplification region are the same in the pixel design 430 and the pixel design 410, the description will not be repeated. The main difference between the pixel design 430 and the pixel design 410 is that the discrete field amplification regions in the pixel design 430 are coupled together in a pixel by conductors. In particular, a conductor 432 couples the electrodes of the discrete field amplification region FFAR_1 to the electrodes of the discrete field amplification region FFAR_2. Similarly, a conductor 434 couples the electrodes of the discrete field amplification region FFAR_2 to the electrodes of the discrete field amplification region FFAR_3. Furthermore, a conductor 436 coupled to the discrete field amplification region FFAR_3 extends to the right of the discrete field amplification region FFAR_3. Conductor 436 is used to connect to a discrete field amplification region of a neighboring pixel (see Figure 4(h)). In other embodiments of the invention, instead of being coupled to the discrete field amplification region FFAR_3, the conductor 436 is coupled to the discrete field amplification region FFAR_1 and extends to the left of the discrete field amplification region FFAR_1. The inclusion of internal connections between the discrete field amplification regions simplifies the connection of the discrete field amplification regions to external polar sources.
圖4(h)係表示顯示器440的一部分,顯示器440係使用具有一切換元件列反轉模式之畫素設計430的畫素P(0,0)、P(1,0)、P(0,1)及P(1,1)。顯示器440可具有數千列,且每一列有數千畫素。列與行係以顯示在圖4(h)中的手段從顯示在圖4(h)的部分連續。為為了清楚說明,在圖4(h)中係省略控制切換元件的閘極線與源極線。顯示器440的閘極線與源極線係與在圖4(e)中的顯示器420之閘極線與源極線相同。再者,為了更好以圖闡釋每一畫素,係遮蔽每一畫素的區域;此遮蔽在圖4(h)中僅為說明目的,並不具功能意義。就像顯示器420,顯示器440的畫素係被配置,以使在一列的所有畫素具有相同的點極性圖案(正或負),且每一連續列係在正與負點極性圖案間交替。因此,在第一列(即列0)的畫素P(0,0)及畫素P(1,0)具有正點極性圖案,而在第二列(即列1)的畫素P(0,1)及畫素P(1,1)具有負點極性圖案。然而在下一頁框,畫素將切換點極性圖案。因此,一般而言,一畫素P(x,y)在y為偶數時具有一第一點極性圖案,在y為奇數時具有一第二點極性圖案。因為顯示器440非常類似於顯示器420,因此僅描述顯示器440與顯示器420之間的差異。特別是,在畫素設計430中內部導體432、434、436的包含,故顯示器440並不包括離散場放大區域電極。反而在顯示器440左側上的離散場放大區域切換元件,係耦接到最左邊畫素的第一離散場放大區域。舉例來說,在圖4(h)中,離散場放大區域切換元件FFARSE_0係耦接到畫素P(0,0)的離散場放大區域FFAR_1。然後內部導體提供極性給在列上之畫素的離散場放大區域。在顯示器400右側上的離散場放大區域切換元件,係耦接到最右邊畫素的第三離散場放大區域。此係藉由離散場放大區域切換元件FFARSE_1經一系列的畫素(圖未示)而耦接到畫素P(1,1)的離散場放大區域FFAR_3,而象徵性地表示在圖4(h)。在圖4(c)中,離散場放大區域切換元件FFARSE_0及FFARSE_1,係分別地具有正極性與負極性。然而在下一頁框則反轉極性。4(h) shows a portion of display 440, which uses pixels P(0,0), P(1,0), P(0, of pixel design 430 having a switching element column inversion mode. 1) and P (1, 1). Display 440 can have thousands of columns and each column has thousands of pixels. The columns and rows are shown in Figure 4(h) as being continuous from the portion shown in Figure 4(h). For the sake of clarity, the gate line and the source line of the control switching element are omitted in FIG. 4(h). The gate line and source line of display 440 are the same as the gate line and source line of display 420 in Figure 4(e). Furthermore, in order to better illustrate each pixel in the figure, the area of each pixel is masked; this masking is only for illustrative purposes in Figure 4(h) and is not functional. Like display 420, the pixels of display 440 are configured such that all pixels in a column have the same dot polarity pattern (positive or negative), and each successive column alternates between positive and negative dot polarity patterns. Therefore, the pixels P(0,0) and the pixels P(1,0) in the first column (ie, column 0) have a punctual polarity pattern, and the pixels P(0 in the second column (ie, column 1). , 1) and the pixel P (1, 1) have a negative dot polarity pattern. However, in the next page box, the pixels will switch the dot polarity pattern. Therefore, in general, a pixel P(x, y) has a first dot polarity pattern when y is an even number and a second dot polarity pattern when y is an odd number. Because display 440 is very similar to display 420, only the differences between display 440 and display 420 are described. In particular, the inclusion of internal conductors 432, 434, 436 in pixel design 430 does not include discrete field amplification region electrodes. Instead, the discrete field amplification region switching element on the left side of display 440 is coupled to the first discrete field amplification region of the leftmost pixel. For example, in FIG. 4(h), the discrete field amplification area switching element FFARSE_0 is coupled to the discrete field amplification area FFAR_1 of the pixel P(0, 0). The inner conductor then provides a polarity to the discrete field amplification region of the pixels on the column. A discrete field amplification region switching element on the right side of display 400 is coupled to the third discrete field amplification region of the rightmost pixel. This is symbolically represented in FIG. 4 by the discrete field amplification region switching element FFARSE_1 coupled to the discrete field amplification region FFAR_3 of the pixel P(1, 1) via a series of pixels (not shown). h). In FIG. 4(c), the discrete field amplification area switching elements FFARSE_0 and FFARSE_1 have positive polarity and negative polarity, respectively. However, in the next page box, the polarity is reversed.
由於在顯示器440中每一列上之極性的切換,若是一色點具有第一極性的話,則任何鄰接已偏極的元件係具有第二極性。舉例來說,當畫素P(0,1)的離散場放大區域FFAR_2與FFAR_3具有負極性時,畫素P(0,1)的色點CD_3_2具有負極性。在本發明一特定實施例中,每一色點具有40微米的寬度及60微米的高度。每一離散場放大區域具有5微米的垂直放大部寬度、145微米的垂直放大部高度、45微米的水平放大部寬度以及5微米的水平放大部高度。水平點間距HDS1為15微米,垂直點間距VDS1為25微米,水平離散場放大間距HFFARS為5微米,且垂直離散場放大間距VFFARS為5微米。Due to the switching of the polarity on each column in display 440, if a color point has a first polarity, then any adjacent adjacent poles have a second polarity. For example, when the discrete field amplification regions FFAR_2 and FFAR_3 of the pixel P(0, 1) have a negative polarity, the color point CD_3_2 of the pixel P(0, 1) has a negative polarity. In a particular embodiment of the invention, each color point has a width of 40 microns and a height of 60 microns. Each discrete field amplification region has a vertical magnification width of 5 microns, a vertical magnification height of 145 microns, a horizontal magnification width of 45 microns, and a horizontal magnification height of 5 microns. The horizontal point spacing HDS1 is 15 microns, the vertical point spacing VDS1 is 25 microns, the horizontal discrete field amplification spacing HFFARS is 5 microns, and the vertical discrete field amplification spacing VFFARS is 5 microns.
在本發明某些實例中,一顯示器邊緣的畫素係使用邊緣畫素設計(edge pixel design),係使用在顯示器非邊緣畫素之畫素設計的變異。舉例來說,圖4(i)及圖4(j)係分別以圖闡釋一頂邊畫素設計430_TE及一底邊畫素設計430_BE。頂邊畫素設計430_TE及底邊畫素設計430_BE係為畫素設計430的變異。為簡單起見,並不重複敘述,且僅敘述在邊緣畫素設計與畫素設計430之間的差異。In some embodiments of the present invention, the pixels on the edge of a display use edge pixel design, which is a variation in the pixel design of the non-edge pixels of the display. For example, FIG. 4(i) and FIG. 4(j) respectively illustrate a top-side pixel design 430_TE and a bottom-side pixel design 430_BE. The topside pixel design 430_TE and the bottom edge pixel design 430_BE are variations of the pixel design 430. For the sake of simplicity, the description is not repeated, and only the difference between the edge pixel design and the pixel design 430 is described.
特別是,頂邊畫素設計430_TE使用一已修改離散場放大區域(modified fringe field amplifying region) FFAR。為清楚起見,在圖4(i)中的離散場放大區域係表示成頂邊離散場放大區域,並標示為FFAR_TE_1、FFAR_TE_2及FFAR_TE_3。在頂邊畫素設計430_TE中的頂邊離散場放大區域,係與藉由包含一頂部水平放大部(top horizontal amplifying portion) HAP_T之畫素設計430的離散場放大區域不相同。頂部水平放大部HAP_T係從頂部色點(top color dot)之上延伸到頂邊離散場放大區域之垂直放大部的左邊。特別是,如圖4(i)所示,頂邊離散場放大區域FFAR_TE_1、FFAR_TE_2及FFAR_TE_3包括分別延伸經過色點CD_1_1、CD_2_1及CD_3_1的頂部水平放大部HAP_T_1、HAP_T_2及HAP_T_3。提供在色點CD_1_1、CD_2_1及CD_3_1上相反極性之一區域的頂部水平放大部HAP_T_1、HAP_T_2及HAP_T_3,係分別強化色點CD_1_1、CD_2_1及CD_3_1的離散場(fringe field)。In particular, the topside pixel design 430_TE uses a modified fringe field amplifying region FFAR. For the sake of clarity, the discrete field amplification regions in Figure 4(i) are represented as top edge discrete field amplification regions and are labeled FFAR_TE_1, FFAR_TE_2, and FFAR_TE_3. The top edge discrete field amplification region in the topside pixel design 430_TE is different from the discrete field amplification region by the pixel design 430 comprising a top horizontal amplifying portion HAP_T. The top horizontal magnifying portion HAP_T extends from above the top color dot to the left of the vertical magnifying portion of the top side discrete field magnifying region. In particular, as shown in FIG. 4(i), the top side discrete field amplification areas FFAR_TE_1, FFAR_TE_2, and FFAR_TE_3 include top horizontal amplification sections HAP_T_1, HAP_T_2, and HAP_T_3 extending through the color points CD_1_1, CD_2_1, and CD_3_1, respectively. The top horizontal amplifying parts HAP_T_1, HAP_T_2, and HAP_T_3 providing one of the opposite polarities on the color points CD_1_1, CD_2_1, and CD_3_1 are respectively added to the fringe fields of the color points CD_1_1, CD_2_1, and CD_3_1.
在圖4(j)中,底邊畫素設計430_BE係使用一已修改離散場放大區域FFAR。為清楚起見,在圖4(j)中的離散場放大區域係如底邊離散場放大區域且標示為FFAR_BE_1、FFAR_BE_2及FFAR_BE_3。在底邊畫素設計430_BE中的底邊離散場放大區域,係不同於包含一底部水平放大部HAP_B之畫素設計430的離散場放大區域。底部水平放大部HAP_B係從底部色點下延伸到底邊離散場放大區域之垂直放大部左邊。特別是,如圖4(j)所示,底邊離散場放大區域FFAR_BE_1、FFAR_BE_2及FFAR_BE_3,係包括分別在色點CD_1_1、CD_2_1及CD_3_1之下延伸的底部水平放大部HAP_B_1、HAP_B_2及HAP_B_3。在色點CD_1_1、CD_2_1及CD_3_1下提供一相反極性的區域之底部水平放大部HAP_B_1、HAP_B_2及HAP_B_3,係分別強化色點CD_1_1、CD_2_1及CD_3_1的離散場。In Figure 4(j), the bottom edge pixel design 430_BE uses a modified discrete field amplification region FFAR. For the sake of clarity, the discrete field amplification regions in Figure 4(j) are, for example, bottom edge discrete field amplification regions and are labeled FFAR_BE_1, FFAR_BE_2, and FFAR_BE_3. The bottom-side discrete field amplification region in the bottom edge pixel design 430_BE is different from the discrete field amplification region of the pixel design 430 including a bottom horizontal amplification portion HAP_B. The bottom horizontal magnifying portion HAP_B extends from the bottom color point to the left side of the vertical magnifying portion of the discrete field magnifying region. In particular, as shown in FIG. 4(j), the bottom side discrete field amplification areas FFAR_BE_1, FFAR_BE_2, and FFAR_BE_3 include bottom horizontal amplification sections HAP_B_1, HAP_B_2, and HAP_B_3 extending below the color points CD_1_1, CD_2_1, and CD_3_1, respectively. The bottom horizontal amplification portions HAP_B_1, HAP_B_2, and HAP_B_3 of the regions of opposite polarity are provided under the color points CD_1_1, CD_2_1, and CD_3_1, respectively, and the discrete fields of the color points CD_1_1, CD_2_1, and CD_3_1 are respectively enhanced.
圖4(k)-4(m)係以圖闡釋顯示器450的不同部份,顯示器450係使用畫素設計430大部分的畫素、在顯示器頂部之畫素的頂邊畫素設計430_TE以及在顯示器底部之畫素的底部畫素設計430_BE。尤其是,顯示器450包括有400列(編號從0到399)。圖4(k)係以圖闡釋行10與行11之列99與列100(在列1到398上的畫素是相似的)上的畫素(即顯示器的一般畫素);圖4(l)係以圖闡釋行10與行11之列0與列1(即顯示器的底邊);以及圖4(m)係以圖闡釋行10與行11之列398與列399上的畫素(即顯示器的頂邊)。4(k)-4(m) are diagrams illustrating different portions of the display 450. The display 450 uses a pixel design 430 for most of the pixels, a top-side pixel design for the pixel at the top of the display 430_TE, and The bottom pixel of the pixel at the bottom of the display is 430_BE. In particular, display 450 includes 400 columns (numbered from 0 to 399). Figure 4(k) graphically illustrates the pixels on row 10 and row 11 and column 100 (the pixels on columns 1 through 398 are similar) (i.e., the general pixels of the display); Figure 4 ( l) illustrates the row 0 and column 1 of column 10 and column 1 (ie, the bottom edge of the display); and Figure 4 (m) illustrates the pixels on row 398 and column 399 of row 10 and row 399 (ie the top edge of the display).
特別是,圖4(k)係表示顯示器450的一部分,而顯示器450係使用具有一切換元件列反轉模式之畫素設計430的畫素P(10,99)、P(11,99)、P(10,100)及P(11,100)。畫素的一列係延伸到左邊及右邊。在顯示器450的一特定實施例中,每一列包含640個畫素。為清楚起見,在圖4(k)、4(l)及4(m)中係省略控制切換元件的閘極線與源極線。顯示器450的閘極線與源極線,係與圖4(e)中所示之顯示器420的閘極線與源極線相同。再者,為了更能說明每一畫素,係遮蔽每一畫素區域;此遮蔽在圖4(k)中僅為說明目的,並無功能上的意義。就像在顯示器420中,顯示器450的畫素係被配置以使在一列中的所有畫素具有相同的點極性圖案(正或負),且每一連續列係在正、負極性圖案間作交替。因此,在第100列(即列99,因為列號是從0開始算)的畫素P(10,99)及P(11,99)具有正點極性圖案,在第101列(即列100)的畫素P(10,100)及P(11,100)係具有負點極性圖案。然而在下一頁框係切換點極性圖案。因此一般而言,當y為偶數時,一畫素P(x,y)具有一第一極性,當y為奇數時,具有一第二點極性圖案。In particular, FIG. 4(k) shows a portion of the display 450, and the display 450 uses pixels P(10, 99), P(11, 99) having a pixel design 430 of the switching element column inversion mode. P (10, 100) and P (11, 100). The column of pixels extends to the left and right. In a particular embodiment of display 450, each column contains 640 pixels. For the sake of clarity, the gate lines and source lines of the control switching elements are omitted in Figures 4(k), 4(l) and 4(m). The gate line and source line of display 450 are the same as the gate line and source line of display 420 shown in Figure 4(e). Furthermore, in order to better explain each pixel, each pixel area is masked; this masking is only for illustrative purposes in Figure 4(k) and has no functional significance. As in display 420, the pixels of display 450 are configured such that all pixels in a column have the same dot polarity pattern (positive or negative), and each successive column is between positive and negative patterns. alternately. Therefore, in the 100th column (ie, column 99, because the column number is counted from 0), the pixels P(10,99) and P(11,99) have a punctual polarity pattern, in the 101st column (ie, column 100). The pixels P (10, 100) and P (11, 100) have a negative dot polarity pattern. However, in the next page frame, the dot polarity pattern is switched. Therefore, in general, when y is an even number, a pixel P(x, y) has a first polarity, and when y is an odd number, it has a second dot polarity pattern.
因為顯示器450與顯示器440非常類似,故僅描述顯示器450與顯示器440之間的差異。特別是,顯示器450係不同於顯示器440,而顯示器450係如圖4(1)所示具有使用在列0的底邊畫素設計430_BE之畫素,以及如圖4(k)所示在列399的頂邊畫素設計430_TE。因此在圖4(k)中並未顯示差異,即並未繪示處出顯示器450的頂邊或底邊(top or bottom edge)。Because display 450 is very similar to display 440, only the differences between display 450 and display 440 are described. In particular, the display 450 is different from the display 440, and the display 450 has a pixel using the bottom pixel design 430_BE of column 0 as shown in FIG. 4(1), and is shown in FIG. 4(k). The top edge of the 399 is designed with 430_TE. Therefore, the difference is not shown in FIG. 4(k), that is, the top or bottom edge of the display 450 is not shown.
圖4(l)係顯示顯示器450的一部分,其係使用底邊畫素設計430_BE的畫素P(10,0)及P(11,0),以及畫素設計的畫素P(10,1)及P(11,1)。畫素的每一列係延伸到右邊及左邊。為了更能以圖闡釋每一畫素,係遮蔽每一畫素的一區域;此遮蔽在圖4(l)僅供說明目的,且沒有功能上的意義。如上所述,顯示器450的畫素係被配置,以使在一列上的所有畫素具有相同點極性圖案(正或負),且每一連續列係在正、負極性圖案之間作交替。因此,在第一列(即列0)上的畫素P(10,0)與P(11,0)具有正點極性圖案,且在第二列(即列1)上的畫素P(10,1)與P(11,1)具有負點極性圖案。然而在下一頁框,畫素係切換點極性圖案。藉由使用顯示器450中最底列(即列0)的畫素之底邊畫素設計430_BE,由於底部水平放大部HAP_B(請參考圖4(j))在色點中之離散場的放大,以改善在顯示器450底部色點的表現。Fig. 4(l) shows a part of the display 450, which uses the pixels P(10,0) and P(11,0) of the 430_BE of the bottom edge pixel design, and the pixel P of the pixel design (10,1). ) and P (11, 1). Each column of pixels extends to the right and to the left. In order to explain each pixel more graphically, an area of each pixel is masked; this shadow is shown in Figure 4(l) for illustrative purposes only and has no functional significance. As noted above, the pixels of display 450 are configured such that all of the pixels on a column have the same dot polarity pattern (positive or negative), and each successive column alternates between positive and negative patterns. Therefore, the pixels P(10,0) and P(11,0) on the first column (ie, column 0) have a punctual polarity pattern, and the pixel P on the second column (ie, column 1) (10) , 1) and P (11, 1) have a negative dot polarity pattern. However, in the next page frame, the pixel is switched to the polarity pattern. By using the bottom edge pixel design 430_BE of the bottommost column (ie, column 0) of the display 450, due to the magnification of the discrete field in the color point of the bottom horizontal amplification portion HAP_B (refer to FIG. 4(j)), To improve the performance of the color point at the bottom of the display 450.
圖4(m)係表示顯示器450的一部分,顯示器450係使用頂部畫素設計430_TE的畫素P(10,399)及P(11,399),以及畫素設計430的畫素P(10,398)及P(11,398)。畫素的每一列係延伸到左邊及右邊。為了更能以圖闡釋每一畫素,係遮蔽每一畫素的一區域;此遮蔽在圖4(m)僅供說明目的,且沒有功能上的意義。如上所述,顯示器450的畫素係被配置,以使在一列上的所有畫素具有相同點極性圖案(正或負),且每一連續列係在正、負極性圖案之間作交替。因此,在列398上的畫素P(10,398)與P(11,398)具有正點極性圖案,且在列399上的畫素P(10,399)與P(11,399)具有負點極性圖案。。然而在下一頁框,畫素係切換點極性圖案。藉由使用顯示器450中最頂列(即列399)的畫素之頂邊畫素設計430_TE,由於頂部水平放大部HAP_T(請參考圖4(i))在色點中之離散場的放大,以改善在顯示器450底部色點的表現。4(m) shows a portion of the display 450, which uses the pixels P (10, 399) and P (11, 399) of the top pixel design 430_TE, and the pixel P of the pixel design 430 (10, 398) and P (11,398). Each column of pixels extends to the left and right. In order to explain each pixel more graphically, it masks an area of each pixel; this shadow is shown in Figure 4(m) for illustrative purposes only and has no functional significance. As noted above, the pixels of display 450 are configured such that all of the pixels on a column have the same dot polarity pattern (positive or negative), and each successive column alternates between positive and negative patterns. Thus, the pixels P (10, 398) and P (11, 398) on column 398 have a punctual polarity pattern, and the pixels P (10, 399) and P (11, 399) on column 399 have a negative Point polarity pattern. . However, in the next page frame, the pixel is switched to the polarity pattern. By using the top-side pixel design 430_TE of the topmost column (ie, column 399) of the display 450, due to the magnification of the discrete field in the color point by the top horizontal magnification HAP_T (please refer to FIG. 4(i)), To improve the performance of the color point at the bottom of the display 450.
除了頂部畫素設計與底部畫素設計之外,本發明某些實施例也包括使用一左邊畫素設計(left edge pixel design),其係使用在顯示器非邊緣畫素(non-edge pixel)之畫素設計的變異。舉例來說,圖4(n)係以圖闡釋一左邊畫素設計430_LE,其係畫素設計430的一變異。為簡單起見,並不重複敘述,且僅描述邊緣畫素設計(edge pixel design)及畫素設計430的差異。In addition to the top pixel design and the bottom pixel design, certain embodiments of the present invention also include the use of a left edge pixel design that is used in the display of non-edge pixels. Variations in pixel design. For example, Figure 4(n) graphically illustrates a left pixel design 430_LE, which is a variation of the pixel design 430. For the sake of simplicity, the description is not repeated, and only the differences between the edge pixel design and the pixel design 430 are described.
特別是,左邊畫素設計430_LE係使用第一色分量的一已修改離散場放大區域FFAR。為清楚起見,在圖4(n)之第一色分量的離散場放大區域係描述成一左邊離散場放大區域,且標示成FFAR_LE_1。在圖4(n)之第二色分量與第三色分量的離散場放大區域,係描述成一左邊離散場放大區域,且分別標示成FFAR_LE_2及FFAR_LE_3。在左邊畫素設計430_LE中的左邊離散場放大區域,係不同於包含一左邊垂直放大部VAP_L之畫素設計430的離散場放大區域。左邊垂直放大部VAP_L係從水平放大部HAP(請參考圖4(c))的左側延伸,且沿色點的左側延伸。尤其是,如圖4(n)所示,左邊離散場放大區域FFAR_LE_1係包括沿色點CD_1_1及CD_1_2的左側延伸的左邊垂直放大部VAP_L_1。提供相反極性的一區域給色點CD_1_1及CD_1_2的左側之左邊垂直部(應為左邊垂直放大部) VAP_L_1,係強化色點CD_1_1及CD_1_2的離散場。In particular, the left pixel design 430_LE uses a modified discrete field amplification region FFAR of the first color component. For clarity, the discrete field amplification region of the first color component of Figure 4(n) is depicted as a left discrete field amplification region and is labeled FFAR_LE_1. The discrete field amplification region of the second color component and the third color component in FIG. 4(n) is described as a left discrete field amplification region, and is labeled as FFAR_LE_2 and FFAR_LE_3, respectively. The left discrete field amplification region in the left pixel design 430_LE is different from the discrete field amplification region of the pixel design 430 including a left vertical magnification VAP_L. The left vertical amplifying portion VAP_L extends from the left side of the horizontal amplifying portion HAP (please refer to FIG. 4(c)) and extends along the left side of the color point. In particular, as shown in FIG. 4(n), the left discrete field amplification area FFAR_LE_1 includes a left vertical amplification portion VAP_L_1 extending along the left side of the color points CD_1_1 and CD_1_2. A region of opposite polarity is provided to the left vertical portion of the left side of the color points CD_1_1 and CD_1_2 (which should be the left vertical magnification) VAP_L_1, which is a discrete field of the enhanced color points CD_1_1 and CD_1_2.
在本發明某些實施例中,使用頂邊畫素設計、底邊畫素設計與左邊畫素設計之畫素的一顯示器,係更進一步包含使用一頂部左角落畫素設計(top left corner pixel design)與一底部左角落畫素設計(bottom left corner pixel design)之畫素,其係用在顯示器非邊緣畫素之畫素的變異。舉例來說,圖4(o)及圖4(p)係分別闡釋一頂部左角落畫素設計430_TLE及一底部左角落畫素設計430_BLC。頂部左角落畫素設計430_TLE及底部左角落畫素設計430_BLC係分別為頂邊畫素設計430_TE及底邊畫素設計430_BE的變異。為簡單起見,並不重複敘述,且僅描述角落畫素設計與邊緣畫素設計之間的差異。In some embodiments of the present invention, a display using a topside pixel design, a bottomside pixel design, and a pixel of the left pixel design further includes the use of a top left corner pixel design (top left corner pixel design). Design) and a bottom left corner pixel design pixel, which is used in the variation of the non-edge pixel of the display. For example, FIG. 4(o) and FIG. 4(p) respectively illustrate a top left corner pixel design 430_TLE and a bottom left corner pixel design 430_BLC. The top left corner pixel design 430_TLE and the bottom left corner pixel design 430_BLC are the variations of the topside pixel design 430_TE and the bottom edge pixel design 430_BE, respectively. For the sake of simplicity, the description is not repeated and only the differences between the corner pixel design and the edge pixel design are described.
尤其是,頂部左角落畫素設計430_TLE係使用第一色分量的一已修改離散場放大區域FFAR。為清楚起見,在圖4(o)之第一色分量的離散場放大區域係描述成一頂部左角落離散場放大區域,且標示成FFAR_TLE_1。在圖4(o)之第二色分量與第三色分量的離散場放大區域,係與圖4(i)中的頂邊離散場放大區域相同,並因此描述成一頂邊離散場放大區域,且分別標示成FFAR_TE_2及FFAR_TE_3。在頂部左角落畫素設計430_TLC中的頂部左角落離散場放大區域,係不同於包含一左邊垂直放大部VAP_L及一頂部水平放大部HAP_T之畫素設計430的離散場放大區域。頂部水平放大部HAP_T係朝左從垂直放大區域VAP(請參考圖4(c))頂部延伸,且延伸過色點CD_1_1的頂側。左邊垂直放大部VAP_L係朝下從頂部水平放大部HAP_T的左邊緣延伸,且沿色點的左側延伸。尤其是,如圖4(o)所示,頂部左角落離散場放大區域FFAR_TLC_1係包括一頂部水平放大部HAP_T_1,其係沿色點CD_1_1的頂側延伸。提供色點CD_1_1頂側相反極性之一區域的頂部水平放大部HAP_T_1,係強化色點CD_1_1的離散場。頂部左角落離散場放大區域FFAR_TLE_1也包括一左邊垂直放大部VAP_L_1,其係沿色點CD_1_1及CD_1_2左側延伸。提供色點CD_1_1及CD_1_2左邊相反極性之一區域的左邊垂直放大部VAP_L_1,係強化色點CD_1_1及CD_1_2的離散場。In particular, the top left corner pixel design 430_TLE is a modified discrete field amplification area FFAR that uses the first color component. For clarity, the discrete field amplification region of the first color component of Figure 4(o) is depicted as a top left corner discrete field amplification region and is labeled FFAR_TLE_1. The discrete field amplification region of the second color component and the third color component in FIG. 4(o) is the same as the top edge discrete field amplification region in FIG. 4(i), and thus is described as a top edge discrete field amplification region, They are labeled as FFAR_TE_2 and FFAR_TE_3, respectively. The top left corner discrete field amplification area in the top left corner pixel design 430_TLC is different from the discrete field magnification area of the pixel design 430 including a left vertical magnification portion VAP_L and a top horizontal magnification portion HAP_T. The top horizontal magnification portion HAP_T extends leftward from the top of the vertical magnification area VAP (please refer to FIG. 4(c)) and extends over the top side of the color point CD_1_1. The left vertical magnification portion VAP_L extends downward from the left edge of the top horizontal magnification portion HAP_T and extends along the left side of the color point. In particular, as shown in FIG. 4(o), the top left corner discrete field amplification area FFAR_TLC_1 includes a top horizontal magnification portion HAP_T_1 that extends along the top side of the color point CD_1_1. The top horizontal magnification portion HAP_T_1 of the region of the opposite polarity of the top side of the color point CD_1_1 is provided to enhance the discrete field of the color point CD_1_1. The top left corner discrete field amplification area FFAR_TLE_1 also includes a left vertical magnification portion VAP_L_1 extending along the left side of the color points CD_1_1 and CD_1_2. The left vertical amplifying portion VAP_L_1 of the region opposite to the left side of the color point CD_1_1 and CD_1_2 is provided to enhance the discrete fields of the color points CD_1_1 and CD_1_2.
底部左角落畫素設計430_BLC係使用第一色分量的一已修改離散場放大區域FFAR。為清楚起見,在圖4(p)之第一色分量的離散場放大區域係描述成一底部左角落離散場放大區域,且標示成FFAR_BLE_1。在圖4(p)之第二色分量與第三色分量的離散場放大區域,係與圖4(j)中的底邊離散場放大區域相同,並因此描述成一底邊離散場放大區域,且分別標示成FFAR_BE_2及FFAR_BE_3。在底部左角落畫素設計430_BLC中的頂部左角落離散場放大區域,係不同於包含一左邊垂直放大部VAP_L及一底部水平放大部HAP_B之畫素設計430的離散場放大區域。底部水平放大部HAP_B係朝左從垂直放大區域VAP(請參考圖4(c))底部延伸,且延伸過色點CD_1_2的底側。左邊垂直放大部VAP_L係朝上從底部水平放大部HAP_T的左邊緣延伸,且沿色點的左側延伸。尤其是,如圖4(o)所示,底部左角落離散場放大區域FFAR_BLC_1係包括一底部水平放大部HAP_B_1,其係沿色點CD_1_1的底側延伸。提供色點CD_1_2底側相反極性之一區域的底部水平放大部HAP_B_1,係強化色點CD_1_2的離散場。底部左角落離散場放大區域FFAR_BLE_1也包括一左邊垂直放大部VAP_L_1,其係沿色點CD_1_1及CD_1_2左側延伸。提供色點CD_1_1及CD_1_2左邊相反極性之一區域的左邊垂直放大部VAP_L_1,係強化色點CD_1_1及CD_1_2的離散場。The bottom left corner pixel design 430_BLC is a modified discrete field amplification area FFAR that uses the first color component. For clarity, the discrete field amplification region of the first color component of Figure 4(p) is depicted as a bottom left corner discrete field amplification region and is labeled FFAR_BLE_1. The discrete field amplification region of the second color component and the third color component in FIG. 4(p) is the same as the bottom side discrete field amplification region in FIG. 4(j), and thus is described as a bottom side discrete field amplification region, They are labeled as FFAR_BE_2 and FFAR_BE_3, respectively. The top left corner discrete field amplification area in the bottom left corner pixel design 430_BLC is different from the discrete field magnification area of the pixel design 430 including a left vertical magnification portion VAP_L and a bottom horizontal magnification portion HAP_B. The bottom horizontal enlargement portion HAP_B extends leftward from the bottom of the vertical enlargement region VAP (please refer to FIG. 4(c)) and extends over the bottom side of the color point CD_1_2. The left vertical magnification portion VAP_L extends upward from the left edge of the bottom horizontal magnification portion HAP_T and extends along the left side of the color point. In particular, as shown in FIG. 4(o), the bottom left corner discrete field magnifying area FFAR_BLC_1 includes a bottom horizontal amplifying portion HAP_B_1 which extends along the bottom side of the color point CD_1_1. The bottom horizontal amplifying portion HAP_B_1 which provides a region of the opposite polarity of the bottom side of the color point CD_1_2 is a discrete field of the enhanced color point CD_1_2. The bottom left corner discrete field amplification area FFAR_BLE_1 also includes a left vertical magnification portion VAP_L_1 extending along the left side of the color points CD_1_1 and CD_1_2. The left vertical amplifying portion VAP_L_1 of the region opposite to the left side of the color point CD_1_1 and CD_1_2 is provided to enhance the discrete fields of the color points CD_1_1 and CD_1_2.
圖4(q)-4(s)係以圖闡釋顯示器460的不同部份,顯示器460係使用畫素設計430大部分的畫素、在顯示器頂部之畫素的頂邊畫素設計430_TE、在顯示器底部之畫素的底部畫素設計430_BE、在顯示器左邊緣之畫素的左邊畫素設計430_LE、在顯示器頂部左角落之畫素的頂部左角落畫素設計430_TLC以及在顯示器底部左邊角落之畫素的底部左角落畫素設計430_BLC。尤其是,顯示器460包括有400列(編號從0到399)。圖4(q)係以圖闡釋顯示器行0與行1之列99與列100(在列1到398上的畫素是相似的)上的畫素(即顯示器的一般畫素);圖4(r)係以圖闡釋顯示器行0與行1之列0與列1(即顯示器的底邊);以及圖4(s)係以圖闡釋顯示器行0與行1之列398與列399上的畫素(即顯示器的頂邊)。顯示器460的其他行係與如圖4(k)-4(m)所示的顯示器450相同。顯示器460係使用切換元件列反轉模式。4(q)-4(s) graphically illustrate different portions of display 460, which uses a pixel design 430 for most of the pixels, a top pixel of the pixel at the top of the display, 430_TE, at The bottom pixel of the bottom of the display is 430_BE, the left pixel of the pixel on the left edge of the display is 430_LE, the top left corner of the pixel at the top left of the display is 430_TLC, and the left corner of the display is drawn. The bottom left corner of the prime design is 430_BLC. In particular, display 460 includes 400 columns (numbered from 0 to 399). Figure 4 (q) is a diagram illustrating the pixels on display row 0 and row 1 of column 99 and column 100 (the pixels on columns 1 to 398 are similar) (i.e., the general pixels of the display); (r) graphically illustrates display row 0 and row 1 column 0 and column 1 (ie, the bottom edge of the display); and Figure 4 (s) illustrates the display row 0 and row 1 column 398 and column 399 The pixel (the top edge of the display). The other lines of display 460 are the same as display 450 as shown in Figures 4(k)-4(m). The display 460 uses a switching element column inversion mode.
特別是,圖4(q)係表示顯示器460的一部分,而顯示器460係使用具畫素P(0,99)、P(1,99)、P(0,100)及P(1,100)。當畫素P(1,99)及P(1,100)使用畫素設計430時,畫素P(0,99)及P(0,100)係使用左邊畫素設計4530_LE。畫素的每一列係延伸到使用畫素設計430之畫素的右邊。在顯示器460一特定實施例中,每一列包括640個畫素。為清楚起見,在圖4(q)、4(r)及4(s)中係省略控制切換元件的閘極線與源極線。顯示器460的閘極線與源極線,係與圖4(e)中所示之顯示器420的閘極線與源極線相同。再者,為了更能說明每一畫素,係遮蔽每一畫素區域;此遮蔽在圖4(q)中僅為說明目的,並無功能上的意義。就像在顯示器420中,顯示器460的畫素係被配置以使在一列中的所有畫素具有相同的點極性圖案(正或負),且每一連續列係在正、負極性圖案間作交替。因此,在第100列(即列99,因為列號是從0開始算)的畫素P(0,99)及P(1,99)具有正點極性圖案,在第101列(即列100)的畫素P(0,100)及P(1,100)係具有負點極性圖案。然而在下一頁框係切換點極性圖案。因此一般而言,當y為偶數時,一畫素P(x,y)具有一第一極性,當y為奇數時,具有一第二點極性圖案。In particular, Figure 4(q) shows a portion of display 460, while display 460 uses pixels P(0,99), P(1,99), P(0,100), and P(1,100). . When the pixels P(1, 99) and P(1, 100) use the pixel design 430, the pixels P(0, 99) and P(0, 100) use the left pixel design 4530_LE. Each column of pixels extends to the right of the pixel using the pixel design 430. In a particular embodiment of display 460, each column includes 640 pixels. For the sake of clarity, the gate lines and source lines of the control switching elements are omitted in FIGS. 4(q), 4(r) and 4(s). The gate line and source line of display 460 are the same as the gate line and source line of display 420 shown in Figure 4(e). Furthermore, in order to better explain each pixel, each pixel area is masked; this masking is only for illustrative purposes in FIG. 4(q) and has no functional significance. As in display 420, the pixels of display 460 are configured such that all pixels in a column have the same dot polarity pattern (positive or negative), and each successive column is interposed between positive and negative patterns. alternately. Therefore, in the 100th column (ie, column 99, because the column number is counted from 0), the pixels P(0,99) and P(1,99) have a punctual polarity pattern, in the 101st column (ie, column 100). The pixels P (0, 100) and P (1, 100) have a negative dot polarity pattern. However, in the next page frame, the dot polarity pattern is switched. Therefore, in general, when y is an even number, a pixel P(x, y) has a first polarity, and when y is an odd number, it has a second dot polarity pattern.
