TWI438998B - 電流平衡電路及方法 - Google Patents

電流平衡電路及方法 Download PDF

Info

Publication number
TWI438998B
TWI438998B TW098136055A TW98136055A TWI438998B TW I438998 B TWI438998 B TW I438998B TW 098136055 A TW098136055 A TW 098136055A TW 98136055 A TW98136055 A TW 98136055A TW I438998 B TWI438998 B TW I438998B
Authority
TW
Taiwan
Prior art keywords
current
phase
currents
level
pwm
Prior art date
Application number
TW098136055A
Other languages
English (en)
Other versions
TW201034333A (en
Inventor
Kisun Lee
Original Assignee
Semiconductor Components Ind
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Components Ind filed Critical Semiconductor Components Ind
Publication of TW201034333A publication Critical patent/TW201034333A/zh
Application granted granted Critical
Publication of TWI438998B publication Critical patent/TWI438998B/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Description

電流平衡電路及方法
本發明通常涉及功率變換器,尤其是涉及多相功率變換器。
功率變換器用在各種電子產品中,包括汽車、航空、電信和消費者電子設備。功率變換器,例如直流到直流(DC-DC)變換器已經在一般由電池供電的便携式電子產品中廣泛使用,這些便携電子產品例如為膝上型計算機、個人數字助理、呼叫器、行動電話等。DC-DC變換器能够從單個電壓輸送複數個電壓,而與從變換器流出的負載電流無關,也不依賴於供給變換器的電源中的任何變化。一種用在便携式電子應用中的類型的DC-DC變換器是降壓變換器。該變換器也稱為切換模式電源,能够將輸入電壓從一個電壓位準轉換到較低的電壓位準。降壓變換器一般由可配置為多相控制器的控制器控制,該多相控制器具有在不同的時間切換的複數個輸出電流通道。在輸出電流通道中流動的輸出電流被匯總並輸送到負載。該配置的優點是每個通道傳導總負載電流的一部分。例如,在4相降壓控制器中,每個通道傳導輸出電流的25%。這降低了每個輸出所消耗的功率。多相降壓控制器的缺點是,當電流不平衡時,其中一個電流通道將比其它電流通道傳導更多的電流,這可導致熱失效。另一缺點是,耦合到控制器的動態負載可具有與多相降壓變換器的輸出之一相同的重複率。 在這種情况下,通道中的電流變得不平衡,從而使變換器遭受熱失效。
因此,具有一種在其輸出維持平衡電流的多相控制器電路及操作該多相控制器電路的方法將是有利的。此外,希望該多相控制器電路製造起來是成本和時間有效的。
本發明之一實施例提供一種用於在具有複數個輸出的一多相功率變換器中平衡電流的方法。該方法包括:提供複數個電流,其中,該複數個電流中的每個電流具有一相關的相位;確定與該複數個電流中的一個或多個電流相關的一相位是有效的還是無效的;確定該複數個電流的電流位準;以及啟動與具有一最低電流位準或一最高電流位準其中之一的一電流相關的一相位。
本發明之另一實施例提供一種用於在一多相功率變換器中平衡電流的方法。該方法包括:提供具有一脈衝分配電路的該多相功率變換器,該脈衝分配電路接收一個或多個脈衝寬度調變信號,其中該脈衝分配電路具有一個或多個輸出;以及將該一個或多個脈衝寬度調變信號的一第一脈衝寬度調變信號分配到該脈衝分配電路的該一個或個輸出的一第一輸出,其中該第一脈衝寬度調變信號與一第一參數相關。
本發明之另一實施例提供一種用於在多相功率變換器中平衡電流的方法。該方法包括通過使用複數個電流共享迴路來在該多相功率變換器中平衡該電流,該複數個電流共 享迴路的一第一電流共享迴路用於在小於其電流共享迴路帶寬的一頻率處操作,而該複數個電流共享迴路的一第二電流共享迴路用於在大於該第一電流共享迴路的電流共享迴路帶寬的一頻率處操作。
本發明之另一實施例提供一種多相功率變換器。該多相功率變換器包括:一脈衝寬度調變器,其具有至少一個輸入和至少一個輸出;以及一脈衝寬度電路,其具有至少一個輸入和至少一個輸出,其中該脈衝分配電路的一第一輸入耦合到該脈衝寬度調變器的一第一輸出。
圖1是根據本發明的實施方式的在半導體基板中製造的多相功率變換器10的結構圖。圖2是多相功率變換器10的輸出級33的實施方式的結構圖。應注意,圖1和2將在一起被描述。在圖1中示出的是具有「n」組輸入121 ,122 ,123 ,...,12n 的脈衝寬度調變器(PWM)電路12,其中「n」為整數。「n」組輸入中的每組輸入都包括誤差輸入12nA 和振盪器輸入12nB 。應注意,在參考符號中使用字母「A」和「B」來分別區分開誤差輸入和振盪器輸入。因此,輸入121 包括誤差輸入121A 和振盪器輸入121B ;輸入122 包括誤差輸入122A 和振盪器輸入122B ;輸入123 包括誤差輸入123A 和振盪器輸入123B ;以及輸入12n 包括誤差輸入12nA 和振盪器輸入12nB
多相功率變換器10進一步包括具有連接到誤差輸入121A ,122A ,123A ,...,12nA 的輸出17的誤差放大器16和具有複數個 輸出的振盪器18,其中該複數個輸出連接到相應的振盪器輸入121B ,122B ,123B ,...,12nB 。根據本發明的實施方式,誤差放大器16包括連接在負回饋配置中的運算放大器20,在該配置中阻抗22耦合在運算放大器20的輸出和其反相輸入之間,而阻抗24連接到運算放大器20的反相輸入。作為例子,阻抗22包括與串聯連接的電阻器28和電容器30並聯連接的電容器26,而阻抗24包括電阻器。運算放大器20的非反相輸入耦合成接收參考電壓位準VREF1 。應理解,誤差放大器16的回饋配置不是對本發明的限制,且可使用對本領域具有通常知識者是已知的其它回饋配置來實現。
PWM電路12通過脈衝分配電路60耦合到包括功率級341 ,342 ,343 ,...,34n 的輸出級33,脈衝分配電路60具有PWM輸入621 ,622 ,623 ,...,62n 、電流排序輸入631 ,632 ,633 ,...,63n 和PWM輸出641 ,642 ,643 ,...,64n 。PWM電路12的輸出141 ,142 ,143 ,...,14n 分別連接到脈衝分配電路60的PWM輸入621 ,622 ,623 ,...,62n 。具有輸入661 ,662 ,663 ,...,66n 和輸出671 ,672 ,673 ,...,67n 的電流排序電路65連接到脈衝分配電路60,其中輸入661 ,662 ,663 ,...,66n 連接到脈衝分配電路60的電流排序輸入631 ,632 ,633 ,...,63n
