CN105874698A - 电压转换器 - Google Patents

电压转换器 Download PDF

Info

Publication number
CN105874698A
CN105874698A CN201580003732.9A CN201580003732A CN105874698A CN 105874698 A CN105874698 A CN 105874698A CN 201580003732 A CN201580003732 A CN 201580003732A CN 105874698 A CN105874698 A CN 105874698A
Authority
CN
China
Prior art keywords
signal
dutycycle
comparison signal
comparison
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201580003732.9A
Other languages
English (en)
Inventor
管建葳
徐研训
陈敦士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MediaTek Inc
Original Assignee
MediaTek Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MediaTek Inc filed Critical MediaTek Inc
Publication of CN105874698A publication Critical patent/CN105874698A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0019Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being load current fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

提供了一种电压转换器(1),包括补偿电路(10)、第一比较电路(11A‑1ID)、第一电感(14A)、第一驱动电路(13A)和相位滞后电路(12)。补偿电路根据电压转换器的负载状态产生第一补偿信号(SIOA)。第一比较电路比较第一补偿信号和第一参考信号(RAMPA),以产生第一比较信号(SUA)。第一驱动电路根据第一比较信号产生第一驱动电压(V13A)至第一电感。相位滞后电路耦接在第一比较电路和第一驱动器之间。相位滞后电路修改第一比较信号的占空比,以改变流经第一电感的第一电感电流。