因為顯示器460與顯示器450非常類似,故僅描述顯示器460與顯示器450之間的差異。特別是,顯示器460係不同於顯示器450,而顯示器460係如圖4(1)所示,使用具有除了使用頂部左角落畫素設計430_TLC(如圖4(r)所示)的畫素P(0,399)(即頂部右角落)之外,在行0的左邊畫素設計430_LE之畫素,以及使用底部左角落畫素設計430_BLC(如圖4(s)所示)之畫素P(0,0)(即底部左角落)。Because display 460 is very similar to display 450, only the differences between display 460 and display 450 are described. In particular, display 460 is different from display 450, and display 460 is as shown in Figure 4(1), using a pixel P having a design 430_TLC (as shown in Figure 4(r)) in addition to using the top left corner pixel ( 0,399) (ie, the top right corner), on the left side of line 0, the 430_LE pixel is designed, and the bottom left corner pixel design 430_BLC (as shown in Figure 4(s)) is used. 0,0) (ie the bottom left corner).
圖4(r)係表示顯示器460的一部分,顯示器460係具有底部左角落畫素設計430_BLC的畫素P(0,0)、底邊畫素設計430_BE的畫素P(1,0)、左邊畫素設計430_LE的畫素P(0,1)以及畫素設計430的P(1,1)。畫素的每一列係延伸到右邊。為了更能說明每一畫素,係遮蔽每一畫素區域;此遮蔽在圖4(r)中僅為說明目的,並無功能上的意義。如上所述,顯示器460的畫素係被配置以使在一列中的所有畫素具有相同的點極性圖案(正或負),且每一連續列係在正、負極性圖案間作交替。因此,在第1列(即列0)的畫素P(0,0)及P(1,0)具有正點極性圖案,在第2列(即列1)的畫素P(0,1)及P(1,1)係具有負點極性圖案。然而在下一頁框係切換點極性圖案。藉由使用底邊左角落畫素設計430_BLC,由於在畫素P(0,0)的色點中之離散場的放大,以改善畫素P(0,0)。再者,藉由使用底部畫素設計430_BE,由於在色點中離散場的放大,以改善在顯示器460底部之色點的表現。4(r) shows a portion of the display 460, which has a pixel P (0, 0) of the bottom left corner pixel design 430_BLC, a pixel P (1, 0) of the bottom edge pixel design 430_BE, and the left side. The pixel design 430_LE is P (0, 1) and the pixel design 430 is P (1, 1). Each column of pixels extends to the right. In order to better explain each pixel, each pixel area is masked; this masking is only for illustrative purposes in Figure 4(r) and has no functional significance. As noted above, the pixels of display 460 are configured such that all of the pixels in a column have the same dot polarity pattern (positive or negative), and each successive column alternates between positive and negative patterns. Therefore, the pixels P(0,0) and P(1,0) in the first column (ie, column 0) have a punctual polarity pattern, and the pixels P(0, 1) in the second column (ie, column 1). And P(1,1) has a negative dot polarity pattern. However, in the next page frame, the dot polarity pattern is switched. By using the bottom left corner pixel design 430_BLC, the pixel P(0,0) is improved due to the amplification of the discrete field in the color point of the pixel P(0,0). Furthermore, by using the bottom pixel design 430_BE, the performance of the color point at the bottom of the display 460 is improved due to the amplification of the discrete fields in the color point.
圖4(s)係表示顯示器460的一部分,顯示器460係使用頂部左角落畫素設計430_TLC的畫素P(0,399)、頂邊畫素設計430_TE的P(1,399)、左邊畫素設計430_LE的畫素P(0,398),以及畫素設計430的畫素P(1,398)。畫素的每一列係延伸到右邊。為了更能以圖闡釋每一畫素,係遮蔽每一畫素的一區域;此遮蔽在圖4(s)僅供說明目的,且沒有功能上的意義。如上所述,顯示器460的畫素係被配置,以使在一列上的所有畫素具有相同點極性圖案(正或負),且每一連續列係在正、負極性圖案之間作交替。因此,在列398上的畫素P(0,398)與P(1,398)具有正點極性圖案,且在列399上的畫素P(0,399)與P(1,399)具有負點極性圖案。然而在下一頁框,畫素係切換點極性圖案。藉由使用畫素P(0,399)之頂部左角落畫素設計430_TLC,由於在畫素P(0,399)之色點中離散場的放大,以改善在畫素P(0,399)中之色點的表現。再者,藉由使用在顯示器460頂列(即列399)的頂邊畫素設計430_TE,由於在色點中離散場的放大,以改善在顯示器460頂部色點的表現。4(s) shows a portion of the display 460, which uses the top left corner pixel design 430_TLC pixel P (0, 399), the top edge pixel design 430_TE P (1, 399), left pixel The pixel P (0, 398) of 430_LE and the pixel P (1, 398) of the pixel design 430 are designed. Each column of pixels extends to the right. In order to explain each pixel more graphically, it masks an area of each pixel; this shadow is shown in Figure 4(s) for illustrative purposes only and has no functional significance. As noted above, the pixels of display 460 are configured such that all of the pixels on a column have the same dot polarity pattern (positive or negative), and each successive column alternates between positive and negative patterns. Thus, the pixels P(0, 398) and P(1, 398) on column 398 have a punctual polarity pattern, and the pixels P(0, 399) and P(1, 399) on column 399 have a negative Point polarity pattern. However, in the next page frame, the pixel is switched to the polarity pattern. By using the top left corner pixel of the pixel P (0,399) to design 430_TLC, due to the enlargement of the discrete field in the color point of the pixel P (0, 399), the pixel P (0, 399) is improved. The performance of the color point. Again, by using the topside pixel design 430_TE in the top column of display 460 (i.e., column 399), the performance of the color point on top of display 460 is improved due to the amplification of discrete fields in the color point.
如在顯示器440中(如上所述),由於在顯示器460中每一列上的極性切換,假若一色點具有第一極性的話,則任一鄰近已偏極的元件具有第二極性。舉例來說,當畫素P(0,1)的離散場放大區域FFAR_2及FFAR_3具有正極性時,畫素P(0,1)的色點CD_3_2具有負極性。在本發明一特定實施例中,每一色點具有40微米的寬度及60微米的高度。每一離散場放大區域具有5微米的垂直放大部寬度、145微米的垂直放大部高度、45微米的水平放大部寬度以及5微米的水平放大部高度。水平點間距HDS1為15微米,垂直點間距VDS1為25微米,水平離散場放大間距HFFARS為5微米,以及垂直離散場放大間距VFFARS為5微米。As in display 440 (as described above), due to the polarity switching on each column in display 460, if a color point has a first polarity, then any adjacent polarized element has a second polarity. For example, when the discrete field amplification regions FFAR_2 and FFAR_3 of the pixel P(0, 1) have positive polarity, the color point CD_3_2 of the pixel P(0, 1) has a negative polarity. In a particular embodiment of the invention, each color point has a width of 40 microns and a height of 60 microns. Each discrete field amplification region has a vertical magnification width of 5 microns, a vertical magnification height of 145 microns, a horizontal magnification width of 45 microns, and a horizontal magnification height of 5 microns. The horizontal point spacing HDS1 is 15 microns, the vertical point spacing VDS1 is 25 microns, the horizontal discrete field amplification spacing HFFARS is 5 microns, and the vertical discrete field amplification spacing VFFARS is 5 microns.
圖5(a)及圖5(b)係表示一畫素設計510(標示510+及510一)之不同點極性圖案,其畫素設計510係為畫素設計410的變異。因為在畫素設計430與畫素設計410中色點、切換元件極離散場放大區域的佈局及極性相同,故不再重複敘述。在畫素設計510與畫素設計410之間的主要差異,係在畫素設計510包括導體以在其他畫素中幫助將離散場放大區域耦接到切換元件。特別是,一目前畫素之一導體512係將離散場放大區域FFAR_1的電極耦接到在目前畫素上之畫素的切換元件SE_1(請參考圖5(c))。在切換元件的連接係經過在目前畫素上之畫素的色點電極。相似地,一目前畫素之一導體514係將離散場放大區域FFAR_2的電極耦接到在目前畫素上之畫素的切換元件SE_2(請參考圖5(c))。在切換元件的連接係經過在目前畫素上之畫素的色點電極。一目前畫素之一導體516係將離散場放大區域FFAR_3的電極耦接到在目前畫素上之畫素的切換元件SE_3(請參考圖5(c))。在切換元件的連接係經過在目前畫素上之畫素的色點電極。5(a) and 5(b) show different dot polarity patterns of a pixel design 510 (labeled 510+ and 510a), and the pixel design 510 is a variation of the pixel design 410. Since the layout and polarity of the color point and the switching element extremely discrete field amplification region are the same in the pixel design 430 and the pixel design 410, the description will not be repeated. The main difference between the pixel design 510 and the pixel design 410 is that the pixel design 510 includes conductors to help couple the discrete field amplification regions to the switching elements in other pixels. In particular, one of the current pixels, conductor 512, couples the electrodes of the discrete field amplification region FFAR_1 to the switching element SE_1 of the pixel on the current pixel (please refer to FIG. 5(c)). The connection at the switching element passes through the color point electrode of the pixel on the current pixel. Similarly, one of the current pixels, conductor 514, couples the electrodes of the discrete field amplification region FFAR_2 to the switching element SE_2 of the pixel on the current pixel (please refer to FIG. 5(c)). The connection at the switching element passes through the color point electrode of the pixel on the current pixel. One of the current pixels, conductor 516, couples the electrodes of the discrete field amplification region FFAR_3 to the switching element SE_3 of the pixel on the current pixel (please refer to FIG. 5(c)). The connection at the switching element passes through the color point electrode of the pixel on the current pixel.
此連接係繪示在圖5(c),其係表示顯示器520的一部分,顯示器520係使用具有一切換元件列反轉驅動模式之畫素設計510的畫素P(1,1)、P(1,0)、P(0,1)及P(1,1)。顯示器520可具有數千列,每列有數千畫素。列與行係以如圖5(c)所示的方式從如圖5(c)所示的部份連續。為了清楚說明。控制切換元件的閘極線與源極線係在圖5(c)中被省略。除了顯示器520不包括使用離散場放大區域切換元件之外,閘極線與源極線係繪示在圖4(e)中。再者,為了更好以圖闡釋每一畫素,每一畫素的區域係被遮蔽,此遮蔽在圖5(c)中係僅為繪圖目的,並沒有功能上的意義。在此所述的顯示器,一畫素P(x,y)係在第x行(從左邊算起)及第y列(從最底算起),即畫素P(0,0)係在最下最左角落。就像顯示器420,顯示器520的畫素係被配置,以使在一列的所有畫素具有相同的點極性圖案(正或負),且每一連續列係在正與負點極性圖案間交替。因此,在第一列(即列0)的畫素P(0,0)及畫素P(1,0)具有正點極性圖案,而在第二列(即列1)的畫素P(0,1)及畫素P(1,1)具有負點極性圖案。然而在下一頁框,畫素將切換點極性圖案。因此一般而言,一畫素P(x,y)在當y為偶數時具有一第一點極性圖案,在當y為奇數時具有一第二點極性圖案。因為顯示器520非常類似於顯示器420,因此僅描述顯示器520與顯示器420之間的差異。特別是,由於在畫素設計520中內部導體512、514及516的包含,顯示器520並不包括離散場放大區域電極或是離散場放大區域切換元件。做為替代一第一畫素的離散場放大區域,係從一第二畫素接收電壓極性與電壓量。特別是,第二畫素係在第一畫素上的畫素。舉例來說,畫素P(0,0)之離散場放大區域FFAR_1的電極,係耦接到經過畫素P(0,1)之色點CD_1_2電極的畫素P(0,1)之切換元件SE_1。相似地,畫素P(0,0)之離散場放大區域FFAR_2與FFAR_3的電極,係耦接到經過畫素P(0,1)之色點CD_2_2與CD_3_2電極的畫素P(0,1)之切換元件SE_2與SE_3。This connection is illustrated in Figure 5(c), which is a portion of display 520 that uses pixels P(1,1), P (with pixel design 510 of a switching element column inversion drive mode). 1,0), P(0,1), and P(1,1). Display 520 can have thousands of columns with thousands of pixels per column. The columns and rows are continuous from the portion as shown in Fig. 5(c) in the manner shown in Fig. 5(c). For clarity of explanation. The gate line and the source line of the control switching element are omitted in FIG. 5(c). The gate line and source line are shown in Figure 4(e) except that display 520 does not include the use of discrete field amplification region switching elements. Furthermore, in order to better illustrate each pixel, each region of the pixel is obscured. This masking is only for drawing purposes in Figure 5(c) and has no functional significance. In the display described herein, a pixel P(x, y) is in the xth row (from the left) and the yth column (from the bottom), that is, the pixel P(0, 0) is The bottom leftmost corner. Like display 420, the pixels of display 520 are configured such that all pixels in a column have the same dot polarity pattern (positive or negative), and each successive column alternates between positive and negative dot polarity patterns. Therefore, the pixels P(0,0) and the pixels P(1,0) in the first column (ie, column 0) have a punctual polarity pattern, and the pixels P(0 in the second column (ie, column 1). , 1) and the pixel P (1, 1) have a negative dot polarity pattern. However, in the next page box, the pixels will switch the dot polarity pattern. Thus, in general, a pixel P(x, y) has a first dot polarity pattern when y is even and a second dot polarity pattern when y is odd. Because display 520 is very similar to display 420, only the differences between display 520 and display 420 are described. In particular, display 520 does not include discrete field amplification region electrodes or discrete field amplification region switching elements due to the inclusion of internal conductors 512, 514, and 516 in pixel design 520. As a discrete field amplification region instead of a first pixel, the voltage polarity and voltage amount are received from a second pixel. In particular, the second pixel is a pixel on the first pixel. For example, the electrode of the discrete field amplification region FFAR_1 of the pixel P(0,0) is coupled to the pixel P(0,1) of the pixel of the color point CD_1_2 passing through the pixel P(0,1). Element SE_1. Similarly, the electrodes of the discrete field amplification regions FFAR_2 and FFAR_3 of the pixel P(0,0) are coupled to the pixel P (0,1) of the pixels CD_2_2 and CD_3_2 passing through the pixels P(0,1). ) switching elements SE_2 and SE_3.
由於在顯示器520中每一列上之極性的切換,若是色點具有第一極性的話,則任一鄰近已偏極的元件具有第二極性。舉例來說,當畫素P(0,1)的離散場放大區域FFAR_2與FFAR_3具有正極性時,畫素P(0,1)的色點CD_3_2具有負極性。在本發明一特定的實施例中,每一色點具有40微米的寬度及60微米的高度。每一離散場放大區域具有5微米的垂直放大部寬度、145微米的垂直放大部高度、45微米的水平放大部寬度以及5微米的水平放大部高度。水平點間距HDS1為15微米,垂直點間距VDS1為25微米,水平離散場放大區域間距HFFARS為5微米,及垂直離散場放大區域間距VFFARS為5微米。Due to the switching of the polarity on each column in display 520, if the color point has a first polarity, then any adjacent polarized element has a second polarity. For example, when the discrete field amplification regions FFAR_2 and FFAR_3 of the pixel P(0, 1) have positive polarity, the color point CD_3_2 of the pixel P(0, 1) has a negative polarity. In a particular embodiment of the invention, each color point has a width of 40 microns and a height of 60 microns. Each discrete field amplification region has a vertical magnification width of 5 microns, a vertical magnification height of 145 microns, a horizontal magnification width of 45 microns, and a horizontal magnification height of 5 microns. The horizontal point spacing HDS1 is 15 microns, the vertical point spacing VDS1 is 25 microns, the horizontal discrete field amplification area spacing HFFARS is 5 microns, and the vertical discrete field amplification area spacing VFFARS is 5 microns.
如底邊畫素設計、頂邊畫素設計、左邊畫素設計、頂部左角落畫素設計以及底部左角落畫素設計之畫素設計510,其變異係可使用如上所述之不同離散場放大區域而被創造。這些變異係以相對於顯示器450與顯示器460如上所述之手段而被使用。For example, the bottom edge pixel design, the top edge pixel design, the left pixel design, the top left corner pixel design, and the bottom left corner pixel design pixel design 510, the variations can be amplified using different discrete fields as described above. The area was created. These variations are used as described above with respect to display 450 and display 460.
圖6(a)及圖6(b)係表示一畫素設計610(如後述的編號610+及610-)不同的點極性圖案,此畫素設計610通常被使用在具有一切換元件列反轉驅動模式的顯示器上。在實際的操作上,一畫素將在每一影像頁框間之一第一點極性圖案與一第二點極性圖案之間做切換。特別是,在圖6(a)中,畫素設計610具有正點極性圖案(且標示為610+),且在圖6(b)中,畫素設計610具有負點極性圖案(且標示為610-)。再者,在不同畫素設計中每一被極化元件的極性係以”+”表示正極性,以”-”表示負極性。6(a) and 6(b) show different dot polarity patterns of a pixel design 610 (numbers 610+ and 610-, which will be described later). This pixel design 610 is generally used to have a switching element array. Turn the drive mode on the display. In actual operation, a pixel will switch between a first dot polarity pattern and a second dot polarity pattern between each image frame. In particular, in FIG. 6(a), the pixel design 610 has a punctual polarity pattern (and is labeled 610+), and in FIG. 6(b), the pixel design 610 has a negative point polarity pattern (and is labeled 610). -). Furthermore, in the different pixel designs, the polarity of each polarized element is represented by "+" for positive polarity and "-" for negative polarity.
畫素設計610具有三個色分量CC_1、CC_2及CC_3。每一色分量包括二色點。畫素設計610也包括每一色分量中的一切換元件(參考SE_1、SE_2及SE_3)及每一色分量中的離散場放大區域(參考FFAR_1、FFAR_2及FFAR_3)。切換元件SE_1、SE_2及SE_3係設置在一列。裝置元件區域DCA_1、DCA_2及DCA_3係圍繞切換元件SE_1、SE_2及SE_3而被界定。裝置元件區域DCA_1、DCA_2及DCA_3係具有一裝置元件區域高度DCAH及一裝置元件區域寬度DCAW。The pixel design 610 has three color components CC_1, CC_2, and CC_3. Each color component includes two color points. The pixel design 610 also includes a switching element (refer to SE_1, SE_2, and SE_3) of each color component and discrete field amplification regions (refer to FFAR_1, FFAR_2, and FFAR_3) in each color component. The switching elements SE_1, SE_2 and SE_3 are arranged in one column. The device component regions DCA_1, DCA_2, and DCA_3 are defined around the switching elements SE_1, SE_2, and SE_3. The device component regions DCA_1, DCA_2, and DCA_3 have a device component region height DCAH and a device component region width DCAW.
畫素610的第一色分量CC_1具有二色點CD_1_1及CD_1_2。色點CD_1_1及CD_1_2係形成一第一列且其間間隔有垂直點間距VDS1。換句話說,色點CD_1_1及CD_1_2係水平地配向且垂直地間隔有垂直點間距VDS1。再者,色點CD_1_1及CD_1_2係以一垂直點偏移量VDO1垂直地抵消,而垂直點偏移量VDO1係等於垂直點間距VDS1加上色點高度CDH。如圖所示之在色點CD_1_1及CD_1_2之間的連接,在本發明某些實施例中,色點CD_1_1及CD_1_2之電極係以與電極的形成之相同處理步驟而耦接在一起。裝置元件區域DCA_1係設置在色點CD_1_2之下,且以一垂直點間距VDS2與色點CD_1_2相間隔。切換元件SE_1係設置在裝置元件區域DCA_1內。因此,色點CD_1_2係設置在色點CD_1_1與切換元件SE_1之間。切換元件SE_1係耦接到色點CD_1_1及CD_1_2之電極,以控制色點CD_1_1及CD_1_2之電壓極性與電壓量。The first color component CC_1 of the pixel 610 has two color points CD_1_1 and CD_1_2. The color points CD_1_1 and CD_1_2 form a first column with a vertical dot pitch VDS1 therebetween. In other words, the color points CD_1_1 and CD_1_2 are horizontally aligned and vertically spaced by the vertical dot pitch VDS1. Furthermore, the color points CD_1_1 and CD_1_2 are vertically offset by a vertical dot offset VDO1, and the vertical dot offset VDO1 is equal to the vertical dot pitch VDS1 plus the color point height CDH. As shown in the connection between color points CD_1_1 and CD_1_2, in some embodiments of the invention, the electrodes of color points CD_1_1 and CD_1_2 are coupled together in the same processing steps as the formation of the electrodes. The device element region DCA_1 is disposed below the color point CD_1_2 and is spaced apart from the color point CD_1_2 by a vertical dot pitch VDS2. The switching element SE_1 is disposed in the device element region DCA_1. Therefore, the color point CD_1_2 is disposed between the color point CD_1_1 and the switching element SE_1. The switching element SE_1 is coupled to the electrodes of the color points CD_1_1 and CD_1_2 to control the voltage polarity and voltage amount of the color points CD_1_1 and CD_1_2.
畫素610的第二色分量CC_2具有二色點CD_2_1及CD_2_2。色點CD_2_1及CD_2_2係形成一第二列且其間間隔有垂直點間距VDS1。因此,色點CD_2_1及CD_2_2係水平地配向且垂直地間隔有垂直點間距VDS1。裝置元件區域DCA_2係設置在色點CD_2_2之下,且以一垂直點間距VDS2與色點CD_1_2相間隔。切換元件SE_2係設置在裝置元件區域DCA_2內。切換元件SE_2係耦接到色點CD_2_1及CD_2_2之電極,以控制色點CD_2_1及CD_2_2之電壓極性與電壓量。第二色分量CC_2係與第一色分量CC_1垂直地配向,且以水平點間距HDS1而與色分量CC_1相間隔,因此色分量CC_1及CC_2係以一水平點偏移量HDO1水平地抵消,而水平點偏移量HDO1係等於水平點間距HDS1加上色點寬度CDW。特別是關於色點,色點CD_2_1係與色點CD_1_1垂直地配向,且以水平點間距HDS1而相互間隔。相似地,色點CD_2_2係與色點CD_2_1垂直地配向,且以水平點間距HDS1而相互間隔。因此色點CD_1_1及色點CD_2_1形成色點的第一列,色點CD_1_2及色點CD_2_2係形成色點第二列。The second color component CC_2 of the pixel 610 has two color points CD_2_1 and CD_2_2. The color points CD_2_1 and CD_2_2 form a second column with a vertical dot pitch VDS1 therebetween. Therefore, the color points CD_2_1 and CD_2_2 are horizontally aligned and vertically spaced by the vertical dot pitch VDS1. The device element region DCA_2 is disposed below the color point CD_2_2 and is spaced apart from the color point CD_1_2 by a vertical dot pitch VDS2. The switching element SE_2 is disposed in the device element region DCA_2. The switching element SE_2 is coupled to the electrodes of the color points CD_2_1 and CD_2_2 to control the voltage polarity and voltage of the color points CD_2_1 and CD_2_2. The second color component CC_2 is vertically aligned with the first color component CC_1 and is spaced apart from the color component CC_1 by the horizontal dot pitch HDS1, so the color components CC_1 and CC_2 are horizontally offset by a horizontal dot offset amount HDO1, and The horizontal point offset HDD1 is equal to the horizontal dot pitch HDS1 plus the color dot width CDW. In particular, regarding the color point, the color point CD_2_1 is vertically aligned with the color point CD_1_1, and is spaced apart from each other by the horizontal dot pitch HDS1. Similarly, the color point CD_2_2 is vertically aligned with the color point CD_2_1 and spaced apart from each other by the horizontal dot pitch HDS1. Therefore, the color point CD_1_1 and the color point CD_2_1 form a first column of color points, and the color point CD_1_2 and the color point CD_2_2 form a second column of color points.
相似地,畫素610的第三色分量CC_3具有二色點CD_3_1及CD_3_2。色點CD_3_1及CD_3_2係形成一第三列且其間間隔有垂直點間距VDS1。因此,色點CD_3_1及CD_3_2係水平地配向且垂直地間隔有垂直點間距VDS1。裝置元件區域DCA_3係設置在色點CD_3_2之下,且以一垂直點間距VDS2與色點CD_3_2相間隔。切換元件SE_3係設置在裝置元件區域DCA_3內。切換元件SE_3係耦接到色點CD_3_1及CD_3_2之電極,以控制色點CD_3_1及CD_3_2之電壓極性與電壓量。第三色分量CC_3係與第二色分量CC_2垂直地配向,且以水平點間距HDS1而與色分量CC_2相間隔,因此色分量CC_3及CC_2係以一水平點偏移量HDO1水平地抵消。特別是關於色點,色點CD_3_1係與色點CD_2_1垂直地配向,且以水平點間距HDS1而相互間隔。相似地,色點CD_3_2係與色點CD_2_2垂直地配向,且以水平點間距HDS1而相互間。因此色點CD_3_1形成色點的第一列,色點CD_3_2係形成色點第二列。Similarly, the third color component CC_3 of the pixel 610 has two color points CD_3_1 and CD_3_2. The color points CD_3_1 and CD_3_2 form a third column with a vertical dot pitch VDS1 therebetween. Therefore, the color points CD_3_1 and CD_3_2 are horizontally aligned and vertically spaced by the vertical dot pitch VDS1. The device element region DCA_3 is disposed below the color point CD_3_2 and is spaced apart from the color point CD_3_2 by a vertical dot pitch VDS2. The switching element SE_3 is disposed within the device component area DCA_3. The switching element SE_3 is coupled to the electrodes of the color points CD_3_1 and CD_3_2 to control the voltage polarity and voltage amount of the color points CD_3_1 and CD_3_2. The third color component CC_3 is vertically aligned with the second color component CC_2 and is spaced apart from the color component CC_2 by the horizontal dot pitch HDS1, and thus the color components CC_3 and CC_2 are horizontally cancelled by a horizontal dot offset amount HDO1. In particular, regarding the color point, the color point CD_3_1 is vertically aligned with the color point CD_2_1, and is spaced apart from each other by the horizontal dot pitch HDS1. Similarly, the color point CD_3_2 is vertically aligned with the color point CD_2_2 and is horizontally spaced by the horizontal dot pitch HDS1. Therefore, the color point CD_3_1 forms the first column of the color point, and the color point CD_3_2 forms the second column of the color point.
畫素設計610也包括離散場放大區域FFAR_1、FFAR_2及FFAR_3。圖6(a)-6(b)的離散場放大區域,係與圖4(a)-4(b)的離散場放大區域具有相同基本形狀。因此,有相同用詞(即再使用水平放大部HAP與垂直放大部VAP)。The pixel design 610 also includes discrete field amplification regions FFAR_1, FFAR_2, and FFAR_3. The discrete field amplification regions of Figures 6(a)-6(b) have the same basic shape as the discrete field amplification regions of Figures 4(a)-4(b). Therefore, there are the same words (that is, the horizontal amplification unit HAP and the vertical amplification unit VAP are reused).
如圖6(a)所示,離散場放大區域FFAR_1、FFAR_2及FFAR_3係設置在畫素設計610的色點之間。特別是,離散場放大區域FFAR_1被配置,以使離散場放大區域FFAR_1的水平放大部位在色點CD_1_1與CD_1_2之間,且以一垂直離散場放大區域間距VFFARS而與色點CD_1_1及CD_1_2相分隔。然而,不像畫素設計410的離散場放大區域,由於色點CD_1_1及CD_1_2之間的內部連接,使畫素設計610的離散場放大區域並未延伸到色點CD_1_1及CD_1_2的左側端。離散場放大區域FFAR_1的垂直放大部係設置在色點CD_1_1與CD_1_2的右邊,且被以一水平離散場放大區域間距HFFARS而與色點CD_1_1與CD_1_2相分隔。因此,離散場放大區域FFAR_1,係沿色點CD_1_1的右側底部與色點CD_1_2右側頂部而延伸。再者,此配置也造成離散場放大區域FFAR_1的垂直放大部在色點CD_1_1與CD_2_1之間,以及在色點CD_1_2與CD_2_2之間。As shown in FIG. 6(a), the discrete field amplification areas FFAR_1, FFAR_2, and FFAR_3 are disposed between the color points of the pixel design 610. In particular, the discrete field amplification region FFAR_1 is configured such that the horizontally amplified portion of the discrete field amplification region FFAR_1 is between the color points CD_1_1 and CD_1_2, and separated from the color points CD_1_1 and CD_1_2 by a vertical discrete field amplification region spacing VFFARS. . However, unlike the discrete field amplification region of the pixel design 410, the discrete field amplification region of the pixel design 610 does not extend to the left end of the color points CD_1_1 and CD_1_2 due to the internal connection between the color points CD_1_1 and CD_1_2. The vertical amplification portion of the discrete field amplification region FFAR_1 is disposed to the right of the color points CD_1_1 and CD_1_2, and is separated from the color points CD_1_1 and CD_1_2 by a horizontal discrete field amplification region pitch HFFARS. Therefore, the discrete field amplification area FFAR_1 extends along the right bottom of the color point CD_1_1 and the top right side of the color point CD_1_2. Furthermore, this configuration also causes the vertical amplification portion of the discrete field amplification region FFAR_1 to be between the color points CD_1_1 and CD_2_1 and between the color points CD_1_2 and CD_2_2.
相似地,離散場放大區域FFAR_2係被設置,以使離散場放大區域FFAR_2的水平放大部位在色點CD_2_1與CD_2_2之間,且被以一垂直離散場放大區域間距VFFARS所分隔。離散場放大區域FFAR_2的垂直放大部係設置在色點CD_2_1與CD_2_2的右邊,且被以一垂直離散場放大區域間距VFFARS所分隔。因此,離散場放大區域FFAR_1係沿色點CD_2_1右邊底部,及色點CD_2_2右邊頂部而延伸。此配置也造成離散場放大區域FFAR_2的垂直放大部在色點CD_2_1與CD_3_1之間,以及在色點CD_2_2與CD_3_2之間。Similarly, the discrete field amplification area FFAR_2 is set such that the horizontal amplification portion of the discrete field amplification area FFAR_2 is between the color points CD_2_1 and CD_2_2, and is separated by a vertical discrete field amplification area spacing VFFARS. The vertical amplifying portion of the discrete field magnifying region FFAR_2 is disposed to the right of the color points CD_2_1 and CD_2_2, and is separated by a vertical discrete field magnifying region pitch VFFARS. Therefore, the discrete field amplification area FFAR_1 extends along the right bottom of the color point CD_2_1 and the top of the right side of the color point CD_2_2. This configuration also causes the vertical amplification portion of the discrete field amplification region FFAR_2 to be between the color points CD_2_1 and CD_3_1, and between the color points CD_2_2 and CD_3_2.
離散場放大區域FFAR_3係被設置,以使離散場放大區域FFAR_3的水平放大區域位在色點CD_3_1與CD_3_2之間,且被以一垂直離散場放大區域間距VFFARS所分隔。離散場放大區域FFAR_3的垂直放大部係設置在色點CD_3_1與CD_3_2的右邊,且被以一水平離散場放大區域間距HFFARS而與色點CD_3_1與CD_3_2相分隔。因此,離散場放大區域FFAR_3係沿色點CD_3_1的右側底部,以及沿色點CD_3_2右側頂部而延伸。The discrete field amplification area FFAR_3 is set such that the horizontal amplification area of the discrete field amplification area FFAR_3 is between the color points CD_3_1 and CD_3_2 and is separated by a vertical discrete field amplification area spacing VFFARS. The vertical amplification portion of the discrete field amplification region FFAR_3 is disposed to the right of the color points CD_3_1 and CD_3_2, and is separated from the color points CD_3_1 and CD_3_2 by a horizontal discrete field amplification region pitch HFFARS. Therefore, the discrete field amplification area FFAR_3 extends along the right bottom of the color point CD_3_1 and along the top right side of the color point CD_3_2.
畫素設計610也被設計,以使離散場放大區域從一鄰近畫素接收極性。尤其是,一第一導體係耦接到離散場放大區域,以從在目前畫素上之畫素接收極性,且一第二導體係耦接到切換元件,以提供電壓極性與電壓量給目前畫素下的畫素之離散場放大區域。舉例來說,耦接到離散場放大區域FFAR_1之電極的導體612,係往上延伸連接到目前畫素上之畫素的導體613以接收極性(請參考圖6(c))。耦接到切換元件SE_1導體613,係向右再朝下延伸連接到目前畫素下之畫素的導體612。導體614與615適合離散場放大區域FFAR_2之目的,係如導體612與613對離散場放大區域FFAR_3而言。再者,導體616與617適合離散場放大區域FFAR_3之目的,係如導體612與613對離散場放大區域FFAR_1而言。The pixel design 610 is also designed to allow the discrete field amplification region to receive polarity from a neighboring pixel. In particular, a first conduction system is coupled to the discrete field amplification region to receive polarity from the pixels on the current pixel, and a second conduction system is coupled to the switching element to provide voltage polarity and voltage amount to the current The discrete field magnified area of the pixel under the pixel. For example, the conductor 612 coupled to the electrode of the discrete field amplification region FFAR_1 is a conductor 613 extending upwardly connected to the pixel on the current pixel to receive the polarity (please refer to FIG. 6(c)). The conductor 613 is coupled to the switching element SE_1 and extends to the right and then extends downward to the conductor 612 of the pixel under the current pixel. The conductors 614 and 615 are suitable for the purpose of the discrete field amplification region FFAR_2, such as conductors 612 and 613 for the discrete field amplification region FFAR_3. Furthermore, conductors 616 and 617 are suitable for the purpose of discrete field amplification region FFAR_3, such as conductors 612 and 613 for discrete field amplification region FFAR_1.
色點、離散場放大區域及切換元件的極性,係以正號”+”及負號”-”表示。因此在圖6(a)中,顯示畫素設計610+的正點極性、所有的切換元件(如切換元件SE_1、SE_2及SE_3)及所有的色點(例如色點CD_1_1、CD_1_2、CD_2_1、CD_2_2、CD_3_1及CD_3_2),係具有正極性。然而,所有的離散場放大區域(例如離散場放大區域FFAR_1、FFAR_2及FFAR_3)係具有負極性。The color point, the discrete field amplification area, and the polarity of the switching element are indicated by a positive sign "+" and a negative sign "-". Therefore, in FIG. 6(a), the punctual polarity of the pixel design 610+, all switching elements (such as switching elements SE_1, SE_2, and SE_3) and all color points (such as color points CD_1_1, CD_1_2, CD_2_1, CD_2_2, CD_3_1 and CD_3_2) have positive polarity. However, all discrete field amplification regions (eg, discrete field amplification regions FFAR_1, FFAR_2, and FFAR_3) have negative polarity.
圖6(b)係表示具有負點極性圖案的畫素設計610。對負點極性圖案而言,所有的切換元件(例如切換元件SE_1、SE_2及SE_3)以及所有的色點(例如色點CD_1_1、CD_1_2、CD_2_1、CD_2_2、CD_3_1及 CD_3_2),係具有負極性。然而,所有的離散場放大區域(例如離散場放大區域FFAR_1、FFAR_2及FFAR_3)係具有正極性。Figure 6(b) shows a pixel design 610 having a negative dot polarity pattern. For the negative dot polarity pattern, all switching elements (such as switching elements SE_1, SE_2, and SE_3) and all color points (such as color points CD_1_1, CD_1_2, CD_2_1, CD_2_2, CD_3_1, and CD_3_2) have negative polarity. However, all of the discrete field amplification regions (for example, the discrete field amplification regions FFAR_1, FFAR_2, and FFAR_3) have positive polarity.
如上所述,若鄰近元件具有相反極性者,在每一色點的離散場會被放大。畫素設計610係利用離散場放大區域來強化並穩定在液晶結構中之多區域的形成。一般而言,已偏極元件的極性係被指定,以使一第一極性的色點具有第二極性的鄰近已偏極元件。舉例來說,對畫素設計610(如圖6(a)所示)而言,色點CD_2_2具有正極性。然而,鄰近已偏極元件(離散場放大區域FFAR_2與FFAR_1)係具有負極性。因此色點CD_2_2的離散場被放大。再者,如下所述,極性反轉模式係也在顯示層級中實現,以使其他鄰靠色點CD_1_2之畫素的色點具有負極性(請參考圖6(c))。As noted above, if adjacent elements have opposite polarities, the discrete fields at each color point will be amplified. The pixel design 610 utilizes discrete field amplification regions to enhance and stabilize the formation of multiple regions in the liquid crystal structure. In general, the polarity of the biased component is specified such that a color point of a first polarity has a second polarized adjacent polarized component. For example, for the pixel design 610 (shown in Figure 6(a)), the color point CD_2_2 has a positive polarity. However, the adjacent polarized elements (the discrete field amplification areas FFAR_2 and FFAR_1) have a negative polarity. Therefore, the discrete field of the color point CD_2_2 is amplified. Furthermore, as described below, the polarity inversion mode is also implemented in the display level such that the color points of other pixels adjacent to the color point CD_1_2 have a negative polarity (refer to FIG. 6(c)).