功率級341 ,342 ,343 ,...,34n 包括驅動電路541 ,542 ,543 ,...,54n ,其分別具有用作功率級341 ,342 ,343 ,...,34n 的輸入的輸入、連接到相應的開關電晶體571 ,572 ,573 ,...,57n 的閘極的高壓側驅動器輸出和連接到相應的開關電晶體591 ,592 ,593 ,...,59n 的閘極的低壓側驅動器輸出。高壓 側開關電晶體571 ,572 ,573 ,...,57n 的汲極耦合成接收操作電勢源例如VCC ,而高壓側開關電晶體571 ,572 ,573 ,...,57n 的源極連接到低壓側開關電晶體591 ,592 ,593 ,...,59n 的相應的汲極。低壓側開關電晶體591 ,592 ,593 ,...,59n 的源極耦合成接收操作電勢源例如VSS 。電晶體571 ,572 ,573 ,...,57n 和電晶體591 ,592 ,593 ,...,59n 的共同連接的源極和汲極分別連接到相應的能量儲存元件561 ,562 ,563 ,...,56n 的端子。能量儲存元件561 ,562 ,563 ,...,56n 的另一端子用作功率級341 ,342 ,343 ,...,34n 的輸出,並耦合在一起以形成輸出節點50。作為例子,能量儲存元件561 ,562 ,563 ,...,56n 是感應器。
脈衝分配電路60的PWM輸出641 ,642 ,643 ,...,64n 分別連接到功率級341 ,342 ,343 ,...,34n 的相應的輸入。功率級341 ,342 ,343 ,...,34n 的輸出連接到輸出節點50。功率級341 ,342 ,343 ,...,34n 分別具有電流感測模塊351 ,352 ,353 ,...,35n ,其產生與流經能量儲存元件561 ,562 ,563 ,...,56n 的電流成比例的回饋電流IFEED1 ,IFEED2 ,IFEED3 ,...,IFEEDn 。回饋電流信號IFEED1 ,IFEED2 ,IFEED3 ,...,IFEEDn 分別通過回饋互連371 ,372 ,373 ,...,37n 回饋到PWM電路12,並回饋到電流排序電路65的輸入661 ,662 ,663 ,...,66n 。可選地,電流感測模塊351 ,352 ,353 ,...,35n 可配置成產生作為電壓的回饋信號。電流感測模塊的電路配置對本領域具有通常知識者是已知的。
負載80耦合在輸出節點50和操作電勢源例如VSS 之間。 輸出電容器82與負載80並聯連接。輸出節點50在回饋配置中連接到誤差放大器16的阻抗24。
圖3是示出來自振盪器18的信號OSC1,OSC2,OSC3和OSC4、來自PWM電路12的被輸入到脈衝分配電路60的脈衝寬度調變信號PWM1 ,PWM2 ,PWM3 和PWM4 、來自脈衝分配電路60的被分配的PWM信號APWM1 ,APWM2 ,APWM3 和APWM4 以及參數例如感應器電流IL561 ,IL562 ,IL563 和IL564 中的時間關係的時序圖100。時序圖100是四相功率變換器,即,n=4的功率變換器的時序圖,然而,相的數量不是對本發明的限制。功率變換器10可為兩相功率變換器(n=2)、三相功率變換器(n=3)、四相功率變換器(n=4)等。應注意,脈衝分配電路60從PWM 12接收脈衝寬度調變信號,即,信號PWM1 ,PWM2 ,PWM3 和PWM4 ,並使用這些信號作為對感應器電流相位的接通和關閉信號。換句話說,通過來自PWM電路12的信號PWM1 ,PWM2 ,PWM3 和PWM4 、感應器電流IL561 ,IL562 ,IL563 和IL564 的電流位準、以及輸出641 ,642 ,643 ,...,644 中的一個或多個是否被致能並根據感應器電流相位中的一個或多個感應器電流相位傳導輸出信號,來致能或禁止電流分配電路60的輸出641 ,642 ,643 ,...,644 。如果包含來自一個或多個感應器電流IL561 ,IL562 ,IL563 ,...,IL564 的資訊的輸出信號根據一個或多個信號PWM1 ,PWM2 ,PWM3 和PWM4 通過輸出641 ,642 ,643 ,...,644 之一被傳輸,則感應器相位電流被接通。例如,相位分配電路60可在其輸入621 接收相應於感應器 電流IL561 的信號PWM1 ;然而,脈衝分配電路60可致能輸出644 ,從而傳輸與電流IL564 相關的輸出信號。在這種情况下,信號PWM4 的感應器電流相位,或可選地,電流IL564 被稱為是接通、致能、有效或啟動的。改變被致能的輸出改變了被傳輸的輸出PWM信號,因此被稱作交換(swap)斜波信號或分配斜波信號。當在輸出641 ,642 ,643 ,...,64n 處的信號在邏輯低位準時,感應器電流相位被稱為關閉的或無效的。
如上討論的,時序圖100示出由4相功率變換器的振盪器18產生的三角波形或斜波信號。在圖3中示出的是具有範圍從電壓位準VLOSC1 到電壓位準VHOSC1 的振幅的三角波形OSC1 、具有範圍從電壓位準VLOSC2 到電壓位準VHOSC2 的振幅的三角波形OSC2 、具有範圍從電壓位準VLOSC3 到電壓位準VHOSC3 的振幅的三角波形OSC3 、以及具有範圍從電壓位準VLOSC4 到電壓位準VHOSC4 的振幅的三角波形OSC4 。三角波形OSC1 和OSC2 具有相差90度的相角;三角波形OSC2 和OSC3 具有相差90度的相角;三角波形OSC3 和OSC4 具有相差90度的相角;以及三角波形OSC4 和OSC1 具有相差90度的相角。波形OSC1 滯後波形OSC2 90度;波形OSC1 滯後波形OSC3 180度;波形OSC1 滯後波形OSC4 270度。為了清楚起見,波形OSC1 -OSC4 被示為分離的曲線。
因應於來自振盪器18的信號OSC1 ,OSC2 ,OSC3 和OSC4 、來自誤差放大器16的誤差信號和來自功率級341 ,342 ,343 和344 的回饋信號,PWM電路12在輸出141 ,142 ,143 和144 分 別產生脈衝寬度調變信號PWM1 ,PWM2 ,PWM3 和PWM4 。信號PWM1 ,PWM2 ,PWM3 和PWM4 傳輸到脈衝分配電路60,並用作如上所述的接通或關閉信號。在圖3示出的例子中,參考時刻t0 -t3 描述了接通操作,參考時刻t4 和t5 描述了接通關閉操作,以及參考時刻t6 -t9 描述了關閉操作。在時刻t0 ,信號PWM1 ,PWM2 ,PWM3 和PWM4 已經從PWM電路12分別傳輸到脈衝分配電路60的PWM輸入621 ,622 ,623 和624 。在時刻t0 ,信號PWM1 轉變到邏輯高位準,而信號PWM2 ,PWM3 和PWM4 保持在邏輯低位準。應注意,邏輯低位準也稱為邏輯0位準,而邏輯高位準也稱為邏輯1位準。