Description

电压转换器
相关申请的交叉引用
本申请要求2014年1月14日递交的申请号为61/927,135的美国临时案的优先权,在此合并参考该申请案的内容。
技术领域
本发明涉及一种电压转换器,以及更特别地,涉及一种具有平衡的(balanced)电感电流的电压转换器。
背景技术
通常,多相(phase)直流/直流(DC/DC)转换器具有一些耦接于该直流/直流(DC/DC)转换器的输出端的电感(inductor)。由于制造过程中的变化,这些电感彼此之间会不匹配。当直流/直流(DC/DC)的一些电感存在不匹配时,流经这些电感的电流是不平衡的,以及,直流/直流(DC/DC)转换器的大多数输出电流被集中到一个特定的电感。此情况会导致通过此较大电流的电感被破坏,以及甚至会导致直流/直流(DC/DC)转换器的效率的恶化。
发明内容
因此,提供一种能够平衡电感电流的电压转换器是可取的,从而防止电感被较大的电流破坏,并提高电压转换器的效率。
提供一种电压转换器的示例性实施例。该电压转换器在输出端上产生输出电压,以及,包括:补偿电路、第一比较电路、第一电感、第一驱动电路和相位滞后电路。补偿电路根据电压转换器的负载状态产生第一补偿信号。第一比较电路接收第一补偿信号和第一参考信号,以及,比较第一补偿信号和第一参考信号,以产生第一比较信号。第一电感耦接于输出端。第一驱动电路根据第一比较信号产生第一驱动电压至第一电感。相位滞后电路耦接在第一比较电路和第一驱动器之间。相位滞后电路修改第一比较信号的占空比,以改变流经第一电感的第一电感电流。
在一实施例中,相位滞后电路根据第一电感电流的电流值修改第一比较信号的占空比。第一电感电流响应于第一比较信号修改后的占空比而改变为具有一调整值。
在一实施例中,电流转换器还包括校正电路。校正电路检测第一电感电流,以及,根据与第一电感电流有关的检测结果产生第一校正信号至相位滞后电路。相位滞后电路根据第一校正信号修改第一比较信号的占空比。
提供一种修改方法的另一示例性实施例。电压转换器产生输出电压。该修改方法包括以下步骤:根据电压转换器的负载状态产生第一补偿信号;比较第一补偿信号和第一参考信号,以产生第一比较信号;根据第一比较信号产生第一驱动电压至第一电感,第一电感耦接于输出端;以及根据第一校正信号修改第一比较信号的占空比,以改变第一电感电流。
详细的描述将参考附图在下面的实施例中给出。
附图说明
通过阅读后续的详细描述以及参考附图所给的示例,可以更全面地理解本发明,其中:
图1示出了一种电压转换器的示例性实施例;
图2示出了图1中电压转换器的相位滞后电路的示例性实施例;以及
图3示出了一种修改方法的示例性实施例。
具体实施方式
以下描述为本发明实施的较佳实施例,此描述用于说明本发明的一般原则的目的,而不应当视为具有限制意义。本发明的范围应当参考所附的权利要求确定。
提供一种电压转换器。在图1中所示的示例性实施例中,电压转换器1在输出端Tout上产生输出电压Vout。在本实施例中,电压转换器1为多相直流/直流(DC/DC)电压转换器。参考图1,四相(four-phase)直流/直流(DC/DC)电压转换器作为电压转换器1的一种示例给出。响应于该四相结构,电压转换器1包括补偿电路(compensation circuit)10、四个比较器(comparator)11A-11D、相位滞后电路(phase-lag circuit)12、四个驱动电路(driver circuit)13A-13D、四个电感(inductor)14A-14D,以及校正电路(correction circuit)15。补偿电路10侦测电压转换器1的负载状态,以及根据侦测结果产生四个补偿信号S10A-S10D。在本实施例中,补偿电路10可以通过检测流经(following)电感14A-14D的电感电流或测量输出电压Vout来侦测电压转换器1的负载状态。对应于四相的四个比较器11A-11D的负输入端分别接收补偿信号S10A-S10D。每个比较器的正输入端接收用于比较操作的各自的(respective)参考信号。在本实施例中,斜坡信号(ramp signal)作为该参考信号的一种示例。详细地,比较器11A-11D的正输入端分别接收斜坡信号RAMPA-RAMPD。每个比较器比较各自的补偿信号和斜坡信号,以产生相应的比较信号。举例来说,比较器11A比较补偿信号S10和斜坡信号RAMPA,以及根据比较结果产生比较信号S11A。比较器11B-11D如比较器11A进行相同的比较操作,以分别产生比较信号S11B-S11D。在本实施例中,斜坡信号RAMPA-RAMPD呈锯齿波形(saw toothwaveform)。