使用圖6(a)與圖6(b)之畫素設計610的畫素,可被使用在利用切換元件列反轉模式之顯示器。圖6(c)係表示顯示器620的一部分,顯示器620係使用畫素設計410的畫素P(0,0)、P(1,0)、P(0,1)及P(1,1),而畫素設計410係具有一切換元件列反轉驅動模式。顯示器620可具有數千列,且每一列上具有數千畫素。列與行係以如圖6(c)所示的方式從如圖6(c)所示的部份連續。為了清楚說明,控制切換元件的閘極線與源極線係在圖6(c)中被省略。閘極線與源極線係繪示在圖4(e)中,但除了顯示器610不使用離散場放大區域切換元件與離散場放大區域電極之外。再者,為了更好以圖闡釋每一畫素,每一畫素的區域係被遮蔽,此遮蔽在圖6(c)中係僅為繪圖目的,並沒有功能上的意義。在顯示器620中,畫素係被配置以使在一列的所有畫素具有相同的點極性圖案(正或負),且每一連續的列應該在正、負點極性圖案之間交替。因此,在第一列(列0)的畫素P(0,0)及P(1,0)具有正點極性圖案,在第二列(列1)的畫素P(0,1)與P(1,1)具有負點極性圖案。然而,在下一個頁框中,畫素係將切換點極性圖案。因此一般而言,一畫素P(x,y)在當y為偶數時具有一第一點極性圖案,在當y為奇數時具有一第二點極性圖案。The pixels using the pixel design 610 of FIGS. 6(a) and 6(b) can be used in a display using the switching element column inversion mode. 6(c) shows a portion of the display 620, which uses the pixels P(0, 0), P(1, 0), P(0, 1), and P(1, 1) of the pixel design 410. The pixel design 410 has a switching element column inversion driving mode. Display 620 can have thousands of columns with thousands of pixels on each column. The columns and rows are continuous from the portion shown in Fig. 6(c) in the manner shown in Fig. 6(c). For clarity of explanation, the gate line and the source line of the control switching element are omitted in FIG. 6(c). The gate and source lines are depicted in Figure 4(e), except that the display 610 does not use discrete field amplification region switching elements and discrete field amplification region electrodes. Furthermore, in order to better illustrate each pixel, each region of the pixel is shaded. This masking is only for drawing purposes in Figure 6(c) and has no functional significance. In display 620, the pixels are configured such that all pixels in a column have the same dot polarity pattern (positive or negative), and each successive column should alternate between positive and negative dot polarity patterns. Therefore, the pixels P(0,0) and P(1,0) in the first column (column 0) have a punctual polarity pattern, and the pixels P(0,1) and P in the second column (column 1) (1,1) has a negative dot polarity pattern. However, in the next page frame, the pixel will switch the dot polarity pattern. Thus, in general, a pixel P(x, y) has a first dot polarity pattern when y is even and a second dot polarity pattern when y is odd.
在每一畫素列上的畫素係垂直地配向,且被以垂直點間距HDS1而與一鄰靠畫素之最左邊色點相互分隔。在一畫素行上的畫素係水平地配向,且被以一垂直點間距VDS3所分隔。The pixels on each pixel column are vertically aligned and separated from the leftmost color point of a neighboring pixel by a vertical dot pitch HDS1. The pixels on a line of pixels are horizontally aligned and separated by a vertical dot pitch VDS3.
如上所述,第一畫素的離散場放大區域係從第二畫素的切換元件接收極性。舉例來說,畫素P(0,0)之離散場放大區域FFAR_1的電極,係耦接到經由畫素P(0,0)之導體612與畫素P(0,1)之導體613的畫素(0,1)的切換元件SE_1。相似地,畫素P(0,0)之離散場放大區域FFAR_2的電極,係耦接到經由畫素P(0,0)之導體614與畫素P(0,1)之導體615的畫素(0,1)的切換元件SE_2。再者,畫素P(0,0)之離散場放大區域FFAR_3的電極,係耦接到經由畫素P(0,0)之導體616與畫素P(0,1)之導體617的畫素(0,1)的切換元件SE_3。As described above, the discrete field amplification region of the first pixel receives the polarity from the switching element of the second pixel. For example, the electrode of the discrete field amplification region FFAR_1 of the pixel P(0,0) is coupled to the conductor 612 via the pixel P(0,0) and the conductor 613 of the pixel P(0,1). Switching element SE_1 of pixels (0, 1). Similarly, the electrode of the discrete field amplification region FFAR_2 of the pixel P(0,0) is coupled to the conductor 615 via the pixel P of the pixel P(0,0) and the conductor 615 of the pixel P(0,1). Switching element SE_2 of prime (0, 1). Furthermore, the electrode of the discrete field amplification region FFAR_3 of the pixel P(0,0) is coupled to the conductor 616 via the pixel P(0,0) and the conductor 617 of the pixel P(0,1). Switching element SE_3 of prime (0, 1).
在本發明一特定實施例中,每一色點具有40微米的寬度及60微米的高度。每一離散場放大區域具有135微米的垂直放大部寬度、5微米的垂直放大部高度、35微米的水平放大部寬度以及5微米的水平放大部高度。水平點間距HDS1為15微米,垂直點間距VDS1為15微米,垂直點間距VDS2為5微米,垂直點間距VDS3為5微米,水平離散場放大間距HFFARS為5微米,且垂直離散場放大間距VFFARS為5微米。In a particular embodiment of the invention, each color point has a width of 40 microns and a height of 60 microns. Each discrete field amplification region has a vertical magnification width of 135 microns, a vertical magnification height of 5 microns, a horizontal magnification width of 35 microns, and a horizontal magnification height of 5 microns. The horizontal point spacing HDS1 is 15 microns, the vertical point spacing VDS1 is 15 microns, the vertical point spacing VDS2 is 5 microns, the vertical point spacing VDS3 is 5 microns, the horizontal discrete field amplification spacing HFFARS is 5 microns, and the vertical discrete field amplification spacing VFFARS is 5 microns.
圖7(a)及圖7(b)係表示一畫素設計710(如後述的編號710+及710-)不同的點極性圖案,此畫素設計710通常被使用在具有一切換元件列反轉驅動模式的顯示器上。在實際的操作上,一畫素將在每一影像頁框間之一第一點極性圖案與一第二點極性圖案之間做切換。特別是,在圖7(a)中,畫素設計710具有正點極性圖案(且標示為710+),且在圖7(b)中,畫素設計710具有負點極性圖案(且標示為710-)。再者,在不同畫素設計中每一被極化元件的極性係以”+”表示正極性,以”-”表示負極性。7(a) and 7(b) show different dot polarity patterns of a pixel design 710 (numbers 710+ and 710-, as will be described later). This pixel design 710 is generally used to have a switching element array. Turn the drive mode on the display. In actual operation, a pixel will switch between a first dot polarity pattern and a second dot polarity pattern between each image frame. In particular, in FIG. 7(a), the pixel design 710 has a punctual polarity pattern (and is labeled 710+), and in FIG. 7(b), the pixel design 710 has a negative point polarity pattern (and is labeled 710). -). Furthermore, in the different pixel designs, the polarity of each polarized element is represented by "+" for positive polarity and "-" for negative polarity.
畫素設計710具有三個色分量CC_1、CC_2及CC_3。每一色分量包括二色點。畫素設計710也包括每一色分量中的一切換元件(參考SE_1、SE_2及SE_3)及每一色分量中的離散場放大區域(參考FFAR_1、FFAR_2及FFAR_3)。切換元件SE_1、SE_2及SE_3係設置在一列。裝置元件區域DCA_1、DCA_2及DCA_3係圍繞切換元件SE_1、SE_2及SE_3而被界定。裝置元件區域DCA_1、DCA_2及DCA_3係具有一裝置元件區域高度DCAH及一裝置元件區域寬度DCAW。The pixel design 710 has three color components CC_1, CC_2, and CC_3. Each color component includes two color points. The pixel design 710 also includes a switching element (refer to SE_1, SE_2, and SE_3) of each color component and discrete field amplification regions (refer to FFAR_1, FFAR_2, and FFAR_3) in each color component. The switching elements SE_1, SE_2 and SE_3 are arranged in one column. The device component regions DCA_1, DCA_2, and DCA_3 are defined around the switching elements SE_1, SE_2, and SE_3. The device component regions DCA_1, DCA_2, and DCA_3 have a device component region height DCAH and a device component region width DCAW.
畫素710的第一色分量CC_1具有二色點CD_1_1及CD_1_2。色點CD_1_1及CD_1_2係形成一第一列且其間間隔有垂直點間距VDS1。換句話說,色點CD_1_1及CD_1_2係水平地配向且垂直地間隔有垂直點間距VDS1。再者,色點CD_1_1及CD_1_2係以一垂直點偏移量VDO1垂直地抵消,而垂直點偏移量VDO1係等於垂直點間距VDS1加上色點高度CDH。如圖所示之在色點CD_1_1及CD_1_2之間的連接,在本發明某些實施例中,色點CD_1_1及CD_1_2之電極係以與電極的形成之相同處理步驟而耦接在一起。裝置元件區域DCA_1係設置在色點CD_1_2之下,且以一垂直點間距VDS2與色點CD_1_2相間隔。切換元件SE_1係設置在裝置元件區域DCA_1內。切換元件SE_1係耦接到色點CD_1_1及CD_1_2之電極,以控制色點CD_1_1及CD_1_2之電壓極性與電壓量。The first color component CC_1 of the pixel 710 has two color points CD_1_1 and CD_1_2. The color points CD_1_1 and CD_1_2 form a first column with a vertical dot pitch VDS1 therebetween. In other words, the color points CD_1_1 and CD_1_2 are horizontally aligned and vertically spaced by the vertical dot pitch VDS1. Furthermore, the color points CD_1_1 and CD_1_2 are vertically offset by a vertical dot offset VDO1, and the vertical dot offset VDO1 is equal to the vertical dot pitch VDS1 plus the color point height CDH. As shown in the connection between color points CD_1_1 and CD_1_2, in some embodiments of the invention, the electrodes of color points CD_1_1 and CD_1_2 are coupled together in the same processing steps as the formation of the electrodes. The device element region DCA_1 is disposed below the color point CD_1_2 and is spaced apart from the color point CD_1_2 by a vertical dot pitch VDS2. The switching element SE_1 is disposed in the device element region DCA_1. The switching element SE_1 is coupled to the electrodes of the color points CD_1_1 and CD_1_2 to control the voltage polarity and voltage amount of the color points CD_1_1 and CD_1_2.
相似地,畫素710的第二色分量CC_2具有二色點CD_2_1及CD_2_2。色點CD_2_1及CD_2_2係形成一第二列且其間間隔有垂直點間距VDS1。因此,色點CD_2_1及CD_2_2係水平地配向且垂直地間隔有垂直點間距VDS1。裝置元件區域DCA_2係設置在色點CD_2_2之下,且以一垂直點間距VDS2與色點CD_1_2相間隔。切換元件SE_2係設置在裝置元件區域DCA_2內。切換元件SE_2係耦接到色點CD_2_1及CD_2_2之電極,以控制色點CD_2_1及CD_2_2之電壓極性與電壓量。第二色分量CC_2係與第一色分量CC_1垂直地配向,且以水平點間距HDS1而與色分量CC_1相間隔,因此色分量CC_2及CC_1係以一水平點偏移量HDO1水平地抵消,而水平點偏移量HDO1係等於水平點間距HDS1加上色點寬度CDW。特別是關於色點,色點CD_2_1係與色點CD_1_1垂直地配向,且以水平點間距HDS1而相互間隔。相似地,色點CD_2_2係與色點CD_2_1垂直地配向,且以水平點間距HDS1而相互間隔。因此色點CD_1_1及色點CD_2_1形成色點的第一列,色點CD_1_2及色點CD_2_2係形成色點第二列。Similarly, the second color component CC_2 of the pixel 710 has dichromatic dots CD_2_1 and CD_2_2. The color points CD_2_1 and CD_2_2 form a second column with a vertical dot pitch VDS1 therebetween. Therefore, the color points CD_2_1 and CD_2_2 are horizontally aligned and vertically spaced by the vertical dot pitch VDS1. The device element region DCA_2 is disposed below the color point CD_2_2 and is spaced apart from the color point CD_1_2 by a vertical dot pitch VDS2. The switching element SE_2 is disposed in the device element region DCA_2. The switching element SE_2 is coupled to the electrodes of the color points CD_2_1 and CD_2_2 to control the voltage polarity and voltage of the color points CD_2_1 and CD_2_2. The second color component CC_2 is vertically aligned with the first color component CC_1 and is spaced apart from the color component CC_1 by the horizontal dot pitch HDS1, so the color components CC_2 and CC_1 are horizontally offset by a horizontal dot offset amount HDO1, and The horizontal point offset HDD1 is equal to the horizontal dot pitch HDS1 plus the color dot width CDW. In particular, regarding the color point, the color point CD_2_1 is vertically aligned with the color point CD_1_1, and is spaced apart from each other by the horizontal dot pitch HDS1. Similarly, the color point CD_2_2 is vertically aligned with the color point CD_2_1 and spaced apart from each other by the horizontal dot pitch HDS1. Therefore, the color point CD_1_1 and the color point CD_2_1 form a first column of color points, and the color point CD_1_2 and the color point CD_2_2 form a second column of color points.
相似地,畫素710的第三色分量CC_3具有二色點CD_3_1及CD_3_2。色點CD_3_1及CD_3_2係形成一第三列且其間間隔有垂直點間距VDS1。因此,色點CD_3_1及CD_3_2係水平地配向且垂直地間隔有垂直點間距VDS1。裝置元件區域DCA_3係設置在色點CD_3_2之下,且以一垂直點間距VDS2與色點CD_3_2相間隔。切換元件SE_3係設置在裝置元件區域DCA_3內。切換元件SE_3係耦接到色點CD_3_1及CD_3_2之電極,以控制色點CD_3_1及CD_3_2之電壓極性與電壓量。第三色分量CC_3係與第二色分量CC_2垂直地配向,且以水平點間距HDS1而與色分量CC_2相間隔,因此色分量CC_3及CC_2係以一水平點偏移量HDO1水平地抵消。特別是關於色點,色點CD_3_1係與色點CD_2_1垂直地配向,且以水平點間距HDS1而相互間隔。相似地,色點CD_3_2係與色點CD_2_2垂直地配向,且以水平點間距HDS1而相互間。因此色點CD_3_1形成色點的第一列,色點CD_3_2係形成色點第二列。Similarly, the third color component CC_3 of the pixel 710 has two color points CD_3_1 and CD_3_2. The color points CD_3_1 and CD_3_2 form a third column with a vertical dot pitch VDS1 therebetween. Therefore, the color points CD_3_1 and CD_3_2 are horizontally aligned and vertically spaced by the vertical dot pitch VDS1. The device element region DCA_3 is disposed below the color point CD_3_2 and is spaced apart from the color point CD_3_2 by a vertical dot pitch VDS2. The switching element SE_3 is disposed within the device component area DCA_3. The switching element SE_3 is coupled to the electrodes of the color points CD_3_1 and CD_3_2 to control the voltage polarity and voltage amount of the color points CD_3_1 and CD_3_2. The third color component CC_3 is vertically aligned with the second color component CC_2 and is spaced apart from the color component CC_2 by the horizontal dot pitch HDS1, and thus the color components CC_3 and CC_2 are horizontally cancelled by a horizontal dot offset amount HDO1. In particular, regarding the color point, the color point CD_3_1 is vertically aligned with the color point CD_2_1, and is spaced apart from each other by the horizontal dot pitch HDS1. Similarly, the color point CD_3_2 is vertically aligned with the color point CD_2_2 and is horizontally spaced by the horizontal dot pitch HDS1. Therefore, the color point CD_3_1 forms the first column of the color point, and the color point CD_3_2 forms the second column of the color point.
畫素設計710也包括離散場放大區域FFAR_1、FFAR_2及FFAR_3。圖7(c)係表示畫素設計710之離散場放大區域FFAR_1更加詳細的視圖。為清楚起見,離散場放大區域FFAR_1係概念地區分成一垂直放大部VAP、一第一水平放大部HAP_1、一第二水平放大部HAP_2以及一第三水平放大部HAP_3。水平放大部HAP_1係設置在頂部且延伸到垂直放大部VAP的左邊;水平放大部HAP_2係垂直地設在中央且延伸到垂直放大部VAP的左邊;且水平放大部HAP_3係設置在底部且延伸到垂直放大部VAP的左邊。如上所述,水平放大部與垂直放大部的使用,係允許離散場放大區域FFAR_1之配置有更清楚的描述。水平放大部HAP_1、HAP_2及HAP_3分別地具有水平放大部寬度HAP_W_1、HAP_W_2及HAP_W_3以及水平放大部高度HAP_H_1、HAP_H_2及HAP_H_3。在圖7(a)-7(d)的特定實施例中,水平放大部寬度HAP_W_1及HAP_W_2係相等,而水平放大部寬度HAP_W_2係小於水平放大部寬度HAP_W_1及HAP_W_3。垂直放大部VAP具有一垂直放大部寬度VAP_W及一垂直放大部高度VAP_H。離散場放大區域FFAR_2及FFAR_3係與離散場放大區域FFAR_1的形狀相同。The pixel design 710 also includes discrete field amplification regions FFAR_1, FFAR_2, and FFAR_3. Figure 7(c) is a more detailed view showing the discrete field amplification area FFAR_1 of the pixel design 710. For the sake of clarity, the discrete field amplification region FFAR_1 is conceptually divided into a vertical amplification portion VAP, a first horizontal amplification portion HAP_1, a second horizontal amplification portion HAP_2, and a third horizontal amplification portion HAP_3. The horizontal amplifying portion HAP_1 is disposed at the top and extends to the left of the vertical amplifying portion VAP; the horizontal amplifying portion HAP_2 is vertically disposed at the center and extends to the left of the vertical amplifying portion VAP; and the horizontal amplifying portion HAP_3 is disposed at the bottom and extends to Vertically magnifies the left side of the VAP. As described above, the use of the horizontal amplifying portion and the vertical amplifying portion allows a clearer description of the arrangement of the discrete field magnifying region FFAR_1. The horizontal amplification sections HAP_1, HAP_2, and HAP_3 have horizontal amplification section widths HAP_W_1, HAP_W_2, and HAP_W_3, and horizontal amplification section heights HAP_H_1, HAP_H_2, and HAP_H_3, respectively. In the specific embodiment of FIGS. 7(a)-7(d), the horizontal amplification portion widths HAP_W_1 and HAP_W_2 are equal, and the horizontal amplification portion width HAP_W_2 is smaller than the horizontal amplification portion widths HAP_W_1 and HAP_W_3. The vertical amplifying portion VAP has a vertical amplifying portion width VAP_W and a vertical amplifying portion height VAP_H. The discrete field amplification areas FFAR_2 and FFAR_3 are identical in shape to the discrete field amplification area FFAR_1.
如圖7(a)所示,離散場放大區域FFAR_1、FFAR_2及FFAR_3係設置在畫素設計710的色點之間。特別是,離散場放大區域FFAR_1被配置,以使離散場放大區域FFAR_1的水平放大部HAP_2位在色點CD_1_1與CD_1_2之間,且被以一垂直離散場放大區域間距VFFARS而與色點CD_1_1及CD_1_2相分隔。由於在色點CD_1_1及CD_1_2之間的內部連接,離散場放大區域FFAR_1的水平放大部HAP_2並未延伸到色點CD_1_1及CD_1_2之左側端。離散場放大區域FFAR_1的垂直放大部VAP係設置在色點CD_1_1與CD_1_2的右邊,且被以一水平離散場放大區域間距HFFARS而與色點CD_1_1與CD_1_2相分隔。水平放大部HAP_1延伸到色點CD_1_1上方,且水平放大部HAP_3延伸到色點CD_1_2下方。因此,離散場放大區域FFAR_1,係沿色點CD_1_1的右側頂部及底部與色點CD_1_2右側頂部及底部而延伸。再者,此配置也造成離散場放大區域FFAR_1的垂直放大部在色點CD_1_1與CD_2_1之間,以及在色點CD_1_2與CD_2_2之間。As shown in FIG. 7(a), the discrete field amplification areas FFAR_1, FFAR_2, and FFAR_3 are disposed between the color points of the pixel design 710. In particular, the discrete field amplification region FFAR_1 is configured such that the horizontal amplification portion HAP_2 of the discrete field amplification region FFAR_1 is located between the color points CD_1_1 and CD_1_2, and is separated by a vertical discrete field amplification region spacing VFFARS and the color point CD_1_1 CD_1_2 is separated. Due to the internal connection between the color points CD_1_1 and CD_1_2, the horizontal amplification portion HAP_2 of the discrete field amplification area FFAR_1 does not extend to the left end of the color points CD_1_1 and CD_1_2. The vertical amplifying portion VAP of the discrete field amplifying area FFAR_1 is disposed to the right of the color points CD_1_1 and CD_1_2, and is separated from the color points CD_1_1 and CD_1_2 by a horizontal discrete field amplifying area pitch HFFARS. The horizontal amplifying portion HAP_1 extends above the color point CD_1_1, and the horizontal amplifying portion HAP_3 extends below the color point CD_1_2. Therefore, the discrete field amplification area FFAR_1 extends along the right top and bottom of the color point CD_1_1 and the top and bottom of the right side of the color point CD_1_2. Furthermore, this configuration also causes the vertical amplification portion of the discrete field amplification region FFAR_1 to be between the color points CD_1_1 and CD_2_1 and between the color points CD_1_2 and CD_2_2.
相似地,離散場放大區域FFAR_2係被設置,以使離散場放大區域FFAR_2的水平放大部HAP_2位在色點CD_2_1與CD_2_2之間,且被以一垂直離散場放大區域間距VFFARS所分隔。由於在色點CD_2_1及CD_2_2之間的內部連接,離散場放大區域FFAR_2的水平放大部HAP_2並未延伸到色點CD_2_1及CD_2_2之左側端。離散場放大區域FFAR_2的垂直放大部VAP係設置在色點CD_2_1與CD_2_2的右邊,且被以一水平離散場放大區域間距HFFARS所分隔。水平放大部HAP_2延伸到色點CD_2_1上方,且水平放大部HAP_3延伸到色點CD_2_2下方。因此,離散場放大區域FFAR_2,係沿色點CD_2_1的右側頂部及底部與色點CD_2_2右側頂部及底部而延伸。再者,此配置也造成離散場放大區域FFAR_2的垂直放大部在色點CD_2_1與CD_3_1之間,以及在色點CD_2_2與CD_3_2之間。Similarly, the discrete field amplification area FFAR_2 is set such that the horizontal amplification portion HAP_2 of the discrete field amplification area FFAR_2 is located between the color points CD_2_1 and CD_2_2, and is separated by a vertical discrete field amplification area spacing VFFARS. Due to the internal connection between the color points CD_2_1 and CD_2_2, the horizontal amplification portion HAP_2 of the discrete field amplification region FFAR_2 does not extend to the left end of the color points CD_2_1 and CD_2_2. The vertical amplifying portion VAP of the discrete field amplifying area FFAR_2 is disposed to the right of the color points CD_2_1 and CD_2_2, and is separated by a horizontal discrete field amplifying area pitch HFFARS. The horizontal amplifying portion HAP_2 extends above the color point CD_2_1, and the horizontal amplifying portion HAP_3 extends below the color point CD_2_2. Therefore, the discrete field amplification area FFAR_2 extends along the right top and bottom of the color point CD_2_1 and the top and bottom of the right side of the color point CD_2_2. Furthermore, this configuration also causes the vertical amplification portion of the discrete field amplification region FFAR_2 to be between the color points CD_2_1 and CD_3_1, and between the color points CD_2_2 and CD_3_2.
離散場放大區域FFAR_3係被設置,以使離散場放大區域FFAR_3的水平放大部HAP_2位在色點CD_3_1與CD_3_2之間,且被以一垂直離散場放大區域間距VFFARS所分隔。由於在色點CD_3_1及CD_3_2之間的內部連接,離散場放大區域FFAR_3的水平放大部HAP_3並未延伸到色點CD_3_1及CD_3_2之左側端。離散場放大區域FFAR_3的垂直放大部VAP係設置在色點CD_3_1與CD_3_2的右邊,且被以一水平離散場放大區域間距HFFARS而與色點CD_3_1與CD_3_2相分隔。水平放大部HAP_1延伸到色點CD_3_1上方,且水平放大部HAP_3延伸到色點CD_3_2下方。因此,離散場放大區域FFAR_3,係沿色點CD_3_1的右側頂部及底部與色點CD_3_2右側頂部及底部而延伸。The discrete field amplification area FFAR_3 is set such that the horizontal amplification portion HAP_2 of the discrete field amplification area FFAR_3 is located between the color points CD_3_1 and CD_3_2, and is separated by a vertical discrete field amplification area spacing VFFARS. Due to the internal connection between the color points CD_3_1 and CD_3_2, the horizontal amplification portion HAP_3 of the discrete field amplification area FFAR_3 does not extend to the left end of the color points CD_3_1 and CD_3_2. The vertical amplifying portion VAP of the discrete field amplifying area FFAR_3 is disposed to the right of the color points CD_3_1 and CD_3_2, and is separated from the color points CD_3_1 and CD_3_2 by a horizontal discrete field amplifying area pitch HFFARS. The horizontal amplifying portion HAP_1 extends above the color point CD_3_1, and the horizontal amplifying portion HAP_3 extends below the color point CD_3_2. Therefore, the discrete field amplification area FFAR_3 extends along the right top and bottom of the color point CD_3_1 and the top and bottom of the right side of the color point CD_3_2.
畫素設計710也被設計,以使離散場放大區域從一鄰近畫素接收極性。尤其是,一第一導體係耦接到離散場放大區域,以從在目前畫素上之畫素接收極性,且一第二導體係耦接到切換元件,以提供極性給目前畫素下的畫素之離散場放大區域。舉例來說,耦接到離散場放大區域FFAR_1之電極的導體712,係往上延伸連接到目前畫素上之畫素的導體713以接收極性(請參考圖7(d))。耦接到切換元件SE_1導體713,係朝下延伸連接到目前畫素下之畫素的導體712。導體714與715適合離散場放大區域FFAR_2之目的,係如導體712與713對離散場放大區域FFAR_1而言。再者,導體716與717適合離散場放大區域FFAR_3之目的,係如導體712與713對離散場放大區域FFAR_1而言。The pixel design 710 is also designed to allow the discrete field amplification region to receive polarity from a neighboring pixel. In particular, a first conduction system is coupled to the discrete field amplification region to receive polarity from a pixel on the current pixel, and a second conduction system is coupled to the switching element to provide polarity to the current pixel. The discrete field magnified area of the pixel. For example, the conductor 712 coupled to the electrode of the discrete field amplification region FFAR_1 is a conductor 713 extending upwardly connected to the pixel on the current pixel to receive the polarity (please refer to FIG. 7(d)). The conductor 713 is coupled to the switching element SE_1 and extends downwardly to the conductor 712 connected to the pixel under the current pixel. The conductors 714 and 715 are suitable for the purpose of the discrete field amplification region FFAR_2, such as conductors 712 and 713 for the discrete field amplification region FFAR_1. Furthermore, conductors 716 and 717 are suitable for the purpose of discrete field amplification region FFAR_3, such as conductors 712 and 713 for discrete field amplification region FFAR_1.
色點、離散場放大區域及切換元件的極性,係以正號”+”及負號”-”表示。因此在圖7(a)中,顯示畫素設計710+的正點極性、所有的切換元件(如切換元件SE_1、SE_2及SE_3)及所有的色點(例如色點CD_1_1、CD_1_2、CD_2_1、CD_2_2、CD_3_1及CD_3_2),係具有正極性。然而,所有的離散場放大區域(例如離散場放大區域FFAR_1、FFAR_2及FFAR_3)係具有負極性。The color point, the discrete field amplification area, and the polarity of the switching element are indicated by a positive sign "+" and a negative sign "-". Therefore, in FIG. 7(a), the punctual polarity of the pixel design 710+, all switching elements (such as switching elements SE_1, SE_2, and SE_3) and all color points (such as color points CD_1_1, CD_1_2, CD_2_1, CD_2_2, CD_3_1 and CD_3_2) have positive polarity. However, all discrete field amplification regions (eg, discrete field amplification regions FFAR_1, FFAR_2, and FFAR_3) have negative polarity.
圖7(b)係表示具有負點極性圖案的畫素設計710。對負點極性圖案而言,所有的切換元件(例如切換元件SE_1、SE_2及SE_3)以及所有的色點(例如色點CD_1_1、CD_1_2、CD_2_1、CD_2_2、CD_3_1及CD_3_2),係具有負極性。然而,所有的離散場放大區域(例如離散場放大區域FFAR_1、FFAR_2及FFAR_3)係具有正極性。Figure 7(b) shows a pixel design 710 having a negative dot polarity pattern. For the negative dot polarity pattern, all switching elements (such as switching elements SE_1, SE_2, and SE_3) and all color points (such as color points CD_1_1, CD_1_2, CD_2_1, CD_2_2, CD_3_1, and CD_3_2) have negative polarity. However, all of the discrete field amplification regions (for example, the discrete field amplification regions FFAR_1, FFAR_2, and FFAR_3) have positive polarity.
如上所述,若鄰近元件具有相反極性者,在每一色點的離散場會被放大。畫素設計710係利用離散場放大區域來強化並穩定在液晶結構中之多區域的形成。一般而言,已偏極元件的極性係被指定,以使一第一極性的色點具有第二極性的鄰近已偏極元件。舉例來說,對畫素設計710(如圖7(a)所示)而言,色點CD_2_2具有正極性。然而,鄰近已偏極元件(離散場放大區域FFAR_2與FFAR_1)係具有負極性。因此色點CD_2_2的離散場被放大。再者,如下所述,極性反轉模式係也在顯示層級中實現,以使其他鄰靠色點CD_1_2之畫素的色點具有負極性(請參考圖7(d))。As noted above, if adjacent elements have opposite polarities, the discrete fields at each color point will be amplified. The pixel design 710 utilizes discrete field amplification regions to enhance and stabilize the formation of multiple regions in the liquid crystal structure. In general, the polarity of the biased component is specified such that a color point of a first polarity has a second polarized adjacent polarized component. For example, for the pixel design 710 (shown in Figure 7(a)), the color point CD_2_2 has a positive polarity. However, the adjacent polarized elements (the discrete field amplification areas FFAR_2 and FFAR_1) have a negative polarity. Therefore, the discrete field of the color point CD_2_2 is amplified. Furthermore, as described below, the polarity inversion mode is also implemented in the display level such that the color points of other pixels adjacent to the color point CD_1_2 have a negative polarity (refer to FIG. 7(d)).
使用圖7(a)與圖7(b)之畫素設計710的畫素,可被使用在利用切換元件列反轉模式之顯示器。圖7(d)係表示顯示器720的一部分,顯示器720係使用畫素設計710的畫素P(0,0)、P(1,0)、P(0,1)及P(1,1),而畫素設計710係具有一切換元件列反轉驅動模式。顯示器720可具有數千列,且每一列上具有數千畫素。列與行係以如圖7(d)所示的方式從如圖7(d)所示的部份連續。為了清楚說明,控制切換元件的閘極線與源極線係在圖7(d)中被省略。閘極線與源極線係繪示在圖4(e)中,但除了顯示器710不使用離散場放大區域切換元件與離散場放大區域電極之外。為了更好以圖闡釋每一畫素,每一畫素的區域係被遮蔽,此遮蔽在圖7(d)中係僅為繪圖目的,並沒有功能上的意義。在顯示器720中,畫素係被配置以使在一列的所有畫素具有相同的點極性圖案(正或負),且每一連續的列應該在正、負點極性圖案之間交替。因此,在第一列(列0)的畫素P(0,0)及P(1,0)具有正點極性圖案,在第二列(列1)的畫素P(0,1)與P(1,1)具有負點極性圖案。然而,在下一個頁框中,畫素係將切換點極性圖案。因此一般而言,一畫素P(x,y)在當y為偶數時具有一第一點極性圖案,在當y為奇數時具有一第二點極性圖案。The pixels using the pixel design 710 of FIGS. 7(a) and 7(b) can be used in a display using the switching element column inversion mode. 7(d) shows a portion of the display 720, which uses the pixels P(0, 0), P(1, 0), P(0, 1), and P(1, 1) of the pixel design 710. The pixel design 710 has a switching element column inversion driving mode. Display 720 can have thousands of columns with thousands of pixels on each column. The columns and rows are continuous from the portion shown in Fig. 7(d) in the manner shown in Fig. 7(d). For clarity of explanation, the gate line and the source line of the control switching element are omitted in FIG. 7(d). The gate and source lines are depicted in Figure 4(e), except that the display 710 does not use discrete field amplification region switching elements and discrete field amplification region electrodes. In order to better illustrate each pixel in the figure, the area of each pixel is obscured. This shadowing is only for drawing purposes in Figure 7(d) and has no functional significance. In display 720, the pixels are configured such that all pixels in a column have the same dot polarity pattern (positive or negative), and each successive column should alternate between positive and negative dot polarity patterns. Therefore, the pixels P(0,0) and P(1,0) in the first column (column 0) have a punctual polarity pattern, and the pixels P(0,1) and P in the second column (column 1) (1,1) has a negative dot polarity pattern. However, in the next page frame, the pixel will switch the dot polarity pattern. Thus, in general, a pixel P(x, y) has a first dot polarity pattern when y is even and a second dot polarity pattern when y is odd.
在每一畫素列上的畫素係垂直地配向,且一畫素的最右邊色點被以垂直點間距HDS1而與一鄰靠畫素之最左邊色點相互分隔。在一畫素行上的畫素係水平地配向,且被以一垂直點間距VDS3所分隔。The pixels on each pixel column are vertically aligned, and the rightmost color point of one pixel is separated from the leftmost color point of a neighboring pixel by a vertical dot pitch HDS1. The pixels on a line of pixels are horizontally aligned and separated by a vertical dot pitch VDS3.
如上所述,第一畫素的離散場放大區域係從第二畫素的切換元件接收極性。舉例來說,畫素P(0,0)之離散場放大區域FFAR_1的電極,係耦接到經由畫素P(0,0)之導體712與畫素P(0,1)之導體713的畫素P(0,1)的切換元件SE_1。相似地,畫素P(0,0)之離散場放大區域FFAR_2的電極,係耦接到經由畫素P(0,0)之導體714與畫素P(0,1)之導體715的畫素(0,1)的切換元件SE_2。再者,畫素P(0,0)之離散場放大區域FFAR_3的電極,係耦接到經由畫素P(0,0)之導體716與畫素P(0,1)之導體717的畫素(0,1)的切換元件SE_3。As described above, the discrete field amplification region of the first pixel receives the polarity from the switching element of the second pixel. For example, the electrode of the discrete field amplification region FFAR_1 of the pixel P(0,0) is coupled to the conductor 712 via the pixel P(0,0) and the conductor 713 of the pixel P(0,1). Switching element SE_1 of pixel P(0,1). Similarly, the electrode of the discrete field amplification region FFAR_2 of the pixel P(0,0) is coupled to the conductor 715 via the pixel P of the pixel P(0,0) and the conductor 715 of the pixel P(0,1). Switching element SE_2 of prime (0, 1). Furthermore, the electrode of the discrete field amplification region FFAR_3 of the pixel P(0,0) is coupled to the conductor 717 via the conductor 716 of the pixel P(0,0) and the conductor 717 of the pixel P(0,1). Switching element SE_3 of prime (0, 1).
在本發明一特定實例中,每一色點具有40微米的寬度及60微米的高度。每一離散場放大區域具有5微米的垂直放大部寬度、155微米的垂直放大部高度、45微米的水平放大部寬度以及5微米的水平放大部高度。水平點間距HDS1為15微米,垂直點間距VDS1為15微米,垂直點間距VDS2為15微米,垂直點間距VDS3為5微米,水平離散場放大間距HFFARS為5微米,且垂直離散場放大間距VFFARS為5微米。In a particular embodiment of the invention, each color point has a width of 40 microns and a height of 60 microns. Each discrete field amplification region has a vertical magnification width of 5 microns, a vertical magnification height of 155 microns, a horizontal magnification width of 45 microns, and a horizontal magnification height of 5 microns. The horizontal point spacing HDS1 is 15 microns, the vertical point spacing VDS1 is 15 microns, the vertical point spacing VDS2 is 15 microns, the vertical point spacing VDS3 is 5 microns, the horizontal discrete field amplification spacing HFFARS is 5 microns, and the vertical discrete field amplification spacing VFFARS is 5 microns.