電流排序電路65在時刻t0 將電流IL561 ,IL562 ,IL563 和IL564 的電流位準彼此進行比較,並將電流位準資訊傳輸到脈衝分配電路60。在時刻t0 ,電流IL564 具有最低的電流位準,電流IL563 具有第二最低的電流位準,電流IL562 具有第三最低的電流位準,以及電流IL561 具有最高的電流位準。換句話說,電流IL561 具有最高的電流位準,電流IL562 具有第二最高的電流位準,電流IL563 具有第三最高的電流位準,以及電流IL564 具有最低的電流位準。因應於信號PWM1 處在邏輯高位準,脈衝分配電路60確定感應器電流相位中的任何一個是否被接通。如果感應器電流相位中沒有一個被接通,則脈衝分配電路60致能輸出644 ,這接著將與最低感應器電流位準相關的感應器電流相位傳輸到脈衝分配電路60的輸出644 。如果感應器電流相位中 的一個或多個感應器電流相位被接通,則脈衝分配電路60致能與被關閉的感應器電流相位中的具有最低位準的電流的感應器電流相位相關的輸出,即,脈衝分配電路60將被致能的輸出交換為與具有最低感應器電流的感應器相關的輸出。脈衝分配電路60致能與被關閉的感應器電流相位相關的感應器電流的輸出。
在本例中,所有的感應器電流相位在時刻t0 是關閉的,因此脈衝分配電路60致能與其中相關的感應器電流相位被關閉的、具有最低電流位準的感應器相關的輸出。因此,脈衝分配電路60致能與具有最低電流位準的感應器電流相關的輸出,即,輸出644 。因應於信號PWM1 接通與信號PWM4 相關的感應器電流相位,脈衝分配電路60致能輸出644 並根據與感應器電流IL564 相關的感應器電流相位傳導一PWM信號,而不是致能輸出641 並根據與電流IL561 相關的感應器電流相位傳導PWM信號,即,不是接通與電流IL561 相關的感應器電流相位。脈衝分配電路60儲存指示與感應器電流IL564 相關的感應器電流相位被接通的資訊。與信號PWM1 ,PWM2 和PWM3 相關的感應器電流相位保持關閉。
在時刻t1 ,信號PWM2 轉變到邏輯高位準,因此,信號PWM1 保持在邏輯高位準,信號PWM3 和PWM4 保持在邏輯低位準,且信號PWM2 現在處於邏輯高位準。電流排序電路65在時刻t1 將電流IL561 ,IL562 ,IL563 和IL564 的電流位準彼此進行比較,並將電流位準資訊傳輸到脈衝分配電路 60。在時刻t1 ,電流IL564 仍然具有最低的電流位準,電流IL563 具有第二最低的電流位準,電流IL562 具有第三最低的電流位準,以及電流IL561 具有最高的電流位準。換句話說,電流IL561 具有最高的電流位準,電流IL562 具有第二最高的電流位準,電流IL563 具有第三最高的電流位準,以及電流IL564 具有最低的電流位準。因應於信號PWM2 處在邏輯高位準,脈衝分配電路60確定感應器電流相位中的任何一個是否被接通,從被關閉的感應器電流相位中選擇具有最低電流位準的感應器電流,即,與感應器電流IL561 ,IL562 ,IL563 相關的感應器電流相位,並致能相應的輸出641 ,642 ,643 和644 ,以根據與感應器電流相關的感應器電流相位傳導一PWM信號。在本例中,與感應器電流IL564 相關的感應器電流相位如上所述已被接通。因此,脈衝分配電路60致能與一感應器電流相位相關的輸出,該感應器電流相位是從與感應器電流IL561 ,IL562 和IL563 相關的感應器電流相位中選擇的。因為感應器電流IL563 是最低的感應器電流,且與感應器電流IL563 相關的感應器電流相位被關閉,因此,相位分配電路60致能輸出643 。因此,因應於信號PWM2 致能輸出643 ,即,傳導與信號PWM3 相關的感應器電流相位的輸出,脈衝分配電路60將與信號PWM2 相關的感應器電流相位交換為與信號PWM3 相關的感應器電流相位,即,脈衝分配電路60再次分配從脈衝分配電路64傳輸的感應器電流相位,這再次分配傳輸到輸出級33的PWM信號。此外,脈衝分配電路60儲 存指示與感應器電流IL563 相關的感應器電流相位被接通且與感應器電流IL564 相關的感應器電流相位保持接通的資訊。與信號PWM1 和PWM2 相關的感應器電流相位保持關閉。
在時刻t2 ,信號PWM3 轉變到邏輯高位準,因此信號PWM1 和PWM2 保持在邏輯高位準,信號PWM4 保持在邏輯低位準,且信號PWM3 現在處於邏輯高位準。電流排序電路65在時刻t2 將電流IL561 ,IL562 ,IL563 和IL564 的電流位準彼此進行比較,並將電流位準資訊傳輸到脈衝分配電路60。電流IL564 仍然具有最低的電流位準且電流IL561 仍然具有最高的電流位準,但電流IL562 現在具有第二最低的電流位準,而電流IL563 現在具有第三最低的電流位準。換句話說,電流IL561 具有最高的電流位準,電流IL563 具有第二最高的電流位準,電流IL562 具有第三最高的電流位準,以及電流IL564 具有最低的電流位準。因應於信號PWM3 處在邏輯高位準,脈衝分配電路60再次確定感應器電流相位中的任何一個是否被接通,從被關閉的感應器電流相位中,即,從與感應器電流IL561 和IL562 相關的感應器電流相位中,選擇具有最低電流位準的感應器電流,並致能相應的輸出641 ,642 ,643 和644 ,以根據與該感應器電流相關的感應器電流相位傳導PWM信號。因為與感應器電流IL563 和IL564 相關的感應器電流相位被接通,相位分配電路60從與感應器電流IL561 和IL562 相關的感應器電流相位中選擇感應器電流相位。在這裏,感應器電流IL562 具 有最低感應器電流,因此脈衝分配電路60致能輸出642 。因此,因應於信號PWM3 致能輸出642 ,即,致能根據與信號PWM2 相關的感應器電流相位傳導PWM信號的輸出,脈衝分配電路60將與信號PWM3 相關的感應器電流相位交換為與信號PWM2 相關的感應器電流相位,即,脈衝分配電路60再次分配從脈衝分配電路64傳輸的感應器電流相位。此外,脈衝分配電路60儲存指示與感應器電流IL562 相關的感應器電流相位被接通且與感應器電流IL563 和IL564 相關的感應器電流相位保持接通的資訊。與信號PWM1 相關的感應器電流相位保持關閉。