相位滞后电路12耦接于比较器11A-11D,以分别接收比较信号S11A-S11D。相位滞后电路12被校正电路15控制。相位滞后电路12根据校正电路15的控制,修改(modify)每个比较信号S11A-S11D的占空比。对于每个比较信号,在相位滞后电路12被控制以修改比较的占空比的情形中,相位滞后电路12根据校正电路15的控制,进一步地决定修改该比较信号的占空比为更少或更大。通过相位滞后电路12处理后的比较信号S11A-S11D随后被分别传送至驱动电路13A-13D。
当每个驱动电路从相位滞后电路12接收相应的比较信号时,驱动电路根据所接收到的比较信号产生驱动电压,以及,将驱动电压施加到相应的电感。举例来说,驱动电路13A接收通过相位滞后电路12处理后的比较信号S11A,以及产生驱动电压V13A。将驱动电压V13A施加到电感14A。其它的驱动电路13B-13D如驱动电路13A进行相同的操作,以分别产生驱动电压V13B-V13D。将驱动电压V13B-V13D分别施加到电感14B-14D。通过分别施加驱动电压V13A-V13D至电感14A-14D,在输出端Tout上产生输出电压Vout。
根据上述实施例,通过相位滞后电路12对比较信号S11A-S11D的占空比的修改操作,驱动电压V13A-V13D被改变,以及,从而分别流经电感14A-14D的电感电流I14A-I14D被调整为具有一调整后的值。因此,在电感14A-14D存在不匹配的情形中,实现了电感电流I14A-I14D之间的平衡。此外,在本实施例中,比较信号S11A-S11D的占空比的所述修改是在比较器11A-11D之后进行的,这简化了用于平衡电感电流I14A-I14D的过程。
在上述实施例中,四相直流/直流(DC/DC)电压转换器作为电压转换器1的一种示例给出。然而,在其它实施例中,电压转换器1的相数可以根据系统需求来确定。
图2示出了相位滞后电路12的一种示例性实施例。为了清晰地说明相位滞后电路12的结构和操作,图2还示出了比较器11A-11D和校正电路15。参考图2,相位滞后电路12包括四个相位滞后单元20A-20D。相位滞后单元20A-20D分别耦接于比较器11A-11B,以接收比较信号S11A-S11D。相位滞后单元20A-20D还耦接于校正电路15,以及被校正电路15控制。在本实施例中,校正电路15用来检测电感电流I14A-I14D,以获得电感电流I14A-I14D的电流值。根据检测结果,校正电路15识别电感电流I14A-I14D彼此之间是否平衡以及决定如何修改比较信号S11A-S11D的占空比。然后,校正电路15根据检测结果分别为相位滞后单元20A-20D产生校正信号S15A-S15D。每个相位滞后单元接收相应的校正信号,以及被该相应的校正信号控制,以修改比较信号的占空比为更少或更大。比较信号S11A-S11D的占空比的修改程度不是相同的,以及,其方向(+或者-)也不是相同的。根据校正信号S15A-S15D(即根据校正电路15获得的检测结果)确定比较信号S11A-S11D的占空比的修改程度和方向。
图3示出了一种用于电压转换器1的修改方法的示例性实施例。在下文中,将参考图1和图3说明该修改方法。在步骤S30中,响应于电压转换器1的负载状态产生补偿信号S10A-S10D。在产生补偿信号S10A-S10D之后,分别比较补偿信号S10A-S10D与斜坡信号RAMPA-RAMPD,以产生比较信号S11A-S11D(步骤S31)。根据比较信号S11A-S11D分别产生驱动电压V13A-V13D(步骤S32),以及,分别将驱动电压V13A-V13D施加到电感14A-14D(步骤S33)。当将驱动电压V13A-V13D施加到电感14A-14D时,产生(induce)相应的电感电流I14A-I14D。然后,检测电感电流I14A-I14D的电流值(步骤S34),以及,根据检测结果产生校正信号S15A-S15D(步骤S35)。分别根据校正信号S15A-S15D修改比较信号S11A-S11D的占空比(步骤S35)。通过比较信号S11A-S11D的占空比的修改,每个电感电流I14A-I14D被改变为具有一调整后的值。
虽然本发明已经通过示例的方式以及依据优选实施例进行了描述,但是,应当理解的是,本发明并不限于公开的实施例。相反,它旨在覆盖各种变型和类似的结构(如对于本领域技术人员将是显而易见的)。因此,所附权利要求的范围应被赋予最宽的解释,以涵盖所有的这些变型和类似的结构。