畫素設計710係可輕易地適合於顯示器使用,而此顯示器係具有離散場放大區域切換元件及離散場放大區域電極。如圖7(e)所示,顯示器730係使用一已修改的畫素設計710,其係省略導體712、713、714、715、716及717。特別地,圖7(e)係表示顯示器730的一部分,顯示器730係使用畫素設計710的畫素P(0,0)、P(1,0)、P(0,1)及P(1,1),而畫素設計710係具有一切換元件列反轉驅動模式。顯示器730可具有數千列,且每一列上具有數千畫素。列與行係以如圖7(e)所示的方式從如圖7(e)所示的部份連續。為了清楚說明,控制切換元件的閘極線與源極線係在圖7(e)中被省略。再者,為了更好以圖闡釋每一畫素,每一畫素的區域係被遮蔽,此遮蔽在圖7(e)中係僅為繪圖目的,並沒有功能上的意義。在顯示器730中,畫素係被配置以使在一列的所有畫素具有相同的點極性圖案(正或負),且每一連續的列應該在正、負點極性圖案之間交替。因此,在第一列(列0)的畫素P(0,0)及P(1,0)具有正點極性圖案,在第二列(列1)的畫素P(0,1)與P(1,1)具有負點極性圖案。然而,在下一個頁框中,畫素係將切換點極性圖案。因此一般而言,一畫素P(x,y)在當y為偶數時具有一第一點極性圖案,在當y為奇數時具有一第二點極性圖案。The pixel design 710 can be easily adapted for use with a display having discrete field amplification area switching elements and discrete field amplification area electrodes. As shown in Figure 7(e), display 730 uses a modified pixel design 710 that omits conductors 712, 713, 714, 715, 716, and 717. In particular, FIG. 7(e) shows a portion of display 730 that uses pixels P(0,0), P(1,0), P(0,1), and P(1) of pixel design 710. , 1), and the pixel design 710 has a switching element column inversion driving mode. Display 730 can have thousands of columns with thousands of pixels on each column. The columns and rows are continuous from the portion shown in Fig. 7(e) in the manner shown in Fig. 7(e). For clarity of explanation, the gate line and source line of the control switching element are omitted in FIG. 7(e). Furthermore, in order to better illustrate each pixel in the figure, the area of each pixel is obscured. This masking is only for drawing purposes in Figure 7(e) and has no functional significance. In display 730, the pixels are configured such that all pixels in a column have the same dot polarity pattern (positive or negative), and each successive column should alternate between positive and negative dot polarity patterns. Therefore, the pixels P(0,0) and P(1,0) in the first column (column 0) have a punctual polarity pattern, and the pixels P(0,1) and P in the second column (column 1) (1,1) has a negative dot polarity pattern. However, in the next page frame, the pixel will switch the dot polarity pattern. Thus, in general, a pixel P(x, y) has a first dot polarity pattern when y is even and a second dot polarity pattern when y is odd.
在每一畫素列上的畫素係垂直地配向,且一畫素的最右邊色點被以垂直點間距HDS1而與一鄰靠畫素之最左邊色點相互分隔。在一畫素行上的畫素係水平地配向,且被以一垂直點間距VDS3所分隔。The pixels on each pixel column are vertically aligned, and the rightmost color point of one pixel is separated from the leftmost color point of a neighboring pixel by a vertical dot pitch HDS1. The pixels on a line of pixels are horizontally aligned and separated by a vertical dot pitch VDS3.
對顯示器730而言,使用畫素設計710之畫素的離散場放大區域係從畫素外接收正確極性。因此在顯示器730中,畫素的每一列具有一相對應的離散場放大區域切換元件,係耦接到延伸經過顯示器730之一離散場放大電極。相對應畫素列之畫素的離散場放大區域,係耦接到相對應的離散場放大電極,以從離散場放大區域切換元件接收極性。尤其是對列0而言,離散場放大區域切換元件FFARSE_0係在顯示器730的右側上。離散場放大區域電極FFARE_0係耦接到離散場放大區域切換元件FFARSE_0,並延伸經過顯示器730。在列0之畫素的離散場放大區域係耦接到離散場放大區域切換元件FFARSE_0。特別是,畫素P(0,0)及畫素P(1,0)的離散場放大區域,係耦接到離散場放大區域切換元件FFARSE_0。對列1而言,離散場放大區域切換元件FFARSE_1係在顯示器730的右側之上。離散場放大區域電極FFARE_1係耦接到離散場放大區域切換元件FFARSE_1,並延伸經過顯示器730。在列1之畫素上的離散場放大區域,係耦接到離散場放大區域電極FFARE_1。特別是,畫素P(0,1)及畫素P(1,1)的離散場放大區域,係耦接到離散場放大區域電極FFARE_1。在圖7(e)中,離散場放大區域切換元件FFARSE_0及FFARSE_1係分別具有負極性與正極性。然而在下一頁框中,極性是相反的。在本發明某些實施例可以將所有的離散場放大區域切換元件放置在顯示器的相同側。For display 730, the discrete field amplification region of the pixels using pixel design 710 receives the correct polarity from outside the pixels. Thus, in display 730, each column of pixels has a corresponding discrete field amplification region switching element coupled to a discrete field amplifying electrode that extends through display 730. The discrete field amplification region of the pixel corresponding to the pixel sequence is coupled to the corresponding discrete field amplification electrode to receive the polarity from the discrete field amplification region switching component. Especially for column 0, the discrete field amplification area switching element FFARSE_0 is on the right side of the display 730. The discrete field amplification region electrode FFARE_0 is coupled to the discrete field amplification region switching element FFARSE_0 and extends through the display 730. The discrete field amplification region of the pixel of column 0 is coupled to the discrete field amplification region switching element FFARSE_0. In particular, the discrete field amplification regions of the pixels P(0, 0) and the pixels P(1, 0) are coupled to the discrete field amplification region switching element FFARSE_0. For column 1, the discrete field amplification region switching element FFARSE_1 is above the right side of the display 730. The discrete field amplification area electrode FFARE_1 is coupled to the discrete field amplification area switching element FFARSE_1 and extends through the display 730. The discrete field amplification region on the pixel of column 1 is coupled to the discrete field amplification region electrode FFARE_1. In particular, the discrete field amplification regions of the pixels P(0, 1) and the pixels P(1, 1) are coupled to the discrete field amplification region electrode FFARE_1. In FIG. 7(e), the discrete field amplification area switching elements FFARSE_0 and FFARSE_1 have negative polarity and positive polarity, respectively. However, in the next page box, the polarity is reversed. All of the discrete field amplification area switching elements can be placed on the same side of the display in certain embodiments of the invention.
由於顯示器730中每一列上的極性切換,若是一色點具有第一極性的話,則任何與其鄰接的已偏極元件具有第二極性。舉例來說,當畫素P(0,1)的離散場放大區域FFAR_3及畫素P(1,1)的離散場放大區域FFAR_1具有正極性時,畫素P(1,1)的色點CD_1_1具有負極性。Due to the polarity switching on each column of display 730, if a color point has a first polarity, then any of the biased elements adjacent thereto have a second polarity. For example, when the discrete field amplification area FFAR_3 of the pixel P(0, 1) and the discrete field amplification area FFAR_1 of the pixel P(1, 1) have positive polarity, the color point of the pixel P(1, 1) CD_1_1 has a negative polarity.
本發明某些實施例藉由包括一左邊畫素設計可以強化顯示器730。特別是,畫素設計710的畫素設計730之變異,係包括一第一分量離散場放大區域,其係包含有沿色點CD_1_1及CD_1_2左側上延伸的一左邊垂直放大部VAP_L。Certain embodiments of the present invention may enhance display 730 by including a left pixel design. In particular, the variation of the pixel design 730 of the pixel design 710 includes a first component discrete field amplification region including a left vertical magnification portion VAP_L extending along the left side of the color points CD_1_1 and CD_1_2.
圖8(a)及圖8(b)係表示一畫素設計810(如後述的編號810+及810-)不同的點極性圖案,此畫素設計810通常被使用在具有一切換元件列反轉驅動模式的顯示器上。在實際的操作上,一畫素將在每一影像頁框間之一第一點極性圖案與一第二點極性圖案之間做切換。特別是,在圖8(a)中,畫素設計810具有正點極性圖案(且標示為810+),且在圖8(b)中,畫素設計810具有負點極性圖案(且標示為810-)。再者,在不同畫素設計中每一被極化元件的極性係以”+”表示正極性,以”-”表示負極性。8(a) and 8(b) show different dot polarity patterns of a pixel design 810 (numbers 810+ and 810-, which will be described later). This pixel design 810 is generally used to have a switching element array. Turn the drive mode on the display. In actual operation, a pixel will switch between a first dot polarity pattern and a second dot polarity pattern between each image frame. In particular, in FIG. 8(a), the pixel design 810 has a punctual polarity pattern (and is labeled 810+), and in FIG. 8(b), the pixel design 810 has a negative point polarity pattern (and is labeled 810). -). Furthermore, in the different pixel designs, the polarity of each polarized element is represented by "+" for positive polarity and "-" for negative polarity.
畫素設計810具有三個色分量CC_1、CC_2及CC_3。每一色分量包括三色點。畫素設計810也包括每一色分量中的一切換元件(參考SE_1、SE_2及SE_3)及每一色分量中的離散場放大區域(參考FFAR_1、FFAR_2及FFAR_3)。切換元件SE_1、SE_2及SE_3係設置在一列。圍繞每一切換元件的裝置元件區域係被離散場放大區域覆蓋,且因此未特別地標示在圖8(a)及圖8(b)。The pixel design 810 has three color components CC_1, CC_2, and CC_3. Each color component includes three color points. The pixel design 810 also includes a switching element (refer to SE_1, SE_2, and SE_3) of each color component and discrete field amplification regions (refer to FFAR_1, FFAR_2, and FFAR_3) in each color component. The switching elements SE_1, SE_2 and SE_3 are arranged in one column. The device component regions surrounding each of the switching elements are covered by discrete field amplification regions and are therefore not specifically labeled in Figures 8(a) and 8(b).
畫素810的第一色分量CC_1具有三色點CD_1_1、CD_1_2及CD_1_3。色點CD_1_1、CD_1_2及CD_1_3係形成一列。色點CD_1_1及CD_1_2係間隔有垂直點間距VDS1。色點CD_1_2及CD_1_3係間隔有垂直點間距VDS2。如圖所示之在色點CD_1_1及CD_1_2之間的連接,在本發明某些實施例中,色點CD_1_1及CD_1_2之電極係以與電極的形成之相同處理步驟而耦接在一起。切換元件SE_1係設置在色點CD_1_2與色點CD_1_3之間。切換元件SE_1係耦接到色點CD_1_1、CD_1_2及CD_1_3之電極,以控制色點CD_1_1、CD_1_2及CD_1_3之電壓極性與電壓量。The first color component CC_1 of the pixel 810 has three color points CD_1_1, CD_1_2, and CD_1_3. The color points CD_1_1, CD_1_2, and CD_1_3 form a column. The color points CD_1_1 and CD_1_2 are spaced apart by a vertical dot pitch VDS1. The color points CD_1_2 and CD_1_3 are spaced apart by a vertical dot pitch VDS2. As shown in the connection between color points CD_1_1 and CD_1_2, in some embodiments of the invention, the electrodes of color points CD_1_1 and CD_1_2 are coupled together in the same processing steps as the formation of the electrodes. The switching element SE_1 is disposed between the color point CD_1_2 and the color point CD_1_3. The switching element SE_1 is coupled to the electrodes of the color points CD_1_1, CD_1_2, and CD_1_3 to control the voltage polarity and voltage amount of the color points CD_1_1, CD_1_2, and CD_1_3.
相似地,畫素810的第二色分量CC_2具有三色點CD_2_1、CD_2_2及CD_2_3。色點CD_2_1、CD_2_2及CD_2_3係形成一列。色點CD_2_1及CD_2_2係間隔有垂直點間距VDS1。色點CD_2_2及CD_2_3係間隔有垂直點間距VDS2。如圖所示之在色點CD_2_1及CD_2_2之間的連接,在本發明某些實施例中,色點CD_2_1及CD_2_2之電極係以與電極的形成之相同處理步驟而耦接在一起。切換元件SE_2係設置在色點CD_2_2與色點CD_2_3之間。切換元件SE_2係耦接到色點CD_2_1、CD_2_2及CD_2_3之電極,以控制色點CD_2_1、CD_2_2及CD_2_3之電壓極性與電壓量。第二色分量CC_2係與第一色分量CC_1垂直地配向,且以一水平點間距HDS1而與第一色分量CC_1相互分隔,因此色分量CC_2及CC_1係由一水平點偏移量HDO1所抵消,而水平點偏移量HDO1係等於水平點間距HDS1加上色點寬度CDW。尤其是就色點而論,色點CD_2_1係垂直地與色點CD_1_1配向,且以水平點間距HDS1而水平地分隔。相似地,色點CD_2_2係與色點CD_1_2垂直地配向,且以水平點間距HDS1而水平地分隔,且色點CD_2_3係與色點CD_1_3垂直地配向,並以水平點間距HDS1而水平地分隔。因此色點CD_1_1及色點CD_2_1係形成一第一色點列,色點CD_1_2及色點CD_2_2係形成一第二色點列,以及色點CD_1_3及色點CD_2_3係形成一第三色點列。Similarly, the second color component CC_2 of the pixel 810 has three color points CD_2_1, CD_2_2, and CD_2_3. The color points CD_2_1, CD_2_2, and CD_2_3 form a column. The color points CD_2_1 and CD_2_2 are separated by a vertical dot pitch VDS1. The color points CD_2_2 and CD_2_3 are separated by a vertical dot pitch VDS2. As shown in the figure, the connections between the color points CD_2_1 and CD_2_2, in some embodiments of the invention, the electrodes of the color points CD_2_1 and CD_2_2 are coupled together in the same processing steps as the formation of the electrodes. The switching element SE_2 is disposed between the color point CD_2_2 and the color point CD_2_3. The switching element SE_2 is coupled to the electrodes of the color points CD_2_1, CD_2_2, and CD_2_3 to control the voltage polarity and voltage amount of the color points CD_2_1, CD_2_2, and CD_2_3. The second color component CC_2 is vertically aligned with the first color component CC_1 and separated from the first color component CC_1 by a horizontal dot pitch HDS1, so the color components CC_2 and CC_1 are offset by a horizontal dot offset HDD1. The horizontal point offset HDD1 is equal to the horizontal point spacing HDS1 plus the color point width CDW. In particular, as far as the color point is concerned, the color point CD_2_1 is vertically aligned with the color point CD_1_1 and horizontally separated by the horizontal dot pitch HDS1. Similarly, the color point CD_2_2 is vertically aligned with the color point CD_1_2 and horizontally separated by the horizontal dot pitch HDS1, and the color point CD_2_3 is vertically aligned with the color point CD_1_3 and horizontally separated by the horizontal dot pitch HDS1. Therefore, the color point CD_1_1 and the color point CD_2_1 form a first color point column, the color point CD_1_2 and the color point CD_2_2 form a second color point column, and the color point CD_1_3 and the color point CD_2_3 form a third color point column.
相似地,畫素810的第三色分量CC_3具有三色點CD_3_1、CD_3_2及CD_3_3。色點CD_3_1、CD_3_2及CD_3_3係形成一列。色點CD_3_1及CD_3_2係間隔有垂直點間距VDS1。色點CD_3_2及CD_3_3係間隔有垂直點間距VDS2。如圖所示之在色點CD_3_1及CD_3_2之間的連接,在本發明某些實施例中,色點CD_3_1及CD_3_2之電極係以與電極的形成之相同處理步驟而耦接在一起。切換元件SE_3係設置在色點CD_3_2與色點CD_3_3之間。切換元件SE_3係耦接到色點CD_3_1、CD_3_2及CD_3_3之電極,以控制色點CD_3_1、CD_3_2及CD_3_3之電壓極性與電壓量。第三色分量CC_3係與第二色分量CC_2垂直地配向,且以一水平點間距HDS1而與第二色分量CC_2相互分隔,因此色分量CC_3及CC_2係由一水平點偏移量HDO1所抵消,而水平點偏移量HDO1係等於水平點間距HDS1加上色點寬度CDW。尤其是就色點而論,色點CD_3_1係垂直地與色點CD_2_1配向,且以水平點間距HDS1而水平地分隔。相似地,色點CD_3_2係與色點CD_2_2垂直地配向,且以水平點間距HDS1而水平地分隔,且色點CD_3_3係與色點CD_2_3垂直地配向,並以水平點間距HDS1而水平地分隔。因此色點CD_3_1係在第一色點列上,色點CD_3_2係在第二色點列上,以及色點CD_3_3係在第三色點列上。Similarly, the third color component CC_3 of the pixel 810 has three color points CD_3_1, CD_3_2, and CD_3_3. The color points CD_3_1, CD_3_2, and CD_3_3 form a column. The color points CD_3_1 and CD_3_2 are spaced apart by a vertical dot pitch VDS1. The color points CD_3_2 and CD_3_3 are spaced apart by a vertical dot pitch VDS2. As shown in the connection between the color points CD_3_1 and CD_3_2, in some embodiments of the invention, the electrodes of the color points CD_3_1 and CD_3_2 are coupled together in the same processing steps as the formation of the electrodes. The switching element SE_3 is disposed between the color point CD_3_2 and the color point CD_3_3. The switching element SE_3 is coupled to the electrodes of the color points CD_3_1, CD_3_2, and CD_3_3 to control the voltage polarity and voltage amount of the color points CD_3_1, CD_3_2, and CD_3_3. The third color component CC_3 is vertically aligned with the second color component CC_2, and is separated from the second color component CC_2 by a horizontal dot pitch HDS1, so the color components CC_3 and CC_2 are offset by a horizontal dot offset HDD1. The horizontal point offset HDD1 is equal to the horizontal point spacing HDS1 plus the color point width CDW. In particular, as far as the color point is concerned, the color point CD_3_1 is vertically aligned with the color point CD_2_1 and horizontally separated by the horizontal dot pitch HDS1. Similarly, the color point CD_3_2 is vertically aligned with the color point CD_2_2 and horizontally separated by the horizontal dot pitch HDS1, and the color point CD_3_3 is vertically aligned with the color point CD_2_3 and horizontally separated by the horizontal dot pitch HDS1. Therefore, the color point CD_3_1 is on the first color point column, the color point CD_3_2 is on the second color point column, and the color point CD_3_3 is on the third color point list.
畫素設計810也包括離散場放大區域FFAR_1、FFAR_2及FFAR_3。圖8(c)係表示畫素設計810之離散場放大區域FFAR_1更加詳細的視圖。為清楚起見,離散場放大區域FFAR_1係概念地區分成一垂直放大部VAP、一第一水平放大部HAP_1以及一第二水平放大部HAP_2。水平放大部HAP_1係大致在三分之一處從垂直放大部VAP的頂部向下,且延伸到垂直放大部VAP的左邊;水平放大部HAP_2係大致在三分之一處從垂直放大部VAP的底部向上,且延伸到垂直放大部VAP的左邊。如上所述,水平放大部與垂直放大部的使用,係允許離散場放大區域FFAR_1之配置有更清楚的描述。水平放大部HAP_1及HAP_2分別地具有水平放大部寬度HAP_W_1及HAP_W_2以及水平放大部高度HAP_H_1及HAP_H_2。在圖8(a)-8(d)的特定實施例中,水平放大部寬度HAP_W_2係小於水平放大部寬度HAP_W_1。垂直放大部VAP具有一垂直放大部寬度VAP_W及一垂直放大部高度VAP_H。離散場放大區域FFAR_2及FFAR_3係與離散場放大區域FFAR_1的形狀相同。The pixel design 810 also includes discrete field amplification regions FFAR_1, FFAR_2, and FFAR_3. Figure 8(c) is a more detailed view showing the discrete field amplification area FFAR_1 of the pixel design 810. For the sake of clarity, the discrete field amplification region FFAR_1 is conceptually divided into a vertical amplification portion VAP, a first horizontal amplification portion HAP_1, and a second horizontal amplification portion HAP_2. The horizontal amplifying portion HAP_1 is substantially downward from the top of the vertical amplifying portion VAP and extends to the left of the vertical amplifying portion VAP; the horizontal amplifying portion HAP_2 is substantially one-third from the vertical amplifying portion VAP The bottom is upward and extends to the left of the vertical magnification VAP. As described above, the use of the horizontal amplifying portion and the vertical amplifying portion allows a clearer description of the arrangement of the discrete field magnifying region FFAR_1. The horizontal amplification sections HAP_1 and HAP_2 have horizontal amplification section widths HAP_W_1 and HAP_W_2 and horizontal amplification section heights HAP_H_1 and HAP_H_2, respectively. In the particular embodiment of Figures 8(a)-8(d), the horizontal magnification portion width HAP_W_2 is less than the horizontal magnification portion width HAP_W_1. The vertical amplifying portion VAP has a vertical amplifying portion width VAP_W and a vertical amplifying portion height VAP_H. The discrete field amplification areas FFAR_2 and FFAR_3 are identical in shape to the discrete field amplification area FFAR_1.
如圖8(a)所示,離散場放大區域FFAR_1、FFAR_2及FFAR_3係設置在畫素設計810的色點之間。特別是,離散場放大區域FFAR_1被配置,以使離散場放大區域FFAR_1的水平放大部HAP_1位在色點CD_1_1與CD_1_2之間,且被以一垂直離散場放大區域間距VFFARS而與色點CD_1_1及CD_1_2相分隔。由於色點CD_1_1及CD_1_2之間的內部連接,離散場放大區域FFAR_1的水平放大部HAP_1並未延伸到點CD_1_1及CD_1_2的左側端。離散場放大區域FFAR_1的垂直放大部VAP係設置在色點CD_1_1、CD_1_2及CD_1_3的右邊,且被以一水平離散場放大區域間距HFFARS而與色點CD_1_1、CD_1_2及CD_1_3相分隔。水平放大部HAP_2延伸到色點CD_1_2與色點CD_1_3之間。因此,離散場放大區域FFAR_1,係沿色點CD_1_1的右側頂部、色點CD_1_2右側頂部及底部與色點CD_1_3右側頂部而延伸。再者,此配置也造成離散場放大區域FFAR_1的垂直放大部在色點CD_1_1與CD_2_1之間、在色點CD_1_2與CD_2_2之間以及色點CD_1_3與CD_2_3之間。As shown in FIG. 8(a), the discrete field amplification areas FFAR_1, FFAR_2, and FFAR_3 are disposed between the color points of the pixel design 810. In particular, the discrete field amplification region FFAR_1 is configured such that the horizontal amplification portion HAP_1 of the discrete field amplification region FFAR_1 is between the color points CD_1_1 and CD_1_2, and is separated by a vertical discrete field amplification region spacing VFFARS and the color point CD_1_1 CD_1_2 is separated. Due to the internal connection between the color points CD_1_1 and CD_1_2, the horizontal amplification portion HAP_1 of the discrete field amplification area FFAR_1 does not extend to the left end of the points CD_1_1 and CD_1_2. The vertical amplification portion VAP of the discrete field amplification region FFAR_1 is disposed to the right of the color points CD_1_1, CD_1_2, and CD_1_3, and is separated from the color points CD_1_1, CD_1_2, and CD_1_3 by a horizontal discrete field amplification region pitch HFFARS. The horizontal amplifying portion HAP_2 extends between the color point CD_1_2 and the color point CD_1_3. Therefore, the discrete field amplification area FFAR_1 extends along the right top of the color point CD_1_1, the top and bottom of the right side of the color point CD_1_2, and the top of the right side of the color point CD_1_3. Furthermore, this configuration also causes the vertical amplification portion of the discrete field amplification region FFAR_1 to be between the color points CD_1_1 and CD_2_1, between the color points CD_1_2 and CD_2_2, and between the color points CD_1_3 and CD_2_3.
相似地,離散場放大區域FFAR_2係被設置,以使離散場放大區域FFAR_2的水平放大部HAP_1位在色點CD_2_1與CD_2_2之間,且被以一垂直離散場放大區域間距VFFARS而與色點CD_2_1與CD_2_2相分隔。由於在色點CD_2_1及CD_2_2之間的內部連接,離散場放大區域FFAR_2的水平放大部HAP_1並未延伸到色點CD_2_1及CD_2_2之左側端。離散場放大區域FFAR_2的垂直放大部VAP係設置在色點CD_2_1、CD_2_2與CD_2_3的右邊,且被以一水平離散場放大區域間距HFFARS所分隔。水平放大部HAP_2延伸在色點CD_2_2與色點CD_2_3之間。因此,離散場放大區域FFAR_2,係沿色點CD_2_1的右側底部、色點CD_2_2右側底部與色點CD_2_3右側頂部而延伸。再者,此配置也造成離散場放大區域FFAR_2的垂直放大部在色點CD_2_1與CD_3_1之間、在色點CD_2_2與CD_3_2之間以及在色點CD_2_3與CD_3_3之間。Similarly, the discrete field amplification area FFAR_2 is set such that the horizontal amplification portion HAP_1 of the discrete field amplification area FFAR_2 is between the color points CD_2_1 and CD_2_2, and is separated by a vertical discrete field by the area spacing VFFARS and the color point CD_2_1 Separated from CD_2_2. Due to the internal connection between the color points CD_2_1 and CD_2_2, the horizontal amplification portion HAP_1 of the discrete field amplification region FFAR_2 does not extend to the left end of the color points CD_2_1 and CD_2_2. The vertical amplifying portion VAP of the discrete field amplifying area FFAR_2 is disposed to the right of the color points CD_2_1, CD_2_2, and CD_2_3, and is separated by a horizontal discrete field amplifying area pitch HFFARS. The horizontal amplifying portion HAP_2 extends between the color point CD_2_2 and the color point CD_2_3. Therefore, the discrete field amplification area FFAR_2 extends along the right bottom of the color point CD_2_1, the bottom right side of the color point CD_2_2, and the top right side of the color point CD_2_3. Furthermore, this configuration also causes the vertical amplification portion of the discrete field amplification region FFAR_2 to be between the color points CD_2_1 and CD_3_1, between the color points CD_2_2 and CD_3_2, and between the color points CD_2_3 and CD_3_3.
離散場放大區域FFAR_3係被設置,以使離散場放大區域FFAR_3的水平放大部HAP_1位在色點CD_3_1與CD_3_2之間,且被以一垂直離散場放大區域間距VFFARS而與色點CD_3_1與CD_3_2相分隔。由於在色點CD_3_1及CD_3_2之間的內部連接,離散場放大區域FFAR_3的水平放大部HAP_1並未延伸到色點CD_3_1及CD_3_2之左側端。離散場放大區域FFAR_3的垂直放大部VAP係設置在色點CD_3_1、CD_3_2與CD_3_3的右邊,且被以一水平離散場放大區域間距HFFARS而與色點CD_3_1、CD_3_2與CD_3_3相分隔。水平放大部HAP_3延伸在色點CD_3_2與色點CD_3_3之間。因此,離散場放大區域FFAR_3,係沿色點CD_3_1的右側底部、色點CD_3_2右側底部與色點CD_3_3右側頂部而延伸。再者,此配置也造成離散場放大區域FFAR_3的垂直放大部在鄰近畫素的色點CD_3_1與CD_1_1之間、在鄰近畫素的色點CD_3_2與CD_1_2之間以及在鄰近畫素的色點CD_3_3與CD_1_3之間。The discrete field amplification area FFAR_3 is set such that the horizontal amplification portion HAP_1 of the discrete field amplification area FFAR_3 is between the color points CD_3_1 and CD_3_2, and is separated by a vertical discrete field amplification area spacing VFFARS from the color points CD_3_1 and CD_3_2. Separate. Due to the internal connection between the color points CD_3_1 and CD_3_2, the horizontal amplification portion HAP_1 of the discrete field amplification area FFAR_3 does not extend to the left end of the color points CD_3_1 and CD_3_2. The vertical amplifying portion VAP of the discrete field amplifying area FFAR_3 is disposed to the right of the color points CD_3_1, CD_3_2, and CD_3_3, and is separated from the color points CD_3_1, CD_3_2, and CD_3_3 by a horizontal discrete field amplifying area pitch HFFARS. The horizontal amplifying portion HAP_3 extends between the color point CD_3_2 and the color point CD_3_3. Therefore, the discrete field amplification area FFAR_3 extends along the right bottom of the color point CD_3_1, the bottom right side of the color point CD_3_2, and the top right side of the color point CD_3_3. Furthermore, this configuration also causes the vertical amplification portion of the discrete field amplification region FFAR_3 to be between the color points CD_3_1 and CD_1_1 of the adjacent pixels, between the color points CD_3_2 and CD_1_2 of the adjacent pixels, and the color point CD_3_3 of the adjacent pixels. Between CD_1_3.
畫素設計810也被設計,以使離散場放大區域從一鄰近畫素接收極性。尤其是,一導體係耦接到離散場放大區域,以從在目前畫素上之畫素接收極性。尤其是,一目前畫素的導體812係將離散場放大區域FFAR_1之電極耦接到在目前畫素上之畫素的切換元件SE_1(請參考圖8(d))。此連接到切換元件的連接係經由在目前畫素上之畫素色點的電極。相似地,一目前畫素的導體814係將離散場放大區域FFAR_2之電極耦接到在目前畫素上之畫素的切換元件SE_2(請參考圖8(d))。此連接到切換元件的連接係經由在目前畫素上之畫素色點的電極。一目前畫素的導體816係將離散場放大區域FFAR_3之電極耦接到在目前畫素上之畫素的切換元件SE_3(請參考圖8(d))。此連接到切換元件的連接係經由在目前畫素上之畫素色點的電極。The pixel design 810 is also designed to allow the discrete field amplification region to receive polarity from a neighboring pixel. In particular, a pilot system is coupled to the discrete field amplification region to receive polarity from the pixels on the current pixel. In particular, a current pixel conductor 812 couples the electrodes of the discrete field amplification region FFAR_1 to the switching element SE_1 of the pixel on the current pixel (please refer to FIG. 8(d)). This connection to the switching element is via an electrode of the pixel color point on the current pixel. Similarly, a current pixel conductor 814 couples the electrodes of the discrete field amplification region FFAR_2 to the switching element SE_2 of the pixel on the current pixel (please refer to FIG. 8(d)). This connection to the switching element is via an electrode of the pixel color point on the current pixel. A current pixel conductor 816 couples the electrodes of the discrete field amplification region FFAR_3 to the switching element SE_3 of the pixel on the current pixel (please refer to FIG. 8(d)). This connection to the switching element is via an electrode of the pixel color point on the current pixel.
色點、離散場放大區域及切換元件的極性,係以正號”+”及負號”-”表示。因此在圖8(a)中,顯示畫素設計810+的正點極性、所有的切換元件(如切換元件SE_1、SE_2及SE_3)及所有的色點(例如色點CD_1_1、CD_1_2、CD_2_1、CD_2_2、CD_3_1及CD_3_2),係具有正極性。然而,所有的離散場放大區域(例如離散場放大區域FFAR_1、FFAR_2及FFAR_3)係具有負極性。The color point, the discrete field amplification area, and the polarity of the switching element are indicated by a positive sign "+" and a negative sign "-". Therefore, in FIG. 8(a), the punctual polarity of the pixel design 810+, all switching elements (such as switching elements SE_1, SE_2, and SE_3) and all color points (such as color points CD_1_1, CD_1_2, CD_2_1, CD_2_2, CD_3_1 and CD_3_2) have positive polarity. However, all discrete field amplification regions (eg, discrete field amplification regions FFAR_1, FFAR_2, and FFAR_3) have negative polarity.
圖8(b)係表示具有負點極性圖案的畫素設計810。對負點極性圖案而言,所有的切換元件(例如切換元件SE_1、SE_2及SE_3)以及所有的色點(例如色點CD_1_1、CD_1_2、CD_1_3、CD_2_1、CD_2_2、CD_2_3、CD_3_1、CD_3_2及CD_3_3),係具有負極性。然而,所有的離散場放大區域(例如離散場放大區域FFAR_1、FFAR_2及FFAR_3)係具有正極性。Figure 8(b) shows a pixel design 810 having a negative dot polarity pattern. For the negative dot polarity pattern, all switching elements (such as switching elements SE_1, SE_2, and SE_3) and all color points (such as color points CD_1_1, CD_1_2, CD_1_3, CD_2_1, CD_2_2, CD_2_3, CD_3_1, CD_3_2, and CD_3_3), It has a negative polarity. However, all of the discrete field amplification regions (for example, the discrete field amplification regions FFAR_1, FFAR_2, and FFAR_3) have positive polarity.
如上所述,若鄰近元件具有相反極性者,在每一色點的離散場會被放大。畫素設計810係利用離散場放大區域來強化並穩定在液晶結構中之多區域的形成。一般而言,已偏極元件的極性係被指定,以使一第一極性的色點具有第二極性的鄰近已偏極元件。舉例來說,對畫素設計810(如圖8(a)所示)而言,色點CD_2_2具有正極性。然而,鄰近已偏極元件(離散場放大區域FFAR_2與FFAR_1)係具有負極性。因此色點CD_2_2的離散場被放大。再者,如下所述,極性反轉模式係也在顯示層級中實現,以使其他鄰靠色點CD_1_1之畫素的色點具有負極性(請參考圖8(d))。As noted above, if adjacent elements have opposite polarities, the discrete fields at each color point will be amplified. The pixel design 810 utilizes discrete field amplification regions to enhance and stabilize the formation of multiple regions in the liquid crystal structure. In general, the polarity of the biased component is specified such that a color point of a first polarity has a second polarized adjacent polarized component. For example, for the pixel design 810 (shown in Figure 8(a)), the color point CD_2_2 has a positive polarity. However, the adjacent polarized elements (the discrete field amplification areas FFAR_2 and FFAR_1) have a negative polarity. Therefore, the discrete field of the color point CD_2_2 is amplified. Furthermore, as described below, the polarity inversion mode is also implemented in the display level such that the color points of other pixels adjacent to the color point CD_1_1 have a negative polarity (refer to FIG. 8(d)).
使用圖8(a)與圖8(b)之畫素設計810的畫素,可被使用在利用切換元件列反轉模式之顯示器。圖8(d)係表示顯示器820的一部分,顯示器820係使用畫素設計810的畫素P(0,0)、P(1,0)、P(0,1)及P(1,1),而畫素設計810係具有一切換元件列反轉驅動模式。顯示器820可具有數千列,且每一列上具有數千畫素。列與行係以如圖8(d)所示的方式從如圖8(d)所示的部份連續。為了清楚說明,控制切換元件的閘極線與源極線係在圖8(d)中被省略。閘極線與源極線係繪示在圖4(e)中,但除了顯示器810不使用離散場放大區域切換元件與離散場放大區域電極之外。為了更好以圖闡釋每一畫素,每一畫素的區域係被遮蔽,此遮蔽在圖8(d)中係僅為繪圖目的,並沒有功能上的意義。在顯示器820中,畫素係被配置以使在一列的所有畫素具有相同的點極性圖案(正或負),且每一連續的列應該在正、負點極性圖案之間交替。因此,在第一列(列0)的畫素P(0,0)及P(1,0)具有正點極性圖案,在第二列(列1)的畫素P(0,1)與P(1,1)具有負點極性圖案。然而,在下一個頁框中,畫素係將切換點極性圖案。因此一般而言,一畫素P(x,y)在當y為偶數時具有一第一點極性圖案,在當y為奇數時具有一第二點極性圖案。The pixels using the pixel design 810 of FIGS. 8(a) and 8(b) can be used in a display using the switching element column inversion mode. 8(d) shows a part of the display 820, and the display 820 uses the pixels P(0, 0), P(1, 0), P(0, 1), and P(1, 1) of the pixel design 810. The pixel design 810 has a switching element column inversion driving mode. Display 820 can have thousands of columns with thousands of pixels on each column. The columns and rows are continuous from the portion shown in Fig. 8(d) in the manner shown in Fig. 8(d). For clarity of explanation, the gate line and source line of the control switching element are omitted in FIG. 8(d). The gate and source lines are depicted in Figure 4(e), except that the display 810 does not use discrete field amplification region switching elements and discrete field amplification region electrodes. In order to better illustrate each pixel in the figure, the area of each pixel is obscured. This masking is only for drawing purposes in Figure 8(d) and has no functional significance. In display 820, the pixels are configured such that all pixels in a column have the same dot polarity pattern (positive or negative), and each successive column should alternate between positive and negative dot polarity patterns. Therefore, the pixels P(0,0) and P(1,0) in the first column (column 0) have a punctual polarity pattern, and the pixels P(0,1) and P in the second column (column 1) (1,1) has a negative dot polarity pattern. However, in the next page frame, the pixel will switch the dot polarity pattern. Thus, in general, a pixel P(x, y) has a first dot polarity pattern when y is even and a second dot polarity pattern when y is odd.
在每一畫素列上的畫素係垂直地配向,且水平地分隔,以使一畫素的最右邊色點被以水平點間距HDS1而與一鄰靠畫素之最左邊色點相互分隔。在一畫素行上的畫素係水平地配向,且被以一垂直點間距VDS3所分隔。The pixels on each pixel column are vertically aligned and horizontally separated so that the rightmost color point of one pixel is separated from the leftmost color point of a neighboring pixel by the horizontal dot pitch HDS1. . The pixels on a line of pixels are horizontally aligned and separated by a vertical dot pitch VDS3.
如上所述,第一畫素的離散場放大區域係從第二畫素的切換元件接收極性。舉例來說,畫素P(0,0)之離散場放大區域FFAR_1的電極,係耦接到經由畫素P(0,0)之導體812與畫素P(0,1)之色點CD_1_3電極的畫素P(0,1)的切換元件SE_1。相似地,畫素P(0,0)之離散場放大區域FFAR_2的電極,係耦接到經由畫素P(0,0)之導體814與畫素P(0,1)之色點CD_2_3電極的畫素(0,1)的切換元件SE_2。再者,畫素P(0,0)之離散場放大區域FFAR_3的電極,係耦接到經由畫素P(0,0)之導體816與畫素P(0,1)之色點CD_1_3電極的畫素(0,1)的切換元件SE_3。As described above, the discrete field amplification region of the first pixel receives the polarity from the switching element of the second pixel. For example, the electrode of the discrete field amplification region FFAR_1 of the pixel P(0,0) is coupled to the color point CD_1_3 of the pixel 812 and the pixel P(0,1) via the pixel P(0,0). The switching element SE_1 of the pixel P (0, 1) of the electrode. Similarly, the electrode of the discrete field amplification region FFAR_2 of the pixel P(0,0) is coupled to the color point CD_2_3 electrode via the conductor 814 of the pixel P(0,0) and the pixel P(0,1). The switching element SE_2 of the pixel (0, 1). Furthermore, the electrode of the discrete field amplification region FFAR_3 of the pixel P(0,0) is coupled to the color point CD_1_3 electrode via the conductor 816 of the pixel P(0,0) and the pixel P(0,1). The switching element SE_3 of the pixel (0, 1).