在時刻t3 ,信號PWM4 轉變到邏輯高位準,因此信號PWM1 ,PWM2 和PWM3 保持在邏輯高位準,且信號PWM4 現在也在邏輯高位準。電流排序電路65在時刻t3 將電流IL561 ,IL562 ,IL563 和IL564 的電流位準彼此進行比較,並將電流位準資訊傳輸到脈衝分配電路60。在時刻t3 ,電流IL564 現在具有第二最低的電流位準,電流IL563 現在具有最高的電流位準,電流IL562 現在具有第三最低的電流位準,以及電流IL561 現在具有最低的電流位準。換句話說,電流IL563 具有最高的電流位準,電流IL562 具有第二最高的電流位準,電流IL564 具有第三最高的電流位準,以及電流IL561 具有最低的電流位準。因應於信號PWM4 處在邏輯高位準,脈衝分配電路60再次確定感應器電流相位中的任何一個是否被接通,從被關閉的感應器電流相位,即,從與感應器電流IL561 相關的感應器電流相位中,選 擇具有最低電流位準的感應器電流,並致能相應的輸出641 ,642 ,643 和644 ,以根據與該感應器電流相關的感應器電流相位傳導PWM信號。因為與感應器電流IL562 、IL563 和IL564 相關的感應器電流相位被接通,相位分配電路60選擇與感應器電流IL561 相關的感應器電流相位,因為它是沒有被接通的感應器電流相位,即,它被關閉。因此脈衝分配電路60致能輸出641 。因應於信號PWM4 致能輸出641 ,即,致能根據與信號PWM1 相關的感應器電流相位傳導PWM信號的輸出,脈衝分配電路60將根據與信號PWM4 相關的感應器電流相位的PWM信號交換為根據與信號PWM1 相關的感應器電流相位的PWM信號,即,脈衝分配電路60再次分配它傳輸的感應器電流相位。此外,脈衝分配電路60儲存指示與感應器電流IL561 相關的感應器電流相位被接通且與感應器電流IL562 、IL563 和IL564 相關的感應器電流相位保持接通的資訊。與信號PWM2 ,PWM3 和PWM4 相關的感應器電流相位保持接通。
在時刻t4 ,信號PWM1 轉變到邏輯低位準,因此信號PWM2 ,PWM3 和PWM4 保持在邏輯高位準,而信號PWM1 現在處於邏輯低位準。電流排序電路65在時刻t4 將電流IL561 ,IL562 ,IL563 和IL564 的電流位準彼此進行比較,並將電流位準資訊傳輸到脈衝分配電路60。在時刻t4 ,電流IL564 仍然具有第二最低的電流位準,電流IL563 仍然具有最高的電流位準,電流IL562 仍然具有第三最低的電流位準,以及電流IL561 仍然具有最低的電流位準。換句話 說,電流IL563 具有最高的電流位準,電流IL562 具有第二最高的電流位準,電流IL564 具有第三最高的電流位準,以及電流IL561 具有最低的電流位準。因應於信號PWM1 處在邏輯低位準,脈衝分配電路60確定感應器電流相位中的任何一個是否被關閉。如果感應器電流相位中沒有一個被關閉,則脈衝分配電路60致能輸出643 ,其接著根據與最高的感應器電流位準相關的感應器電流相位將PWM信號傳輸到脈衝分配電路60的輸出643 。如果感應器電流相位中的一個或多個感應器電流相位被關閉,則脈衝分配電路60致能一輸出,以根據與被接通的感應器電流相位中具有最高電流位準的電流相關的感應器電流相位來傳導PWM,即,脈衝分配電路60將被致能的輸出交換為與具有最高感應器電流的感應器相關的輸出。脈衝分配電路60致能與被接通的感應器電流相位相關的感應器電流的輸出。
在本例中,所有的感應器電流相位在時刻t4 是接通的,因此脈衝分配電路60致能與所關聯的感應器電流相位被接通的、具有最高電流位準的感應器電流相關的輸出。因此,脈衝分配電路60致能其與具有最高電流位準的感應器電流相關的輸出,即,輸出643 。因應於信號PWM1 轉變到邏輯低位準並關閉與電流IL561 相關的感應器電流相位,脈衝分配電路60致能根據感應器電流IL563 傳導PWM信號的輸出643 ,而不是致能輸出641 並根據與電流IL561 相關的感應器電流相位傳導PWM信號,即,脈衝分配電路60關閉與電流IL563 相關的感應器電流相位。脈衝分配電路60儲 存指示與感應器電流IL563 相關的感應器電流相位被關閉的資訊。與信號PWM1 ,PWM2 和PWM4 相關的感應器電流相位保持接通。
在時刻t5 ,信號PWM1 轉變到邏輯高位準,因此信號PWM1 ,PWM2 ,PWM3 和PWM4 在邏輯高位準。電流排序電路65在時刻t5 將電流IL561 ,IL562 ,IL563 和IL564 的電流位準彼此進行比較,並將電流位準資訊傳輸到脈衝分配電路60。在時刻t5 ,電流IL564 具有第三最低的電流位準,電流IL563 具有第二最低的電流位準,電流IL562 具有最高的電流位準,以及電流IL561 仍然具有最低的電流位準。換句話說,電流IL562 具有最高的電流位準,電流IL564 具有第二最高的電流位準,電流IL563 具有第三最高的電流位準,以及電流IL561 具有最低的電流位準。因應於信號PWM1 處在邏輯高位準,脈衝分配電路60再次確定感應器電流相位中的哪一個被關閉,從被關閉的感應器電流相位中,即,從與感應器電流IL563 相關的感應器電流相位中,選擇具有最低電流位準的感應器電流,並致能相應的輸出641 ,642 ,643 和644 ,以根據與該感應器電流相關的感應器電流相位傳導PWM信號。因為與感應器電流IL561 ,IL562 和IL564 相關的感應器電流相位被接通,相位分配電路60選擇與感應器電流IL563 相關的感應器電流相位。在這裏,感應器電流IL563 是最低感應器電流,因此脈衝分配電路60致能輸出643 。因應於信號PWM1 致能輸出643 ,即,致能根據與信號PWM3 相關的感應器電流相位傳導 PWM信號的輸出,脈衝分配電路60將根據與信號PWM1 相關的感應器電流相位的PWM信號交換為根據與信號PWM3 相關的感應器電流相位的PWM信號,即,脈衝分配電路60根據被關閉的感應器電流相位中與具有最低電流位準的電流相關的感應器電流相位而再次分配PWM信號。此外,脈衝分配電路60儲存指示與感應器電流IL563 相關的感應器電流相位被接通且與感應器電流IL561 ,IL562 和IL564 相關的感應器電流相位保持接通的資訊。與信號PWM1 ,PWM2 ,PWM3 和PWM4 相關的感應器電流相位保持接通。
在時刻t6 ,信號PWM2 轉變到邏輯低位準,因此信號PWM1 ,PWM3 和PWM4 保持在邏輯高位準,且信號PWM2 現在處於邏輯低位準。電流排序電路65在時刻t6 將電流IL561 ,IL562 ,IL563 和IL564 的電流位準彼此進行比較,並將電流位準資訊傳輸到脈衝分配電路60。在時刻t6 ,電流IL564 仍然具有第三最低的電流位準,電流IL563 仍然具有第二最低的電流位準,電流IL562 仍然具有最高的電流位準,以及電流IL561 仍然具有最低的電流位準。換句話說,電流IL562 具有最高的電流位準,電流IL564 具有第二最高的電流位準,電流IL563 具有第三最高的電流位準,以及電流IL561 具有最低的電流位準。因應於信號PWM2 處在邏輯低位準,脈衝分配電路60確定感應器電流相位中的任何一個是否被關閉。如果感應器電流相位中沒有一個被關閉,則脈衝分配電路60致能輸出642 ,其接著將與最高感應器電流位準相關的感應器電流相位傳輸到脈衝分配電 路60的輸出642 。如果感應器電流相位中的一個或多個感應器電流相位被關閉,則脈衝分配電路60致能被接通的感應器電流相位中的、與具有最高電流位準的電流相關的感應器電流相位的輸出,即,脈衝分配電路60交換被致能的輸出,以傳導與具有最高感應器電流的感應器相關的PWM信號。脈衝分配電路60致能與被接通的感應器電流相位相關的感應器電流的輸出。