Claims (10)

1.一种电压转换器,该电压转换器在输出端上产生输出电压,包括:
补偿电路,根据所述电压转换器的负载状态产生第一补偿信号;
第一比较电路,接收所述第一补偿信号和第一参考信号,并比较所述第一补偿信号和所述第一参考信号,以产生第一比较信号;
第一电感,耦接于所述输出端;
第一驱动电路,根据所述第一比较信号产生第一驱动电压至所述第一电感;以及
相位滞后电路,耦接在所述第一比较电路和所述第一驱动电路之间;接收所述第一比较信号,以及,修改所述第一比较信号的占空比,以改变流经所述第一电感的第一电感电流。
2.如权利要求1所述的电压转换器,其特征在于,所述相位滞后电路根据所述第一电感电流的电流值修改所述第一比较信号的所述占空比,以及,所述第一电感电流响应于所述第一比较信号修改后的占空比而改变为具有一调整后的值。
3.如权利要求1所述的电压转换器,还包括:
校正电路,检测所述第一电感电流,以及,根据与所述第一电感电流有关的检测结果产生第一校正信号至所述相位滞后电路;
其中,所述相位滞后电路根据所述第一校正信号修改所述第一比较信号的所述占空比。
4.如权利要求1所述的电压转换器,还包括:
第二比较电路,耦接于所述补偿电路,其中,所述补偿电路根据所述电压转换器的所述负载状态产生第二补偿信号;以及,所述第二比较电路接收所述第二补偿信号和第二参考信号,并比较所述第二补偿信号和所述第二参考信号,以产生第二比较信号;
第二电感,耦接于所述输出端;以及
第二驱动电路,根据所述第二比较信号产生第二驱动电压至所述第二电感;
其中,所述相位滞后电路修改所述第二比较信号的占空比,以改变流经所述第一电感的第二电感电流。
5.如权利要求4所述的电压转换器,还包括:
校正电路,检测所述第一电感电流和所述第二电感电流,以获得电流信息;以及,根据所述电流信息产生第一校正信号和第二校正信号至所述相位滞后电路;
其中,所述相位滞后电路根据所述第一校正信号修改所述第一比较信号的所述占空比,以及,根据所述第二校正信号修改所述第二比较的所述占空比。
6.一种用于电压转换器的修改方法,所述电压转换器产生输出电压,所述修改方法包括:
根据所述电压转换器的负载状态产生第一补偿信号;
比较所述第一补偿信号和第一参考信号,以产生第一比较信号;
根据所述第一比较信号产生第一驱动电压至第一电感,所述第一电感耦接于所述输出端;
根据所述第一校正信号修改所述第一比较信号的占空比,以改变第一电感电流。
7.如权利要求6所述的修改方法,在修改所述第一比较信号的所述占空比的步骤中,所述第一比较信号的所述占空比是根据所述第一电感电流的电流值修改的,以及,所述第一电感电流响应于所述第一比较信号修改后的占空比而改变为具有一调整后的值。
8.如权利要求6所述的修改方法,还包括:
检测所述第一电感电流;以及
根据与所述第一电感电流有关的检测结果产生第一校正信号至所述相位滞后电路;
其中,在修改所述第一比较信号的所述占空比的步骤中,所述第一比较信号的所述占空比是根据所述第一校正信号修改的。
9.如权利要求6所述的修改方法,还包括:
根据所述电压转换器的所述负载状态产生第二补偿信号;
比较所述第二补偿信号和第二参考信号,以产生第二比较信号;
根据所述第二比较信号产生第二驱动电压至第二电感,所述第二电感耦接于所述输出端;以及
修改所述第二比较信号的占空比,以改变流经耦接的所述第二电感的第二电感电流。
10.如权利要求9所述的修改方法,还包括:
检测所述第一电感电流和所述第二电感电流,以获得电流信息;以及
根据所述电流信息产生第一校正信号和第二校正信号至所述相位滞后电路;
其中,在修改所述第一比较信号的所述占空比的步骤中,所述第一比较信号的所述占空比是根据所述第一校正信号修改的;以及,在修改所述第二比较信号的所述占空比的步骤中,所述第二比较信号的所述占空比是根据所述第二校正信号修改的。
CN201580003732.9A 2014-01-14 2015-01-14 电压转换器 Pending CN105874698A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461927135P 2014-01-14 2014-01-14
US61/927,135 2014-01-14
PCT/CN2015/070668 WO2015106681A1 (en) 2014-01-14 2015-01-14 Voltage converter

Publications (1)

Publication Number Publication Date
CN105874698A true CN105874698A (zh) 2016-08-17

Family

ID=53542406

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580003732.9A Pending CN105874698A (zh) 2014-01-14 2015-01-14 电压转换器

Country Status (4)

Country Link
US (1) US9735681B2 (zh)
EP (1) EP3063862A4 (zh)
CN (1) CN105874698A (zh)
WO (1) WO2015106681A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9438117B2 (en) * 2013-03-06 2016-09-06 Infineon Technologies Americas Corp. Current balancing in a multi-phase power supply