畫素設計810的變異,係如底邊畫素設計、頂邊畫素設計、左邊畫素設計、頂部左角落畫素設計以及底部左角落畫素設計,可以用來使用已修改的離散場放大區域。舉例來說,頂部水平放大部可附加在顯示器頂部邊緣的畫素,底部水平放大部可附加在顯示器底部邊緣的畫素,左邊垂直放大部可附加在顯示器左邊緣的畫素。此等變異係使用如上所述之顯示器450與顯示器460之類似手段。The variation of the pixel design 810, such as the bottom edge pixel design, the top edge pixel design, the left pixel design, the top left corner pixel design, and the bottom left corner pixel design, can be used to use the modified discrete field magnification. region. For example, the top horizontal magnification can be attached to the pixels at the top edge of the display, the bottom horizontal magnification can be attached to the pixels at the bottom edge of the display, and the left vertical magnification can be attached to the pixels at the left edge of the display. These variations use similar means of display 450 and display 460 as described above.
在使用畫素設計810之本發明特定的實施例中,每一色點具有40微米的寬度及60微米的高度。每一離散場放大區域具有5微米的一垂直放大部寬度、220微米的一垂直放大部高度、45微米的一水平放大部寬度HAP_W_1以及5微米的一水平放大部寬度HAP_W_2。水平點間距HDS1係為15微米,垂直點間距VDS1係為15微米,垂直點間距VDS2係為25微米,垂直點間距VDS3係為5微米,水平離散場放大區域間距HFFARS係為5微米,垂直離散場放大區域間距VFFARS係為5微米。In a particular embodiment of the invention using pixel design 810, each color point has a width of 40 microns and a height of 60 microns. Each discrete field amplification region has a vertical amplifying portion width of 5 microns, a vertical amplifying portion height of 220 microns, a horizontal amplifying portion width HAP_W_1 of 45 microns, and a horizontal amplifying portion width HAP_W_2 of 5 microns. The horizontal point spacing HDS1 is 15 microns, the vertical point spacing VDS1 is 15 microns, the vertical point spacing VDS2 is 25 microns, the vertical point spacing VDS3 is 5 microns, the horizontal discrete field amplification area spacing HFFARS is 5 microns, vertical dispersion The field amplification area spacing VFFARS is 5 microns.
畫素設計910具有三個色分量CC_1、CC_2及CC_3。每一色分量包括二色點。畫素設計910也包括每一色分量中的一切換元件(參考SE_1、SE_2及SE_3)及每一色分量中的離散場放大區域(參考FFAR_1、FFAR_2及FFAR_3)。切換元件SE_1、SE_2及SE_3係設置在一列。裝置元件區域DCA_1、DCA_2及DCA_3係圍繞切換元件SE_1、SE_2及SE_3而被界定。裝置元件區域DCA_1、DCA_2及DCA_3係具有一裝置元件區域高度DCAH及一裝置元件區域寬度DCAW。The pixel design 910 has three color components CC_1, CC_2, and CC_3. Each color component includes two color points. The pixel design 910 also includes a switching element (refer to SE_1, SE_2, and SE_3) of each color component and discrete field amplification regions (refer to FFAR_1, FFAR_2, and FFAR_3) in each color component. The switching elements SE_1, SE_2 and SE_3 are arranged in one column. The device component regions DCA_1, DCA_2, and DCA_3 are defined around the switching elements SE_1, SE_2, and SE_3. The device component regions DCA_1, DCA_2, and DCA_3 have a device component region height DCAH and a device component region width DCAW.
畫素910的第一色分量CC_1具有二色點CD_1_1及CD_1_2。色點CD_1_1及CD_1_2係形成一列且其間間隔有垂直點間距VDS1。換句話說,色點CD_1_1及CD_1_2係水平地配向且垂直地間隔有垂直點間距VDS1。再者,色點CD_1_1及CD_1_2係以一垂直點偏移量VDO1垂直地抵消,而垂直點偏移量VDO1係等於垂直點間距VDS1加上色點高度CDH。如圖所示之在色點CD_1_1及CD_1_2之間的連接,在本發明某些實施例中,色點CD_1_1及CD_1_2之電極係以與電極的形成之相同處理步驟而耦接在一起。裝置元件區域DCA_1係設置在色點CD_1_2之下,且以一垂直點間距VDS2與色點CD_1_2相間隔。切換元件SE_1係設置在裝置元件區域DCA_1內。切換元件SE_1係耦接到色點CD_1_1及CD_1_2之電極,以控制色點CD_1_1及CD_1_2之電壓極性與電壓量。The first color component CC_1 of the pixel 910 has two color points CD_1_1 and CD_1_2. The color points CD_1_1 and CD_1_2 form a column with a vertical dot pitch VDS1 therebetween. In other words, the color points CD_1_1 and CD_1_2 are horizontally aligned and vertically spaced by the vertical dot pitch VDS1. Furthermore, the color points CD_1_1 and CD_1_2 are vertically offset by a vertical dot offset VDO1, and the vertical dot offset VDO1 is equal to the vertical dot pitch VDS1 plus the color point height CDH. As shown in the connection between color points CD_1_1 and CD_1_2, in some embodiments of the invention, the electrodes of color points CD_1_1 and CD_1_2 are coupled together in the same processing steps as the formation of the electrodes. The device element region DCA_1 is disposed below the color point CD_1_2 and is spaced apart from the color point CD_1_2 by a vertical dot pitch VDS2. The switching element SE_1 is disposed in the device element region DCA_1. The switching element SE_1 is coupled to the electrodes of the color points CD_1_1 and CD_1_2 to control the voltage polarity and voltage amount of the color points CD_1_1 and CD_1_2.
畫素910的第二色分量CC_2具有二色點CD_2_1及CD_2_2。色點CD_2_1及CD_2_2係形成一第二列且其間間隔有垂直點間距VDS1。因此,色點CD_2_1及CD_2_2係水平地配向且垂直地間隔有垂直點間距VDS1。裝置元件區域DCA_2係設置在色點CD_2_2之下,且以一垂直點間距VDS2與色點CD_2_2相間隔。切換元件SE_2係設置在裝置元件區域DCA_2內。切換元件SE_2係耦接到色點CD_2_1及CD_2_2之電極,以控制色點CD_2_1及CD_2_2之電壓極性與電壓量。第二色分量CC_2係與第一色分量CC_1垂直地配向,且以水平點間距HDS1而與色分量CC_1相間隔,因此色分量CC_2及CC_1係以一水平點偏移量HDO1水平地抵消,而水平點偏移量HDO1係等於水平點間距HDS1加上色點寬度CDW。特別是關於色點,色點CD_2_1係與色點CD_1_1垂直地配向,且以水平點間距HDS1而相互間隔。相似地,色點CD_2_2係與色點CD_2_1垂直地配向,且以水平點間距HDS1而相互間隔。因此色點CD_1_1及色點CD_2_1形成色點的第一列,色點CD_1_2及色點CD_2_2係形成色點第二列。The second color component CC_2 of the pixel 910 has two color points CD_2_1 and CD_2_2. The color points CD_2_1 and CD_2_2 form a second column with a vertical dot pitch VDS1 therebetween. Therefore, the color points CD_2_1 and CD_2_2 are horizontally aligned and vertically spaced by the vertical dot pitch VDS1. The device element region DCA_2 is disposed below the color point CD_2_2 and is spaced apart from the color point CD_2_2 by a vertical dot pitch VDS2. The switching element SE_2 is disposed in the device element region DCA_2. The switching element SE_2 is coupled to the electrodes of the color points CD_2_1 and CD_2_2 to control the voltage polarity and voltage of the color points CD_2_1 and CD_2_2. The second color component CC_2 is vertically aligned with the first color component CC_1 and is spaced apart from the color component CC_1 by the horizontal dot pitch HDS1, so the color components CC_2 and CC_1 are horizontally offset by a horizontal dot offset amount HDO1, and The horizontal point offset HDD1 is equal to the horizontal dot pitch HDS1 plus the color dot width CDW. In particular, regarding the color point, the color point CD_2_1 is vertically aligned with the color point CD_1_1, and is spaced apart from each other by the horizontal dot pitch HDS1. Similarly, the color point CD_2_2 is vertically aligned with the color point CD_2_1 and spaced apart from each other by the horizontal dot pitch HDS1. Therefore, the color point CD_1_1 and the color point CD_2_1 form a first column of color points, and the color point CD_1_2 and the color point CD_2_2 form a second column of color points.
相似地,畫素910的第三色分量CC_3具有二色點CD_3_1及CD_3_2。色點CD_3_1及CD_3_2係形成一第三列且其間間隔有垂直點間距VDS1。因此,色點CD_3_1及CD_3_2係水平地配向且垂直地間隔有垂直點間距VDS1。裝置元件區域DCA_3係設置在色點CD_3_2之下,且以一垂直點間距VDS2與色點CD_3_2相間隔。切換元件SE_3係設置在裝置元件區域DCA_3內。切換元件SE_3係耦接到色點CD_3_1及CD_3_2之電極,以控制色點CD_3_1及CD_3_2之電壓極性與電壓量。第三色分量CC_3係與第二色分量CC_2垂直地配向,且以水平點間距HDS1而與色分量CC_2相間隔,因此色分量CC_3及CC_2係以一水平點偏移量HDO1水平地抵消。特別是關於色點,色點CD_3_1係與色點CD_2_1垂直地配向,且以水平點間距HDS1而相互間隔。相似地,色點CD_3_2係與色點CD_2_2垂直地配向,且以水平點間距HDS1而相互間。因此色點CD_3_1形成色點的第一列,色點CD_3_2係形成色點第二列。Similarly, the third color component CC_3 of the pixel 910 has two color points CD_3_1 and CD_3_2. The color points CD_3_1 and CD_3_2 form a third column with a vertical dot pitch VDS1 therebetween. Therefore, the color points CD_3_1 and CD_3_2 are horizontally aligned and vertically spaced by the vertical dot pitch VDS1. The device element region DCA_3 is disposed below the color point CD_3_2 and is spaced apart from the color point CD_3_2 by a vertical dot pitch VDS2. The switching element SE_3 is disposed within the device component area DCA_3. The switching element SE_3 is coupled to the electrodes of the color points CD_3_1 and CD_3_2 to control the voltage polarity and voltage amount of the color points CD_3_1 and CD_3_2. The third color component CC_3 is vertically aligned with the second color component CC_2 and is spaced apart from the color component CC_2 by the horizontal dot pitch HDS1, and thus the color components CC_3 and CC_2 are horizontally cancelled by a horizontal dot offset amount HDO1. In particular, regarding the color point, the color point CD_3_1 is vertically aligned with the color point CD_2_1, and is spaced apart from each other by the horizontal dot pitch HDS1. Similarly, the color point CD_3_2 is vertically aligned with the color point CD_2_2 and is horizontally spaced by the horizontal dot pitch HDS1. Therefore, the color point CD_3_1 forms the first column of the color point, and the color point CD_3_2 forms the second column of the color point.
畫素設計910也包括離散場放大區域FFAR1、FFAR_2及FFAR_3。圖9(c)係表示畫素設計910之離散場放大區域FFAR_1更加詳細的視圖。為清楚起見,離散場放大區域FFAR_1係概念地區分成一第一垂直放大部VAP_1、一第二垂直放大部VAP_2、一第一水平放大部HAP_1、一第二水平放大部HAP_2以及一第三水平放大部HAP_3。直放大部VAP_1及VAP_2係垂直地配向,且以水平放大部HAP_1的長度水平地間隔。水平放大部HAP_1係設置在頂部且延伸在垂直放大部VAP_1及VAP_2之間。水平放大部HAP_2係垂直地設在中央且延伸到垂直放大部VAP_1左邊。水平放大部HAP_3係設置在底部且延伸在垂直放大部VAP_1及VAP_2之間。如上所述,水平放大部與垂直放大部的使用,係允許離散場放大區域FFAR_1之配置有更清楚的描述。水平放大部HAP_1、HAP_2及HAP_3分別地具有水平放大部寬度HAP_W_1、HAP_W_2及HAP_W_3以及水平放大部高度HAP_H_1、HAP_H_2及HAP_H_3。在圖9(a)-9(d)的特定實施例中,水平放大部寬度HAP_W_1及HAP_W_2係相等,而水平放大部寬度HAP_W_2係小於水平放大部寬度HAP_W_1及HAP_W_3。垂直放大部VAP_1及VAP_2分別地具有垂直放大部寬度VAP_W_1與HAP_W_2,及垂直放大部高度VAP_H_1與VAP_H_2。離散場放大區域FFAR_2及FFAR_3係與離散場放大區域FFAR_1的形狀相同。The pixel design 910 also includes discrete field amplification regions FFAR1, FFAR_2, and FFAR_3. Figure 9(c) is a more detailed view showing the discrete field amplification area FFAR_1 of the pixel design 910. For the sake of clarity, the discrete field amplification region FFAR_1 is conceptually divided into a first vertical amplification portion VAP_1, a second vertical amplification portion VAP_2, a first horizontal amplification portion HAP_1, a second horizontal amplification portion HAP_2, and a third level. Amplification section HAP_3. The direct amplification portions VAP_1 and VAP_2 are vertically aligned and horizontally spaced by the length of the horizontal amplification portion HAP_1. The horizontal amplifying portion HAP_1 is disposed at the top and extends between the vertical amplifying portions VAP_1 and VAP_2. The horizontal amplifying portion HAP_2 is vertically disposed at the center and extends to the left of the vertical amplifying portion VAP_1. The horizontal amplifying portion HAP_3 is disposed at the bottom and extends between the vertical amplifying portions VAP_1 and VAP_2. As described above, the use of the horizontal amplifying portion and the vertical amplifying portion allows a clearer description of the arrangement of the discrete field magnifying region FFAR_1. The horizontal amplification sections HAP_1, HAP_2, and HAP_3 have horizontal amplification section widths HAP_W_1, HAP_W_2, and HAP_W_3, and horizontal amplification section heights HAP_H_1, HAP_H_2, and HAP_H_3, respectively. In the specific embodiment of FIGS. 9(a)-9(d), the horizontal amplification portion widths HAP_W_1 and HAP_W_2 are equal, and the horizontal amplification portion width HAP_W_2 is smaller than the horizontal amplification portion widths HAP_W_1 and HAP_W_3. The vertical amplifying portions VAP_1 and VAP_2 respectively have vertical amplifying portion widths VAP_W_1 and HAP_W_2, and vertical amplifying portion heights VAP_H_1 and VAP_H_2. The discrete field amplification areas FFAR_2 and FFAR_3 are identical in shape to the discrete field amplification area FFAR_1.
如圖9(a)所示,離散場放大區域FFAR_1、FFAR_2及FFAR_3係分別圍設色分量CC_1、CC_2及CC_3。特別是,離散場放大區域FFAR_1被配置,以使離散場放大區域FFAR_1的水平放大部HAP_2位在色點CD_1_1與CD_1_2之間,且被以一垂直離散場放大區域間距VFFARS而與色點CD_1_1及CD_1_2相分隔。由於在色點CD_1_1及CD_1_2之間的內部連接,離散場放大區域FFAR_1的水平放大部HAP_2並未延伸到色點CD_1_1及CD_1_2之左側端。離散場放大區域FFAR_1的垂直放大部VAP_1係設置在色點CD_1_1與CD_1_2的右邊,且被以一水平離散場放大區域間距HFFARS而與色點CD_1_1與CD_1_2相分隔。離散場放大區域FFAR_1的垂直放大部VAP_2係設置在色點CD_1_1與CD_1_2的左邊,且被以一水平離散場放大區域間距HFFARS而與色點CD_1_1與CD_1_2相分隔。水平放大部HAP_1延伸到色點CD_1_1上方,且水平放大部HAP_3延伸到色點CD_1_2下方。因此,離散場放大區域FFAR_1,係沿色點CD_1_1及色點CD_1_2的右側、左側、頂部及底部而延伸。As shown in FIG. 9(a), the discrete field amplification areas FFAR_1, FFAR_2, and FFAR_3 respectively surround the color components CC_1, CC_2, and CC_3. In particular, the discrete field amplification region FFAR_1 is configured such that the horizontal amplification portion HAP_2 of the discrete field amplification region FFAR_1 is located between the color points CD_1_1 and CD_1_2, and is separated by a vertical discrete field amplification region spacing VFFARS and the color point CD_1_1 CD_1_2 is separated. Due to the internal connection between the color points CD_1_1 and CD_1_2, the horizontal amplification portion HAP_2 of the discrete field amplification area FFAR_1 does not extend to the left end of the color points CD_1_1 and CD_1_2. The vertical amplification portion VAP_1 of the discrete field amplification region FFAR_1 is disposed to the right of the color points CD_1_1 and CD_1_2, and is separated from the color points CD_1_1 and CD_1_2 by a horizontal discrete field amplification region pitch HFFARS. The vertical amplifying portion VAP_2 of the discrete field amplifying area FFAR_1 is disposed to the left of the color points CD_1_1 and CD_1_2, and is separated from the color points CD_1_1 and CD_1_2 by a horizontal discrete field amplifying area pitch HFFARS. The horizontal amplifying portion HAP_1 extends above the color point CD_1_1, and the horizontal amplifying portion HAP_3 extends below the color point CD_1_2. Therefore, the discrete field amplification area FFAR_1 extends along the right side, the left side, the top, and the bottom of the color point CD_1_1 and the color point CD_1_2.
相似地,離散場放大區域FFAR_2係被設置,以使離散場放大區域FFAR_2的水平放大部HAP_2位在色點CD_2_1與CD_2_2之間,且被以一垂直離散場放大區域間距VFFARS所分隔。由於在色點CD_2_1及CD_2_2之間的內部連接,離散場放大區域FFAR_2的水平放大部HAP_2並未延伸到色點CD_2_1及CD_2_2之左側端。離散場放大區域FFAR_2的垂直放大部VAP_1係設置在色點CD_2_1與CD_2_2的右邊,且被以一水平離散場放大區域間距HFFARS所分隔。離散場放大區域FFAR_2的垂直放大部VAP_2係設置在色點CD_2_1與CD_2_2的左邊,且被以一水平離散場放大區域間距HFFARS所分隔。水平放大部HAP_2延伸到色點CD_2_1上方,且水平放大部HAP_3延伸到色點CD_2_2下方。因此,離散場放大區域FFAR_2,係沿色點CD_2_1及色點CD_2_2的右側、左側、頂部及底部而延伸。Similarly, the discrete field amplification area FFAR_2 is set such that the horizontal amplification portion HAP_2 of the discrete field amplification area FFAR_2 is located between the color points CD_2_1 and CD_2_2, and is separated by a vertical discrete field amplification area spacing VFFARS. Due to the internal connection between the color points CD_2_1 and CD_2_2, the horizontal amplification portion HAP_2 of the discrete field amplification region FFAR_2 does not extend to the left end of the color points CD_2_1 and CD_2_2. The vertical amplifying portion VAP_1 of the discrete field amplifying area FFAR_2 is disposed on the right side of the color points CD_2_1 and CD_2_2, and is separated by a horizontal discrete field amplifying area pitch HFFARS. The vertical amplifying portion VAP_2 of the discrete field amplifying area FFAR_2 is disposed to the left of the color points CD_2_1 and CD_2_2, and is separated by a horizontal discrete field amplifying area pitch HFFARS. The horizontal amplifying portion HAP_2 extends above the color point CD_2_1, and the horizontal amplifying portion HAP_3 extends below the color point CD_2_2. Therefore, the discrete field amplification area FFAR_2 extends along the right side, the left side, the top, and the bottom of the color point CD_2_1 and the color point CD_2_2.
離散場放大區域FFAR_3係被設置,以使離散場放大區域FFAR_3的水平放大部HAP_2位在色點CD_3_1與CD_3_2之間,且被以一垂直離散場放大區域間距VFFARS所分隔。由於在色點CD_3_1及CD_3_2之間的內部連接,離散場放大區域FFAR_3的水平放大部HAP_3並未延伸到色點CD_3_1及CD_3_2之左側端。離散場放大區域FFAR_3的垂直放大部VAP_1係設置在色點CD_3_1與CD_3_2的右邊,且被以一水平離散場放大區域間距HFFARS而與色點CD_3_1與CD_3_2相分隔。離散場放大區域FFAR_3的垂直放大部VAP_2係設置在色點CD_3_1與CD_3_2的左邊,且被以一水平離散場放大區域間距HFFARS而與色點CD_3_1與CD_3_2相分隔。水平放大部HAP_1延伸到色點CD_3_1上方,且水平放大部HAP_3延伸到色點CD_3_2下方。因此,離散場放大區域FFAR_3,係沿色點CD_3_1及色點CD_3_2的右側、左側、頂部及底部而延伸。The discrete field amplification area FFAR_3 is set such that the horizontal amplification portion HAP_2 of the discrete field amplification area FFAR_3 is located between the color points CD_3_1 and CD_3_2, and is separated by a vertical discrete field amplification area spacing VFFARS. Due to the internal connection between the color points CD_3_1 and CD_3_2, the horizontal amplification portion HAP_3 of the discrete field amplification area FFAR_3 does not extend to the left end of the color points CD_3_1 and CD_3_2. The vertical amplifying portion VAP_1 of the discrete field amplifying area FFAR_3 is disposed to the right of the color points CD_3_1 and CD_3_2, and is separated from the color points CD_3_1 and CD_3_2 by a horizontal discrete field amplifying area pitch HFFARS. The vertical amplifying portion VAP_2 of the discrete field amplifying area FFAR_3 is disposed to the left of the color points CD_3_1 and CD_3_2, and is separated from the color points CD_3_1 and CD_3_2 by a horizontal discrete field amplifying area pitch HFFARS. The horizontal amplifying portion HAP_1 extends above the color point CD_3_1, and the horizontal amplifying portion HAP_3 extends below the color point CD_3_2. Therefore, the discrete field amplification area FFAR_3 extends along the right side, the left side, the top, and the bottom of the color point CD_3_1 and the color point CD_3_2.
畫素設計910也被設計,以使離散場放大區域從一鄰近畫素接收極性。尤其是,一第一導體係耦接到離散場放大區域,以從在目前畫素上之畫素接收極性,且一第二導體係耦接到切換元件,以提供極性給目前畫素下的畫素之離散場放大區域。舉例來說,耦接到離散場放大區域FFAR_1之電極的導體912,係往上延伸連接到目前畫素上之畫素的導體913以接收極性(請參考圖9(d))。耦接到切換元件SE_1導體913,係朝下延伸連接到目前畫素下之畫素的導體912。導體914與915適合離散場放大區域FFAR_2之目的,係如導體912與913對離散場放大區域FFAR_1而言。再者,導體916與917適合離散場放大區域FFAR_3之目的,係如導體912與913對離散場放大區域FFAR_1而言。The pixel design 910 is also designed to allow the discrete field amplification region to receive polarity from a neighboring pixel. In particular, a first conduction system is coupled to the discrete field amplification region to receive polarity from a pixel on the current pixel, and a second conduction system is coupled to the switching element to provide polarity to the current pixel. The discrete field magnified area of the pixel. For example, the conductor 912 coupled to the electrode of the discrete field amplification region FFAR_1 is a conductor 913 extending upwardly connected to the pixel on the current pixel to receive the polarity (please refer to FIG. 9(d)). It is coupled to the switching element SE_1 conductor 913 and extends downwardly to the conductor 912 connected to the pixel under the current pixel. The conductors 914 and 915 are suitable for the purpose of the discrete field amplification region FFAR_2, such as conductors 912 and 913 for the discrete field amplification region FFAR_1. Furthermore, conductors 916 and 917 are suitable for the purpose of discrete field amplification region FFAR_3, such as conductors 912 and 913 for discrete field amplification region FFAR_1.
色點、離散場放大區域及切換元件的極性,係以正號”+”及負號”-”表示。因此在圖9(a)中,顯示畫素設計910+的正點極性、所有的切換元件(如切換元件SE_1、SE_2及SE_3)及所有的色點(例如色點CD_1_1、CD_1_2、CD_2_1、CD_2_2、CD_3_1及CD_3_2),係具有正極性。然而,所有的離散場放大區域(例如離散場放大區域FFAR_1、FFAR_2及FFAR_3)係具有負極性。The color point, the discrete field amplification area, and the polarity of the switching element are indicated by a positive sign "+" and a negative sign "-". Therefore, in FIG. 9(a), the punctual polarity of the pixel design 910+, all switching elements (such as switching elements SE_1, SE_2, and SE_3) and all color points (such as color points CD_1_1, CD_1_2, CD_2_1, CD_2_2, CD_3_1 and CD_3_2) have positive polarity. However, all discrete field amplification regions (eg, discrete field amplification regions FFAR_1, FFAR_2, and FFAR_3) have negative polarity.
圖9(b)係表示具有負點極性圖案的畫素設計910。對負點極性圖案而言,切換元件SE_1及SE_3、色點CD_1_1、CD_1_2、CD_3_1及CD_3_2、離散場放大區域FFAR_2係具有負極性。然而,切換元件SE_2、色點CD_2_1及CD_2_2、離散場放大區域FFAR_1及FFAR_3係具有正極性。Figure 9(b) shows a pixel design 910 having a negative dot polarity pattern. For the negative dot polarity pattern, the switching elements SE_1 and SE_3, the color points CD_1_1, CD_1_2, CD_3_1 and CD_3_2, and the discrete field amplification area FFAR_2 have negative polarity. However, the switching element SE_2, the color points CD_2_1 and CD_2_2, and the discrete field amplification areas FFAR_1 and FFAR_3 have positive polarity.
如上所述,若鄰近元件具有相反極性者,在每一色點的離散場會被放大。畫素設計910係利用離散場放大區域來強化並穩定在液晶結構中之多區域的形成。一般而言,已偏極元件的極性係被指定,以使一第一極性的色點具有第二極性的鄰近已偏極元件。更特別地對畫素設計910而言,每一色點係圍繞相反極性之離散場放大區域部份的四側上。舉例來說,對畫素設計910(如圖9(a)所示)之正點極性圖案而言,色點CD_1_2具有正極性並被具有負極性之離散場放大區域FFAR_1所圍繞。因此色點CD_1_2的離散場被放大。As noted above, if adjacent elements have opposite polarities, the discrete fields at each color point will be amplified. The pixel design 910 utilizes discrete field amplification regions to enhance and stabilize the formation of multiple regions in the liquid crystal structure. In general, the polarity of the biased component is specified such that a color point of a first polarity has a second polarized adjacent polarized component. More specifically for the pixel design 910, each color point is on four sides of a portion of the discrete field amplification region of opposite polarity. For example, for the punctual polarity pattern of the pixel design 910 (shown in FIG. 9(a)), the color point CD_1_2 has a positive polarity and is surrounded by a discrete field amplification region FFAR_1 having a negative polarity. Therefore, the discrete field of the color point CD_1_2 is amplified.
使用圖9(a)與圖9(b)之畫素設計910的畫素,可被使用在利用切換元件點反轉模式之顯示器。圖9(d)係表示顯示器920的一部分,顯示器920係使用畫素設計910的畫素P(0,0)、P(1,0)、P(0,1)及P(1,1),而畫素設計910係具有一切換元件點反轉驅動模式。顯示器920可具有數千列,且每一列上具有數千畫素。列與行係以如圖9(d)所示的方式從如圖9(d)所示的部份連續。為了清楚說明,控制切換元件的閘極線與源極線係在圖9(d)中被省略。為了更好以圖闡釋每一畫素,每一畫素的區域係被遮蔽,此遮蔽在圖9(d)中係僅為繪圖目的,並沒有功能上的意義。在顯示器920中,畫素係被配置以使在一列的畫素交替點極性圖案(正或負),且在一行的畫素也交替正、負點極性圖案。因此,畫素P(0,0)及P(1,1)具有正點極性圖案,畫素P(0,1)與P(1,0)具有負點極性圖案。然而,在下一個頁框中,畫素係將切換點極性圖案。因此一般而言,一畫素P(x,y)在當x+y為偶數時具有一第一點極性圖案,在當x+y為奇數時具有一第二點極性圖案。每一畫素列上的畫素係垂直地配向且水平地分隔,以使畫素最右邊的色點係以水平點間距HDS1與鄰近畫素之最左邊色點相隔。在一畫素行的畫素係水平地配向,且以一垂直點間距VDS3相互間隔。The pixels using the pixel design 910 of FIGS. 9(a) and 9(b) can be used in a display using the switching element dot inversion mode. Figure 9(d) shows a portion of display 920, which uses pixels P(0,0), P(1,0), P(0,1), and P(1,1) of pixel design 910. The pixel design 910 has a switching element dot inversion driving mode. Display 920 can have thousands of columns with thousands of pixels on each column. The columns and rows are continuous from the portion shown in Fig. 9(d) in the manner shown in Fig. 9(d). For clarity of explanation, the gate line and source line of the control switching element are omitted in FIG. 9(d). In order to better illustrate each pixel in the figure, the area of each pixel is obscured. This shadowing is only for drawing purposes in Figure 9(d) and has no functional significance. In display 920, the pixels are configured such that the pixels in one column alternate dot patterns (positive or negative), and the pixels in one row alternate between positive and negative dot polar patterns. Therefore, the pixels P(0, 0) and P(1, 1) have a punctual polarity pattern, and the pixels P(0, 1) and P(1, 0) have a negative dot polarity pattern. However, in the next page frame, the pixel will switch the dot polarity pattern. Thus, in general, a pixel P(x, y) has a first dot polarity pattern when x+y is even, and a second dot polarity pattern when x+y is odd. The pixels on each pixel column are vertically aligned and horizontally separated such that the rightmost color point of the pixel is separated from the leftmost color point of the adjacent pixel by the horizontal dot pitch HDS1. The pixels in a picture line are horizontally aligned and spaced apart from each other by a vertical dot pitch VDS3.
如上所述,第一畫素的離散場放大區域係從第二畫素的切換元件接收極性。舉例來說,畫素P(0,0)之離散場放大區域FFAR_1的電極,係耦接到經由畫素P(0,0)之導體912與畫素P(0,1)之導體913的畫素P(0,1)之切換元件SE_1。相似地,畫素P(0,0)之離散場放大區域FFAR_2的電極,係耦接到經由畫素P(0,0)之導體914與畫素P(0,1)之導體915的畫素(0,1)之切換元件SE_2。再者,畫素P(0,0)之離散場放大區域FFAR_3的電極,係耦接到經由畫素P(0,0)之導體917與畫素P(0,1)之導體917的畫素(0,1)之切換元件SE_3。As described above, the discrete field amplification region of the first pixel receives the polarity from the switching element of the second pixel. For example, the electrode of the discrete field amplification region FFAR_1 of the pixel P(0, 0) is coupled to the conductor 912 via the pixel P (0, 0) and the conductor 913 of the pixel P (0, 1). Switching element SE_1 of pixel P(0,1). Similarly, the electrode of the discrete field amplification region FFAR_2 of the pixel P(0,0) is coupled to the conductor 914 via the conductor 914 of the pixel P(0,0) and the conductor 915 of the pixel P(0,1). Switching element SE_2 of prime (0, 1). Furthermore, the electrode of the discrete field amplification region FFAR_3 of the pixel P(0,0) is coupled to the conductor 917 via the pixel P(0,0) and the conductor 917 of the pixel P(0,1). Switching element SE_3 of prime (0, 1).
在本發明一特定實施例中,每一色點具有40微米的寬度及60微米的高度。每一離散場放大區域具有5微米的垂直放大部寬度、155微米的垂直放大部高度、45微米的水平放大部寬度以及5微米的水平放大部高度。水平點間距HDS1為15微米,垂直點間距VDS1為15微米,垂直點間距VDS2為15微米,垂直點間距VDS3為5微米,水平離散場放大間距HFFARS為5微米,且垂直離散場放大間距VFFARS為5微米。In a particular embodiment of the invention, each color point has a width of 40 microns and a height of 60 microns. Each discrete field amplification region has a vertical magnification width of 5 microns, a vertical magnification height of 155 microns, a horizontal magnification width of 45 microns, and a horizontal magnification height of 5 microns. The horizontal point spacing HDS1 is 15 microns, the vertical point spacing VDS1 is 15 microns, the vertical point spacing VDS2 is 15 microns, the vertical point spacing VDS3 is 5 microns, the horizontal discrete field amplification spacing HFFARS is 5 microns, and the vertical discrete field amplification spacing VFFARS is 5 microns.
畫素設計910係可輕易地適合於顯示器使用,而此顯示器係具有離散場放大區域切換元件及離散場放大區域電極。如圖9(e)所示,顯示器930係使用一已修改的畫素設計910,其係省略導體912、913、914、915、916及917。特別地,圖9(e)係表示顯示器930的一部分,顯示器930係使用畫素設計910的畫素P(0,0)、P(1,0)、P(0,1)及P(1,1),而畫素設計910係具有一切換元件列反轉驅動模式。顯示器930可具有數千列,且每一列上具有數千畫素。列與行係以如圖9(e)所示的方式從如圖9(e)所示的部份連續。為了清楚說明,控制切換元件的閘極線與源極線係在圖9(e)中被省略。再者,為了更好以圖闡釋每一畫素,每一畫素的區域係被遮蔽,此遮蔽在圖9(e)中係僅為繪圖目的,並沒有功能上的意義。在顯示器930中,畫素係被配置以使在一列的畫素交替點極性圖案(正或負),且在一行上的畫素也交替正、負點極性圖案。因此,畫素P(0,0)及P(1,1)具有正點極性圖案,畫素P(0,1)與P(1,0)具有負點極性圖案。然而,在下一個頁框中,畫素係將切換點極性圖案。因此一般而言,一畫素P(x,y)在當x+y為偶數時具有一第一點極性圖案,在當x+y為奇數時具有一第二點極性圖案。The pixel design 910 can be easily adapted for use with a display having discrete field amplification area switching elements and discrete field amplification area electrodes. As shown in Figure 9(e), display 930 uses a modified pixel design 910 that omits conductors 912, 913, 914, 915, 916, and 917. In particular, FIG. 9(e) shows a portion of the display 930 which uses the pixels P(0, 0), P(1, 0), P(0, 1), and P(1) of the pixel design 910. , 1), and the pixel design 910 has a switching element column inversion driving mode. Display 930 can have thousands of columns with thousands of pixels on each column. The columns and rows are continuous from the portion shown in Fig. 9(e) in the manner shown in Fig. 9(e). For clarity of explanation, the gate line and source line of the control switching element are omitted in FIG. 9(e). Furthermore, in order to better illustrate each pixel, each region of the pixel is obscured. This masking is only for drawing purposes in Figure 9(e) and has no functional significance. In display 930, the pixels are configured such that the pixels in one column alternate dot patterns (positive or negative), and the pixels on one line alternate between positive and negative dot polar patterns. Therefore, the pixels P(0, 0) and P(1, 1) have a punctual polarity pattern, and the pixels P(0, 1) and P(1, 0) have a negative dot polarity pattern. However, in the next page frame, the pixel will switch the dot polarity pattern. Thus, in general, a pixel P(x, y) has a first dot polarity pattern when x+y is even, and a second dot polarity pattern when x+y is odd.
在每一畫素列上的畫素係垂直地配向,且水平地分隔,以使一畫素的最右邊色點被以水平點間距HDS1而與一鄰靠畫素之最左邊色點相互分隔。在一畫素行上的畫素係水平地配向,且被以一垂直點間距VDS3所分隔。The pixels on each pixel column are vertically aligned and horizontally separated so that the rightmost color point of one pixel is separated from the leftmost color point of a neighboring pixel by the horizontal dot pitch HDS1. . The pixels on a line of pixels are horizontally aligned and separated by a vertical dot pitch VDS3.