在本例中,所有的感應器電流相位在時刻t6 是接通的,因此脈衝分配電路60致能與具有最高電流位準的、所關聯的感應器電流相位被接通的感應器電流相關的輸出。因此,脈衝分配電路60致能其與具有最高電流位準的感應器電流相關的輸出,即,輸出642 ,以根據被接通的感應器電流相位中與具有最高電流位準的電流相關的感應器電流相位傳導PWM信號。因應於信號PWM2 轉變到邏輯低位準並關閉與電流IL562 相關的感應器電流相位,脈衝分配電路60致能傳導感應器電流IL562 的輸出642 。脈衝分配電路60儲存指示與感應器電流IL562 相關的感應器電流相位被關閉的資訊。與信號PWM1 ,PWM3 和PWM4 相關的感應器電流相位保持接通。
在時刻t7 ,信號PWM3 轉變到邏輯低位準,因此信號PWM1 和PWM4 保持在邏輯高位準,且信號PWM2 和PWM3 在邏輯低位準。電流排序電路65在時刻t7 將電流IL561 ,IL562 ,IL563 和IL564 的電流位準彼此進行比較,並將電流位準資訊傳輸到脈衝分配電路60。在時刻t7 ,電流IL564 現 在具有最高的電流位準,電流IL563 仍然具有第三最低的電流位準,電流IL562 現在具有最低的電流位準,以及電流IL561 現在具有第二最低的電流位準。換句話說,電流IL564 具有最高的電流位準,電流IL563 具有第二最高的電流位準,電流IL561 具有第三最高的電流位準,以及電流IL562 具有最低的電流位準。因應於信號PWM3 處在邏輯低位準,脈衝分配電路60確定感應器電流相位中的任何一個是否被關閉。如果感應器電流相位中沒有一個被關閉,則脈衝分配電路60致能輸出644 ,其接著根據與最高感應器電流位準相關的感應器電流相位將PWM信號傳輸到脈衝分配電路60的輸出644 。如果感應器電流相位中的一個或多個感應器電流相位被關閉,則脈衝分配電路60致能一輸出,以根據被接通的感應器電流相位中與具有最高電流位準的電流相關的感應器電流相位傳輸PWM信號,即,脈衝分配電路60將被致能的輸出交換為與最高感應器電流相關的感應器電流相位所相關的輸出。脈衝分配電路60致能與被接通的感應器電流相位相關的感應器電流的輸出。
在本例中,與感應器電流IL561 ,IL563 和IL564 相關的感應器電流相位是被接通的。因此,脈衝分配電路60從與感應器電流IL561 ,IL563 和IL564 相關的感應器電流相位中選擇感應器電流相位。因為感應器電流IL564 具有最高的電流位準,因此,脈衝分配電路60因應於信號PWM3 轉變到邏輯低位準而致能輸出644 。因此,脈衝分配電路60致能相應的輸出641 ,642 ,643 和644 ,以根據與具有最高電流位 準的感應器電流,即,感應器電流IL564 相關的感應器電流相位傳導PWM信號,而不是致能輸出643 以根據與感應器電流IL563 相關的感應器電流相位傳導PWM信號,即,脈衝分配電路60關閉與感應器電流IL564 相關的感應器電流相位。脈衝分配電路60儲存指示與感應器電流IL564 相關的感應器電流相位被關閉的資訊。與信號PWM1 和PWM3 相關的感應器電流相位保持接通。
在時刻t8 ,信號PWM4 轉變到邏輯低位準,因此信號PWM1 保持在邏輯高位準,且信號PWM2 、PWM3 和PWM4 在邏輯低位準。電流排序電路65在時刻t8 將電流IL561 ,IL562 ,IL563 和IL564 的電流位準彼此進行比較,並將電流位準資訊傳輸到脈衝分配電路60。在時刻t8 ,電流IL564 現在具有第二最低的電流位準,電流IL563 具有最高的電流位準,電流IL562 具有最低的電流位準,以及電流IL561 具有第三最低的電流位準。換句話說,電流IL563 具有最高的電流位準,電流IL561 具有第二最高的電流位準,電流IL564 具有第三最高的電流位準,以及電流IL562 具有最低的電流位準。因應於信號PWM4 處在邏輯低位準,脈衝分配電路60確定感應器電流相位中的任何一個是否被關閉。如果感應器電流相位中沒有一個被關閉,則脈衝分配電路60致能其輸出643 ,以根據與最高感應器電流位準相關的感應器電流相位傳導PWM信號。如果感應器電流相位中的一個或多個感應器電流相位被關閉,則脈衝分配電路60致能一輸出,以根據被接通的感應器電流相位中與具有最高 電流位準的電流相關的感應器電流相位傳輸PWM信號,即,脈衝分配電路60將被致能的輸出交換為與一PWM信號相關的輸出,該PWM信號與被接通的感應器電流相位中具有最高感應器電流相關的感應器電流相位一致。脈衝分配電路60致能與被接通的感應器電流相位相關的感應器電流的輸出。
在本例中,與感應器電流IL561 和IL563 相關的感應器電流相位是接通的。因此,脈衝分配電路60從與感應器電流IL561 和IL563 相關的感應器電流相位中選擇感應器電流相位。因為感應器電流IL563 具有最高的電流位準,因此,脈衝分配電路60因應於信號PWM4 轉變到邏輯低位準而致能相應的輸出641 ,642 ,643 和644 來傳導一PWM信號。因此,脈衝分配電路60致能輸出643 ,以根據與具有最高電流位準的感應器電流相關的感應器電流相位傳導PWM信號,即,脈衝分配電路60關閉與電流IL563 相關的感應器電流相位。脈衝分配電路60儲存指示與感應器電流IL563 相關的感應器電流相位被關閉的資訊。與信號PWM1 相關的感應器電流相位保持接通。
在時刻t9 ,信號PWM1 轉變到邏輯低位準,因此信號PWM1 ,PWM2 ,PWM3 和PWM4 在邏輯低位準。電流排序電路65在時刻t9 將電流IL561 ,IL562 ,IL563 和IL564 的電流位準彼此進行比較,並將電流位準資訊傳輸到脈衝分配電路60。在時刻t9 ,電流IL564 具有第二最低的電流位準,電流IL563 具有第三最低的電流位準,電流IL562 具有最低的電 流位準,以及電流IL561 仍然具有最高的電流位準。換句話說,電流IL561 具有最高的電流位準,電流IL563 具有第二最高的電流位準,電流IL564 具有第三最高的電流位準,以及電流IL562 具有最低的電流位準。因應於信號PWM1 處在邏輯低位準,脈衝分配電路60確定感應器電流相位中的任何一個是否被關閉。如果感應器電流相位中沒有一個被關閉,則脈衝分配電路60致能其輸出641 ,以根據與最高感應器電流位準相關的感應器電流相位傳導PWM信號。如果感應器電流相位中的一個或多個感應器電流相位被關閉,則脈衝分配電路60致能一輸出,以根據被接通的感應器電流相位中與具有最高電流位準的電流相關的感應器電流相位傳輸PWM信號,即,脈衝分配電路60將被致能的輸出交換為與一PWM信號相關的輸出,該PWM信號是與被接通的感應器電流相位中與最高感應器電流相關的感應器電流相位一致。
在本例中,與感應器電流IL561 相關的感應器電流相位是被接通的。因此,脈衝分配電路60從與感應器電流IL561 相關的感應器電流相位中選擇感應器電流相位。因為感應器電流IL561 具有最高的電流位準,脈衝分配電路60因應於信號PWM1 轉變到邏輯低位準而致能輸出641 ,以根據與感應器電流IL561 相關的感應器電流相位傳輸PWM信號,即,脈衝分配電路60關閉與電流IL561 相關的感應器電流相位。脈衝分配電路60儲存指示與感應器電流IL561 相關的感應器電流相位被關閉的資訊。與信號PWM1 , PWM2 ,PWM3 和PWM4 相關的感應器電流相位被關閉。換句話說,與感應器電流IL561 ,IL562 ,IL563 和IL564 相關的感應器電流相位被關閉。
圖3進一步示出根據本發明的實施方式交換感應器電流相位减小了最高和最低感應器電流位準之間的差。更具體地,圖3將被交換的感應器電流IL561 ,IL562 ,IL563 和IL564 顯示為實線,而將沒有被交換的電流ILW561 ,ILW562 ,ILW563 和ILW564 顯示為虛線。被交換的最低和最高電流之間的差由參考符號△LS 標示,而沒有被交換的最低和最高電流之間的差由參考符號△LN 標示。電流差△LS 小於電流差△LN ,說明根據本發明的實施方式操作的多相功率模塊平衡了電流。本發明的實施方式的另一優點是電流和功率的守恆。
到現在為止,應認識到,提供了多相功率變換器和用於平衡多相功率變換器中的複數個電流的方法。根據本發明的實施方式,通過根據對感應器電流的相位的比較分配接通和關閉信號來實現電流平衡。通過分配接通和關閉信號,傳送到輸出的總工作週期不受影響,且可在動態載入期間維持電流共享平衡。較佳地,將接通信號分配到關閉相位中的最低感應器電流相位,且將關閉信號分配到接通相位中的最高感應器電流相位。根據本發明的實施方式的優點是,當輸出信號的工作週期不交叠時,接通信號控制電流共享;當工作週期交叠時,接通和關閉信號控制電流共享;以及當工作週期在大部分時間交叠時,關閉信號控 制電流共享。將接通信號分配到最低感應器電流相位,導致較大的工作週期被分配到最低感應器電流相位,而將關閉信號分配到最高感應器電流相位,導致較小的工作週期被分配到最高感應器電流相位。這導致可在動態載入期間逐循環地快速平衡感應器電流的多相系統。
此外,本發明的實施方式包括用於平衡多相功率變換器中的電流的方法,該多相功率變換器使用複數個電流共享迴路,其中該複數個電流共享迴路中的第一電流共享迴路在低頻或DC處是準確的,而該複數個電流共享迴路中的第二電流共享迴路在負載工作在高頻處,即,在大於第一電流共享迴路的迴路帶寬的頻率處的條件下是準確的。較佳地,第一電流共享迴路使用電流的平均值來平衡電流,而第二電流迴路使用瞬時電流來平衡電流。第一電流共享迴路,也稱為傳統電流共享迴路,能够處理在其迴路帶寬之下或之內的頻率。因為傳統電流共享迴路使用平均電流來實現電流平衡,且電流在DC處實質上相等地分布,因此,實質上在電流中沒有誤差。第二電流共享迴路,也稱為開關電流共享迴路,是非線性的,當存在脈衝或開關情况時調節電流,能够處理比可由傳統電流共享迴路處理的頻率高的頻率,並且非常快。開關電流迴路使用脈衝分配方法,因而在單個開關周期內可能有誤差。包括複數個電流共享迴路的優點是,傳統電流共享電流迴路在其電流共享迴路帶寬內的頻率處是準確的,而脈衝分配或開關電流迴路在大於傳統電流共享電流迴路的電流共享迴路帶寬的 頻率處是準確的。因此,使用複數個電流共享迴路,增加了在較大的頻率範圍內的電流共享的準確性。根據本發明的實施方式,傳統電流共享迴路可包括通過誤差放大器16耦合到PWM電路12的輸出節點50,而開關電流共享迴路可包括功率級341 ,...,34n 、電流排序電路65和脈衝分配電路60。
雖然在這裏公開了某些較佳實施方式和方法,從前述公開中對本領域具有通常知識者很明顯,可對這樣的實施方式和方法進行變形和更改,而不偏離本發明的實質和範圍。意圖是本發明應僅被限制到所附申請專利範圍以及可適用法律的規則和法則所要求的程度。
10‧‧‧多相功率變換器
12‧‧‧脈衝寬度調變器(PWM)電路
121 、122 、123 ...12n ‧‧‧脈衝寬度調變器(PWM)電路 之輸入
121A 、122A 、123A ...12nA ‧‧‧誤差輸入
121B 、122B 、123B ...12nB ‧‧‧振盪器輸入
141 、142 、143 ...14n ‧‧‧PWM電路12的輸出
16‧‧‧誤差放大器
17‧‧‧誤差輸入121A ,122A ,123A ,...,12nA 的輸出
18‧‧‧振盪器
20‧‧‧運算放大器
22‧‧‧阻抗
24‧‧‧誤差放大器16的阻抗
26‧‧‧電容器
28‧‧‧電阻器
30‧‧‧電容器
33‧‧‧輸出級
341 、342 、343 ...34n ‧‧‧功率級
351 、352 、353 ...35n ‧‧‧電流感測模塊
371 、372 、373 ...37n ‧‧‧回饋互連
50‧‧‧輸出節點
541 、542 、543 ...54n ‧‧‧驅動電路
561 、562 、563 ...56n ‧‧‧能量儲存元件
571 、572 、573 ...57n ‧‧‧高壓側開關電晶體
591 、592 、593 ...59n ‧‧‧低壓側開關電晶體
60‧‧‧脈衝分配電路
621 、622 、623 ...62n ‧‧‧相位分配電路60之輸入
631 、632 、633 ...63n ‧‧‧電流排序輸入
641 、642 、643 ...64n ‧‧‧PWM輸出
65‧‧‧電流排序電路
661 、662 、663 ...66n ‧‧‧電流排序電路65的輸入
671 、672 、673 ...67n ‧‧‧電流排序電路65的輸出
80‧‧‧負載
82‧‧‧輸出電容器
IL561 、IL562 、IL563 ...IL56n ‧‧‧感應器電流
結合附圖理解,從下面的詳細描述的閱讀中將更好地理解本發明,其中相似的參考符號表示相似的元件,且其中:圖1是根據本發明的實施方式的多相變換器電路的示意圖;圖2是圖1的多相變換器電路的一部分的示意圖;以及圖3是根據本發明的實施方式的多相變換器電路的時序圖。
10‧‧‧多相功率變換器
12‧‧‧脈衝寬度調變器(PWM)電路
121 、122 、123 ...12n ‧‧‧脈衝寬度調變器(PWM)電路之輸入
121A 、122A 、123A ...12nA ‧‧‧誤差輸入
121B 、122B 、123B ...12nB ‧‧‧振盪器輸入
141 、142 、143 ...14n ‧‧‧PWM電路12的輸出
16‧‧‧誤差放大器
17‧‧‧誤差輸入121A ,122A ,123A ,...,12nA 的輸出
18‧‧‧振盪器
20‧‧‧運算放大器
22‧‧‧阻抗
24‧‧‧誤差放大器16的阻抗
26‧‧‧電容器
28‧‧‧電阻器
30‧‧‧電容器
33‧‧‧輸出級
341 、342 、343 ...34n ‧‧‧功率級
371 、372 、373 ...37n ‧‧‧回饋互連
50‧‧‧輸出節點
60‧‧‧脈衝分配電路
621 、622 、623 ...62n ‧‧‧相位分配電路60之輸入
631 、632 、633 ...63n ‧‧‧電流排序輸入
641 、642 、643 ...64n ‧‧‧PWM輸出
65‧‧‧電流排序電路
661 、662 、663 ...66n ‧‧‧電流排序電路65的輸入
671 、672 、673 ...67n ‧‧‧電流排序電路65的輸出
80‧‧‧負載
82‧‧‧輸出電容器
IL561 、IL562 、IL563 ...IL56n ‧‧‧感應器電流

Claims (17)

  1. 一種用於在具有複數個輸出的一多相功率變換器中平衡複數個電流的方法,其包括:提供複數個電流,其中,該複數個電流中的每個電流具有一相關的相位;確定與該複數個電流中的一個或多個電流相關的一相位是有效的還是無效的;確定該複數個電流的電流位準;其中確定該複數個電流的該等電流位準的步驟包括:確定該複數個電流中的哪個電流具有最低電流位準,並進一步包括啟動該複數個電流中具有最低電流位準的該電流的該相位;以及確定該複數個電流中具有無效的一相關相位的一第一電流具有最低電流位準,以及啟動該第一電流的該相位;以及確定該複數個電流中具有無效的相關相位的一第二電流具有最低電流位準,以及啟動該第二電流的該相位。
  2. 如請求項1的方法,其中確定與該複數個電流中的一個或多個電流相關的一相位是否是有效的步驟包括確定與該複數個電流中的該一個或多個電流相關的每個相位是無效的。
  3. 如請求項1的方法,其中啟動與具有最低位準的電流相關的該相位的步驟包括改變該複數個輸出的一第一輸出 的一邏輯狀態。
  4. 如請求項1的方法,其中啟動該第一電流的該相位中具有無效的相關相位之該複數個電流的最低電流位準的步驟包括改變該複數個輸出的一第二輸出的一邏輯狀態。
  5. 如請求項1的方法,其中確定該複數個電流的該等電流位準的步驟包括確定該複數個電流中具有有效的相關相位的一第三電流具有最高電流位準,以及啟動該第一電流的該相位。
  6. 如請求項5的方法,其中啟動具有有效的相關相位的該複數個電流之最高電流位準的該第三電流的該相位的步驟包括改變該複數個輸出的一第一輸出的一邏輯狀態。
  7. 一種用於在具有複數個輸出的一多相功率變換器中平衡複數個電流的方法,其包括:提供複數個電流,其中,該複數個電流中的每個電流具有一相關的相位;確定與該複數個電流中的一個或多個電流相關的一相位是有效的還是無效的;確定該複數個電流的電流位準,其中確定該複數個電流的該等電流位準的步驟包括:確定該複數個電流中的哪個電流具有最低電流位準,並進一步包括啟動該複數個電流中具有最低電流位準的該電流的該相位;以及確定該複數個電流中具有有效的相關相位的一第一電流具有最高電流位準,以及啟動該第一電流的該相 位。
  8. 如請求項7的方法,其中啟動具有有效的相關相位的該複數個電流之具有最高電流位準的該第一電流的該相位的步驟包括改變該複數個輸出的一第一輸出的一邏輯狀態。
  9. 如請求項7的方法,其中確定與該複數個電流中的一個或多個電流相關的一相位是有效的還是無效的步驟包括確定與該複數個電流中的該一個或多個電流相關的每個相位是有效的。
  10. 如請求項9的方法,其中確定該複數個電流的該等電流位準的步驟包括確定該複數個電流中的哪個電流具有最高電流位準,並進一步包括使該複數個電流中具有最高電流位準的該電流的該相位無效。
  11. 如請求項10的方法,其中使具有最低位準的該電流的該相位無效的步驟包括改變該複數個輸出的一第一輸出的一邏輯狀態。
  12. 一種用於在一多相功率變換器中平衡電流的方法,其包括:提供具有一脈衝分配電路的該多相功率變換器,該脈衝分配電路接收一個或多個脈衝寬度調變信號,其中該脈衝分配電路具有一個或多個輸出;將該一個或多個脈衝寬度調變信號的一第一脈衝寬度調變信號分配到該脈衝分配電路的該一個或多個輸出的一第一輸出,其中該第一脈衝寬度調變信號與一第一參 數相關;提供該一個或多個脈衝寬度調變信號的一第二脈衝寬度調變信號,其中該第二脈衝寬度調變信號與一第二參數相關;比較該第一參數與該第二參數;以及如果該第一參數大於該第二參數,則將該第一脈衝寬度調變信號分配到該第一輸出。
  13. 如請求項12的方法,其中該第一參數為一第一電流且該第二參數為一第二電流。
  14. 一種用於在一多相功率變換器中平衡電流的方法,其包括通過使用複數個電流共享迴路以在該多相功率變換器中平衡該電流,該複數個電流共享迴路的一第一電流共享迴路用於在小於其電流共享迴路帶寬的一頻率處操作,而該複數個電流共享迴路的一第二電流共享迴路用於在大於該第一電流共享迴路的電流共享迴路帶寬的一頻率處操作。
  15. 如請求項14的方法,其中:該第二電流共享迴路包括具有接收一個或多個脈衝寬度調變信號的一脈衝分配電路的該多相功率變換器,且其中該脈衝分配電路具有一個或多個輸出;且該方法進一步包括:將該一個或多個脈衝寬度調變信號的一第一脈衝寬度調變信號分配到該脈衝分配電路的該一個或多個輸出的一第一輸出,其中該第一脈衝寬度調變信號與一第一 電流的一第一電流位準相關。
  16. 如請求項15的方法,其進一步包括:提供該一個或多個脈衝寬度調變信號的一第二脈衝寬度調變信號,其中該第二脈衝寬度調變信號與一第二電流的一第二電流位準相關;比較該第一電流位準與該第二電流位準;以及如果該第一電流位準小於該第二電流位準,則將該第一脈衝寬度調變信號分配到該第一輸出。
  17. 如請求項15的方法,其進一步包括:提供該一個或多個脈衝寬度調變信號的一第二脈衝寬度調變信號,其中該第二脈衝寬度調變信號與一第二電流的一第二電流位準相關;比較該第一電流位準與該第二電流位準;以及如果該第一電流位準大於該第二電流位準,則將該第一脈衝寬度調變信號分配到該第一輸出。
TW098136055A 2008-11-05 2009-10-23 電流平衡電路及方法 TWI438998B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/265,064 US8085015B2 (en) 2008-11-05 2008-11-05 Current balancing circuit and method