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101075740A (zh) * 2006-05-16 2007-11-21 精拓科技股份有限公司 负载电流平衡的多相脉宽调制装置及其脉冲延迟单元
US20100109621A1 (en) * 2008-11-05 2010-05-06 Kisun Lee Current balancing circuit and method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6670794B1 (en) * 2002-07-12 2003-12-30 Richtek Technology Corp. Multi-phase DC-to-DC buck converter with multi-phase current balance and adjustable load regulation
CN100419614C (zh) 2002-11-28 2008-09-17 华邦电子股份有限公司 具有平衡电流的多通道脉波宽度调变转换器
TWI348262B (en) 2005-02-10 2011-09-01 Bruno Ferrario A circuit and method for adaptive frequency compensation for dc-to-dc converter
US7414383B2 (en) * 2006-05-12 2008-08-19 Intel Corporation Multi-phase voltage regulator with phases ordered by lowest phase current
US7733675B2 (en) * 2006-07-21 2010-06-08 International Rectifier Corporation PWN modulator in multi-phase converter
US7592787B2 (en) * 2007-02-02 2009-09-22 Intersil Americas Inc. Adaptive firing order control for dynamic current balance of multiphase voltage regulators
US8618788B2 (en) * 2007-03-30 2013-12-31 Malay Trivedi Dynamically adjusted multi-phase regulator
US8058856B2 (en) 2007-08-24 2011-11-15 Upi Semiconductor Corporation Multi-phase DC-DC converter and method for balancing channel currents
US8232782B2 (en) * 2009-11-12 2012-07-31 Intersil Americas Inc. System and method for equalizing the small signal response of variable phase voltage regulators
WO2013016289A1 (en) * 2011-07-26 2013-01-31 Summit Microelectronics, Inc. Switching regulator with variable compensation
TWI429182B (zh) 2011-08-12 2014-03-01 Upi Semiconductor Corp 多相直流對直流電源轉換器
TWI483529B (zh) * 2012-12-24 2015-05-01 Upi Semiconductor Corp 多相直流對直流電源轉換器
US9496791B2 (en) * 2013-09-19 2016-11-15 Infineon Technologies Austria Ag Multiphase buck converter with dynamic phase firing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101075740A (zh) * 2006-05-16 2007-11-21 精拓科技股份有限公司 负载电流平衡的多相脉宽调制装置及其脉冲延迟单元
US20100109621A1 (en) * 2008-11-05 2010-05-06 Kisun Lee Current balancing circuit and method

Also Published As

Publication number Publication date
EP3063862A4 (en) 2016-12-28
EP3063862A1 (en) 2016-09-07
US9735681B2 (en) 2017-08-15
WO2015106681A1 (en) 2015-07-23
US20160301302A1 (en) 2016-10-13

Similar Documents

Publication Publication Date Title
US7193871B2 (en) DC-DC converter circuit
US9124170B2 (en) Power factor correction device, and controller and THD attenuator used by same
CN103532373B (zh) 开关稳压器输出电容器电流估计
US9621103B2 (en) Circulating current and oscillating current suppressing method and parallel inverter driver system
US20150333629A1 (en) Multi-phase interleaved converter and control method thereof
TW201624904A (zh) 諧振型功率轉換電路及控制諧振型功率轉換電路的方法
US9116534B2 (en) DC-DC controller having transient response enhancement
AU2009222727B2 (en) Method of and apparatus for controlling converter
US20160352128A1 (en) Regulator with high speed nonlinear compensation
US20170229960A1 (en) Ringing Suppression Method and Apparatus for Power Converters
JP6230665B1 (ja) 直流電源装置
WO2012057730A1 (en) Power converter
CN104734470A (zh) 恒定导通时间控制器
CN104682716A (zh) 两相交错转换器及其控制方法
CN106208689A (zh) 具有可变电压输出的降压型电源转换器的动态工作频率控制
JP6131360B1 (ja) 電力変換装置
CN105874698A (zh) 电压转换器
US10389344B2 (en) Voltage supply circuits and controlling methods therefor
EP3396831A1 (en) Phase compensation for power factor correction circuit to reduce zero-crossing distortion
US20230037590A1 (en) Device and method for controlling llc resonance converter
JP2018137841A (ja) 力率改善回路及び充電装置
JP6573167B2 (ja) 並列チョッパ装置
JP6711730B2 (ja) 電源装置
JP7105983B2 (ja) 二重降圧チョッパ回路
JP4931129B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160817

WD01 Invention patent application deemed withdrawn after publication