對顯示器930而言,使用畫素設計910之畫素的離散場放大區域,係從畫素外部接收正確極性。再者,在畫素內的離散場放大區域,係同時具有正與負極性。因此在顯示器930中,畫素的每一列具有二相對應的離散場放大區域切換元件,每一個係耦接到延伸經過顯示器930之一對離散場放大電極其中之一。在相對應畫素列中之畫素的離散場放大區域,係耦接到適當的離散場放大電極,以從離散場放大區域切換元件接收極性。特別是對列0而言,離散場放大區域切換元件FFARSE_0_1及FFARSE_0_2係在顯示器930的左側上。離散場放大電極FFARE_0_1係耦接到離散場放大區域切換元件FFARSE_0_1,並延伸經過顯示器930。離散場放大電極FFARE_0_2係耦接到離離散場放大區域切換元件FFARSE_0_2,並延伸經過顯示器930。如圖9(e)所示,畫素P(0,0)的離散場放大區域FFAR_2,與畫素P(1,0)的離散場放大區域FFAR_1及FFAR_3,係耦接到離散場放大電極FFARE_0_1。相反地,畫素P(0,0)的離散場放大區域FFAR_1及FFAR_3,與畫素P(1,0)的離散場放大區域FFAR_2,係耦接到離散場放大電極FFARE_0_2。如圖9(e)所示,離散場放大區域切換元件FFARSE_0_1具有正極性,且離散場放大區域切換元件FFARSE_0_2具有負極性。然而,在下一頁框中,則轉換極性。For display 930, the discrete field amplification region of the pixel of pixel design 910 is used to receive the correct polarity from outside the pixel. Furthermore, the discrete field amplification region in the pixel has both positive and negative polarities. Thus, in display 930, each column of pixels has two corresponding discrete field amplification region switching elements, each coupled to one of the discrete field amplification electrodes extending through one of display 930. The discrete field amplification region of the pixel in the corresponding pixel column is coupled to a suitable discrete field amplifying electrode to receive the polarity from the discrete field amplification region switching element. In particular, for column 0, the discrete field amplification area switching elements FFARSE_0_1 and FFARSE_0_2 are on the left side of the display 930. The discrete field amplification electrode FFARE_0_1 is coupled to the discrete field amplification region switching element FFARSE_0_1 and extends through the display 930. The discrete field amplifying electrode FFARE_0_2 is coupled to the discrete field amplification region switching element FFARSE_0_2 and extends through the display 930. As shown in FIG. 9(e), the discrete field amplification region FFAR_2 of the pixel P(0, 0) and the discrete field amplification regions FFAR_1 and FFAR_3 of the pixel P(1, 0) are coupled to the discrete field amplification electrode. FFARE_0_1. Conversely, the discrete field amplification regions FFAR_1 and FFAR_3 of the pixel P(0,0) and the discrete field amplification region FFAR_2 of the pixel P(1,0) are coupled to the discrete field amplification electrode FFARE_0_2. As shown in FIG. 9(e), the discrete field amplification area switching element FFARSE_0_1 has a positive polarity, and the discrete field amplification area switching element FFARSE_0_2 has a negative polarity. However, in the next page box, the polarity is switched.
對列1而言,離散場放大區域切換元件FFARSE_1_1及FFARSE_1_2係在顯示器930的右側上。然而,在本發明其嘎實施例中,離散場放大區域切換元件係均位在顯示器的相同側。離散場放大區域電極FFARE_1_1係耦接到離散場放大區域切換元件FFARSE_1_1,並延伸經過顯示器930。離散場放大電極FFARE_1_2係耦接到離離散場放大區域切換元件FFARSE_1_2,並延伸經過顯示器930。如圖9(e)所示,畫素P(0,0)的離散場放大區域FFAR_2,與畫素P(1,0)的離散場放大區域FFAR_1及FFAR_3,係耦接到離散場放大電極FFARE_1_1。相反地,畫素P(0,1)的離散場放大區域FFAR_1及FFAR_3,與畫素P(1,1)的離散場放大區域FFAR_2,係耦接到離散場放大電極FFARE_1_2。如圖9(e)所示,離散場放大區域切換元件FFARSE_1_1具有正極性,且離散場放大區域切換元件FFARSE_1_2具有負極性。然而,在下一頁框中,則轉換極性。For column 1, the discrete field amplification region switching elements FFARSE_1_1 and FFARSE_1_2 are on the right side of the display 930. However, in an embodiment of the invention, the discrete field amplification region switching elements are all on the same side of the display. The discrete field amplification area electrode FFARE_1_1 is coupled to the discrete field amplification area switching element FFARSE_1_1 and extends through the display 930. The discrete field amplifying electrode FFARE_1_2 is coupled to the discrete field amplification region switching element FFARSE_1_2 and extends through the display 930. As shown in FIG. 9(e), the discrete field amplification region FFAR_2 of the pixel P(0, 0) and the discrete field amplification regions FFAR_1 and FFAR_3 of the pixel P(1, 0) are coupled to the discrete field amplification electrode. FFARE_1_1. Conversely, the discrete field amplification regions FFAR_1 and FFAR_3 of the pixel P(0,1) and the discrete field amplification region FFAR_2 of the pixel P(1,1) are coupled to the discrete field amplification electrode FFARE_1_2. As shown in FIG. 9(e), the discrete field amplification area switching element FFARSE_1_1 has a positive polarity, and the discrete field amplification area switching element FFARSE_1_2 has a negative polarity. However, in the next page box, the polarity is switched.
圖10(a)及10(b)係表示一畫素設計1010之正、負點極性圖案。畫素設計1010的佈局係非常類似於畫素設計910(如圖9(a)及9(b)所示)。因此為簡單起見,僅描述其間差異。尤其是,在畫素設計1010中,色分量與離散場放大區域係如同畫素設計910一樣位在相同位置。再者,切換元件SE_1與SE_3及裝置元件區域DCA_1與DCA_3係也如同畫素設計910一樣位在相同位置。然而,在畫素設計1010中,切換元件SE_2及裝置元件區域DCA_2係位在色分量CC_2與離散場放大區域FFAR_2之上。因此不像之前的畫素設計,畫素設計1010的切換元件係在多個列中。特別是,畫素設計1010的色分量係配向在一直線,切換元件SE_1與SE_3係位在直線的一第一側上,切換元件SE_2係位在直線的一第二側上。如上所述,切換元件的每一列係耦接到一單一閘極線。再者,在一時間中僅會有一閘極線啟動。因此對畫素設計1010而言,相對切換元件SE_1與SE_2而言,切換元件SE_2係在不同時間啟動。非常適合畫素設計1010的驅動模式,係描述在由發明人Hiap L. Ong所申請之美國專利申請號11/751,469,名稱為「Low Cost Switching Element Point Inversion Driving Scheme for Liquid Crystal Displays」,其係在此併入參考。Figures 10(a) and 10(b) show the positive and negative dot polarity patterns of a pixel design 1010. The layout of the pixel design 1010 is very similar to the pixel design 910 (shown in Figures 9(a) and 9(b)). Therefore, for the sake of simplicity, only the differences therebetween will be described. In particular, in the pixel design 1010, the color component and the discrete field amplification region are in the same position as the pixel design 910. Furthermore, the switching elements SE_1 and SE_3 and the device element areas DCA_1 and DCA_3 are also in the same position as the pixel design 910. However, in the pixel design 1010, the switching element SE_2 and the device element region DCA_2 are tied above the color component CC_2 and the discrete field amplification region FFAR_2. Therefore, unlike the previous pixel design, the switching elements of the pixel design 1010 are in multiple columns. In particular, the color components of the pixel design 1010 are aligned in a straight line, the switching elements SE_1 and SE_3 are positioned on a first side of the line, and the switching element SE_2 is positioned on a second side of the line. As mentioned above, each column of switching elements is coupled to a single gate line. Furthermore, only one gate line will be activated during a time. Therefore, for the pixel design 1010, the switching element SE_2 is activated at different times with respect to the switching elements SE_1 and SE_2. U.S. Patent Application Serial No. 11/751,469, entitled "Low Cost Switching Element Point Inversion Driving Scheme for Liquid Crystal Displays", which is filed by the inventor, Hiap L. Ong, is incorporated herein by reference. Reference is hereby incorporated by reference.
在如圖10(a)所示之畫素設計1010+的正點極性圖案中,色分量CC_1(如色點CD_1_1與CD_1_2)、色分量CC_3(如色點CD_3_1與CD_3_2)、離散場放大區域FFAR_2以及切換元件SE_1與SE_3具有正極性。色分量CC_2(如色點CD_2_1與CD_2_2)、離散場放大區域FFAR_1與FFAR_3以及切換元件SE_2具有負極性。在如圖10(b)所示之畫素設計1010-的負點極性圖案中,色分量CC_1(如色點CD_1_1與CD_1_2)、色分量CC_3(如色點CD_3_1與CD_3_2)、離散場放大區域FFAR_2以及切換元件SE_1與SE_3具有負極性。色分量CC_2(如色點CD_2_1與CD_2_2)、離散場放大區域FFAR_1與FFAR_3以及切換元件SE_2具有正極性。In the punctual polarity pattern of the pixel design 1010+ as shown in FIG. 10(a), the color components CC_1 (such as color points CD_1_1 and CD_1_2), the color components CC_3 (such as color points CD_3_1 and CD_3_2), and the discrete field amplification area FFAR_2 And the switching elements SE_1 and SE_3 have positive polarity. The color components CC_2 (such as color points CD_2_1 and CD_2_2), the discrete field amplification areas FFAR_1 and FFAR_3, and the switching element SE_2 have negative polarity. In the negative point polarity pattern of the pixel design 1010- as shown in FIG. 10(b), color components CC_1 (such as color points CD_1_1 and CD_1_2), color components CC_3 (such as color points CD_3_1 and CD_3_2), and discrete field amplification regions FFAR_2 and switching elements SE_1 and SE_3 have a negative polarity. The color components CC_2 (such as color points CD_2_1 and CD_2_2), the discrete field amplification areas FFAR_1 and FFAR_3, and the switching element SE_2 have positive polarity.
圖10(c)及10(d)係表示一畫素設計1020之正、負點極性圖案。畫素設計1020的佈局係非常類似於畫素設計910(如圖9(a)及9(b)所示)。因此為簡單起見,僅描述其間差異。尤其是,在畫素設計1020中,色分量與離散場放大區域係如同畫素設計910一樣位在相同位置。再者,切換元件SE_2及裝置元件區域DCA_2係也如同畫素設計910一樣位在相同位置。然而,在畫素設計1020中,切換元件SE_1與SE_3及裝置元件區域DCA_1與DCA_3係分別地位在色分量CC_2(及離散場放大區域FFAR_1)與色分量CC_3(及離散場放大區域FFAR_3)之上。因此不像畫素設計1010,畫素設計1020的切換元件係在多個列中。在如圖10(c)所示之畫素設計1020+的正點極性圖案中,色分量CC_1(如色點CD_1_1與CD_1_2)、色分量CC_3(如色點CD_3_1與CD_3_2)、離散場放大區域FFAR_2以及切換元件SE_1與SE_3具有正極性。色分量CC_2(如色點CD_2_1與CD_2_2)、離散場放大區域FFAR_1與FFAR_3以及切換元件SE_2具有負極性。在如圖10(d)所示之畫素設計1010-的負點極性圖案中,色分量CC_1(如色點CD_1_1與CD_1_2)、色分量CC_3(如色點CD_3_1與CD_3_2)、離散場放大區域FFAR_2以及切換元件SE_1與SE_3具有負極性。色分量CC_2(如色點CD_2_1與CD_2_2)、離散場放大區域FFAR_1與FFAR_3以及切換元件SE_2具有正極性。Figures 10(c) and 10(d) show the positive and negative dot polarity patterns of a pixel design 1020. The layout of the pixel design 1020 is very similar to the pixel design 910 (shown in Figures 9(a) and 9(b)). Therefore, for the sake of simplicity, only the differences therebetween will be described. In particular, in the pixel design 1020, the color component and the discrete field amplification region are in the same position as the pixel design 910. Furthermore, the switching element SE_2 and the device element area DCA_2 are also positioned at the same position as the pixel design 910. However, in the pixel design 1020, the switching elements SE_1 and SE_3 and the device element regions DCA_1 and DCA_3 are respectively located above the color component CC_2 (and the discrete field amplification region FFAR_1) and the color component CC_3 (and the discrete field amplification region FFAR_3). . Therefore, unlike the pixel design 1010, the switching elements of the pixel design 1020 are in multiple columns. In the punctual polarity pattern of the pixel design 1020+ as shown in FIG. 10(c), the color components CC_1 (such as color points CD_1_1 and CD_1_2), the color components CC_3 (such as color points CD_3_1 and CD_3_2), and the discrete field amplification area FFAR_2 And the switching elements SE_1 and SE_3 have positive polarity. The color components CC_2 (such as color points CD_2_1 and CD_2_2), the discrete field amplification areas FFAR_1 and FFAR_3, and the switching element SE_2 have negative polarity. In the negative point polarity pattern of the pixel design 1010- as shown in FIG. 10(d), color components CC_1 (such as color points CD_1_1 and CD_1_2), color components CC_3 (such as color points CD_3_1 and CD_3_2), and discrete field amplification regions FFAR_2 and switching elements SE_1 and SE_3 have a negative polarity. The color components CC_2 (such as color points CD_2_1 and CD_2_2), the discrete field amplification areas FFAR_1 and FFAR_3, and the switching element SE_2 have positive polarity.
圖10(e)係表示顯示器1050的一部分,其係包括使用畫素設計1010與畫素設計1020的畫素。為清楚起見,係省略在圖10(e)中供電給切換元件的閘極線與源極線。為了更好以圖闡釋每一畫素,每一畫素的區域係被遮蔽,此遮蔽在圖10(e)中係僅為繪圖目的,並沒有功能上的意義。顯示器1050具有畫素設計1010與畫素設計1020之交替畫素。例如在列0中,畫素P(0,0)使用畫素設計1010,而畫素P(1,0)使用畫素設計1020。畫素P(2,0)(圖未示)係使用畫素設計1010。相似地,在列1中,畫素P(0,1)使用畫素設計1010,而畫素P(1,1)使用畫素設計1020。畫素P(2,1)(圖未示)係使用畫素設計1010。在顯示器1050之一列的畫素係垂直地配向,且以水平點間距HDS1(未圖示在圖10(e))而水平地相隔。Figure 10(e) shows a portion of display 1050 that includes pixels using pixel design 1010 and pixel design 1020. For the sake of clarity, the gate and source lines that are powered to the switching elements in Figure 10(e) are omitted. In order to better illustrate each pixel in the figure, the area of each pixel is obscured. This masking is only for drawing purposes in Figure 10(e) and has no functional significance. Display 1050 has alternating pixels of pixel design 1010 and pixel design 1020. For example, in column 0, pixel P(0,0) uses pixel design 1010, while pixel P(1,0) uses pixel design 1020. The pixel P(2,0) (not shown) uses the pixel design 1010. Similarly, in column 1, the pixel P(0,1) uses the pixel design 1010, while the pixel P(1,1) uses the pixel design 1020. The pixel P(2,1) (not shown) uses the pixel design 1010. The pixels in one of the columns of the display 1050 are vertically aligned, and are horizontally spaced apart by a horizontal dot pitch HDS1 (not shown in FIG. 10(e)).
在一畫素列內,畫素的色分量係水平地配向。然而,畫素的裝置元件區域係水平地交錯插入。特別是,在第一列中畫素的頂部裝置元件區域(及切換元件),係與在第二列(位在第一列之上)中畫素的底部裝置元件區域(及切換元件)垂直地配向。例如畫素P(0,0)之裝置元件區域DCA_2係與畫素P(0,1)之裝置元件區域DCA_1及DCA_3垂直地配向。再者,畫素P(0,0)之裝置元件區域DCA_2係位在畫素P(0,1)之裝置元件區域DCA_1及DCA_3之間。In a pixel list, the color components of the pixels are horizontally aligned. However, the device element regions of the pixels are interleaved horizontally. In particular, the top device component regions (and switching elements) in the first column are perpendicular to the bottom device component regions (and switching elements) in the second column (located above the first column). Ground alignment. For example, the device element region DCA_2 of the pixel P(0, 0) is vertically aligned with the device element regions DCA_1 and DCA_3 of the pixel P(0, 1). Furthermore, the device element region DCA_2 of the pixel P(0, 0) is located between the device element regions DCA_1 and DCA_3 of the pixel P(0, 1).
在每一列的畫素係在具有正點極性圖案與具有負點極性圖案之間交替。因此,例如在列0上,畫素P(0,0)具有正點極性圖案,畫素P(0,1)具有負點極性圖案。相似地,在列1上,畫素P(1,0)具有正點極性圖案,畫素P(1,1)具有負點極性圖案。再者,在每一列的畫素係在具有正點極性圖案與具有負點極性圖案之間交替。因此,例如在列0上,畫素P(0,0)具有正點極性圖案,畫素P(0,1)具有負點極性圖案。相似地,在列1上,畫素P(1,0)具有正點極性圖案,畫素P(1,1)具有負點極性圖案。一般而言,在顯示器1050中的畫素P(X,Y),當X為偶數時使用畫素設計1010,而當X為奇數時使用畫素設計1020。再者,當X+Y為偶數時,畫素P(X,Y)具有一第一極性;當X+Y為奇數時,畫素P(X,Y)具有一第二極性。由於畫素設計的本性(nature),在顯示器1050中的每一切換元件列具有相同極性。因此顯示器1050使用切換元件列反轉驅動模式。在本發明的一特定實施例中,每一色點具有43微米的寬度及49微米的高度。每一關聯點具有43微米的寬度及39微米的高度。水平及垂直點間距為4微米。The pixels in each column alternate between a pattern having a punctual polarity and a pattern having a negative polarity. Therefore, for example, on column 0, the pixel P(0, 0) has a punctual polarity pattern, and the pixel P(0, 1) has a negative dot polarity pattern. Similarly, on column 1, the pixel P(1,0) has a punctual polarity pattern, and the pixel P(1,1) has a negative dot polarity pattern. Furthermore, the pixels in each column alternate between a pattern having a positive dot polarity and a pattern having a negative dot polarity. Therefore, for example, on column 0, the pixel P(0, 0) has a punctual polarity pattern, and the pixel P(0, 1) has a negative dot polarity pattern. Similarly, on column 1, the pixel P(1,0) has a punctual polarity pattern, and the pixel P(1,1) has a negative dot polarity pattern. In general, the pixels P(X, Y) in the display 1050 use the pixel design 1010 when X is an even number and the pixel design 1020 when X is an odd number. Furthermore, when X+Y is an even number, the pixel P(X, Y) has a first polarity; when X+Y is an odd number, the pixel P(X, Y) has a second polarity. Due to the nature of the pixel design, each of the switching element columns in display 1050 has the same polarity. The display 1050 therefore uses the switching element column inversion drive mode. In a particular embodiment of the invention, each color point has a width of 43 microns and a height of 49 microns. Each associated point has a width of 43 microns and a height of 39 microns. The horizontal and vertical dot spacing is 4 microns.
如圖10(e)所示之使用如上所述的畫素設計,與鄰近已偏極元件相比較,顯示器1050的色點具有相反極性。因此,在每一色點中的離散場係被放大,以產生多個液晶區域(multiple liquid crystal domains)。As shown in Figure 10(e), using the pixel design described above, the color points of display 1050 have opposite polarities as compared to adjacent polarized elements. Thus, the discrete field lines in each color point are amplified to produce multiple liquid crystal domains.
圖11(a)及圖11(b)係表示一畫素設計1110(如後述的編號1110+及1110-)不同的點極性圖案,此畫素設計610通常被使用在具有一切換元件點反轉驅動模式的顯示器上。在實際的操作上,一畫素將在每一影像頁框間之一第一點極性圖案與一第二點極性圖案之間做切換。特別是,在圖11(a)中,畫素設計1110具有正點極性圖案(因此標示為1110+),且在圖11(b)中,畫素設計1110具有負點極性圖案(因此標示為1110-)。再者,在不同畫素設計中每一被極化元件的極性係以”+”表示正極性,以”-”表示負極性。11(a) and 11(b) show different dot polarity patterns of a pixel design 1110 (numbers 1110+ and 1110- described later). This pixel design 610 is generally used to have a switching element point inverse. Turn the drive mode on the display. In actual operation, a pixel will switch between a first dot polarity pattern and a second dot polarity pattern between each image frame. In particular, in Fig. 11(a), the pixel design 1110 has a punctual polarity pattern (hence the label is 1110+), and in Fig. 11(b), the pixel design 1110 has a negative point polarity pattern (hence the label is 1110) -). Furthermore, in the different pixel designs, the polarity of each polarized element is represented by "+" for positive polarity and "-" for negative polarity.
畫素設計1110具有三個色分量CC_1、CC_2及CC_3。每一色分量包括八色點。在每一色分量中大數量的色點係使畫素設計1110更適合用在大螢幕顯示器。畫素設計1110也包括每一色分量中的一切換元件(參考SE_1、SE_2及SE_3)及每一色分量中的離散場放大區域(參考FFAR_1、FFAR_2及FFAR_3)。切換元件SE_1、SE_2及SE_3係設置在一列。裝置元件區域DCA_1、DCA_2及DCA_3係圍繞切換元件SE_1、SE_2及SE_3而被界定。裝置元件區域DCA_1、DCA_2及DCA_3係具有一裝置元件區域高度DCAH及一裝置元件區域寬度DCAW。The pixel design 1110 has three color components CC_1, CC_2, and CC_3. Each color component includes eight color dots. A large number of color points in each color component makes the pixel design 1110 more suitable for use in large screen displays. The pixel design 1110 also includes a switching element (refer to SE_1, SE_2, and SE_3) of each color component and discrete field amplification regions (refer to FFAR_1, FFAR_2, and FFAR_3) in each color component. The switching elements SE_1, SE_2 and SE_3 are arranged in one column. The device component regions DCA_1, DCA_2, and DCA_3 are defined around the switching elements SE_1, SE_2, and SE_3. The device component regions DCA_1, DCA_2, and DCA_3 have a device component region height DCAH and a device component region width DCAW.
畫素設計1110之第一色分量CC_1的八色點係配置在具有四色點之二行的矩陣中。此二列係垂直地配向,以使八色點亦形成四個色點列。色點行係以第一水平點間距HDS1相分隔。在一列中的每一垂直地鄰近之色點,係以一第一垂直點間距VDS1相互間隔。特別是在第一色點列,色點CD_1_1係在色點CD_1_2之上,而色點CD_1_2係在色點CD_1_3之上,且色點CD_1_3係在色點CD_1_4之上。在第一色點列右邊且以水平點間距HDS1與第一色點列相互間隔之第二色點列中,色點CD_1_5係在色點CD_1_6之上,而色點CD_1_6係在色點CD_1_7之上,且色點CD_1_7係在色點CD_1_8之上。(如上所述,在”色點CD_X_Y”的標記中,當Y具體指定色點是在色分量CC_X內時,則X具體指定色分量CC_X在一畫素中。)除了在色點CD_1_1與CD_1_5之間的間距外,色點係沿色點矩陣的外邊緣電性地耦接。特別是色點CD_1_5的底部右角落,係耦接到色點CD_1_6的頂部右角落;色點CD_1_6的底部右角落,係接到色點CD_1_7的頂部右角落;色點CD_1_7的底部右角落,係接到色點CD_1_8的頂部右角落;色點CD_1_8的底部左角落,係接到色點CD_1_4的底部右角落;色點CD_1_4的頂部左角落,係接到色點CD_1_3的底部左角落;色點CD_1_3的頂部左角落,係接到色點CD_1_2的底部左角落;以及色點CD_1_2的頂部左角落,係接到色點CD_1_1的底部左角落。為了降低製造成本,色點及色點之間的連接,可以一單一金屬製程所形成。然而,本發明的某些實施例係可使用製程步驟來形成色點及耦接色點。再者,某些實施例係可在不同位置耦接色分量的色點。The eight color point of the first color component CC_1 of the pixel design 1110 is arranged in a matrix having two rows of four color points. The two columns are vertically aligned so that the eight color dots also form four color point columns. The color point lines are separated by a first horizontal dot pitch HDS1. Each of the vertically adjacent color points in a column is spaced apart from each other by a first vertical dot pitch VDS1. In particular, in the first color point sequence, the color point CD_1_1 is above the color point CD_1_2, and the color point CD_1_2 is above the color point CD_1_3, and the color point CD_1_3 is above the color point CD_1_4. In the second color point column on the right side of the first color point column and spaced apart from the first color point column by the horizontal dot pitch HDS1, the color point CD_1_5 is above the color point CD_1_6, and the color point CD_1_6 is in the color point CD_1_7 Above, and the color point CD_1_7 is above the color point CD_1_8. (As described above, in the mark of "color point CD_X_Y", when Y specifies that the color point is within the color component CC_X, then X specifies the color component CC_X in one pixel.) Except for the color points CD_1_1 and CD_1_5 In addition to the spacing between the dots, the color points are electrically coupled along the outer edge of the matrix of color points. In particular, the bottom right corner of the color point CD_1_5 is coupled to the top right corner of the color point CD_1_6; the bottom right corner of the color point CD_1_6 is connected to the top right corner of the color point CD_1_7; the bottom right corner of the color point CD_1_7 is The top right corner of the color point CD_1_8 is received; the bottom left corner of the color point CD_1_8 is connected to the bottom right corner of the color point CD_1_4; the top left corner of the color point CD_1_4 is connected to the bottom left corner of the color point CD_1_3; The top left corner of CD_1_3 is connected to the bottom left corner of the color point CD_1_2; and the top left corner of the color point CD_1_2 is connected to the bottom left corner of the color point CD_1_1. In order to reduce the manufacturing cost, the connection between the color point and the color point can be formed by a single metal process. However, certain embodiments of the present invention may use process steps to form color points and coupling color points. Moreover, some embodiments are capable of coupling color points of color components at different locations.
設置在色點CD_1_4與色點CD_1_8之下的裝置元件區域DCA_1,係以垂直點間距VDS2而與色點CD_1_4與色點CD_1_8相間隔。切換元件SE_1係設置在裝置元件區域DCA_1內。切換元件SE_1係耦接到色分量CC_1之色點的電極(即色點CD_1_1、CD_1_2、CD_1_3、CD_1_4、CD_1_5、CD_1_6、CD_1_7及CD_1_8),以控制色分量CC_1之色點的電壓極性與電壓量。在本發明某些實施例中,色點可與裝置元件區域重疊。The device element region DCA_1 disposed under the color point CD_1_4 and the color point CD_1_8 is spaced apart from the color point CD_1_4 by the color point CD_1_4 by the vertical dot pitch VDS2. The switching element SE_1 is disposed in the device element region DCA_1. The switching element SE_1 is coupled to the electrodes of the color point of the color component CC_1 (ie, the color points CD_1_1, CD_1_2, CD_1_3, CD_1_4, CD_1_5, CD_1_6, CD_1_7, and CD_1_8) to control the voltage polarity and voltage amount of the color point of the color component CC_1. . In some embodiments of the invention, the color point may overlap with the device component area.
相似地,畫素設計1110之第二色分量CC_2也具有八個色點,而八個色點係配置在具有四色點之二行的矩陣中。此二列係垂直地配向,以使八色點亦形成四個色點列。特別是在第一色點列,色點CD_2_1係在色點CD_2_2之上,而色點CD_2_2係在色點CD_2_3之上,且色點CD_2_3係在色點CD_2_4之上。在第一色點列右邊之第二色點列中,色點CD_2_5係在色點CD_2_6之上,而色點CD_2_6係在色點CD_2_7之上,且色點CD_2_7係在色點CD_2_8之上。除了在色點CD_2_1與CD_2_5之間的間距外,色點係沿色點矩陣的外邊緣電性地耦接。特別是色點CD_2_5的底部右角落,係耦接到色點CD_2_6的頂部右角落;色點CD_2_6的底部右角落,係接到色點CD_2_7的頂部右角落;色點CD_2_7的底部右角落,係接到色點CD_2_8的頂部右角落;色點CD_2_8的底部左角落,係接到色點CD_2_4的底部右角落;色點CD_2_4的頂部左角落,係接到色點CD_2_3的底部左角落;色點CD_2_3的頂部左角落,係接到色點CD_2_2的底部左角落;以及色點CD_2_2的頂部左角落,係接到色點CD_2_1的底部左角落。Similarly, the second color component CC_2 of the pixel design 1110 also has eight color points, and the eight color points are arranged in a matrix having two rows of four color points. The two columns are vertically aligned so that the eight color dots also form four color point columns. In particular, in the first color point column, the color point CD_2_1 is above the color point CD_2_2, and the color point CD_2_2 is above the color point CD_2_3, and the color point CD_2_3 is above the color point CD_2_4. In the second color point column to the right of the first color point column, the color point CD_2_5 is above the color point CD_2_6, and the color point CD_2_6 is above the color point CD_2_7, and the color point CD_2_7 is above the color point CD_2_8. In addition to the spacing between the color points CD_2_1 and CD_2_5, the color points are electrically coupled along the outer edge of the color point matrix. In particular, the bottom right corner of the color point CD_2_5 is coupled to the top right corner of the color point CD_2_6; the bottom right corner of the color point CD_2_6 is connected to the top right corner of the color point CD_2_7; the bottom right corner of the color point CD_2_7 is The top right corner of the color point CD_2_8 is received; the bottom left corner of the color point CD_2_8 is connected to the bottom right corner of the color point CD_2_4; the top left corner of the color point CD_2_4 is connected to the bottom left corner of the color point CD_2_3; The top left corner of CD_2_3 is connected to the bottom left corner of the color point CD_2_2; and the top left corner of the color point CD_2_2 is connected to the bottom left corner of the color point CD_2_1.
設置在色點CD_2_4與色點CD_2_8之下的裝置元件區域DCA_2,係以垂直點間距VDS2而與色點CD_2_4與色點CD_2_8相間隔。切換元件SE_2係設置在裝置元件區域DCA_2內。切換元件SE_2係耦接到色分量CC_2之色點的電極(即色點CD_2_1、CD_2_2、CD_2_3、CD_2_4、CD_2_5、CD_2_6、CD_2_7及CD_2_8),以控制色分量CC_2之色點的電壓極性與電壓量。第二色分量CC_2係與第一色分量CC_1垂直地配向,且以第二水平點間距HDS2與第一色分量CC_1相間隔,因此,色點CC_2與CC_1係以一水平色分量偏移量HCCO1(horizontal color component offset)所抵消,其中,水平色分量偏移量HCCO1係等於水平點間距HDS1加上水平點間距HDS2再加上兩倍的色點寬度CDW之和。在本發明某些實施例中,水平點間距HDS2係大於水平點間距HDS1。在此實施例中,較大的距離允許如用於切換元件之源極線的一訊號線,以使色分量CC_1及色分量CC_2作動。因為離散場放大區域可使用比訊號線更薄的氧化銦錫線(ITO lines)來形成,在一色分量之行間的間距,可被變得更小。The device element region DCA_2 disposed under the color point CD_2_4 and the color point CD_2_8 is spaced apart from the color point CD_2_4 and the color point CD_2_8 by the vertical dot pitch VDS2. The switching element SE_2 is disposed in the device element region DCA_2. The switching element SE_2 is coupled to the electrodes of the color points of the color component CC_2 (ie, color points CD_2_1, CD_2_2, CD_2_3, CD_2_4, CD_2_5, CD_2_6, CD_2_7, and CD_2_8) to control the voltage polarity and voltage amount of the color point of the color component CC_2. . The second color component CC_2 is vertically aligned with the first color component CC_1, and is spaced apart from the first color component CC_1 by the second horizontal dot pitch HDS2. Therefore, the color points CC_2 and CC_1 are offset by a horizontal color component HCCO1. Offset (horizontal color component offset), wherein the horizontal color component offset HCCO1 is equal to the sum of the horizontal dot pitch HDS1 plus the horizontal dot pitch HDS2 plus twice the color dot width CDW. In some embodiments of the invention, the horizontal dot spacing HDS2 is greater than the horizontal dot spacing HDS1. In this embodiment, a larger distance allows a signal line such as the source line for the switching element to operate the color component CC_1 and the color component CC_2. Since the discrete field amplification regions can be formed using ITO lines that are thinner than the signal lines, the pitch between the lines of a color component can be made smaller.
特別是關於色點,色點CD_2_1係與色點CD_1_5垂直地配向,且以水平點間距HDS2相互間隔。相似地,色點CD_2_2、CD_2_3及CD_2_4係分別與CD_1_6、CD_1_7及CD_1_8垂直地配向,且以水平點間距HDS2水平地相互間隔。In particular, regarding the color point, the color point CD_2_1 is vertically aligned with the color point CD_1_5, and is spaced apart from each other by the horizontal dot pitch HDS2. Similarly, the color points CD_2_2, CD_2_3, and CD_2_4 are vertically aligned with CD_1_6, CD_1_7, and CD_1_8, respectively, and horizontally spaced from each other by the horizontal dot pitch HDS2.
相似地,畫素設計1110之第三色分量CC_3也具有八個色點,而入個色點係配置在具有四色點之二行的矩陣中。此二列係垂直地配向,以使八色點亦形成四個色點列。特別是在第一色點列,色點CD_3_1係在色點CD_3_2之上,而色點CD_3_2係在色點CD_3_3之上,且色點CD_3_3係在色點CD_3_4之上。在第一色點列右邊之第二色點列中,色點CD_3_5係在色點CD_3_6之上,而色點CD_3_6係在色點CD_3_7之上,且色點CD_3_7係在色點CD_3_8之上。除了在色點CD_3_1與CD_3_5之間的間距外,色點係沿色點矩陣的外邊緣電性地耦接。特別是色點CD_3_5的底部右角落,係耦接到色點CD_3_6的頂部右角落;色點CD_3_6的底部右角落,係接到色點CD_3_7的頂部右角落;色點CD_3_7的底部右角落,係接到色點CD_3_8的頂部右角落;色點CD_3_8的底部左角落,係接到色點CD_3_4的底部右角落;色點CD_3_4的頂部左角落,係接到色點CD_3_3的底部左角落;色點CD_3_3的頂部左角落,係接到色點CD_3_2的底部左角落;以及色點CD_3_2的頂部左角落,係接到色點CD_3_1的底部左角落。Similarly, the third color component CC_3 of the pixel design 1110 also has eight color points, and the incoming color points are arranged in a matrix having two rows of four color points. The two columns are vertically aligned so that the eight color dots also form four color point columns. In particular, in the first color point column, the color point CD_3_1 is above the color point CD_3_2, and the color point CD_3_2 is above the color point CD_3_3, and the color point CD_3_3 is above the color point CD_3_4. In the second color point column to the right of the first color point column, the color point CD_3_5 is above the color point CD_3_6, and the color point CD_3_6 is above the color point CD_3_7, and the color point CD_3_7 is above the color point CD_3_8. In addition to the spacing between the color points CD_3_1 and CD_3_5, the color points are electrically coupled along the outer edge of the color point matrix. In particular, the bottom right corner of the color point CD_3_5 is coupled to the top right corner of the color point CD_3_6; the bottom right corner of the color point CD_3_6 is connected to the top right corner of the color point CD_3_7; the bottom right corner of the color point CD_3_7 is The top right corner of the color point CD_3_8 is received; the bottom left corner of the color point CD_3_8 is connected to the bottom right corner of the color point CD_3_4; the top left corner of the color point CD_3_4 is connected to the bottom left corner of the color point CD_3_3; The top left corner of CD_3_3 is connected to the bottom left corner of the color point CD_3_2; and the top left corner of the color point CD_3_2 is connected to the bottom left corner of the color point CD_3_1.
設置在色點CD_3_4與色點CD_3_8之下的裝置元件區域DCA_3,係以垂直點間距VDS2而與色點CD_3_4與色點CD_3_8相間隔。切換元件SE_3係設置在裝置元件區域DCA_3內。切換元件SE_3係耦接到色分量CC_3之色點的電極(即色點CD_3_1、CD_3_2、CD_3_3、CD_3_4、CD_3_5、CD_3_6、CD_3_7及CD_3_8),以控制色分量CC_3之色點的電壓極性與電壓量。第三色分量CC_3係與第二色分量CC_2垂直地配向,且以第二水平點間距HDS2與第一色分量CC_1相間隔,因此,色點CC_3與CC_2係以一水平色分量偏移量所抵消。特別是關於色點,色點CD_3_1係與色點CD_2_5垂直地配向,且以水平點間距HDS2相互間隔。相似地,色點CD_3_2、CD_3_3及CD_3_4係分別與CD_2_6、CD_2_7及CD_2_8垂直地配向,且以水平點間距HDS2水平地相互間隔。The device element region DCA_3 disposed under the color point CD_3_4 and the color point CD_3_8 is spaced apart from the color point CD_3_4 and the color point CD_3_8 by the vertical dot pitch VDS2. The switching element SE_3 is disposed within the device component area DCA_3. The switching element SE_3 is coupled to the electrodes of the color point of the color component CC_3 (ie, the color points CD_3_1, CD_3_2, CD_3_3, CD_3_4, CD_3_5, CD_3_6, CD_3_7, and CD_3_8) to control the voltage polarity and voltage amount of the color point of the color component CC_3. . The third color component CC_3 is vertically aligned with the second color component CC_2, and is spaced apart from the first color component CC_1 by the second horizontal dot pitch HDS2. Therefore, the color points CC_3 and CC_2 are offset by a horizontal color component. offset. In particular, regarding the color point, the color point CD_3_1 is vertically aligned with the color point CD_2_5, and is spaced apart from each other by the horizontal dot pitch HDS2. Similarly, the color points CD_3_2, CD_3_3, and CD_3_4 are vertically aligned with CD_2_6, CD_2_7, and CD_2_8, respectively, and are horizontally spaced apart from each other by the horizontal dot pitch HDS2.