Publications (2)

Publication Number Publication Date
TW201034333A TW201034333A (en) 2010-09-16
TWI438998B true TWI438998B (zh) 2014-05-21

Family

ID=42130586

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098136055A TWI438998B (zh) 2008-11-05 2009-10-23 電流平衡電路及方法

Country Status (4)

Country Link
US (1) US8085015B2 (zh)
CN (1) CN101741238B (zh)
HK (1) HK1144497A1 (zh)
TW (1) TWI438998B (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8232782B2 (en) * 2009-11-12 2012-07-31 Intersil Americas Inc. System and method for equalizing the small signal response of variable phase voltage regulators
US20110254531A1 (en) * 2010-04-20 2011-10-20 Astec International Limited Current Balancing Multiphase Power Converters, Controllers and Methods
US10103632B2 (en) * 2011-04-18 2018-10-16 Richtek Technology Corp. Enhanced phase control circuit and method for a multiphase power converter
US20120319478A1 (en) * 2011-06-20 2012-12-20 Volterra Semiconductor Corporation Dc to dc converter with ripple cancellation
US8792254B2 (en) 2011-06-28 2014-07-29 General Electric Company Multilevel power converter and methods of manufacturing and operation thereof
TWI427888B (zh) * 2011-06-30 2014-02-21 Hon Hai Prec Ind Co Ltd 電流平衡電路
TWI429182B (zh) * 2011-08-12 2014-03-01 Upi Semiconductor Corp 多相直流對直流電源轉換器
JP5779043B2 (ja) * 2011-08-23 2015-09-16 株式会社東芝 Dc−dc変換器および情報処理装置
US8624567B2 (en) * 2011-12-30 2014-01-07 O2Micro, Inc. Controllers for DC/DC converters
US9780665B2 (en) * 2012-03-15 2017-10-03 GM Global Technology Operations LLC Methods and systems for controlling a boost converter
AT512886B1 (de) * 2012-04-26 2014-03-15 Siemens Ag Verfahren und Vorrichtung zur Einstellung der Verzögerungszeit eines Halbleiterventils
US9077244B2 (en) * 2012-05-30 2015-07-07 Linear Technology Corporation Expanding DC/DC converter into multiphase DC/DC converter
EP2683066B1 (en) * 2012-07-04 2017-05-03 DET International Holding Limited LLC balancing
US9024600B2 (en) * 2012-10-10 2015-05-05 Texas Instruments Incorporated PWM control apparatus for average output current balancing in multi-stage DC-DC converters
TWI483529B (zh) * 2012-12-24 2015-05-01 Upi Semiconductor Corp 多相直流對直流電源轉換器
US9438117B2 (en) * 2013-03-06 2016-09-06 Infineon Technologies Americas Corp. Current balancing in a multi-phase power supply
US20150002115A1 (en) * 2013-07-01 2015-01-01 Texas Instruments Incorporated Series-capacitor buck converter multiphase controller
WO2015039049A1 (en) 2013-09-13 2015-03-19 The Trustees Of Columbia University In The City Of New York Circuits and methods for switched-mode operational amplifiers
US9496791B2 (en) 2013-09-19 2016-11-15 Infineon Technologies Austria Ag Multiphase buck converter with dynamic phase firing
CN105874698A (zh) * 2014-01-14 2016-08-17 联发科技股份有限公司 电压转换器
US10404061B2 (en) * 2016-07-20 2019-09-03 Cal Poly Corporation Multiple input single output DC-DC converter with equal load sharing on the multiple inputs
CN107147289B (zh) * 2017-06-01 2020-06-19 矽力杰半导体技术(杭州)有限公司 控制方法、控制电路及多相变换器
US10749433B2 (en) 2018-09-14 2020-08-18 Dialog Semiconductor (Uk) Limited Current balance feedback circuit and method to improve the stability of a multi-phase converter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6806689B2 (en) * 2002-03-22 2004-10-19 International Rectifier Corporation Multi-phase buck converter
US7023188B1 (en) * 2004-09-10 2006-04-04 Semiconductor Components Industries, L.L.C. Method of forming a multi-phase power supply controller
US7414383B2 (en) * 2006-05-12 2008-08-19 Intel Corporation Multi-phase voltage regulator with phases ordered by lowest phase current
US7733675B2 (en) * 2006-07-21 2010-06-08 International Rectifier Corporation PWN modulator in multi-phase converter
US7592787B2 (en) * 2007-02-02 2009-09-22 Intersil Americas Inc. Adaptive firing order control for dynamic current balance of multiphase voltage regulators
US7923974B2 (en) * 2008-01-04 2011-04-12 Chil Semiconductor Corporation Modification of switch activation order in a power supply

Also Published As

Publication number Publication date
TW201034333A (en) 2010-09-16
US8085015B2 (en) 2011-12-27
CN101741238B (zh) 2014-07-16
US20100109621A1 (en) 2010-05-06
CN101741238A (zh) 2010-06-16
HK1144497A1 (zh) 2011-02-18

Similar Documents

Publication Publication Date Title
TWI438998B (zh) 電流平衡電路及方法
TWI473377B (zh) 電流平衡方法及多相功率變換器
Kim et al. A 10-MHz 2–800-mA 0.5–1.5-V 90% peak efficiency time-based buck converter with seamless transition between PWM/PFM modes
KR101441935B1 (ko) 열 폭주를 억제하기 위한 방법
US8248046B2 (en) DC-DC converter for pulse frequency modulation control and power supply system
JP4527480B2 (ja) Dc−dcコンバータにおける電力効率を最適化する方法および回路
US7345463B2 (en) Load compensated switching regulator
US7812581B2 (en) Pulse adding scheme for smooth phase dropping at light load conditions for multiphase voltage regulators
US7248030B2 (en) Circuit and method for controlling step-up/step-down DC-DC converter
TWI511436B (zh) 多相非反相升降壓電壓轉換器與其之操作和控制方法
US8049476B2 (en) Method for changing an output voltage and circuit therefor
JP2006340442A (ja) マルチフェーズdc/dcコンバータおよびその制御方法
US7923975B2 (en) Analog variable-frequency controller and switching converter therewith
US8286008B2 (en) Multi-phase voltage regulator on motherboard
TW201444259A (zh) 電源設備
US20230048248A1 (en) Voltage Regulator with Multi-Level, Multi-Phase Buck Architecture
US20060038543A1 (en) DC/DC converters using dynamically-adjusted variable-size switches
US8710821B2 (en) Method for inhibiting thermal run-away
US7064530B2 (en) Voltage regulator current sensing
JP2010119177A (ja) マルチフェーズ型dc/dcコンバータ
US20210226537A1 (en) Voltage regulator circuit and method
US11929681B2 (en) Scalable multi-phase switching converter and converter module and control method thereof