畫素設計1110也包括離散場放大區域FFAR_1、FFAR_2及FFAR_3。圖11(c)係表示畫素設計1110之離散場放大區域FFAR_1更加詳細的視圖。為清楚起見,離散場放大區域FFAR_1係概念地區分成一第一垂直放大部VAP_1、一第一水平放大部HAP_1、一第二水平放大部HAP_2、一第三水平放大部HAP_3、一第四水平放大部HAP_4、一第五水平放大部HAP_5以及一第六水平放大部HAP_6。水平放大部HAP_1係鄰近垂直放大部VAP_1且沿到左邊。水平放大部HAP_1係垂直地大致地設置在從垂直放大部VAP_1(即VAP_H_1)頂部算起的四分之一高度處。水平放大部HAP_2係垂直地設在中央且延伸到垂直放大部VAP_1的左邊。水平放大部HAP_3係垂直地大致地設置在從垂直放大部VAP_1底部算起的四分之一高度處,且延伸到垂直放大部VAP_1的左邊。水平放大部HAP_4係與水平放大部HAP_1垂直地配向且相互鄰近,但延伸到垂直放大部VAP_1的右邊。水平放大部HAP_5係與水平放大部HAP_2垂直地配向且相互鄰近,但延伸到垂直放大部VAP_1的右邊。水平放大部HAP_6係與水平放大部HAP_3垂直地配向且相互鄰近,但延伸到垂直放大部VAP_1的右邊。如上所述,水平放大部與垂直放大部的使用,係允許離散場放大區域FFAR_1之配置有更清楚的描述。水平放大部HAP_1、HAP_2、HAP_3、HAP_4、HAP_5與HAP_6分別地具有水平放大部寬度HAP_W_1、HAP_W_2、HAP_W_3、HAP_W_4、HAP_W_5與HAP_W_6以及水平放大部高度HAP_H_1、HAP_H_2、HAP_H_3、HAP_H_4、HAP_H_5與HAP_H_6。在圖11(a)-11(d)的特定實施例中,水平放大部高度係相同,而水平放大部寬度係相同。垂直放大部VAP_1具有一垂直放大部寬度VAP_W_1及一垂直放大部高度VAP_H_1。離散場放大區域FFAR_2及FFAR_3係與離散場放大區域FFAR_1的形狀相同。The pixel design 1110 also includes discrete field amplification regions FFAR_1, FFAR_2, and FFAR_3. Fig. 11(c) is a more detailed view showing the discrete field amplification area FFAR_1 of the pixel design 1110. For the sake of clarity, the discrete field amplification area FFAR_1 is conceptually divided into a first vertical amplification unit VAP_1, a first horizontal amplification unit HAP_1, a second horizontal amplification unit HAP_2, a third horizontal amplification unit HAP_3, and a fourth level. The amplification unit HAP_4, a fifth horizontal amplification unit HAP_5, and a sixth horizontal amplification unit HAP_6. The horizontal amplifying portion HAP_1 is adjacent to the vertical amplifying portion VAP_1 and along the left side. The horizontal amplifying portion HAP_1 is vertically disposed substantially at a quarter height from the top of the vertical amplifying portion VAP_1 (i.e., VAP_H_1). The horizontal amplifying portion HAP_2 is vertically disposed at the center and extends to the left of the vertical amplifying portion VAP_1. The horizontal amplifying portion HAP_3 is vertically disposed substantially at a quarter height from the bottom of the vertical amplifying portion VAP_1 and extends to the left of the vertical amplifying portion VAP_1. The horizontal amplifying portion HAP_4 is orthogonally aligned with the horizontal amplifying portion HAP_1 and adjacent to each other, but extends to the right of the vertical amplifying portion VAP_1. The horizontal amplifying portion HAP_5 is vertically aligned with the horizontal amplifying portion HAP_2 and adjacent to each other, but extends to the right of the vertical amplifying portion VAP_1. The horizontal amplifying portion HAP_6 is orthogonally aligned with the horizontal amplifying portion HAP_3 and adjacent to each other, but extends to the right of the vertical amplifying portion VAP_1. As described above, the use of the horizontal amplifying portion and the vertical amplifying portion allows a clearer description of the arrangement of the discrete field magnifying region FFAR_1. The horizontal amplification sections HAP_1, HAP_2, HAP_3, HAP_4, HAP_5, and HAP_6 respectively have horizontal amplification section widths HAP_W_1, HAP_W_2, HAP_W_3, HAP_W_4, HAP_W_5 and HAP_W_6, and horizontal amplification section heights HAP_H_1, HAP_H_2, HAP_H_3, HAP_H_4, HAP_H_5, and HAP_H_6. In the particular embodiment of Figures 11(a)-11(d), the horizontal magnifications are the same height and the horizontal magnifications are the same. The vertical amplifying portion VAP_1 has a vertical amplifying portion width VAP_W_1 and a vertical amplifying portion height VAP_H_1. The discrete field amplification areas FFAR_2 and FFAR_3 are identical in shape to the discrete field amplification area FFAR_1.
如圖11(a)所示,離散場放大區域FFAR_1、FFAR_2及FFAR_3係分別設置在色分量CC_1、CC_2及CC_3內。特別是,離散場放大區域FFAR_1被配置,以使離散場放大區域FFAR_1的水平放大部HAP_1位在色點CD_1_1與CD_1_2之間,且被以一垂直離散場放大區域間距VFFARS而與色點CD_1_1及CD_1_2相分隔。由於色點CD_1_1及CD_1_2之間的內部連接,離散場放大區域FFAR_1的水平放大部HAP_1並未延伸到點CD_1_1及CD_1_2的左側端。相似地,離散場放大區域FFAR_1的水平放大部HAP_2位在色點CD_1_2與CD_1_3之間;離散場放大區域FFAR_1的水平放大部HAP_3位在色點CD_1_3與CD_1_4之間;離散場放大區域FFAR_1的水平放大部HAP_4位在色點CD_1_5與CD_1_6之間;離散場放大區域FFAR_1的水平放大部HAP5位在色點CD_1_6與CD_1_7之間;離散場放大區域FFAR_1的水平放大部HAP_6位在色點CD_1_7與CD_1_8之間。離散場放大區域FFAR_1的垂直放大部VAP_1係設置在色點CD_1_1與CD_1_5之間、CD_1_2與CD_1_6之間、CD_1_3與CD_1_7之間、CD_1_4與CD_1_8之間。離散場放大區域FFAR_1的垂直放大部VAP_1係被以一水平離散場放大區域間距HFFARS(並未特別表示在圖11(a))而與色點相分隔。因此,離散場放大區域FFAR_1,係沿色點CD_1_1的右側頂部、色點CD_1_2與CD_1_3右側頂部及底部、色點CD_1_4右側頂部、色點CD_1_5左側底部、色點CD_1_6與CD_1_7左側頂部及底部、色點CD_1_8左側頂部而延伸。As shown in FIG. 11(a), the discrete field amplification areas FFAR_1, FFAR_2, and FFAR_3 are respectively disposed in the color components CC_1, CC_2, and CC_3. In particular, the discrete field amplification region FFAR_1 is configured such that the horizontal amplification portion HAP_1 of the discrete field amplification region FFAR_1 is between the color points CD_1_1 and CD_1_2, and is separated by a vertical discrete field amplification region spacing VFFARS and the color point CD_1_1 CD_1_2 is separated. Due to the internal connection between the color points CD_1_1 and CD_1_2, the horizontal amplification portion HAP_1 of the discrete field amplification area FFAR_1 does not extend to the left end of the points CD_1_1 and CD_1_2. Similarly, the horizontal amplification portion HAP_2 of the discrete field amplification region FFAR_1 is located between the color points CD_1_2 and CD_1_3; the horizontal amplification portion HAP_3 of the discrete field amplification region FFAR_1 is located between the color points CD_1_3 and CD_1_4; the level of the discrete field amplification region FFAR_1 The amplification portion HAP_4 is located between the color points CD_1_5 and CD_1_6; the horizontal amplification portion HAP5 of the discrete field amplification region FFAR_1 is located between the color points CD_1_6 and CD_1_7; and the horizontal amplification portion HAP_6 of the discrete field amplification region FFAR_1 is at the color points CD_1_7 and CD_1_8 between. The vertical amplifying portion VAP_1 of the discrete field amplification region FFAR_1 is disposed between the color points CD_1_1 and CD_1_5, between CD_1_2 and CD_1_6, between CD_1_3 and CD_1_7, and between CD_1_4 and CD_1_8. The vertical amplifying portion VAP_1 of the discrete field amplifying area FFAR_1 is separated from the color point by a horizontal discrete field amplifying area pitch HFFARS (not specifically shown in FIG. 11(a)). Therefore, the discrete field amplification area FFAR_1 is along the right top of the color point CD_1_1, the top and bottom of the color point CD_1_2 and CD_1_3, the top of the right side of the color point CD_1_4, the bottom of the left side of the color point CD_1_5, the top left and bottom of the color point CD_1_6 and CD_1_7, color Click on the top left side of CD_1_8 to extend.
離散場放大區域FFAR_2與FFAR_3係以如上所述離散場放大區域FFAR_1與色分量CC_1的相同手段,分別地設置在色分量CC_2及CC_3內。The discrete field amplification areas FFAR_2 and FFAR_3 are respectively disposed in the color components CC_2 and CC_3 by the same means as the discrete field amplification area FFAR_1 and the color component CC_1 described above.
畫素設計1110也被設計,以使離散場放大區域從一鄰近畫素接收極性。尤其是,一第一導體係耦接到離散場放大區域,以從在目前畫素上之畫素接收極性,且一第二導體係耦接到切換元件,以提供極性給目前畫素下的畫素之離散場放大區域。舉例來說,耦接到離散場放大區域FFAR_1之電極的導體1112,係往上延伸連接到目前畫素上之畫素的導體1113以接收極性(請參考圖11(d))。耦接到切換元件SE_1導體1113,係朝下延伸連接到目前畫素下之畫素的導體1112。導體1114與1115適合離散場放大區域FFAR_2之目的,係如導體1112與1113對離散場放大區域FFAR_1而言。再者,導體1116與1117適合離散場放大區域FFAR_3之目的,係如導體1112與1113對離散場放大區域FFAR_1而言。The pixel design 1110 is also designed to allow the discrete field amplification region to receive polarity from a neighboring pixel. In particular, a first conduction system is coupled to the discrete field amplification region to receive polarity from a pixel on the current pixel, and a second conduction system is coupled to the switching element to provide polarity to the current pixel. The discrete field magnified area of the pixel. For example, the conductor 1112 coupled to the electrode of the discrete field amplification region FFAR_1 is connected to the conductor 1113 of the pixel connected to the current pixel to receive the polarity (please refer to FIG. 11(d)). The conductor 1111 is coupled to the switching element SE_1 and extends downwardly to the conductor 1112 of the pixel under the current pixel. The conductors 1114 and 1115 are suitable for the purpose of the discrete field amplification region FFAR_2, such as the conductors 1112 and 1113 for the discrete field amplification region FFAR_1. Furthermore, conductors 1116 and 1117 are suitable for discrete field amplification regions FFAR_3, such as conductors 1112 and 1113 for discrete field amplification regions FFAR_1.
色點、離散場放大區域及切換元件的極性,係以正號”+”及負號”-”表示。因此在圖11(a)中,顯示畫素設計1110+的正點極性圖案、切換元件SE_1與SE_3、色點CD_1_1、CD_1_2、CD_1_3、CD_1_4、CD_1_5、CD_1_6、CD_1_7、CD_1_8、CD_3_1、CD_3_2、CD_3_3、CD_3_4、CD_3_5、CD_3_6、CD_3_7、CD_3_8及離散場放大區域FFAR_2係具有正極性。然而,切換元件SE_2、色點CD_2_1、CD_2_2、CD_2_3、CD_2_4、CD_2_5、CD_2_6、CD_2_7、CD_2_8及離散場放大區域FFAR_1、FFAR_3係具有負極性。The color point, the discrete field amplification area, and the polarity of the switching element are indicated by a positive sign "+" and a negative sign "-". Therefore, in FIG. 11(a), the punctual polarity pattern of the pixel design 1110+, the switching elements SE_1 and SE_3, the color points CD_1_1, CD_1_2, CD_1_3, CD_1_4, CD_1_5, CD_1_6, CD_1_7, CD_1_8, CD_3_1, CD_3_2, CD_3_3, CD_3_4, CD_3_5, CD_3_6, CD_3_7, CD_3_8, and discrete field amplification area FFAR_2 have positive polarity. However, the switching element SE_2, the color points CD_2_1, CD_2_2, CD_2_3, CD_2_4, CD_2_5, CD_2_6, CD_2_7, CD_2_8, and the discrete field amplification areas FFAR_1, FFAR_3 have negative polarity.
圖11(b)係表示具有負點極性圖案的畫素設計1110。對負點極性圖案而言,切換元件SE_1與SE_3、色點CD_1_1、CD_1_2、CD_1_3、CD_1_4、CD_1_5、CD_1_6、CD_1_7、CD_1_8、CD_3_1、CD_3_2、CD_3_3、CD_3_4、CD_3_5、CD_3_6、CD_3_7、CD_3_8及離散場放大區域FFAR_2係具有負極性。然而,切換元件SE_2、色點CD_2_1、CD_2_2、CD_2_3、CD_2_4、CD_2_5、CD_2_6、CD_2_7、CD_2_8及離散場放大區域FFAR_1、FFAR_3係具有正極性。Fig. 11(b) shows a pixel design 1110 having a negative dot polarity pattern. For negative dot polarity patterns, switching elements SE_1 and SE_3, color points CD_1_1, CD_1_2, CD_1_3, CD_1_4, CD_1_5, CD_1_6, CD_1_7, CD_1_8, CD_3_1, CD_3_2, CD_3_3, CD_3_4, CD_3_5, CD_3_6, CD_3_7, CD_3_8, and discrete fields The enlarged area FFAR_2 has a negative polarity. However, the switching element SE_2, the color points CD_2_1, CD_2_2, CD_2_3, CD_2_4, CD_2_5, CD_2_6, CD_2_7, CD_2_8, and the discrete field amplification areas FFAR_1, FFAR_3 have positive polarity.
如上所述,若鄰近元件具有相反極性者,在每一色點的離散場會被放大。畫素設計1110係利用離散場放大區域來強化並穩定在液晶結構中之多區域的形成。一般而言,已偏極元件的極性係被指定,以使一第一極性的色點具有第二極性的鄰近已偏極元件。更特別地對畫素設計1110而言,每一色點係圍繞相反極性之離散場放大區域部份的兩側或三側上。再者,這些色點也鄰近一相反極性的色點。舉例來說,對畫素設計1110(如圖11(a)所示)之正點極性圖案而言,色點CD_1_6具有正極性並鄰近在色點CD_1_6之頂部、左側及底部的離散場放大區域FFAR_1部份(具有負極性)。再者,具有負極性的色點CD_2_2,係在色點CD_1_6左側上。因此,色點CD_1_6的離散場被放大。As noted above, if adjacent elements have opposite polarities, the discrete fields at each color point will be amplified. The pixel design 1110 utilizes discrete field amplification regions to enhance and stabilize the formation of multiple regions in the liquid crystal structure. In general, the polarity of the biased component is specified such that a color point of a first polarity has a second polarized adjacent polarized component. More specifically for the pixel design 1110, each color point is on either or both sides of a portion of the discrete field amplification region of opposite polarity. Moreover, these color points are also adjacent to a color point of opposite polarity. For example, for the punctual polarity pattern of the pixel design 1110 (shown in FIG. 11(a)), the color point CD_1_6 has a positive polarity and is adjacent to the discrete field amplification area FFAR_1 at the top, left and bottom of the color point CD_1_6. Part (with negative polarity). Further, the color point CD_2_2 having a negative polarity is on the left side of the color point CD_1_6. Therefore, the discrete field of the color point CD_1_6 is amplified.
使用圖11(a)與圖11(b)之畫素設計1110的畫素,可被使用在利用切換元件點反轉模式之顯示器。圖11(d)係表示顯示器1120的一部分,顯示器1120係使用畫素設計1110的畫素P(10,10)、P(11,10)、P(10,11)及P(11,11),而畫素設計1110係具有一切換元件點反轉驅動模式。顯示器1120可具有數千列,且每一列上具有數千畫素。列與行係以如圖11(d)所示的方式從如圖11(d)所示的部份連續。為了清楚說明,控制切換元件的閘極線與源極線係在圖11(d)中被省略。為了更好以圖闡釋每一畫素,每一畫素的區域係被遮蔽,此遮蔽在圖11(d)中係僅為繪圖目的,並沒有功能上的意義。再者,由於空間限制,在圖11(d)中,色點係被標示成”X_Y”而不是”CD_X_Y”。The pixels using the pixel design 1110 of FIGS. 11(a) and 11(b) can be used in a display using the switching element dot inversion mode. 11(d) shows a portion of the display 1120, and the display 1120 uses the pixels P (10, 10), P (11, 10), P (10, 11), and P (11, 11) of the pixel design 1110. The pixel design 1110 has a switching element dot inversion driving mode. Display 1120 can have thousands of columns with thousands of pixels on each column. The columns and rows are continuous from the portion shown in Fig. 11(d) in the manner shown in Fig. 11(d). For clarity of explanation, the gate line and the source line of the control switching element are omitted in FIG. 11(d). In order to better illustrate each pixel in the figure, the area of each pixel is obscured. This masking is only for drawing purposes in Figure 11(d) and has no functional significance. Furthermore, due to space constraints, in FIG. 11(d), the color point is indicated as "X_Y" instead of "CD_X_Y".
在顯示器1120中,畫素係被配置以使在一列的畫素交替點極性圖案(正或負),且在一行的畫素也交替正、負點極性圖案。因此,畫素P(10,10)及P(11,11)具有正點極性圖案,畫素P(10,11)與P(11,10)具有負點極性圖案。然而,在下一個頁框中,畫素係將切換點極性圖案。因此一般而言,一畫素P(x,y)在當x+y為偶數時具有一第一點極性圖案,在當x+y為奇數時具有一第二點極性圖案。每一畫素列上的畫素係垂直地配向且水平地分隔,以使畫素最右邊的色點係以水平點間距HDS2與鄰近畫素之最左邊色點相隔。在一畫素行的畫素係水平地配向,且以一垂直點間距VDS3相互間隔。In the display 1120, the pixels are configured such that the pixels in one column alternate dot patterns (positive or negative), and the pixels in one row also alternate positive and negative dot polar patterns. Therefore, the pixels P(10, 10) and P(11, 11) have a punctual polarity pattern, and the pixels P(10, 11) and P(11, 10) have a negative dot polarity pattern. However, in the next page frame, the pixel will switch the dot polarity pattern. Thus, in general, a pixel P(x, y) has a first dot polarity pattern when x+y is even, and a second dot polarity pattern when x+y is odd. The pixels on each pixel column are vertically aligned and horizontally separated such that the rightmost color point of the pixel is separated from the leftmost color point of the adjacent pixel by the horizontal dot pitch HDS2. The pixels in a picture line are horizontally aligned and spaced apart from each other by a vertical dot pitch VDS3.
如上所述,第一畫素的離散場放大區域係從第二畫素的切換元件接收極性。舉例來說,畫素P(10,10)之離散場放大區域FFAR_1的電極,係耦接到經由畫素P(10,10)之導體1112與畫素P(10,11)之導體1113的畫素P(10,11)之切換元件SE_1。相似地,畫素P(10,10)之離散場放大區域FFAR_2的電極,係耦接到經由畫素P(10,10)之導體1114與畫素P(10,11)之導體1115的畫素(10,11)之切換元件SE_2。再者,畫素P(10,10)之離散場放大區域FFAR_3的電極,係耦接到經由畫素P(10,10)之導體1117與畫素P(10,11)之導體1117的畫素(10,11)之切換元件SE_3。As described above, the discrete field amplification region of the first pixel receives the polarity from the switching element of the second pixel. For example, the electrodes of the discrete field amplification region FFAR_1 of the pixel P (10, 10) are coupled to the conductor 1113 via the conductor 1112 of the pixel P (10, 10) and the conductor 1113 of the pixel P (10, 11). Switching element SE_1 of pixel P (10, 11). Similarly, the electrodes of the discrete field amplification region FFAR_2 of the pixel P (10, 10) are coupled to the conductor 1115 of the pixel P1 through the pixel P (10, 10) and the conductor 1115 of the pixel P (10, 11). The switching element SE_2 of the prime (10, 11). Furthermore, the electrodes of the discrete field amplification region FFAR_3 of the pixel P (10, 10) are coupled to the conductor 1117 of the pixel P1 (10, 10) and the conductor 1117 of the pixel P (10, 11). Switching element SE_3 of prime (10, 11).
在本發明一特定實施例中,每一色點具有120微米的寬度及360微米的高度。每一色點具有44微米的寬度及66微米的高度。每一離散場放大區域具有5微米的垂直放大部寬度、5微米的垂直放大部高度、5微米的水平放大部寬度以及5微米的水平放大部高度。水平點間距HDS1為17微米,水平點間距HDS2為16微米,垂直點間距VDS1為17微米,垂直點間距VDS2為5微米,垂直點間距VDS3為18微米,水平離散場放大間距HFFARS為5微米,且垂直離散場放大間距VFFARS為6微米。In a particular embodiment of the invention, each color point has a width of 120 microns and a height of 360 microns. Each color point has a width of 44 microns and a height of 66 microns. Each discrete field amplification region has a vertical magnification width of 5 microns, a vertical magnification height of 5 microns, a horizontal magnification width of 5 microns, and a horizontal magnification height of 5 microns. The horizontal point spacing HDS1 is 17 microns, the horizontal point spacing HDS2 is 16 microns, the vertical point spacing VDS1 is 17 microns, the vertical point spacing VDS2 is 5 microns, the vertical point spacing VDS3 is 18 microns, and the horizontal discrete field amplification spacing HFFARS is 5 microns. And the vertical discrete field amplification pitch VFFARS is 6 micrometers.
如上所述的不同其他原理也可以使用在畫素設計1110。舉例來說,畫素設計1110可以簡單地適合於使用在具有離散場放大區域切換元件及離散場放大區域電極之顯示器上。(請參考圖7(e)或圖9(e))再者,畫素設計1110的變異也可以產生如邊緣畫素。Different other principles as described above can also be used in the pixel design 1110. For example, the pixel design 1110 can be simply adapted to be used on displays having discrete field amplification region switching elements and discrete field amplification region electrodes. (Refer to Figure 7(e) or Figure 9(e)) Furthermore, the variation of the pixel design 1110 can also produce edge pixels.
圖11(e)係以圖闡釋以畫素設計1110為基礎之一頂邊畫素設計1110_TE。為了簡單起見,並不重複描述,且僅描述頂邊畫素設計1110_TE與畫素設計1110之間的差異。Fig. 11(e) is a diagram illustrating a topside pixel design 1110_TE based on the pixel design 1110. For the sake of simplicity, the description is not repeated, and only the difference between the topside pixel design 1110_TE and the pixel design 1110 is described.
特別是,頂邊畫素設計1110_TE係使用已修改的色分量布局,係稍微地修改裝置元件區域,及與畫素設計1110比較之一已修改的離散場放大區域。畫素設計1110_TE所有的色分量與離散場放大區域具有相同的修改。為清楚起見,畫素設計1110_TE的色分量係表示成頂邊色分量,且標示為CC_TE_1、CC_TE_2及CC_TE_3。相似地,畫素設計1110_TE的離散場放大區域係表示成頂邊離散場放大區域,且標示為FFAR_TE_1、FFAR_TE_2及FFAR_TE_3。尤其是,色點的方式係沿已修改之色點矩陣外緣而耦接。特別是在頂邊色分量CC_TE_1中,色點CD_1_1係耦接到色點CD_1_5,但色點CD_1_7並為沿色點矩陣邊緣而耦接到色點CE_1_8。再者,頂邊色分量CC_TE_1之色點CD_1_8係縮小化,以提供空間給連接件1132(connectors)。畫素設計1110_TE的頂邊色分量CC_TE_2與CC_TE_3,係為相似地修改。In particular, the topside pixel design 1110_TE uses a modified color component layout that slightly modifies the device component region and compares one of the modified discrete field amplification regions to the pixel design 1110. All of the color components of the pixel design 1110_TE have the same modifications as the discrete field amplification regions. For the sake of clarity, the color components of the pixel design 1110_TE are represented as top-edge color components and are labeled CC_TE_1, CC_TE_2, and CC_TE_3. Similarly, the discrete field amplification region of the pixel design 1110_TE is represented as a top edge discrete field amplification region and is labeled FFAR_TE_1, FFAR_TE_2, and FFAR_TE_3. In particular, the manner of color points is coupled along the outer edge of the modified color point matrix. In particular, in the top edge color component CC_TE_1, the color point CD_1_1 is coupled to the color point CD_1_5, but the color point CD_1_7 is coupled to the color point CE_1_8 along the edge of the color point matrix. Furthermore, the color point CD_1_8 of the top edge color component CC_TE_1 is reduced to provide space for the connectors 1132. The top-edge color components CC_TE_2 and CC_TE_3 of the pixel design 1110_TE are modified similarly.
再者,由於色點CD_1_1與CD_1_5之間的耦接,在色點CD_1_1與CD_1_5之間的頂邊離散場放大區域FFAR_TE_1之垂直放大部係被縮短。頂邊離散場放大部FFAR_TE_2及FFAR_TE_3係相似地被修改。再者,頂邊畫素設計1110_TE之裝置元件區域DCA_TE_1、DCA_TE_2及DCA_TE_3係被窄化,以分別提供空間給連接件1132、1134及1136。連接件1132、1134及1136係用來將頂邊離散場放大區域FFAR_TE_1、FFAR_TE_2及FFAR_TE_3耦接到頂邊畫素下之色分量CC_1、CC_2及CC_3。Furthermore, due to the coupling between the color points CD_1_1 and CD_1_5, the vertical enlargement portion of the top-side discrete field amplification region FFAR_TE_1 between the color points CD_1_1 and CD_1_5 is shortened. The top edge discrete field amplifying sections FFAR_TE_2 and FFAR_TE_3 are similarly modified. Furthermore, the device component regions DCA_TE_1, DCA_TE_2, and DCA_TE_3 of the topside pixel design 1110_TE are narrowed to provide space for the connectors 1132, 1134, and 1136, respectively. The connectors 1132, 1134, and 1136 are used to couple the top-side discrete field amplification regions FFAR_TE_1, FFAR_TE_2, and FFAR_TE_3 to the color components CC_1, CC_2, and CC_3 under the top-side pixels.
圖11(f)及圖11(g)係以圖闡釋依據畫素設計1110之另一頂邊畫素設計1110_TE_2及一頂部右角落畫素設計1110_TRC。為簡單起見,不重複描述,僅描述邊緣畫素設計與畫素設計1110之間的差異。Figure 11 (f) and Figure 11 (g) illustrate another top-side pixel design 1110_TE_2 and a top right-corner pixel design 1110_TRC according to the pixel design 1110. For the sake of simplicity, the description will not be repeated, only the difference between the edge pixel design and the pixel design 1110 will be described.
特別是,頂邊畫素設計1110_TE2係使用已修改的色分量布局,其係與畫素設計1110比較之一已修改的離散場放大區域。畫素設計1110_TE2所有的色分量與離散場放大區域具有相同的修改。為清楚起見,畫素設計1110_TE2的色分量係表示成頂邊色分量,且標示為CC_TE2_1、CC_TE2_2及CC_TE2_3。相似地,畫素設計1110_TE2的離散場放大區域係表示成頂邊離散場放大區域,且標示為FFAR_TE2_1、FFAR_TE2_2及FFAR_TE2_3。尤其是,色點的方式係沿已修改之色點矩陣外緣而耦接。特別是在頂邊色分量CC_TE2_1中,色點CD_1_5係耦接到色點CD_1_1,但色點CD_1_5並為沿色點矩陣邊緣而耦接到色點CE_1_6。畫素設計1110_TE2之頂邊色分量CC_TE2_2及CC_TE2_3,係被相似地修改。再者,在色點CD_1_5與CD_1_6之間的頂邊離散場放大區域FFAR_TE2_1,係延伸到色點CD_1_5與CD_1_6的右側邊。邊離散場放大區域FFAR_TE2_2與FFAR_TE_3係被相似地修改。一連接件1142係將頂邊離散場放大區域FFAR_TE2_1耦接到頂邊色分量CC_TE2_2。一連接件1143係將頂邊離散場放大區域FFAR_TE2_2耦接到頂邊色分量CC_TE2_3。另外,一連接件1144係將頂邊離散場放大區域FFAR_TE2_3耦接到一鄰近畫素之最左邊色分量。In particular, the topside pixel design 1110_TE2 uses a modified color component layout that is a modified discrete field amplification region compared to the pixel design 1110. All of the color components of the pixel design 1110_TE2 have the same modifications as the discrete field amplification regions. For the sake of clarity, the color components of the pixel design 1110_TE2 are represented as top-edge color components and are labeled CC_TE2_1, CC_TE2_2, and CC_TE2_3. Similarly, the discrete field amplification region of the pixel design 1110_TE2 is represented as a top edge discrete field amplification region and is labeled FFAR_TE2_1, FFAR_TE2_2, and FFAR_TE2_3. In particular, the manner of color points is coupled along the outer edge of the modified color point matrix. In particular, in the top edge color component CC_TE2_1, the color point CD_1_5 is coupled to the color point CD_1_1, but the color point CD_1_5 is coupled to the color point CE_1_6 along the edge of the color point matrix. The top edge color components CC_TE2_2 and CC_TE2_3 of the pixel design 1110_TE2 are similarly modified. Furthermore, the top side discrete field amplification area FFAR_TE2_1 between the color points CD_1_5 and CD_1_6 extends to the right side of the color points CD_1_5 and CD_1_6. The edge discrete field amplification regions FFAR_TE2_2 and FFAR_TE_3 are similarly modified. A connector 1142 couples the top edge discrete field amplification region FFAR_TE2_1 to the top edge color component CC_TE2_2. A connector 1143 couples the top edge discrete field amplification region FFAR_TE2_2 to the top edge color component CC_TE2_3. In addition, a connector 1144 couples the top edge discrete field amplification region FFAR_TE2_3 to the leftmost color component of a neighboring pixel.
頂部右角落畫素設計1110_TRC(圖11(g))係相似於頂邊畫素設計1110_TE2。為簡單起見,並不重複敘述,僅描述頂部右角落畫素設計1110_TRC與頂邊畫素設計1110_TE2之間的差異。The top right corner pixel design 1110_TRC (Fig. 11(g)) is similar to the topside pixel design 1110_TE2. For the sake of simplicity, the description will not be repeated, only the difference between the top right corner pixel design 1110_TRC and the top edge pixel design 1110_TE2 will be described.
特別是,頂部右角落畫素設計1110_TRC係使用對第三色分量之已修改的色分量布局,其係與畫素設計1110之第三離散場放大區域比較的一已修改的離散場放大區域。為清楚起見,畫素設計1110_TRC的已修改之色分量,係表示成頂部右角落色分量,且標示為CC_TRC_3。相似地,畫素設計1110_TRC的第三離散場放大區域係表示成頂部右角落離散場放大區域,且標示為FFAR_TRC_3。尤其是,色點的方式係沿已修改之色點矩陣外緣而耦接。特別是在頂部右角落色分量CC_TRC_3中,色點CD_3_5係耦接到色點CD_3_6,但色點CD_3_2並為沿色點矩陣邊緣而耦接到色點CE_3_3。再者,在色點CD_3_2與CD_3_3之間的頂部右角落頂邊離散場放大區域FFAR_TRC_3,係延伸到色點CD_3_2與CD_3_3的左側邊。邊離散場放大區域FFAR_TE2_2與FFAR_TE_3係被相似地修改。一連接件1148係將頂部右角落畫離散場放大區域FFAR_TRC_3耦接到頂邊色分量CC_TE2_2(在相同的畫素中)。In particular, the top right corner pixel design 1110_TRC uses a modified color component layout for the third color component that is a modified discrete field magnification region compared to the third discrete field amplification region of the pixel design 1110. For the sake of clarity, the modified color component of the pixel design 1110_TRC is represented as the top right corner color component and is labeled CC_TRC_3. Similarly, the third discrete field amplification region of the pixel design 1110_TRC is represented as a top right corner discrete field amplification region and is labeled FFAR_TRC_3. In particular, the manner of color points is coupled along the outer edge of the modified color point matrix. Especially in the top right corner color component CC_TRC_3, the color point CD_3_5 is coupled to the color point CD_3_6, but the color point CD_3_2 is coupled to the color point CE_3_3 along the edge of the color point matrix. Furthermore, the top right corner vertical field amplification area FFAR_TRC_3 between the color points CD_3_2 and CD_3_3 extends to the left side of the color points CD_3_2 and CD_3_3. The edge discrete field amplification regions FFAR_TE2_2 and FFAR_TE_3 are similarly modified. A connector 1148 couples the top right corner drawn discrete field amplification region FFAR_TRC_3 to the top edge color component CC_TE2_2 (in the same pixel).
再者,畫素設計1110可以針對使用切換元件列反轉模式之顯示器作修改。圖11(h)及11(i)係表示畫素設計1150(標示為1150+及1150-)之不同點極性圖案,而畫素設計1150係可以被使用在具有一切換元件列反轉模式的顯示器中。畫素設計1150具有如畫素設計1110相同的布局,因此為簡單起見並不重複敘述。然而在畫素設計1150中的元件極性,畫素設計1150係不同於畫素設計1110。Furthermore, the pixel design 1110 can be modified for displays that use the switching element column inversion mode. Figures 11(h) and 11(i) show different dot polarity patterns for pixel design 1150 (labeled 1150+ and 1150-), while pixel design 1150 can be used with a switching element column inversion mode. In the display. The pixel design 1150 has the same layout as the pixel design 1110, and thus the description is not repeated for the sake of simplicity. However, in the pixel design in the pixel design 1150, the pixel design 1150 is different from the pixel design 1110.
色點、離散場放大區域及切換元件的極性,係以正號”+”及負號”_”表示。因此在圖11(h)中,顯示畫素設計1150+的正點極性圖案及色點的所有切換元件具有正極性,而所有的離散場放大區域具有負極性。特別是,切換元件SE_1、SE_2與SE_3、色點CD_1_1、CD_1_2、CD_1_3、CD_1_4、CD_1_5、CD_1_6、CD_1_7、CD_2_1、CD_2_2、CD_2_3、CD_2_4、CD_2_5、CD_2_6、CD_2_7、CD_2_8與色點CD_3_1、CD_3_2、CD_3_3、CD_3_4、CD_3_5、CD_3_6、CD_3_7、CD__3_8具有正極性。然而,離散場放大區域FFAR_1、FFAR_2及FFAR_3係具有負極性。The color point, the discrete field amplification area, and the polarity of the switching element are indicated by a positive sign "+" and a negative sign "_". Therefore, in FIG. 11(h), all of the switching elements showing the punctual polarity pattern and the color point of the pixel design 1150+ have positive polarity, and all of the discrete field amplification regions have negative polarity. In particular, switching elements SE_1, SE_2 and SE_3, color points CD_1_1, CD_1_2, CD_1_3, CD_1_4, CD_1_5, CD_1_6, CD_1_7, CD_2_1, CD_2_2, CD_2_3, CD_2_4, CD_2_5, CD_2_6, CD_2_7, CD_2_8 and color points CD_3_1, CD_3_2, CD_3_3 CD_3_4, CD_3_5, CD_3_6, CD_3_7, and CD__3_8 have positive polarity. However, the discrete field amplification regions FFAR_1, FFAR_2, and FFAR_3 have negative polarity.
圖11(i)係表示具有負點極性圖案的畫素設計1150。對負點極性圖案而言,色點的所有切換元件具有負極性,所有的離散場放大區域具有正極性。特別是,切換元件SE_1、SE_2與SE_3、色點CD_1_1、CD_1_2、CD_1_3、CD_1_4、CD_1_5、CD_1_6、CD_1_7、CD_2_1、CD_2_2、CD_2_3、CD_2_4、CD_2_5、CD_2_6、CD_2_7、CD_2_8與色點CD_3_1、CD_3_2、CD_3_3、CD_3_4、CD_3_5、CD_3_6、CD_3_7、CD_3_8具有負極性。然而,離散場放大區域FFAR_1、FFAR_2及FFAR_3係具有正極性。Fig. 11(i) shows a pixel design 1150 having a negative dot polarity pattern. For the negative dot polarity pattern, all of the switching elements of the color point have a negative polarity, and all of the discrete field amplification regions have a positive polarity. In particular, switching elements SE_1, SE_2 and SE_3, color points CD_1_1, CD_1_2, CD_1_3, CD_1_4, CD_1_5, CD_1_6, CD_1_7, CD_2_1, CD_2_2, CD_2_3, CD_2_4, CD_2_5, CD_2_6, CD_2_7, CD_2_8 and color points CD_3_1, CD_3_2, CD_3_3 CD_3_4, CD_3_5, CD_3_6, CD_3_7, and CD_3_8 have negative polarity. However, the discrete field amplification regions FFAR_1, FFAR_2, and FFAR_3 have positive polarity.
如上所述,若鄰近元件具有相反極性者,在每一色點的離散場會被放大。畫素設計1150係利用離散場放大區域來強化並穩定在液晶結構中之多區域的形成。一般而言,已偏極元件的極性係被指定,以使一第一極性的色點具有第二極性的鄰近已偏極元件。更特別地對畫素設計1110而言,每一色點係圍繞相反極性之離散場放大區域部份的兩側或三側上。再者,這些色點也鄰近一相反極性的色點。雖然色點也鄰近另一相同極性的色點,但在色點之間的距離係大於色點與離散場放大區域之間的距離。因此,離散場放大區域仍可以放大色點的離散場。舉例來說,對畫素設計1110(如圖11(a)所示)之正點極性圖案而言,色點CD_1_6具有正極性並鄰近在色點CD_1_6之頂部、左側及底部的離散場放大區域FFAR_1部份(具有負極性)。雖然也具有正極性的色點CD_2_2係在色點CD_1_6右側上,但因為離散場放大區域FFAR_1係鄰靠色點CD_1_6且在色點CD_1_6的多側上,因此離散場放大區域FFAR_1仍放大色點CD_1_6的離散場。As noted above, if adjacent elements have opposite polarities, the discrete fields at each color point will be amplified. The pixel design 1150 utilizes discrete field amplification regions to enhance and stabilize the formation of multiple regions in the liquid crystal structure. In general, the polarity of the biased component is specified such that a color point of a first polarity has a second polarized adjacent polarized component. More specifically for the pixel design 1110, each color point is on either or both sides of a portion of the discrete field amplification region of opposite polarity. Moreover, these color points are also adjacent to a color point of opposite polarity. Although the color point is also adjacent to another color point of the same polarity, the distance between the color points is greater than the distance between the color point and the discrete field magnifying area. Therefore, the discrete field amplification region can still magnify the discrete fields of the color points. For example, for the punctual polarity pattern of the pixel design 1110 (shown in FIG. 11(a)), the color point CD_1_6 has a positive polarity and is adjacent to the discrete field amplification area FFAR_1 at the top, left and bottom of the color point CD_1_6. Part (with negative polarity). Although the color point CD_2_2 having a positive polarity is on the right side of the color point CD_1_6, since the discrete field amplification area FFAR_1 is adjacent to the color point CD_1_6 and on the multiple sides of the color point CD_1_6, the discrete field amplification area FFAR_1 still magnifies the color point. Discrete field of CD_1_6.
使用圖11(h)與圖11(i)之畫素設計1150的畫素,可被使用在利用切換元件列反轉模式之顯示器。圖11(j)係表示顯示器1160的一部分,顯示器1160係使用畫素設計1150的畫素P(10,10)、P(11,10)、P(10,11)及P(11,11),而畫素設計1150係具有一切換元件列反轉驅動模式。顯示器1160可具有數千列,且每一列上具有數千畫素。列與行係以如圖11(j)所示的方式從如圖11(j)所示的部份連續。為了清楚說明,控制切換元件的閘極線與源極線係在圖11(j)中被省略。為了更好以圖闡釋每一畫素,每一畫素的區域係被遮蔽,此遮蔽在圖11(j)中係僅為繪圖目的,並沒有功能上的意義。再者,由於空間限制,在圖11(j)中,色點係被標示成”X_Y”而不是”CD_X_Y”。The pixels using the pixel design 1150 of Fig. 11(h) and Fig. 11(i) can be used in a display using the switching element column inversion mode. 11(j) shows a portion of the display 1160, and the display 1160 uses the pixels P (10, 10), P (11, 10), P (10, 11), and P (11, 11) of the pixel design 1150. The pixel design 1150 has a switching element column inversion driving mode. Display 1160 can have thousands of columns with thousands of pixels on each column. The columns and rows are continuous from the portion shown in Fig. 11(j) in the manner shown in Fig. 11(j). For clarity of explanation, the gate line and the source line of the control switching element are omitted in FIG. 11(j). In order to better illustrate each pixel in the figure, the area of each pixel is obscured. This masking is only for drawing purposes in Figure 11(j) and has no functional significance. Furthermore, due to space constraints, in Fig. 11(j), the color point is indicated as "X_Y" instead of "CD_X_Y".
在顯示器1160中,畫素係被配置以使在一列的畫素交替點極性圖案(正或負),且在一行的畫素也交替正、負點極性圖案。因此,畫素P(10,10)及P(11,10)具有正點極性圖案,畫素P(10,11)與P(11,11)具有負點極性圖案。然而,在下一個頁框中,畫素係將切換點極性圖案。因此一般而言,一畫素P(x,y)在當y為偶數時具有一第一點極性圖案,在當y為奇數時具有一第二點極性圖案。每一畫素列上的畫素係垂直地配向且水平地分隔,以使畫素最右邊的色點係以水平點間距HDS1與鄰近畫素之最左邊色點相隔。在一畫素行的畫素係水平地配向,且以一垂直點間距VDS3相互間隔。In the display 1160, the pixels are configured such that the pixels in one column alternate dot patterns (positive or negative), and the pixels in one row alternate between positive and negative dot polar patterns. Therefore, the pixels P(10, 10) and P(11, 10) have a punctual polarity pattern, and the pixels P(10, 11) and P(11, 11) have a negative dot polarity pattern. However, in the next page frame, the pixel will switch the dot polarity pattern. Thus, in general, a pixel P(x, y) has a first dot polarity pattern when y is even and a second dot polarity pattern when y is odd. The pixels on each pixel column are vertically aligned and horizontally separated such that the rightmost color point of the pixel is separated from the leftmost color point of the adjacent pixel by the horizontal dot pitch HDS1. The pixels in a picture line are horizontally aligned and spaced apart from each other by a vertical dot pitch VDS3.
如上所述,第一畫素的離散場放大區域係從第二畫素的切換元件接收極性。舉例來說,畫素P(10,10)之離散場放大區域FFAR_1的電極,係耦接到經由畫素P(10,10)之導體1112與畫素P(10,11)之導體1113的畫素P(10,11)之切換元件SE_1。相似地,畫素P(10,10)之離散場放大區域FFAR_2的電極,係耦接到經由畫素P(10,10)之導體1114與畫素P(10,11)之導體1115的畫素(10,11)之切換元件SE_2。再者,畫素P(10,10)之離散場放大區域FFAR_3的電極,係耦接到經由畫素P(10,10)之導體1117與畫素P(10,11)之導體1117的畫素(10,11)之切換元件SE_3。As described above, the discrete field amplification region of the first pixel receives the polarity from the switching element of the second pixel. For example, the electrodes of the discrete field amplification region FFAR_1 of the pixel P (10, 10) are coupled to the conductor 1113 via the conductor 1112 of the pixel P (10, 10) and the conductor 1113 of the pixel P (10, 11). Switching element SE_1 of pixel P (10, 11). Similarly, the electrodes of the discrete field amplification region FFAR_2 of the pixel P (10, 10) are coupled to the conductor 1115 of the pixel P1 through the pixel P (10, 10) and the conductor 1115 of the pixel P (10, 11). The switching element SE_2 of the prime (10, 11). Furthermore, the electrodes of the discrete field amplification region FFAR_3 of the pixel P (10, 10) are coupled to the conductor 1117 of the pixel P1 (10, 10) and the conductor 1117 of the pixel P (10, 11). Switching element SE_3 of prime (10, 11).
即便如此,依據本發明的放大本質離散電場多區域垂直配向液晶顯示器(AIFF MVA LCD),係提供低成本的寬視角,在本發明的某些實施例中,係使用光學補償方法(optical compensation methods)以進一步增加視角。舉例來說,本發明的某些實施例係在上基板(top substrate)或下基板(bottom substrate),或是同時在上、下基板,使用具有垂直方向光學軸之負雙折射光學補償膜(negative birefringence optical film)。其他實施例係使用具有負雙折射之單光軸光學補償膜或雙光軸光學補償膜。在某些實施例中,具有平行光學軸向的正補償膜,係可以附加到具有垂直光學軸向之負雙折射膜。再者,也可以使用包括所有結合的多個膜。其他實施例可使用圓偏極板(circular polarizer),以改善光學透射(light transmission)及視角。其他實施例可使用具有光學補償膜的圓偏極板,以進一步改善光學透射及視角。再者,本發明的某些實施例係使用黑色矩陣(black matrix,BM)覆蓋離散場放大區域(FFARs),以使離散場放大區域變得不透光。黑色矩陣的使用係改善顯示器的對比(contrast ratio),且可提供更好的色彩表現。在其他實施例中,某些或所有的黑色矩陣,可被移除(或是省略),以使離散場放大區域變成透明,其係改善顯示器中的透光率(light transmittance)。已改善的透光率可以降低顯示器的電力需求(power requirement)。Even so, the amplified intrinsic discrete electric field multi-region vertical alignment liquid crystal display (AIFF MVA LCD) in accordance with the present invention provides a low cost, wide viewing angle, and in some embodiments of the invention, optical compensation methods are used. ) to further increase the perspective. For example, some embodiments of the present invention are on a top substrate or a bottom substrate, or both upper and lower substrates, using a negative birefringent optical compensation film having a vertical optical axis ( Negative birefringence optical film). Other embodiments use a single optical axis optical compensation film or a dual optical axis optical compensation film having negative birefringence. In some embodiments, a positive compensation film having parallel optical axes can be attached to a negative birefringent film having a vertical optical axis. Furthermore, it is also possible to use a plurality of films including all combinations. Other embodiments may use a circular polarizer to improve optical transmission and viewing angle. Other embodiments may use a circularly polarized plate with an optical compensation film to further improve optical transmission and viewing angle. Moreover, some embodiments of the present invention cover the discrete field amplification regions (FFARs) using a black matrix (BM) to make the discrete field amplification regions opaque. The use of a black matrix improves the contrast ratio of the display and provides better color performance. In other embodiments, some or all of the black matrix may be removed (or omitted) to make the discrete field amplification region transparent, which improves the light transmittance in the display. Improved light transmission can reduce the power requirement of the display.
在本發明的不同實例中,已描述出無須在結構上使用額外物理構型,以產生多區域垂直配向液晶顯示器之新穎的結構與方法。如上所述在本發明的結構與方法之不同實例,係僅說明本發明的原理,且並非為了將本發明的範圍限制到所描述的特定實施例。舉例來說,從此揭露來觀之,熟悉此技術者可以界定其他畫素定義、點極性圖案、畫素設計、色分量、離散場放大區域、垂直放大部、水平放大部、極性、離散場、電極、基板及膜等等,並依據本發明的原理使用這些交替的特性以產生一方法或系統。因此,本發明僅由隨後所述的申請專利範圍所限定。In various examples of the present invention, novel structures and methods have been described that do not require the use of additional physical configurations in the structure to create a multi-region vertical alignment liquid crystal display. The various embodiments of the present invention, as described above, are merely illustrative of the principles of the invention and are not intended to limit the scope of the invention to the particular embodiments described. For example, from this disclosure, those skilled in the art can define other pixel definitions, dot polarity patterns, pixel design, color components, discrete field amplification regions, vertical amplification portions, horizontal amplification portions, polarities, discrete fields, Electrodes, substrates and membranes, etc., and use these alternating characteristics in accordance with the principles of the present invention to produce a method or system. Accordingly, the invention is to be limited only by the scope of the appended claims.
雖然本發明以相關的較佳實施例進行解釋,但是這並不構成對本發明的限制。應說明的是,本領域的技術人員根據本發明的思想能夠構造出很多其他類似實施例,這些均在本發明的保護範圍之中。Although the present invention has been explained in connection with the preferred embodiments, it is not intended to limit the invention. It should be noted that many other similar embodiments can be constructed in accordance with the teachings of the present invention, which are within the scope of the present invention.
100...垂直配向液晶顯示器100. . . Vertical alignment liquid crystal display
105...第一偏光片105. . . First polarizer
110...第一基板110. . . First substrate
120...第一電極120. . . First electrode
125...第一配向層125. . . First alignment layer
130...液晶130. . . liquid crystal
140...第二配向層140. . . Second alignment layer
145...第二電極145. . . Second electrode
150...第二基板150. . . Second substrate
155...第二偏光片155. . . Second polarizer
302...第一偏光片302. . . First polarizer
305...第一基板305. . . First substrate
307...第一配向層307. . . First alignment layer
310...畫素310. . . Pixel
311...第一電極311. . . First electrode
312...液晶312. . . liquid crystal
313...液晶313. . . liquid crystal
315...第二電極315. . . Second electrode
320...畫素320. . . Pixel
321...第一電極321. . . First electrode
322...液晶322. . . liquid crystal
323...液晶323. . . liquid crystal
325...第二電極325. . . Second electrode
327...電場327. . . electric field
330...畫素330. . . Pixel
331...第一電極331. . . First electrode
332...液晶332. . . liquid crystal
333...液晶333. . . liquid crystal
335...第二電極335. . . Second electrode
352...第二配向層352. . . Second alignment layer
355...第二基板355. . . Second substrate
357...第二偏光片357. . . Second polarizer
400...顯示器400. . . monitor
410...畫素設計410. . . Graphic design
410+...畫素設計410+. . . Graphic design
410-...畫素設計410-. . . Graphic design
420...顯示器420. . . monitor
430...畫素設計430. . . Graphic design
430+...畫素設計430+. . . Graphic design
430-...畫素設計430-. . . Graphic design
430_BLC...底部左角落畫素設計430_BLC. . . Bottom left corner pixel design
430_LE...左邊畫素設計430_LE. . . Left pixel design
430_SE...底邊畫素設計430_SE. . . Bottom pixel design
430_TE...頂邊畫素設計430_TE. . . Top edge pixel design
430_TLC...頂部左角落畫素設計430_TLC. . . Top left corner pixel design
432...導體432. . . conductor
434...導體434. . . conductor
436...導體436. . . conductor
440...顯示器440. . . monitor
450...顯示器450. . . monitor
451...電晶體451. . . Transistor
510...畫素設計510. . . Graphic design
510+...畫素設計510+. . . Graphic design
510-...畫素設計510-. . . Graphic design
512...導體512. . . conductor
514...導體514. . . conductor
520...顯示器520. . . monitor
610...畫素設計610. . . Graphic design
610+...畫素設計610+. . . Graphic design
610-...畫素設計610-. . . Graphic design
612...導體612. . . conductor
613...導體613. . . conductor
614...導體614. . . conductor
615...導體615. . . conductor
616...導體616. . . conductor
617...導體617. . . conductor
620...顯示器620. . . monitor
710...畫素設計710. . . Graphic design
710+...畫素設計710+. . . Graphic design
710-...畫素設計710-. . . Graphic design
712...導體712. . . conductor
713...導體713. . . conductor
714...導體714. . . conductor
715...導體715. . . conductor
716...導體716. . . conductor
717...導體717. . . conductor
810...畫素設計810. . . Graphic design
810+...畫素設計810+. . . Graphic design
810-...畫素設計810-. . . Graphic design
812...導體812. . . conductor
814...導體814. . . conductor
816...導體816. . . conductor
820...顯示器820. . . monitor
910...畫素設計910. . . Graphic design
910+...畫素設計910+. . . Graphic design
910-...畫素設計910-. . . Graphic design
912...導體912. . . conductor
913...導體913. . . conductor
914...導體914. . . conductor
915...導體915. . . conductor
916...導體916. . . conductor
917...導體917. . . conductor
920...顯示器920. . . monitor
930...顯示器930. . . monitor
1010...畫素設計1010. . . Graphic design
1010+...畫素設計1010+. . . Graphic design
1010-...畫素設計1010-. . . Graphic design
1020...畫素設計1020. . . Graphic design
1020+...畫素設計1020+. . . Graphic design
1020-...畫素設計1020-. . . Graphic design
1050...顯示器1050. . . monitor
1110...畫素設計1110. . . Graphic design
1110+...畫素設計1110+. . . Graphic design
1110-...畫素設計1110-. . . Graphic design
1110_TE...頂邊畫素設計1110_TE. . . Top edge pixel design
1110_TE2...頂邊畫素設計1110_TE2. . . Top edge pixel design
1110_TRC...頂部右角落畫素設計1110_TRC. . . Top right corner pixel design
1112...導體1112. . . conductor
1113...導體1113. . . conductor
1114...導體1114. . . conductor
1115...導體1115. . . conductor
1116...導體1116. . . conductor
1117...導體1117. . . conductor
1120...顯示器1120. . . monitor
1132...連接件1132. . . Connector
1134...連接件1134. . . Connector
1136...連接件1136. . . Connector
1142...連接件1142. . . Connector
1143...連接件1143. . . Connector
1144...連接件1144. . . Connector
1148...連接件1148. . . Connector
1150...畫素設計1150. . . Graphic design
1160...顯示器1160. . . monitor
ADH...關聯點高度ADH. . . Associated point height
ADW...關聯點寬度ADW. . . Associated point width
CC_1...第一色分量CC_1. . . First color component
CC_2...第二色分量CC_2. . . Second color component
CC_3...第三色分量CC_3. . . Third color component
CC_TE_1...頂邊色分量CC_TE_1. . . Top edge color component
CC_TE_2...頂邊色分量CC_TE_2. . . Top edge color component
CC_TE_3...頂邊色分量CC_TE_3. . . Top edge color component
CC_TE2_1...頂邊色分量CC_TE2_1. . . Top edge color component
CC_TE2_2...頂邊色分量CC_TE2_2. . . Top edge color component
CC_TE2_3...頂邊色分量CC_TE2_3. . . Top edge color component
CD_1_1...色點CD_1_1. . . Color point
CD_1_2...色點CD_1_2. . . Color point
CD_1_3...色點CD_1_3. . . Color point
CD_1_4...色點CD_1_4. . . Color point
CD_1_5...色點CD_1_5. . . Color point
CD_1_6...色點CD_1_6. . . Color point
CD_1_7...色點CD_1_7. . . Color point
CD_1_8...色點CD_1_8. . . Color point
CD_2_1...色點CD_2_1. . . Color point
CD_2_2...色點CD_2_2. . . Color point
CD_2_3...色點CD_2_3. . . Color point
CD_2_4...色點CD_2_4. . . Color point
CD_2_5...色點CD_2_5. . . Color point
CD_2_6...色點CD_2_6. . . Color point
CD_2_7...色點CD_2_7. . . Color point
CD_2_8...色點CD_2_8. . . Color point
CD_3_1...色點CD_3_1. . . Color point
CD_3_2...色點CD_3_2. . . Color point
CD_3_3...色點CD_3_3. . . Color point
CD_3_4...色點CD_3_4. . . Color point
CD_3_5...色點CD_3_5. . . Color point
CD_3_6...色點CD_3_6. . . Color point
CD_3_7...色點CD_3_7. . . Color point
CD_3_8...色點CD_3_8. . . Color point
CDH...色點高度CDH. . . Color point height
CDW...色點寬度CDW. . . Color point width
DCA_1...裝置元件區域DCA_1. . . Device component area
DCA_2...裝置元件區域DCA_2. . . Device component area
DCA_3...裝置元件區域DCA_3. . . Device component area
DCAH...裝置元件區域高度DCAH. . . Device component area height
DCA_TE_1...裝置元件區域DCA_TE_1. . . Device component area
DCA_TE_2...裝置元件區域DCA_TE_2. . . Device component area
DCA_TE_3...裝置元件區域DCA_TE_3. . . Device component area
DCAW...裝置元件區域寬度DCAW. . . Device component area width
FFAR...已修改離散場放大區域FFAR. . . Modified discrete field amplification area
FFAR_1...離散場放大區域FFAR_1. . . Discrete field amplification area
FFAR_2...離散場放大區域FFAR_2. . . Discrete field amplification area
FFAR_3...離散場放大區域FFAR_3. . . Discrete field amplification area
FFAR_BLE_1...底部左角落離散場放大區域FFAR_BLE_1. . . Bottom left corner discrete field enlargement area
FFARE_0...離散場放大區域電極FFARE_0. . . Discrete field amplification area electrode
FFARE_1...離散場放大區域電極FFARE_1. . . Discrete field amplification area electrode
FFAR_LE_1...左邊離散場放大區域FFAR_LE_1. . . Left discrete field amplification area
FFAR_LE_2...左邊離散場放大區域FFAR_LE_2. . . Left discrete field amplification area
FFAR_LE_3...左邊離散場放大區域FFAR_LE_3. . . Left discrete field amplification area
FFARSE_0...離散場放大區域切換元件FFARSE_0. . . Discrete field amplification area switching element
FFARSE_1...離散場放大區域切換元件FFARSE_1. . . Discrete field amplification area switching element
FFAR_T_0...離散場放大區域電晶體FFAR_T_0. . . Discrete field amplification area transistor
FFAT_T_1...離散場放大區域電晶體FFAT_T_1. . . Discrete field amplification area transistor
FFAR_TE_1...頂邊離散場放大區域FFAR_TE_1. . . Top edge discrete field amplification area
FFAR_TE_2...頂邊離散場放大區域FFAR_TE_2. . . Top edge discrete field amplification area
FFAR_TE_3...頂邊離散場放大區域FFAR_TE_3. . . Top edge discrete field amplification area
FFAR_TE2_1...頂邊離散場放大區域FFAR_TE2_1. . . Top edge discrete field amplification area
FFAR_TE2_2...頂邊離散場放大區域FFAR_TE2_2. . . Top edge discrete field amplification area
FFAR_TE2_3...頂邊離散場放大區域FFAR_TE2_3. . . Top edge discrete field amplification area
FFAR_TLC_1...頂部左角落離散場放大區域FFAR_TLC_1. . . Top left corner discrete field magnification area
G_0...閘極線G_0. . . Gate line
G_1...閘極線G_1. . . Gate line
HAP...水平放大部HAP. . . Horizontal magnification
HAP_1...第一水平放大部HAP_1. . . First horizontal magnification
HAP_2...第二水平放大部HAP_2. . . Second horizontal enlargement
HAP_3...第三水平放大部HAP_3. . . Third horizontal magnification
HAP_4...第四水平放大部HAP_4. . . Fourth horizontal enlargement
HAP_5...第五水平放大部HAP_5. . . Fifth horizontal enlargement
HAP_6...第六水平放大部HAP_6. . . Sixth horizontal magnification
HAP_B...底部水平放大部HAP_B. . . Bottom horizontal magnification
HAP_B_1...底部水平放大部HAP_B_1. . . Bottom horizontal magnification
HAP_B_2...底部水平放大部HAP_B_2. . . Bottom horizontal magnification
HAP_B_3...底部水平放大部HAP_B_3. . . Bottom horizontal magnification
HAP_H...水平放大部高度HAP_H. . . Horizontal magnification
HAP_H_1...水平放大部高度HAP_H_1. . . Horizontal magnification
HAP_H_2...水平放大部高度HAP_H_2. . . Horizontal magnification
HAP_H_3...水平放大部高度HAP_H_3. . . Horizontal magnification
HAP_T_1...頂部水平放大部HAP_T_1. . . Top horizontal magnification
HAP_W...水平放大部寬度HAP_W. . . Horizontal magnification
HAP_W_1...水平放大部寬度HAP_W_1. . . Horizontal magnification
HAP_W_2...水平放大部寬度HAP_W_2. . . Horizontal magnification
HAP_W_3...水平放大部寬度HAP_W_3. . . Horizontal magnification
HCCO1...水平色分量偏移量HCCO1. . . Horizontal color component offset
HDS...水平點間距HDS. . . Horizontal point spacing
HDS1...水平點間距HDS1. . . Horizontal point spacing
HFFARS...水平離散場放大區域間距HFFARS. . . Horizontal discrete field amplification area spacing
S_0_1...源極線S_0_1. . . Source line
S_0_2...源極線S_0_2. . . Source line
S_0_3...源極線S_0_3. . . Source line
S_1_1...源極線S_1_1. . . Source line
S_1_2...源極線S_1_2. . . Source line
S_1_3...源極線S_1_3. . . Source line
SE_1...切換元件SE_1. . . Switching element
SE_2...切換元件SE_2. . . Switching element
SE_3...切換元件SE_3. . . Switching element
S_FFAR...單一離散場放大區域電晶體S_FFAR. . . Single discrete field amplification area transistor
S_FFAR_E...離散場放大區域偶數源極線S_FFAR_E. . . Discrete field amplification area even source line
S_FFAR_O...離散場放大區域奇數源極線S_FFAR_O. . . Odd source line in discrete field amplification region
VAP...垂直放大部VAP. . . Vertical enlargement
VAP_H...垂直放大部高度VAP_H. . . Vertical magnification
VAP_H_1...垂直放大部高度VAP_H_1. . . Vertical magnification
VAP_L...左邊垂直放大部VAP_L. . . Vertical enlargement on the left
VAP_L_1...左邊垂直放大部VAP_L_1. . . Vertical enlargement on the left
VAP_W...垂直放大部寬度VAP_W. . . Vertical enlargement width
VAP_W_1...垂直放大部寬度VAP_W_1. . . Vertical enlargement width
V-Com...共同電壓V-Com. . . Common voltage
VDO1...垂直點偏移量VDO1. . . Vertical point offset
VDS...垂直點間距VDS. . . Vertical dot spacing
VDS1...垂直點間距VDS1. . . Vertical dot spacing
VDS2...垂直點間距VDS2. . . Vertical dot spacing
VDS3...垂直點間距VDS3. . . Vertical dot spacing
VFFARS...垂直離散場放大區域間距VFFARS. . . Vertical discrete field amplification area spacing
根據下述具體實施方式並結合下面的附圖,本發明的目的、優點和新穎性將會更加清楚:The objects, advantages and novel features of the present invention will become more apparent from
圖1(a)-1(c)係表示習知單區域垂直配向液晶顯示器之畫素的三個示意圖。1(a)-1(c) are three schematic views showing the pixels of a conventional single-region vertical alignment liquid crystal display.
圖2係表示習知多區域垂直配向液晶顯示器之畫素的一示意圖。2 is a schematic view showing a pixel of a conventional multi-region vertical alignment liquid crystal display.
圖3(a)-3(b)係表示依據本發明一實施例的一多區域垂直配向液晶顯示器的示意圖。3(a)-3(b) are schematic views showing a multi-region vertical alignment liquid crystal display according to an embodiment of the present invention.
圖4(a)-4(b)係表示依據本發明一實施例的一畫素設計之示意圖。4(a)-4(b) are diagrams showing a pixel design in accordance with an embodiment of the present invention.
圖4(c)係表示依據本發明一實施例之一離散場放大區域域的放大圖。4(c) is an enlarged view showing a region of a discrete field amplification region according to an embodiment of the present invention.
圖4(d)係表示依據本發明一實施例之一液晶顯示器其中部分的示意圖。Figure 4 (d) is a schematic view showing a portion of a liquid crystal display according to an embodiment of the present invention.
圖4(e)係表示依據本發明一實施例之一液晶顯示器之源極線與閘極線的示意圖。4(e) is a schematic view showing a source line and a gate line of a liquid crystal display according to an embodiment of the present invention.
圖4(f)-4(g)係表示依據本發明一實施例之一畫素設計的示意圖。4(f)-4(g) are schematic views showing a pixel design in accordance with an embodiment of the present invention.
圖4(h)係表示依據本發明一實施例之一液晶顯示器其中部分的示意圖。Figure 4 (h) is a schematic view showing a portion of a liquid crystal display according to an embodiment of the present invention.
圖4(i)係表示依據本發明一實施例之一畫素設計示意圖。Figure 4 (i) is a schematic diagram showing the design of a pixel according to an embodiment of the present invention.
圖4(j)係表示依據本發明一實施例之一畫素設計示意圖。Figure 4 (j) is a schematic diagram showing the design of a pixel according to an embodiment of the present invention.
圖4(k)-4(m)係表示依據本發明一實施例之一液晶顯示器其中部分的示意圖。4(k)-4(m) are views showing a part of a liquid crystal display according to an embodiment of the present invention.
圖4(n)係表示依據本發明一實施例之一畫素設計示意圖。Figure 4 (n) is a diagram showing the design of a pixel according to an embodiment of the present invention.
圖4(o)係表示依據本發明一實施例之一畫素設計示意圖。Figure 4 (o) is a schematic diagram showing the design of a pixel according to an embodiment of the present invention.
圖4(p)係表示依據本發明一實施例之一畫素設計示意圖。Figure 4 (p) is a schematic diagram showing the design of a pixel according to an embodiment of the present invention.
圖4(q)-4(s)係表示依據本發明一實施例之一液晶顯示器其中部分的示意圖。4(q)-4(s) are schematic views showing a part of a liquid crystal display according to an embodiment of the present invention.
圖5(a)-5(b)係表示依據本發明一實施例之一畫素設計示意圖。5(a)-5(b) are diagrams showing the design of a pixel according to an embodiment of the present invention.
圖5(c)係表示依據本發明一實施例之一液晶顯示器其中部分的示意圖。Figure 5 (c) is a schematic view showing a portion of a liquid crystal display according to an embodiment of the present invention.
圖6(a)-6(b)係表示依據本發明一實施例之一畫素設計示意圖。6(a)-6(b) are diagrams showing the design of a pixel according to an embodiment of the present invention.
圖6(c)係表示依據本發明一實施例之一液晶顯示器其中部分的示意圖。Figure 6 (c) is a schematic view showing a portion of a liquid crystal display according to an embodiment of the present invention.
圖7(a)-7(b)係表示依據本發明一實施例之一畫素設計示意圖。7(a)-7(b) are diagrams showing a pixel design according to an embodiment of the present invention.
圖7(c)係表示依據本發明一實施例之一離散場放大區域域的放大圖。Figure 7 (c) is an enlarged view showing a region of a discrete field amplification region according to an embodiment of the present invention.
圖7(d)係表示依據本發明一實施例之一液晶顯示器其中部分的示意圖。Figure 7 (d) is a schematic view showing a portion of a liquid crystal display according to an embodiment of the present invention.
圖7(e)係表示依據本發明一實施例之一液晶顯示器其中部分的示意圖。Figure 7 (e) is a view showing a part of a liquid crystal display according to an embodiment of the present invention.
圖8(a)-8(b)係表示依據本發明一實施例之一畫素設計示意圖。8(a)-8(b) are diagrams showing the design of a pixel according to an embodiment of the present invention.
圖8(c)係表示依據本發明一實施例之一離散場放大區域域的放大圖。Figure 8(c) is an enlarged view showing a region of a discrete field amplification region according to an embodiment of the present invention.
圖(d)係表示依據本發明一實施例之一液晶顯示器其中部分的示意圖。Figure (d) is a schematic view showing a portion of a liquid crystal display according to an embodiment of the present invention.
圖9(a)-9(b)係表示依據本發明一實施例之一畫素設計示意圖。9(a)-9(b) are diagrams showing the design of a pixel according to an embodiment of the present invention.
圖9(c)-9(e)係表示依據本發明一實施例之一離散場放大區域域的放大圖。9(c)-9(e) are enlarged views showing a region of a discrete field amplification region according to an embodiment of the present invention.
圖9(d)係表示依據本發明一實施例之一液晶顯示器其中部分的示意圖。Figure 9 (d) is a schematic view showing a portion of a liquid crystal display according to an embodiment of the present invention.
圖10(a)-10(b)係表示依據本發明一實施例之一畫素設計示意圖。10(a)-10(b) are diagrams showing the design of a pixel according to an embodiment of the present invention.
圖10(c)-10(d)係表示依據本發明一實施例之一畫素設計示意圖。10(c)-10(d) are diagrams showing the design of a pixel according to an embodiment of the present invention.
圖10(e)係表示依據本發明一實施例之一液晶顯示器其中部分的示意圖。Figure 10 (e) is a view showing a part of a liquid crystal display according to an embodiment of the present invention.
圖11(a)-11(b)係表示依據本發明一實施例之一畫素設計示意圖。11(a)-11(b) are diagrams showing the design of a pixel according to an embodiment of the present invention.
圖11(c)係表示依據本發明一實施例之一離散場放大區域域的放大圖。Figure 11 (c) is an enlarged view showing a region of a discrete field amplification region according to an embodiment of the present invention.
圖11(d)係表示依據本發明一實施例之一液晶顯示器其中部分的示意圖。Figure 11 (d) is a view showing a part of a liquid crystal display according to an embodiment of the present invention.
圖11(e)係表示依據本發明一實施例之一畫素設計示意圖。Figure 11 (e) is a diagram showing the design of a pixel in accordance with an embodiment of the present invention.
圖11(f)係表示依據本發明一實施例之一畫素設計示意圖。Figure 11 (f) is a diagram showing the design of a pixel according to an embodiment of the present invention.
圖11(g)係表示依據本發明一實施例之一畫素設計示意圖。Figure 11 (g) is a diagram showing the design of a pixel according to an embodiment of the present invention.
圖11(h)-11(i)係表示依據本發明一實施例之一畫素設計示意圖。11(h)-11(i) are diagrams showing the design of a pixel according to an embodiment of the present invention.
圖11(j)係表示依據本發明一實施例之一液晶顯示器其中部分的示意圖。Figure 11 (j) is a view showing a part of a liquid crystal display according to an embodiment of the present invention.
300...多區域垂直配向液晶顯示器300. . . Multi-zone vertical alignment liquid crystal display
302...第一偏光片302. . . First polarizer
305...第一基板305. . . First substrate
307...第一配向層307. . . First alignment layer
310...畫素310. . . Pixel
311...第一電極311. . . First electrode
312...液晶312. . . liquid crystal
313...液晶313. . . liquid crystal
315...第二電極315. . . Second electrode
320...畫素320. . . Pixel
321...第一電極321. . . First electrode
322...液晶322. . . liquid crystal
323...液晶323. . . liquid crystal
325...第二電極325. . . Second electrode
327...電場327. . . electric field
330...畫素330. . . Pixel
331...第一電極331. . . First electrode
332...液晶332. . . liquid crystal
333...液晶333. . . liquid crystal
335...第二電極335. . . Second electrode
352...第二配向層352. . . Second alignment layer
355...第二基板355. . . Second substrate
357...第二偏光片357. . . Second polarizer
Claims (37)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/573,087 US8427593B2 (en) | 2007-05-21 | 2009-10-02 | Multi-domain vertical alignment liquid crystal displays using pixels having fringe field amplifying regions |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201113595A TW201113595A (en) | 2011-04-16 |
TWI447480B true TWI447480B (en) | 2014-08-01 |
Family
ID=43886455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW099107313A TWI447480B (en) | 2009-10-02 | 2010-03-12 | Multi-domain vertical alignment liquid crystal displays using pixels having fringe field amplifying regions |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102033352A (en) |
TW (1) | TWI447480B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200736715A (en) * | 2006-03-31 | 2007-10-01 | Wintek Corp | Multi-domain LCD |
TW200846759A (en) * | 2007-05-21 | 2008-12-01 | Kyoritsu Optronics Co Ltd | Pixels using associated dot polarity for multi-domain vertical alignment liquid crystal display |
TW200933242A (en) * | 2008-01-23 | 2009-08-01 | Kyoritsu Optronics Co Ltd | Pixels having polarity extension regions for multi-domain vertical alignment liquid crystal displays |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100480794C (en) * | 2006-07-10 | 2009-04-22 | 胜华科技股份有限公司 | Multiple-domain liquid crystal display |
CN100510864C (en) * | 2006-08-30 | 2009-07-08 | 胜华科技股份有限公司 | Multi-domain LCD |
CN101436598A (en) * | 2007-11-16 | 2009-05-20 | 胜华科技股份有限公司 | Multi-domain liquid crystal display and array substrate device thereof |
-
2010
- 2010-03-12 TW TW099107313A patent/TWI447480B/en not_active IP Right Cessation
- 2010-03-26 CN CN 201010150567 patent/CN102033352A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200736715A (en) * | 2006-03-31 | 2007-10-01 | Wintek Corp | Multi-domain LCD |
TW200846759A (en) * | 2007-05-21 | 2008-12-01 | Kyoritsu Optronics Co Ltd | Pixels using associated dot polarity for multi-domain vertical alignment liquid crystal display |
TW200933242A (en) * | 2008-01-23 | 2009-08-01 | Kyoritsu Optronics Co Ltd | Pixels having polarity extension regions for multi-domain vertical alignment liquid crystal displays |
Also Published As
Publication number | Publication date |
---|---|
TW201113595A (en) | 2011-04-16 |
CN102033352A (en) | 2011-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8107030B2 (en) | Pixels using associated dot polarity for multi-domain vertical alignment liquid crystal displays | |
US7956958B2 (en) | Large-pixel multi-domain vertical alignment liquid crystal display using fringe fields | |
US8605239B2 (en) | Display unit with interleaved pixels | |
TWI406038B (en) | Pixels having polarity extension regions for multi-domain vertical alignment liquid crystal displays | |
US8339529B2 (en) | Pixels having polarity extension regions for multi-domain vertical alignment liquid crystal displays | |
TWI542924B (en) | Liquid crystal displays | |
US8427593B2 (en) | Multi-domain vertical alignment liquid crystal displays using pixels having fringe field amplifying regions | |
TWI447480B (en) | Multi-domain vertical alignment liquid crystal displays using pixels having fringe field amplifying regions | |
TW201329597A (en) | Liquid crystal displays having pixels with embedded fringe field amplifiers | |
TWI477866B (en) | Pixels having extra-planar fringe field amplifiers for multi-domain vertical alignment liquid crystal displays | |
US9443483B2 (en) | Liquid crystal displays having pixels with embedded fringe field amplifiers | |
US8427592B2 (en) | Pixels having fringe field amplifying regions for multi-domain vertical alignment liquid crystal displays | |
TWI431364B (en) | Liquid crystal displays having color dots with embedded polarity regions | |
US8786806B2 (en) | Pixels having extra-planar fringe field amplifiers for multi-domain vertical alignment liquid crystal displays | |
US8471971B2 (en) | Liquid crystal displays having color dots with embedded polarity regions | |
TW201329586A (en) | Pixels having extra-planar fringe field amplifiers for multi-domain vertical alignment liquid crystal displays | |
TW201331681A (en) | Liquid crystal displays having color dots with embedded polarity regions | |
TW201329571A (en) | Liquid crystal displays having pixels with embedded fringe field amplifiers | |
TW201329570A (en) | Liquid crystal displays having pixels with embedded fringe field amplifiers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |