TWI437665B - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
TWI437665B
TWI437665B TW097126596A TW97126596A TWI437665B TW I437665 B TWI437665 B TW I437665B TW 097126596 A TW097126596 A TW 097126596A TW 97126596 A TW97126596 A TW 97126596A TW I437665 B TWI437665 B TW I437665B
Authority
TW
Taiwan
Prior art keywords
wiring
layer
layer wiring
lower layer
upper layer
Prior art date
Application number
TW097126596A
Other languages
Chinese (zh)
Other versions
TW200915488A (en
Inventor
Tsuda Nobuhiro
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Publication of TW200915488A publication Critical patent/TW200915488A/en
Application granted granted Critical
Publication of TWI437665B publication Critical patent/TWI437665B/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

半導體裝置Semiconductor device

本發明有關於半導體裝置,特別有關於具有排列多個之標準單元之半導體裝置。The present invention relates to a semiconductor device, and more particularly to a semiconductor device having a plurality of standard cells arranged in series.

近年來在SOC(System On Chip,晶片系統)由於電路之大規模化,一般進行使用有標準單元資料庫(standard cell library)之佈置設計。另外,隨著SOC之高功能化、高性能化,而要求標準單元資料庫高積體化、高速化。另外一方面,隨著高速化使消耗電流增加,因此由於IR-Drop(電流I在某一路徑流動時,當該路徑為電阻值R時,在路徑之兩端產生以I×R表示之電位差)等之電源雜訊引起之特性劣化會成為大問題。In recent years, in the SOC (System On Chip), the layout of a standard cell library is generally used due to the large-scale circuit. In addition, as the SOC is highly functional and high-performance, the standard cell database is required to be highly integrated and high-speed. On the other hand, as the speed increases, the current consumption increases. Therefore, due to the IR-Drop (current I flows in a certain path, when the path is the resistance value R, a potential difference expressed by I×R is generated at both ends of the path. The deterioration of characteristics caused by power supply noise, etc., becomes a big problem.

在先前技術之構造,在標準單元資料庫之標準單元形成有作為功能元件之例如CMOS(Complementary Metal Oxide Semiconductor,互補式金氧半導體)反相器。在該構造中,在n型井區域之表面形成有p通道MOS電晶體(以下稱為pMOS電晶體),在p型井區域之表面形成有n通道MOS電晶體(以下稱為nMOS電晶體)。在該等之pMOS電晶體和nMOS電晶體之各個連接有電源線(VDD佈線、GND佈線)。該等之電源線之各個接觸到基板,而將基板電位固定,並共同設在各個標準單元之功能元件。In the configuration of the prior art, a standard unit such as a CMOS (Complementary Metal Oxide Semiconductor) inverter is formed as a functional element in a standard cell of a standard cell database. In this configuration, a p-channel MOS transistor (hereinafter referred to as a pMOS transistor) is formed on the surface of the n-type well region, and an n-channel MOS transistor (hereinafter referred to as an nMOS transistor) is formed on the surface of the p-type well region. . A power supply line (VDD wiring, GND wiring) is connected to each of the pMOS transistor and the nMOS transistor. Each of the power supply lines contacts the substrate, and the substrate potential is fixed, and is collectively provided in the functional elements of each standard unit.

因為隨著標準單元資料庫之高速化使標準單元之消耗電流增大,所以在電源線流動之電流亦增加。另外,在各個標準單元共用之電源線流入有多個之標準單元之電流。因此,因為在電源線流動之電流值變大,所以需要考慮IR-Drop之影響。電源線之IR-Drop與電源線之電阻值相關,電阻值越小IR-Drop之影響變小。因此,先前技術所進行之對策是使電源線之線寬變大。Since the current consumption of the standard cell increases as the standard cell database is increased in speed, the current flowing through the power line also increases. In addition, a power line shared by each standard unit flows into a current of a plurality of standard cells. Therefore, since the current value flowing through the power supply line becomes large, it is necessary to consider the influence of the IR-Drop. The IR-Drop of the power line is related to the resistance value of the power line. The smaller the resistance value, the smaller the influence of IR-Drop. Therefore, the countermeasures of the prior art are to make the line width of the power supply line large.

另外一方面,隨著標準單元資料庫之高積體化,有將汲極節點不同之2個之CMOS電晶體配置在1個之標準單元內。在此種情況,先前技術所進行之手法是配置4個之電晶體在俯視圖中排列在縱方向成為一列,用來達成標準單元之高積體化。在此種手法中,連接電晶體間之佈線,和用以連接電晶體和電源線之佈線變多,佈線佈置會有變為複雜之傾向。On the other hand, with the high integration of the standard cell database, two CMOS transistors having different dipole nodes are arranged in one standard cell. In this case, the prior art has been carried out by arranging four transistors in a top view and arranging them in a vertical direction to achieve a high integration of standard cells. In such a method, the wiring between the connection transistors and the wiring for connecting the transistor and the power supply line become large, and the wiring arrangement tends to become complicated.

另外,先前技術之配置有多個標準單元之佈置,例如被揭示在日本專利特開2000-223575號公報。在該公報揭示設有第1層電源線(3VDD1、3VSS1)和與其平行之第3層電源線(3VDD3、3VSS3),和使信號線(3S2)通過第2層,用來以第3層電源線補強第1層電源線而不會在第2層之配置產生限制。In addition, the prior art configuration has a plurality of standard unit arrangements, for example, disclosed in Japanese Laid-Open Patent Publication No. 2000-223575. This publication discloses that a first layer power supply line (3VDD1, 3VSS1) and a third layer power supply line (3VDD3, 3VSS3) parallel thereto are provided, and a signal line (3S2) is passed through the second layer for use as a third layer power supply. The line reinforces the first layer power line without placing a limit on the configuration of the second layer.

但是,在上述方式之先前技術之標準單元構造,為能實現高積體而且高速之標準單元,要同時成為針對高速化之使電源線變粗之構造,和針對高積體化之將多個電晶體配置在縱方向之構造會有困難。其理由是由於使電源線變粗,所以要確保構成反相器之pMOS電晶體和nMOS電晶體之各個汲極之連接用佈線,和使電源線連接到電晶體之佈線部份之間隔會有困難。However, in the standard cell structure of the prior art in the above-described manner, in order to realize a high-integration and high-speed standard cell, it is necessary to simultaneously make the power supply line thicker for the high speed, and to have a plurality of structures for high integration. It is difficult to configure the transistor in the longitudinal direction. The reason for this is that since the power supply line is made thick, it is necessary to ensure the connection wiring of the respective p-electrodes of the pMOS transistor and the nMOS transistor which constitute the inverter, and the wiring portion connecting the power supply line to the transistor. difficult.

本發明針對上述之問題,其目的是提供可以同時高速化和高積體化之半導體裝置。The present invention has been made in view of the above problems, and an object thereof is to provide a semiconductor device which can be simultaneously speeded up and integrated.

本發明之實施形態之半導體裝置,具有被排列之多個之標準單元(Standard cell),其中具備有功能元件和電源線。功能元件被包含在標準單元。電源線電氣連接到功能元件,並且具有下層佈線和上層佈線。下層佈線具有沿著互相鄰接之標準單元境界,而在境界上延伸之部份。上層佈線在俯視圖中,具有位於比下層佈線更在標準單元內側之部份。功能元件經由上層佈線電氣連接到下層佈線。A semiconductor device according to an embodiment of the present invention includes a plurality of standard cells (arranged) in which a functional element and a power supply line are provided. Functional elements are included in the standard unit. The power cord is electrically connected to the functional components and has a lower layer wiring and an upper layer wiring. The lower layer wiring has a portion extending along the standard cell boundary adjacent to each other and extending over the boundary. The upper layer wiring has a portion located inside the standard cell than the lower layer wiring in a plan view. The functional element is electrically connected to the lower layer wiring via the upper layer wiring.

依照本發明之實施形態之半導體裝置時,電源線分離成為下層佈線和上層佈線,當與電源線為單一層之情況比較時,因為可以增加電流路徑,所以可以達成高速化。另外,因為電源線之線寬不需要增加就可以使電流路徑增加,所以可以達成高積體化。According to the semiconductor device of the embodiment of the present invention, the power supply line is separated into the lower layer wiring and the upper layer wiring, and when compared with the case where the power supply line is a single layer, since the current path can be increased, the speed can be increased. In addition, since the line width of the power supply line does not need to be increased, the current path can be increased, so that high integration can be achieved.

另外,因為下層佈線沿著標準單元之境界延伸,所以在鄰接之標準單元之間,可以共用下層佈線。利用此種方式,因為在鄰接之標準單元之各個不需要個別地形成下層佈線,所以可以達成高積體化。In addition, since the lower layer wiring extends along the boundary of the standard cell, the lower layer wiring can be shared between adjacent standard cells. In this manner, since it is not necessary to form the lower layer wiring individually in each of the adjacent standard cells, it is possible to achieve high integration.

另外,因為功能元件經由上層佈線連接到下層佈線,所以不需要使位於標準單元境界之下層佈線,朝向功能元件所在位置之標準單元之中央部延伸。利用此種方式,因為在使下層佈線朝向標準單元之中央部延伸之部份,產生空的空間,所以在該空的空間可以配置其他之佈線等,可以達成高積體化。In addition, since the functional element is connected to the lower layer wiring via the upper layer wiring, it is not necessary to extend the layer wiring below the standard cell boundary toward the central portion of the standard cell where the functional element is located. In this manner, since a space is formed in a portion where the lower layer wiring is extended toward the central portion of the standard cell, other wirings and the like can be disposed in the empty space, and high integration can be achieved.

利用此種方式,可以獲得同時高速化和高積體化雙方之半導體裝置。In this way, it is possible to obtain a semiconductor device in which both high speed and high integration are achieved.

本發明之上述和其他目的、特徵、觀點和優點,由所附圖式和關於本發明之以下詳細說明當可明白。The above and other objects, features, aspects and advantages of the present invention will become apparent from

以下根據圖式用來說明本發明之實施形態。Hereinafter, embodiments of the present invention will be described based on the drawings.

(實施形態1)(Embodiment 1)

參照圖1,半導體裝置(例如半導體晶片)50在其表面主要地具有:標準單元區域51;I/O(Input/Output,輸入/輸出)單元區域52,配置在該標準單元區域51之周圍;和襯墊(未圖示),用在與外部之輸入輸出。Referring to FIG. 1, a semiconductor device (eg, a semiconductor wafer) 50 has, on its surface, a standard cell region 51; an I/O (Input/Output) cell region 52 disposed around the standard cell region 51; And pad (not shown), used for input and output with the outside.

標準單元區域51具有被配置成矩陣狀(行列狀)之多個之標準單元51a。在使用有標準單元資料庫之SOC,在該標準單元區域51內形成有CPU(Central Processing Unit,中央處理單元)、RAM(Random Access Memory,隨機存取記憶器)、FIFO(First-In First-Out,先進先出)、SCSI(Small Computer System Interface,小電腦系統界面)、SOG(Sea Of Gate,標準閘電子組件)等。The standard cell area 51 has a plurality of standard cells 51a arranged in a matrix (array). When a SOC having a standard cell database is used, a CPU (Central Processing Unit), a RAM (Random Access Memory), and a FIFO (First-In First-) are formed in the standard cell area 51. Out, first in, first out), SCSI (Small Computer System Interface), SOG (Sea Of Gate, standard gate electronic components), etc.

參照圖2,形成在標準單元51a內之功能元件之電路有例如TriState(三態)用緩衝器之一部份電路,具有輸出段和驅動器部。輸出段係例如包含有由pMOS電晶體PT1與nMOS電晶體NT1構成之CMOS反相器所構成。驅動器部係例如包含有由pMOS電晶體PT2與nMOS電晶體NT2構成之CMOS反相器,和由pMOS電晶體PT3與nMOS電晶體NT3構成之CMOS反相器所構成。由pMOS電晶體PT2和nMOS電晶體NT2構成之CMOS反相器之輸出,輸入到輸出段之nMOS電晶體NT1。另外,由pMOS電晶體PT3和nMOS電晶體NT3構成之CMOS反相器之輸出,輸入到輸出段之pMOS電晶體PT1。Referring to Fig. 2, the circuit of the functional element formed in the standard cell 51a has a part of a circuit such as a TriState buffer, and has an output section and a driver section. The output section is composed of, for example, a CMOS inverter composed of a pMOS transistor PT1 and an nMOS transistor NT1. The driver portion includes, for example, a CMOS inverter composed of a pMOS transistor PT2 and an nMOS transistor NT2, and a CMOS inverter composed of a pMOS transistor PT3 and an nMOS transistor NT3. The output of the CMOS inverter composed of the pMOS transistor PT2 and the nMOS transistor NT2 is input to the nMOS transistor NT1 of the output section. Further, the output of the CMOS inverter composed of the pMOS transistor PT3 and the nMOS transistor NT3 is input to the pMOS transistor PT1 of the output section.

在該電路當對驅動器部之2個CMOS反相器輸入“High”之情況時,從輸出段之CMOS反相器輸出“High”。另外,當對驅動器部之2個CMOS反相器輸入“Low”之情況時,從輸出段之CMOS反相器輸出“Low”。另外,當對由pMOS電晶體PT3和nMOS電晶體NT3構成之CMOS反相器輸入“Low”,而對由pMOS電晶體PT2和nMOS電晶體NT2構成之CMOS反相器輸入“High”之情況時,輸出段之CMOS反相器之輸出成為浮動狀態,成為所謂之“High impedance”(高阻抗)。When the circuit inputs "High" to the two CMOS inverters of the driver section, "High" is output from the CMOS inverter of the output section. Further, when "Low" is input to the two CMOS inverters of the driver section, "Low" is output from the CMOS inverter of the output section. In addition, when "Low" is input to the CMOS inverter composed of the pMOS transistor PT3 and the nMOS transistor NT3, and the "High" is input to the CMOS inverter composed of the pMOS transistor PT2 and the nMOS transistor NT2, The output of the CMOS inverter of the output section becomes a floating state and becomes a so-called "High impedance".

參照圖3和圖4,在半導體基板之表面形成p型井區域1,在該p型井區域1內之表面,選擇性地形成n型井區域2。在該p型井區域1內之表面,形成nMOS電晶體NT1、NT2、NT3。在n型井區域2內之表面,形成pMOS電晶體PT1、PT2、PT3。Referring to FIGS. 3 and 4, a p-type well region 1 is formed on the surface of the semiconductor substrate, and an n-type well region 2 is selectively formed on the surface in the p-type well region 1. On the surface in the p-type well region 1, nMOS transistors NT1, NT2, NT3 are formed. On the surface in the n-type well region 2, pMOS transistors PT1, PT2, PT3 are formed.

另外,沿著標準單元51a之縱方向(圖3中Y方向)之境界之一方(圖3中之Y方向下側之境界),在p型井區域1內之表面,形成在橫方向(圖3中X方向)延伸之p+ 區域15。另外,沿著標準單元51a之縱方向(圖3中Y方向)之境界之另外一方(圖3中之Y方向上側之境界),在n型井區域2內之表面,形成在橫方向(圖3中X方向)延伸之n+ 區域25。Further, along the one side of the vertical direction of the standard unit 51a (the Y direction in FIG. 3) (the boundary of the lower side in the Y direction in FIG. 3), the surface in the p-type well region 1 is formed in the lateral direction (Fig. 3 in the X direction) extended p + region 15. Further, the other side of the boundary between the vertical direction of the standard unit 51a (the Y direction in FIG. 3) (the boundary of the upper side in the Y direction in FIG. 3) is formed in the lateral direction in the surface in the n-type well region 2 (Fig. The n + region 25 extending in the X direction of 3).

為能使多個之MOS電晶體之形成區域,p+ 區域15和n+ 區域25之各個互相電氣隔離,在半導體基板之表面形成例如由STI(Shallow Trench Isolation,淺溝槽隔離)構成之元件隔離區域3。該STI由設在半導體基板之表面之溝,和充填在該溝內之絕緣性充填物構成。In order to enable a plurality of MOS transistor formation regions, each of the p + region 15 and the n + region 25 is electrically isolated from each other, and a component such as STI (Shallow Trench Isolation) is formed on the surface of the semiconductor substrate. Isolation area 3. The STI is composed of a groove provided on the surface of the semiconductor substrate and an insulating filler filled in the groove.

nMOS電晶體NT1,NT2、NT3之各個具有汲極區域11a和源極區域11b、閘絕緣層12,和閘電極層13。汲極區域11a和源極區域11b由n型之雜質區域構成,在p型井區域1之表面形成互相之距離。閘電極層13經由閘絕緣層12形成在被汲極區域11a和源極區域11b包夾之區域上。Each of the nMOS transistors NT1, NT2, and NT3 has a drain region 11a and a source region 11b, a gate insulating layer 12, and a gate electrode layer 13. The drain region 11a and the source region 11b are composed of an n-type impurity region, and are formed at a distance from each other on the surface of the p-type well region 1. The gate electrode layer 13 is formed on the region sandwiched by the drain region 11a and the source region 11b via the gate insulating layer 12.

pMOS電晶體PT1、PT2、PT3之各個具有汲極區域21a和源極區域21b,閘絕緣層22,和閘電極層23。汲極區域21a和源極區域21b由p型之雜質區域構成,在n型井區域2之表面形成互相之距離。閘電極層23經由閘絕緣層22形成在被汲極區域21a和源極區域21b包夾之區域上。Each of the pMOS transistors PT1, PT2, PT3 has a drain region 21a and a source region 21b, a gate insulating layer 22, and a gate electrode layer 23. The drain region 21a and the source region 21b are composed of p-type impurity regions, and are formed at a distance from each other on the surface of the n-type well region 2. The gate electrode layer 23 is formed on the region sandwiched by the drain region 21a and the source region 21b via the gate insulating layer 22.

nMOS電晶體NT2之閘電極層13和pMOS電晶體PT2之閘電極層23由共同之導電層形成,互相電氣連接。另外,nMOS電晶體NT3之閘電極層13和pMOS電晶體PT3之閘電極層23由共同之導電層形成,互相電氣連接。The gate electrode layer 13 of the nMOS transistor NT2 and the gate electrode layer 23 of the pMOS transistor PT2 are formed of a common conductive layer and electrically connected to each other. Further, the gate electrode layer 13 of the nMOS transistor NT3 and the gate electrode layer 23 of the pMOS transistor PT3 are formed of a common conductive layer and electrically connected to each other.

以覆蓋該等之各個MOS電晶體NT1~NT3、PT1~PT3之方式,形成在半導體基板表面上之疊層層間絕緣層31A、31B。層間絕緣層31A例如由TEOS(Tetra-Ethyl-Ortho-Silicate,四乙氧基矽烷)氧化膜形成,層間絕緣層31B例如由SiOC、MSQ(Methyl Silses-Quioxane,甲基倍半氧矽烷)等形成。The laminated interlayer insulating layers 31A and 31B are formed on the surface of the semiconductor substrate so as to cover the MOS transistors NT1 to NT3 and PT1 to PT3. The interlayer insulating layer 31A is formed, for example, of a TEOS (Tetra-Ethyl-Ortho-Silicate) oxide film, and the interlayer insulating layer 31B is formed of, for example, SiOC, MSQ (Methyl Silses-Quioxane, methyl sesquioxane) or the like. .

在層間絕緣層31B形成有從其上面達到層間絕緣層31A之佈線用溝31b,在層間絕緣層31A形成有從佈線用溝31b之底部到達半導體基板之接觸孔31a。在上述之佈線用溝31b之各個內部形成埋入有例如由CuAl合金(Al含有量為例如0.1~1.0%程度)構成之佈線層32a~32h之各個。另外,在上述之接觸孔31a之各個之內部,形成埋入有例如由鎢(W)構成之栓塞層。The interlayer insulating layer 31B is formed with a wiring trench 31b that reaches the interlayer insulating layer 31A from the upper surface thereof, and a contact hole 31a that reaches the semiconductor substrate from the bottom of the wiring trench 31b is formed in the interlayer insulating layer 31A. Each of the wiring layers 32a to 32h which is made of, for example, a CuAl alloy (Al content is, for example, about 0.1 to 1.0%) is formed in each of the wiring grooves 31b. Further, a plug layer made of, for example, tungsten (W) is embedded in each of the contact holes 31a described above.

另外,在接觸孔31a之側面和底面形成有障壁金屬層(未圖示)。該障壁金屬層位於上述栓塞層與層間絕緣層31A之間,和上述栓塞層與半導體基板之間。該障壁金屬層具有例如鈦(Ti)和氮化鈦(TiN)之疊層構造。Further, a barrier metal layer (not shown) is formed on the side surface and the bottom surface of the contact hole 31a. The barrier metal layer is located between the plug layer and the interlayer insulating layer 31A, and between the plug layer and the semiconductor substrate. The barrier metal layer has a laminated structure of, for example, titanium (Ti) and titanium nitride (TiN).

在佈線用溝31b之側面和底面亦形成有障壁金屬層(未圖示)。該障壁金屬層位於上述佈線層32a~32h與層間絕緣層31B之間,上述佈線層32a~32h與上述栓塞層之間,和上述佈線層32a~32h與層間絕緣層31A之間。該障壁金屬層例如由鉭(Ta)構成。A barrier metal layer (not shown) is also formed on the side surface and the bottom surface of the wiring trench 31b. The barrier metal layer is located between the wiring layers 32a to 32h and the interlayer insulating layer 31B, between the wiring layers 32a to 32h and the plug layer, and between the wiring layers 32a to 32h and the interlayer insulating layer 31A. The barrier metal layer is composed of, for example, tantalum (Ta).

在層間絕緣層31A與層間絕緣層31B之間形成有例如由SiCN構成之蝕刻阻擋層(未圖示)。An etching stopper layer (not shown) made of, for example, SiCN is formed between the interlayer insulating layer 31A and the interlayer insulating layer 31B.

利用佈線層32e使nMOS電晶體NT1之汲極區域11a和pMOS電晶體PT1之汲極區域21a互相電氣連接。另外利用佈線層32c使nMOS電晶體NT2之汲極區域11a和pMOS電晶體PT2之汲極區域21a互相電氣連接,並且電氣連接到nMOS電晶體NT1之閘電極層13。另外利用佈線層32d使nMOS電晶體NT3之汲極區域11a和pMOS電晶體PT3之汲極區域21a互相電氣連接,並且電氣連接到pMOS電晶體PT1之閘電極層23。該等之佈線層32c、32d相當於將信號從驅動器部傳達到輸出段之信號線。The drain region 11a of the nMOS transistor NT1 and the drain region 21a of the pMOS transistor PT1 are electrically connected to each other by the wiring layer 32e. Further, the drain region 11a of the nMOS transistor NT2 and the drain region 21a of the pMOS transistor PT2 are electrically connected to each other by the wiring layer 32c, and are electrically connected to the gate electrode layer 13 of the nMOS transistor NT1. Further, the drain region 11a of the nMOS transistor NT3 and the drain region 21a of the pMOS transistor PT3 are electrically connected to each other by the wiring layer 32d, and are electrically connected to the gate electrode layer 23 of the pMOS transistor PT1. These wiring layers 32c and 32d correspond to signal lines for transmitting signals from the driver unit to the output section.

另外佈線層32a延伸成沿著標準單元51a之縱方向境界之一方(圖3中之Y方向下側之境界),在該境界上橫方向(圖3中X方向)延伸。另外佈線層32b延伸成沿著標準單元51a之縱方向境界之另外一方(圖3中之Y方向上側之境界),在該境界上橫方向(圖3中X方向)延伸。該等之沿著標準單元境界上延伸之佈線層32a、32b之各個,可以施加電源電位(VDD、GND),而對應到電源線之下層佈線。Further, the wiring layer 32a extends along one of the vertical direction boundaries of the standard cell 51a (the boundary of the lower side in the Y direction in FIG. 3), and extends in the lateral direction (X direction in FIG. 3) in this boundary. Further, the wiring layer 32b extends along the other side of the vertical direction of the standard cell 51a (the boundary on the upper side in the Y direction in FIG. 3), and extends in the lateral direction (X direction in FIG. 3) in this boundary. The power supply potentials (VDD, GND) can be applied to each of the wiring layers 32a, 32b extending along the standard cell boundary, and correspond to the underlying wiring of the power supply line.

具體而言,在佈線層32a可以施加GND電位,在佈線層32b可以施加VDD電位。Specifically, a GND potential can be applied to the wiring layer 32a, and a VDD potential can be applied to the wiring layer 32b.

佈線層32a電氣連接到p+ 區域15,將p型井區域1之電位固定。另外佈線層32a從沿著縱方向(圖3中之Y方向)境界之一方(圖3中之Y方向下側之境界)之直線延伸之部份而分支,具有在nMOS電晶體NT2、NT3之各個之源極區域11b上延伸之部份,在該部份電氣連接該等之源極區域11b。The wiring layer 32a is electrically connected to the p + region 15 to fix the potential of the p-type well region 1. Further, the wiring layer 32a is branched from a portion extending in a straight line along one of the vertical direction (the Y direction in FIG. 3) (the boundary of the lower side in the Y direction in FIG. 3), and has the nMOS transistors NT2, NT3. Portions extending over the respective source regions 11b are electrically connected to the source regions 11b at the portions.

佈線層32b電氣連接到n+ 區域25,將n型井區域2之電位固定。另外佈線層32b從沿著縱方向(圖3中之Y方向)境界之另外一方(圖3中之Y方向上側之境界)之直線延伸之部份而分支,具有在pMOS電晶體PT2之源極區域21b上延伸之部份,在該部份電氣連接該源極區域21b。The wiring layer 32b is electrically connected to the n + region 25 to fix the potential of the n-type well region 2. Further, the wiring layer 32b is branched from a portion extending in a straight line along the other side of the vertical direction (the Y direction in FIG. 3) (the upper boundary in the Y direction in FIG. 3), and has a source at the pMOS transistor PT2. A portion extending over the region 21b is electrically connected to the source region 21b at the portion.

另外在nMOS電晶體NT1之源極區域11b,pMOS電晶體PT1之源極區域21b和pMOS電晶體PT3之源極區域21b之各個,電氣連接有佈線層32g、32h、32f之各個。Further, each of the wiring regions 32g, 32h, and 32f is electrically connected to each of the source region 11b of the nMOS transistor NT1, the source region 21b of the pMOS transistor PT1, and the source region 21b of the pMOS transistor PT3.

另外佈線層32a~32h之各個與形成半導體基板之表面之雜質區域之連接,為經由形成在層間絕緣層31A之接觸孔31a內之栓塞層。Further, the connection between each of the wiring layers 32a to 32h and the impurity region forming the surface of the semiconductor substrate is via a plug layer formed in the contact hole 31a of the interlayer insulating layer 31A.

以覆蓋佈線層32a~32h之方式,在層間絕緣層31B上形成例如由SiOC、MSQ構成之層間絕緣層33。在該層間絕緣層33之上面形成有佈線用溝33b,和形成有從佈線用溝33b之底部到達下層之各個佈線層之通溝33a。以埋入該通溝33a和佈線用溝33b內之方式,形成例如由CuAl合金(Al含有量為例如0.1~1.0%程度)構成之佈線層34a~34d之各個。An interlayer insulating layer 33 made of, for example, SiOC or MSQ is formed on the interlayer insulating layer 31B so as to cover the wiring layers 32a to 32h. A wiring groove 33b is formed on the upper surface of the interlayer insulating layer 33, and a through groove 33a is formed which is formed from the bottom of the wiring groove 33b to the respective wiring layers of the lower layer. Each of the wiring layers 34a to 34d made of, for example, a CuAl alloy (Al content is, for example, about 0.1 to 1.0%) is formed so as to be embedded in the through-grooves 33a and the wiring grooves 33b.

另外在通溝33a和佈線用溝33b之側面和底面形成有障壁金屬層(未圖示)。該障壁金屬層位於佈線層34a~34d之各個與層間絕緣層33之間,通溝33a之各個與層間絕緣層33之間,和通溝33a之各個與下層之佈線層之間。該障壁金屬層具有例如鉭(Ta)和氮化鉭(TaN)之疊層構造。Further, a barrier metal layer (not shown) is formed on the side surface and the bottom surface of the through groove 33a and the wiring groove 33b. The barrier metal layer is located between each of the wiring layers 34a to 34d and the interlayer insulating layer 33, between each of the vias 33a and the interlayer insulating layer 33, and between each of the vias 33a and the wiring layer of the lower layer. The barrier metal layer has a laminated structure of, for example, tantalum (Ta) and tantalum nitride (TaN).

另外在層間絕緣層33之下,形成有例如由SiCN構成之蝕刻阻擋層(未圖示)。Further, under the interlayer insulating layer 33, an etching stopper layer (not shown) made of, for example, SiCN is formed.

利用佈線層34c使nMOS電晶體NT1之源極區域11b(佈線層32g)和nMOS電晶體NT3之源極區域11b互相電氣連接,並且電氣連接到可以施加GND電位之佈線層32a。另外利用佈線層34d使pMOS電晶體PT1之源極區域21b(佈線層32h)和pMOS電晶體PT3之源極區域21b(佈線層32f)及pMOS電晶體PT2之源極區域21b互相電氣連接,並且電氣連接到可以施加VDD電位之佈線層32b。The source region 11b (wiring layer 32g) of the nMOS transistor NT1 and the source region 11b of the nMOS transistor NT3 are electrically connected to each other by the wiring layer 34c, and are electrically connected to the wiring layer 32a to which the GND potential can be applied. Further, the source region 21b (wiring layer 32h) of the pMOS transistor PT1 and the source region 21b (wiring layer 32f) of the pMOS transistor PT3 and the source region 21b of the pMOS transistor PT2 are electrically connected to each other by the wiring layer 34d, and It is electrically connected to the wiring layer 32b to which the VDD potential can be applied.

佈線層34c,在圖3所示之俯視圖中,當與電源線之下層佈線層32a比較,被配置在標準單元51a之內側(中央側)。另外佈線層34d,在圖3所示之俯視圖中,當與電源線之下層佈線層32b比較,被配置在標準單元51a之內側(中央側)。The wiring layer 34c is disposed on the inner side (center side) of the standard cell 51a as compared with the power line lower layer wiring layer 32a in the plan view shown in FIG. Further, in the plan view shown in FIG. 3, the wiring layer 34d is disposed on the inner side (center side) of the standard unit 51a as compared with the power line lower layer wiring layer 32b.

另外佈線層34a延伸成沿著標準單元51a之縱方向(圖3中之Y方向)境界之一方(圖3中之Y方向下側之境界),在該境界上橫方向(圖3中X方向)延伸。另外佈線層34b延伸成沿著標準單元51a之縱方向(圖3中之Y方向)境界之另外一方(圖3中之Y方向上側之境界),在該境界上橫方向(圖3中X方向)延伸。佈線層34a連接到在其下層並行延伸之佈線層32a,佈線層34b連接到在其下層並行延伸之佈線層32b。Further, the wiring layer 34a extends along one of the realms of the vertical direction (Y direction in FIG. 3) of the standard cell 51a (the boundary of the lower side in the Y direction in FIG. 3), and the horizontal direction in the boundary (the X direction in FIG. 3) )extend. Further, the wiring layer 34b extends along the other side of the horizontal direction (the Y direction in FIG. 3) of the standard cell 51a (the boundary of the upper side in the Y direction in FIG. 3), and the horizontal direction in the boundary (the X direction in FIG. 3) )extend. The wiring layer 34a is connected to the wiring layer 32a extending in parallel in the lower layer thereof, and the wiring layer 34b is connected to the wiring layer 32b extending in parallel in the lower layer thereof.

另外佈線層34a具有比在其下層並行延伸之佈線層32a之線寬W1a為大之線寬W2a。另外佈線層34b具有比在其下層並行延伸之佈線層32b之線寬W1b為大之線寬W2b。Further, the wiring layer 34a has a line width W2a larger than the line width W1a of the wiring layer 32a extending in parallel with the lower layer. Further, the wiring layer 34b has a line width W2b which is larger than the line width W1b of the wiring layer 32b extending in parallel with the lower layer.

依照此種方式,該標準單元51a內之所有之佈線層34a、34b、34c、34d因為成為VDD和GND之任一方之電源電位,所以相當於電源線之上層佈線。In this manner, all of the wiring layers 34a, 34b, 34c, and 34d in the standard cell 51a are equivalent to the power supply potential of either of VDD and GND, and therefore correspond to the upper layer wiring of the power supply line.

另外佈線層34a~34d之各個和佈線層32a、32b、32e~32h之各個之電氣連接,為經由埋入在佈線層34a~34d之各個之通溝33a內之部份。Further, the electrical connection between each of the wiring layers 34a to 34d and each of the wiring layers 32a, 32b, and 32e to 32h is a portion that is buried in the through-groove 33a of each of the wiring layers 34a to 34d.

依照上述之方式,nMOS電晶體NT1之源極區域11b經由GND電位之電源線之上層佈線34c電氣連接到GND電位之電源線之下層佈線32a。另外pMOS電晶體PT1、PT3之各個之源極區域21b經由VDD電位之電源線之上層佈線34d電氣連接到VDD電位之電源線之下層佈線32b。In the above manner, the source region 11b of the nMOS transistor NT1 is electrically connected to the power line lower layer wiring 32a of the GND potential via the power line upper layer wiring 34c of the GND potential. Further, the source region 21b of each of the pMOS transistors PT1, PT3 is electrically connected to the power line lower layer wiring 32b of the VDD potential via the power line upper layer wiring 34d of the VDD potential.

另外信號線32c被配置成在圖3所示之俯視圖中,位於電源線之上層佈線34c與佈線層32g之連接部(通孔33a),和沿著下層佈線32a之標準單元51a境界之直線延伸之部份之間。信號線32d被配置成在圖3所示之俯視圖中,位於電源線之上層佈線34d與佈線層32h之連接部(通孔33a),和沿著下層佈線32b之標準單元51a境界之直線延伸之部份之間。Further, the signal line 32c is arranged in a plan view shown in Fig. 3, which is located at a connection portion (via hole 33a) of the power line upper layer wiring 34c and the wiring layer 32g, and a straight line extending along the boundary of the standard unit 51a of the lower layer wiring 32a. Between the parts. The signal line 32d is arranged to extend in a line in the top view of FIG. Between the parts.

依照本實施形態時,使GND電位之電源線分離成為下層佈線32a和上層佈線34a,並且使VDD電位之電源線分離成為下層佈線32b和上層佈線34b。因此,當與電源線為單一層之情況比較,因為電流路徑增加,所以可以達成高速化。另外,因為不需要使電源線之線寬變大就可以增加電流路徑,所以亦可以達成高積體化。According to the present embodiment, the power supply line of the GND potential is separated into the lower layer wiring 32a and the upper layer wiring 34a, and the power supply line of the VDD potential is separated into the lower layer wiring 32b and the upper layer wiring 34b. Therefore, compared with the case where the power supply line is a single layer, since the current path is increased, the speed can be increased. In addition, since it is not necessary to increase the line width of the power supply line, the current path can be increased, so that high integration can be achieved.

另外上層佈線34a、34b具有比下層佈線32a、32b之線寬W1a、W1b為大之線寬W2a、W2b,所以可以減小電源線之電阻值。Further, the upper layer wirings 34a and 34b have line widths W2a and W2b larger than the line widths W1a and W1b of the lower layer wirings 32a and 32b, so that the resistance value of the power source line can be reduced.

另外下層佈線32a、32b具有比上層佈線34a、34b之線寬W2a、W2b為小之線寬W1a、W1b,所以可以使該部份之佈線配置用之空的空間變大。因此,在與下層佈線相同之層配置其他之佈線(例如信號線32c、32d)等變為容易,而可以提高其他之佈線之平面佈置之自由度。Further, the lower layer wirings 32a and 32b have line widths W1a and W1b which are smaller than the line widths W2a and W2b of the upper layer wirings 34a and 34b. Therefore, the space for emptying the wiring portion of the portion can be increased. Therefore, it is easy to arrange other wirings (for example, signal lines 32c, 32d) and the like in the same layer as the lower layer wiring, and it is possible to improve the degree of freedom in the planar arrangement of other wirings.

另外下層佈線32a、32b之各個沿著標準單元51a之境界延伸。因此,在相鄰之標準單元51a間,可以共用下層佈線32a、32b。利用此種方式,在相鄰之標準單元51a之各個不需要個別地形成下層佈線32a、32b,所以可以達成高積體化。Further, each of the lower layer wirings 32a, 32b extends along the boundary of the standard cell 51a. Therefore, the lower layer wirings 32a and 32b can be shared between the adjacent standard cells 51a. In this manner, the lower layer wirings 32a and 32b need not be individually formed in each of the adjacent standard cells 51a, so that high integration can be achieved.

另外上層佈線34a、34b之各個沿著標準單元51a之境界延伸。因此,與上述同樣地,在相鄰之標準單元51a之各個不需要個別地形成上層佈線34a、34b,所以可以達成高積體化。Further, each of the upper layer wirings 34a, 34b extends along the boundary of the standard unit 51a. Therefore, similarly to the above, it is not necessary to form the upper layer wirings 34a and 34b individually in each of the adjacent standard cells 51a, so that high integration can be achieved.

另外nMOS電晶體NT1之源極區域11b經由GND電位之電源線之上層佈線34c電氣連接到GND電位之電源線之下層佈線32a。另外pMOS電晶體PT1、PT3之各個之源極區域21b經由VDD電位之電源線之上層佈線34d電氣連接到VDD電位之電源線之下層佈線32b。因此,成為不需要使位於標準單元51a之境界之下層佈線32a、32b之各個,朝向電晶體所在位置之標準單元51a之中央部延伸。利用此種方式,因為在使下層佈線32a、32b之各個應朝向標準單元51a之中央部延伸之部份,產生空的空間,所以在該空的空間可以配置信號線32c、32d等之其他佈線,而可以達成高積體化。Further, the source region 11b of the nMOS transistor NT1 is electrically connected to the power line lower layer wiring 32a of the GND potential via the power line upper layer wiring 34c of the GND potential. Further, the source region 21b of each of the pMOS transistors PT1, PT3 is electrically connected to the power line lower layer wiring 32b of the VDD potential via the power line upper layer wiring 34d of the VDD potential. Therefore, it is not necessary to extend each of the layer wirings 32a and 32b located below the boundary of the standard cell 51a toward the central portion of the standard cell 51a at the position where the transistor is located. In this manner, since an empty space is formed in a portion where the lower layer wirings 32a and 32b are to be extended toward the central portion of the standard cell 51a, other wirings such as the signal lines 32c and 32d can be disposed in the empty space. , and can achieve high integration.

依照此種方式,在空的空間配置信號線32c、32d之結果,所獲得之配置是信號線32c在圖3所示之俯視圖中,位於電源線之上層佈線34c與佈線層32g之連接部,和沿著下層佈線32a之標準單元51a境界之延伸部份之間。另外所獲得之配置是信號線32d在圖3所示之俯視圖中,位於電源線之上層佈線34d與佈線層32h之連接部,和沿著下層佈線32b之標準單元51a境界之延伸部份之間。In this manner, as a result of arranging the signal lines 32c, 32d in the empty space, the obtained configuration is that the signal line 32c is located at the connection portion of the upper layer wiring 34c and the wiring layer 32g of the power supply line in the plan view shown in FIG. And between the extended portions of the boundary of the standard unit 51a of the lower layer wiring 32a. Further, the configuration obtained is that the signal line 32d is in the plan view shown in Fig. 3, between the connection portion of the power line upper layer wiring 34d and the wiring layer 32h, and between the extension of the boundary of the standard unit 51a of the lower layer wiring 32b. .

利用上述方式,可以獲得同時高速化和高積體化雙方之半導體裝置。According to the above aspect, it is possible to obtain a semiconductor device which is both high speed and high in integration.

(實施形態2)(Embodiment 2)

參照圖5和圖6,在本實施形態中,所說明之構造是在多個之標準單元51a之各個,形成由nMOS電晶體NT1和pMOS電晶體PT1構成之CMOS反相器。Referring to Fig. 5 and Fig. 6, in the present embodiment, the configuration is such that a CMOS inverter composed of an nMOS transistor NT1 and a pMOS transistor PT1 is formed in each of a plurality of standard cells 51a.

在半導體基板之表面形成p型井區域1,在該p型井區域1內之表面選擇性地形成n型井區域2。在p型井區域1內之表面形成nMOS電晶體NT1。在n型井區域2內之表面形成pMOS電晶體PT1。A p-type well region 1 is formed on the surface of the semiconductor substrate, and an n-type well region 2 is selectively formed on the surface in the p-type well region 1. An nMOS transistor NT1 is formed on the surface in the p-type well region 1. A pMOS transistor PT1 is formed on the surface in the n-type well region 2.

沿著標準單元51a之縱方向(圖5中之Y方向)境界之一方(圖5中之Y方向下側之境界),在p型井區域1內之表面,形成在橫方向(圖5中X方向)延伸之p+ 區域15。另外沿著標準單元51a之縱方向(圖5中之Y方向)境界之另外一方(圖5中之Y方向上側之境界),在n型井區域2內之表面,形成在橫方向(圖5中X方向)延伸之n+ 區域25。Along the boundary of the vertical direction (Y direction in FIG. 5) of the standard unit 51a (the boundary of the lower side in the Y direction in FIG. 5), the surface in the p-type well region 1 is formed in the lateral direction (FIG. 5). The X direction) extends the p + region 15. Further, along the other side of the boundary of the standard unit 51a (the Y direction in FIG. 5) (the boundary of the upper side in the Y direction in FIG. 5), the surface in the n-type well region 2 is formed in the lateral direction (FIG. 5). The n + region 25 extending in the middle X direction.

為能使多個之MOS電晶體之形成區域,p+ 區域15和n+ 區域25之各個互相電氣隔離,在半導體基板之表面形成例如由STI構成之元件隔離區域3。該STI由設在半導體基板之表面之溝,和充填在該溝內之絕緣性之充填物構成。In order to enable formation regions of a plurality of MOS transistors, each of the p + region 15 and the n + region 25 is electrically isolated from each other, and an element isolation region 3 composed of, for example, STI is formed on the surface of the semiconductor substrate. The STI is composed of a groove provided on the surface of the semiconductor substrate and an insulating filler filled in the groove.

nMOS電晶體NT1具有汲極區域11a和源極區域11b,閘絕緣層12,和閘電極層13。汲極區域11a和源極區域11b由n型之雜質區域構成,在p型井區域1之表面形成互相之距離。閘電極層13經由閘絕緣層12形成在被汲極區域11a和源極區域11b包夾之區域上。The nMOS transistor NT1 has a drain region 11a and a source region 11b, a gate insulating layer 12, and a gate electrode layer 13. The drain region 11a and the source region 11b are composed of an n-type impurity region, and are formed at a distance from each other on the surface of the p-type well region 1. The gate electrode layer 13 is formed on the region sandwiched by the drain region 11a and the source region 11b via the gate insulating layer 12.

pMOS電晶體PT1具有汲極區域21a和源極區域21b,閘絕緣層22,和閘電極層23。汲極區域21a和源極區域21b由p型之雜質區域構成,在n型井區域2之表面形成互相之距離。閘電極層23經由閘絕緣層22形成在被汲極區域21a和源極區域21b包夾之區域上。The pMOS transistor PT1 has a drain region 21a and a source region 21b, a gate insulating layer 22, and a gate electrode layer 23. The drain region 21a and the source region 21b are composed of p-type impurity regions, and are formed at a distance from each other on the surface of the n-type well region 2. The gate electrode layer 23 is formed on the region sandwiched by the drain region 21a and the source region 21b via the gate insulating layer 22.

nMOS電晶體NT2之閘電極層13和pMOS電晶體PT2之閘電極層23由共同之導電層形成,互相電氣連接。The gate electrode layer 13 of the nMOS transistor NT2 and the gate electrode layer 23 of the pMOS transistor PT2 are formed of a common conductive layer and electrically connected to each other.

以覆蓋該等之各個MOS電晶體NT1、PT1之方式,形成在半導體基板表面上之疊層層間絕緣層31A、31B。層間絕緣層31A例如由TEOS氧化膜形成,層間絕緣層31B例如由SiOC、MSQ等形成。在層間絕緣層31B形成有從其上面到達層間絕緣層31A之佈線用溝31b,在層間絕緣層31A形成有從佈線用溝31b底部到達半導體基板之接觸孔31a。在上述之佈線用溝31b之各個之內部形成埋入有例如由CuAl合金(Al含有量為例如0.1~1.0%程度)構成之佈線層32a、32b、32e、32g、32h之各個。另外,在上述之接觸孔31a之各個之內部,形成埋入有例如由鎢(W)構成之栓塞層。The laminated interlayer insulating layers 31A and 31B are formed on the surface of the semiconductor substrate so as to cover the respective MOS transistors NT1 and PT1. The interlayer insulating layer 31A is formed, for example, of a TEOS oxide film, and the interlayer insulating layer 31B is formed of, for example, SiOC, MSQ, or the like. The interlayer insulating layer 31B is formed with a wiring trench 31b that reaches the interlayer insulating layer 31A from the upper surface thereof, and a contact hole 31a that reaches the semiconductor substrate from the bottom of the wiring trench 31b is formed in the interlayer insulating layer 31A. Each of the wiring layers 32a, 32b, 32e, 32g, and 32h which is made of, for example, a CuAl alloy (Al content is, for example, about 0.1 to 1.0%) is formed in each of the wiring grooves 31b. Further, a plug layer made of, for example, tungsten (W) is embedded in each of the contact holes 31a described above.

另外,在接觸孔31a之側面和底面形成有障壁金屬層(未圖示)。該障壁金屬層位於上述栓塞層與層間絕緣層31A之間,和上述栓塞層與半導體基板之間。該障壁金屬層具有例如鈦(Ti)和氮化鈦(TiN)之疊層構造。Further, a barrier metal layer (not shown) is formed on the side surface and the bottom surface of the contact hole 31a. The barrier metal layer is located between the plug layer and the interlayer insulating layer 31A, and between the plug layer and the semiconductor substrate. The barrier metal layer has a laminated structure of, for example, titanium (Ti) and titanium nitride (TiN).

在佈線用溝31b之側面和底面亦形成有障壁金屬層(未圖示)。該障壁金屬層位於上述佈線層32a、32b、32e、32g、32h之各個與層間絕緣層31B之間,上述佈線層32a、32b、32e、32g、32h之各個與上述栓塞層之間,和上述佈線層32a、32b、32e、32g、32h之各個與層間絕緣層31A之間。該障壁金屬層例如由鉭(Ta)構成。A barrier metal layer (not shown) is also formed on the side surface and the bottom surface of the wiring trench 31b. The barrier metal layer is located between each of the wiring layers 32a, 32b, 32e, 32g, and 32h and the interlayer insulating layer 31B, between each of the wiring layers 32a, 32b, 32e, 32g, and 32h and the plug layer, and Each of the wiring layers 32a, 32b, 32e, 32g, and 32h is interposed between the interlayer insulating layer 31A. The barrier metal layer is composed of, for example, tantalum (Ta).

另外在層間絕緣層31A和層間絕緣層31B之間形成例如由SiCN構成之蝕刻阻擋層(未圖示)。Further, an etching stopper layer (not shown) made of, for example, SiCN is formed between the interlayer insulating layer 31A and the interlayer insulating layer 31B.

利用佈線層32e使nMOS電晶體NT1之汲極區域11a和pMOS電晶體PT1之汲極區域21a互相電氣連接。另外佈線層32a延伸成沿著標準單元51a之縱方向(圖5中之Y方向)境界之一方(圖5中之Y方向下側之境界),在該境界上橫方向(圖5中X方向)延伸。另外佈線層32b延伸成沿著標準單元51a之縱方向(圖5中之Y方向)境界之另外一方(圖5中之Y方向上側之境界),在該境界上橫方向(圖5中X方向)延伸。該佈線層32b電氣連接到其下層之n+ 區域25,利用其將n型井區域2之電位固定。該等之沿著標準單元51a之境界線上延伸之佈線層32a、32b之各個,可以施加VDD和GND之任一方之電源電位,而對應到電源線之下層佈線。The drain region 11a of the nMOS transistor NT1 and the drain region 21a of the pMOS transistor PT1 are electrically connected to each other by the wiring layer 32e. Further, the wiring layer 32a extends along one of the realms of the longitudinal direction of the standard cell 51a (the Y direction in FIG. 5) (the boundary of the lower side in the Y direction in FIG. 5), and the horizontal direction in the boundary (the X direction in FIG. 5) )extend. Further, the wiring layer 32b extends along the other side of the horizontal direction (the Y direction in FIG. 5) of the standard cell 51a (the boundary of the upper side in the Y direction in FIG. 5), and the horizontal direction in the boundary (the X direction in FIG. 5) )extend. The wiring layer 32b is electrically connected to the n + region 25 of its lower layer, by which the potential of the n-type well region 2 is fixed. Each of the wiring layers 32a, 32b extending along the boundary line of the standard cell 51a can apply a power supply potential of either of VDD and GND, and corresponds to the underlying wiring of the power supply line.

具體而言,在佈線層32a可以施加GND電位,在佈線層32b可以施加VDD電位。Specifically, a GND potential can be applied to the wiring layer 32a, and a VDD potential can be applied to the wiring layer 32b.

佈線層32a電氣連接到其下層之p+ 區域15,利用其將p型井區域1之電位固定。另外佈線層32a從沿著縱方向(圖5中之Y方向)境界之一方(圖5中之Y方向下側之境界)之直線延伸之部份而分支,具有在未形成有CMOS反相器等之功能元件之標準單元51a上延伸之部份。The wiring layer 32a is electrically connected to the p + region 15 of the lower layer thereof, with which the potential of the p-type well region 1 is fixed. Further, the wiring layer 32a is branched from a portion extending in a straight line along one of the vertical direction (the Y direction in FIG. 5) (the boundary of the lower side in the Y direction in FIG. 5), and has a CMOS inverter not formed. The portion of the functional unit 51a that extends over the functional component.

佈線層32b電氣連接到n+ 區域25,利用其將n型井區域2之電位固定。另外佈線層32b從沿著縱方向(圖5中之Y方向)境界之另外一方(圖5中之Y方向上側之境界)之直線延伸之部份而分支,具有在未形成有CMOS反相器等之功能元件之標準單元51a上延伸之部份。The wiring layer 32b is electrically connected to the n + region 25, with which the potential of the n-type well region 2 is fixed. Further, the wiring layer 32b is branched from a portion extending in a straight line along the other side of the vertical direction (the Y direction in FIG. 5) (the upper boundary in the Y direction in FIG. 5), and has a CMOS inverter not formed. The portion of the functional unit 51a that extends over the functional component.

另外在nMOS電晶體NT1之源極區域11b和pMOS電晶體PT1之源極區域21b之各個,電氣連接有佈線層32g、32h之各個。Further, each of the wiring layers 32g and 32h is electrically connected to each of the source region 11b of the nMOS transistor NT1 and the source region 21b of the pMOS transistor PT1.

另外佈線層32a、32b、32e、32g、32h之各個和形成在半導體基板表面之雜質區域之連接,為經由形成在層間絕緣層31A之接觸孔31a內之栓塞層。Further, each of the wiring layers 32a, 32b, 32e, 32g, and 32h and the impurity region formed on the surface of the semiconductor substrate are connected via a plug layer formed in the contact hole 31a of the interlayer insulating layer 31A.

以覆蓋佈線層32a、32b、32e、32g、32h之方式,在層間絕緣層31B上形成例如由SiOC、MSQ構成之層間絕緣層33。在該層間絕緣層33之上面形成有佈線用溝33b,和形成有從佈線用溝33b之底部到達下層之各個佈線層之通溝33a。以埋入該通溝33a和佈線用溝33b內之方式,形成例如由CuAl合金(Al含有量為例如0.1~1.0%程度)構成之佈線層34c、34d之各個。An interlayer insulating layer 33 made of, for example, SiOC or MSQ is formed on the interlayer insulating layer 31B so as to cover the wiring layers 32a, 32b, 32e, 32g, and 32h. A wiring groove 33b is formed on the upper surface of the interlayer insulating layer 33, and a through groove 33a is formed which is formed from the bottom of the wiring groove 33b to the respective wiring layers of the lower layer. Each of the wiring layers 34c and 34d made of, for example, a CuAl alloy (having an Al content of, for example, 0.1 to 1.0%) is formed so as to be embedded in the through grooves 33a and the wiring grooves 33b.

另外在通溝33a和佈線用溝33b之側面和底面形成有障壁金屬層(未圖示)。該障壁金屬層位於佈線層34c、34d之各個與層間絕緣層33之間,通溝33a之各個與層間絕緣層33之間,和通溝33a之各個與下層之佈線層之間。該障壁金屬層具有例如鉭(Ta)和氮化鉭(TaN)之疊層構造。Further, a barrier metal layer (not shown) is formed on the side surface and the bottom surface of the through groove 33a and the wiring groove 33b. The barrier metal layer is located between each of the wiring layers 34c and 34d and the interlayer insulating layer 33, between each of the vias 33a and the interlayer insulating layer 33, and between each of the vias 33a and the wiring layer of the lower layer. The barrier metal layer has a laminated structure of, for example, tantalum (Ta) and tantalum nitride (TaN).

另外在層間絕緣層33之下,形成有例如由SiCN構成之蝕刻阻擋層(未圖示)。Further, under the interlayer insulating layer 33, an etching stopper layer (not shown) made of, for example, SiCN is formed.

利用佈線層34c使各個之標準單元51a之nMOS電晶體NT1之源極區域11b(佈線層32g)互相電氣連接。另外佈線層34c在未形成有CMOS反相器之標準單元51a內,形成與電源線之下層佈線32a之分支部電氣連接。The source regions 11b (wiring layers 32g) of the nMOS transistors NT1 of the respective standard cells 51a are electrically connected to each other by the wiring layer 34c. Further, the wiring layer 34c is electrically connected to the branch portion of the power line lower layer wiring 32a in the standard cell 51a in which the CMOS inverter is not formed.

另外利用佈線層34d使各個之標準單元51a之pMOS電晶體PT1之源極區域21b(佈線層32h)互相電氣連接。另外佈線層34d在未形成有CMOS反相器之標準單元51a內,形成與電源線之下層佈線32b之分支部電氣連接。Further, the source regions 21b (wiring layers 32h) of the pMOS transistors PT1 of the respective standard cells 51a are electrically connected to each other by the wiring layer 34d. Further, the wiring layer 34d is electrically connected to the branch portion of the power line lower layer wiring 32b in the standard cell 51a in which the CMOS inverter is not formed.

佈線層34c,在圖5所示之俯視圖中,當與電源線之下層佈線層32a比較,被配置在標準單元51a之內側(中央側)。另外佈線層34d,在圖5所示之俯視圖中,當與電源線之下層佈線層32b比較,被配置在標準單元51a之內側(中央側)。The wiring layer 34c is disposed on the inner side (center side) of the standard cell 51a as compared with the power line lower layer wiring layer 32a in the plan view shown in FIG. Further, in the plan view shown in FIG. 5, the wiring layer 34d is disposed on the inner side (center side) of the standard cell 51a as compared with the power line lower layer wiring layer 32b.

另外佈線層34c、34d之各個和佈線層32a、32b、32g、32h之各個之電氣連接,為經由埋入在佈線層34c、34d之各個之通溝33a內之部份。Further, the electrical connection between each of the wiring layers 34c and 34d and each of the wiring layers 32a, 32b, 32g, and 32h is a portion that is buried in the through-groove 33a of each of the wiring layers 34c and 34d.

依照上述之方式,nMOS電晶體NT1之源極區域11b經由GND電位之電源線之上層佈線34c電氣連接到GND電位之電源線之下層佈線32a。另外pMOS電晶體PT1之源極區域21b經由VDD電位之電源線之上層佈線34d電氣連接到VDD電位之電源線之下層佈線32b。In the above manner, the source region 11b of the nMOS transistor NT1 is electrically connected to the power line lower layer wiring 32a of the GND potential via the power line upper layer wiring 34c of the GND potential. Further, the source region 21b of the pMOS transistor PT1 is electrically connected to the power line lower layer wiring 32b of the VDD potential via the power line upper layer wiring 34d of the VDD potential.

依照本實施形態時,下層佈線32a、32b之各個沿著標準單元51a之境界延伸。因此,在鄰接之標準單元51a間,可以共用下層佈線32a、32b。利用此種方式,在鄰接之標準單元51a之各個,因為不需要個別地形成下層佈線32a、32b,所以可以達成高積體化。According to the present embodiment, each of the lower layer wirings 32a, 32b extends along the boundary of the standard cell 51a. Therefore, the lower layer wirings 32a and 32b can be shared between the adjacent standard cells 51a. In this manner, since each of the adjacent standard cells 51a does not need to form the lower layer wirings 32a and 32b individually, it is possible to achieve high integration.

另外上層佈線34a、34b之各個沿著標準單元51a之境界延伸。因此,與上述同樣地,鄰接之標準單元51a之各個,因為不需要個別地形成上層佈線34a、34b,所以可以達成高積體化。Further, each of the upper layer wirings 34a, 34b extends along the boundary of the standard unit 51a. Therefore, in the same manner as described above, since each of the adjacent standard cells 51a does not need to be separately formed with the upper layer wirings 34a and 34b, it is possible to achieve high integration.

另外nMOS電晶體NT1之源極區域11b經由GND電位之電源線之上層佈線34c電氣連接到GND電位之電源線之下層佈線32a。另外pMOS電晶體PT1之源極區域21b經由VDD電位之電源線之上層佈線34d電氣連接到VDD電位之電源線之下層佈線32b。因此,成為不需要使位於標準單元51a境界之下層佈線32a、32b之各個,朝向各電晶體所在位置之標準單元51a之中央部延伸。利用此種方式,因為在使下層佈線32a、32b之各個應朝向標準單元51a之中央部延伸之部份,產生空的空間,所以在該空的空間可以配置信號線32c、32d等之其他之佈線,而可以達成高積體化。Further, the source region 11b of the nMOS transistor NT1 is electrically connected to the power line lower layer wiring 32a of the GND potential via the power line upper layer wiring 34c of the GND potential. Further, the source region 21b of the pMOS transistor PT1 is electrically connected to the power line lower layer wiring 32b of the VDD potential via the power line upper layer wiring 34d of the VDD potential. Therefore, it is not necessary to extend each of the layer wirings 32a and 32b located under the boundary of the standard cell 51a toward the central portion of the standard cell 51a where the respective transistors are located. In this manner, since the empty space is generated in a portion where the lower layer wirings 32a and 32b are to be extended toward the central portion of the standard unit 51a, the signal lines 32c, 32d and the like can be disposed in the empty space. Wiring can achieve high integration.

利用上述方式,可以獲得同時高速化和高積體化雙方之半導體裝置。According to the above aspect, it is possible to obtain a semiconductor device which is both high speed and high in integration.

另外,在實施形態2中,亦可以在圖5中之未形成有功能元件(例如CMOS反相器)之標準單元51a,配置如圖7所示之熔線(fuse)40。由配置有此種熔線40之多個之標準單元51a構成之列,亦可以更存在於半導體裝置內。該熔線40例如亦可以配置在電源線之下層佈線32a、32b之分支部份之路徑之途中。Further, in the second embodiment, a fuse 40 as shown in Fig. 7 may be disposed in the standard unit 51a in which a functional element (for example, a CMOS inverter) is not formed in Fig. 5 . A column composed of a plurality of standard cells 51a in which such fuses 40 are disposed may be further present in the semiconductor device. The fuse 40 may be disposed, for example, on the path of the branch portion of the power line lower layer wirings 32a, 32b.

除此之外之圖7之構造因為與上述之圖5和圖6之構造大致相同,所以對相同之元件附加相同之元件符號,不再重複其說明。The configuration of FIG. 7 is substantially the same as the configuration of FIGS. 5 and 6 described above, and the same reference numerals will be given to the same elements, and the description thereof will not be repeated.

在圖5中,所說明之構造是在未形成有功能元件之標準單元51a,使電源線之上層佈線34c電氣連接到下層佈線32a,並且使電源線之上層佈線34d電氣連接到下層佈線32b。但是,在實施形態2中,亦可以如圖8所示,在未形成有功能元件之標準單元51a內,使電源線之上層佈線34c不電氣連接到下層佈線32a,並且以電源線之上層佈線34d不電氣連接到下層佈線32b之方式,使由多個之標準單元51a構成之列更存在於半導體裝置內。In Fig. 5, the configuration is such that the standard unit 51a in which the functional elements are not formed, the power line upper layer wiring 34c is electrically connected to the lower layer wiring 32a, and the power line upper layer wiring 34d is electrically connected to the lower layer wiring 32b. However, in the second embodiment, as shown in Fig. 8, in the standard unit 51a in which the functional elements are not formed, the power line upper layer wiring 34c is not electrically connected to the lower layer wiring 32a, and the power line upper layer wiring is also provided. The 34d is not electrically connected to the lower layer wiring 32b, and the column composed of the plurality of standard cells 51a is further present in the semiconductor device.

除此之外之圖8之構造因為與上述之圖5和圖6之構造大致相同,所以對相同之元件附加相同之元件符號,不再重複其說明。The configuration of FIG. 8 is substantially the same as the configuration of FIGS. 5 and 6 described above, and the same reference numerals are given to the same elements, and the description thereof will not be repeated.

如實施形態2之圖5所示,使在未形成有功能元件之標準單元51a,電源線之上層佈線34c電氣連接到下層佈線32a,並且電源線之上層佈線34d電氣連接到下層佈線32b之形態成為A形態。另外如圖8所示,使在未形成有功能元件之標準單元51a,電源線之上層佈線34c不電氣連接到下層佈線32a,並且電源線之上層佈線34d不電氣連接到下層佈線32b之形態成為B形態。As shown in FIG. 5 of the second embodiment, the standard unit 51a in which the functional element is not formed, the power line upper layer wiring 34c is electrically connected to the lower layer wiring 32a, and the power line upper layer wiring 34d is electrically connected to the lower layer wiring 32b. Become the A form. Further, as shown in FIG. 8, in the standard cell 51a in which the functional element is not formed, the power line upper layer wiring 34c is not electrically connected to the lower layer wiring 32a, and the power line upper layer wiring 34d is not electrically connected to the lower layer wiring 32b. B form.

在半導體裝置之設計階段只要交替該等之A形態和B形態,可以設計成能夠使用具有A形態之多個之標準單元51a列作為可高速動作之單元列,和可以設計成能夠使用具有B形態之多個之標準單元51a列作為可低消耗電力動作之單元列。In the design stage of the semiconductor device, as long as the A form and the B form are alternated, it is possible to design a plurality of standard cells 51a having the A form as a cell array capable of high-speed operation, and can be designed to have a B form. A plurality of standard cells 51a are listed as a cell array capable of low power consumption operation.

在具有A形態之多個之標準單元51a列,因為從多個層利用電源線供給動作電流,所以可以高速動作。另外在具有B形態之多個之標準單元51a列,電位關係成為下層佈線32a<上層佈線34c<上層佈線34d<下層佈線32b。利用此種方式,供給與nMOS電晶體NT1或pMOS電晶體PT1之基板電位和源極電位不同之電位電壓,利用基板效應使電晶體之臨限值(Vth)變大,可以用來使包含標準單元51a之電路之等待電流減小,成為可以以低消耗電力動作。In the standard cell 51a array having a plurality of A forms, since the operating current is supplied from the plurality of layers by the power supply line, the operation can be performed at a high speed. Further, in the plurality of standard cells 51a having the B form, the potential relationship is the lower layer wiring 32a < the upper layer wiring 34c < the upper layer wiring 34d < the lower layer wiring 32b. In this manner, a potential voltage different from the substrate potential and the source potential of the nMOS transistor NT1 or the pMOS transistor PT1 is supplied, and the threshold value (Vth) of the transistor is increased by the substrate effect, and the inclusion standard can be used. The waiting current of the circuit of the unit 51a is reduced, so that it can operate with low power consumption.

該等之A形態和B形態,因為單元之大小非常相似,所以可以簡單地交替,可以簡單地交替能夠高速動作之單元列和能夠低消耗電力動作之單元列。Since the A and B modes are very similar in size, they can be easily alternated, and the cell columns capable of high-speed operation and the cell columns capable of low power consumption can be easily alternated.

另外如圖7所示,使在未形成有功能元件之標準單元51a配置熔線40之形態成為C形態。經由具有該C形態,在製品之測試步驟依照熔線之有無切斷,可以交替上述方式之高速動作和低消耗電力動作。隨著半導體處理之微細化,製品之晶圓處理完成後之特性變動之問題變大。但是,在測試步驟經由以高速動作或低消耗電力動作為導向選擇標準單元51a,可以使特性變動變小。例如,可考慮之情況是使電晶體之臨限電壓Vth朝向變低方向偏移,使動作速度遠大於目標速度,同時可以使消耗電力大於目標之消耗電力。在此種情況時,切斷熔線40,利用具有B形態之多個之標準單元51a列之電位關係,經由減小基板效應所產生之消耗電力,可以將消耗電力抑制在目標之消耗電力內。Further, as shown in Fig. 7, the form in which the fuse 40 is placed in the standard unit 51a in which the functional element is not formed is in the C form. By having such a C form, the test step of the product can be alternated between the high-speed operation and the low-power operation described above in accordance with the presence or absence of the fuse. With the miniaturization of semiconductor processing, the problem of variations in characteristics after wafer processing of a product is increased. However, in the test step, by selecting the standard unit 51a by the high-speed operation or the low-power consumption operation, the characteristic variation can be made small. For example, it is conceivable to shift the threshold voltage Vth of the transistor toward a lower direction, so that the operation speed is much larger than the target speed, and the power consumption can be made larger than the target power consumption. In this case, the fuse 40 is cut, and the potential relationship between the plurality of standard cells 51a having the B form is used, and the power consumption can be reduced in the target power consumption by reducing the power consumption generated by the substrate effect. .

(實施形態3)(Embodiment 3)

本實施形態經由變化實施形態2之構造用來實現圖2所示之電路構造。This embodiment is used to realize the circuit structure shown in Fig. 2 via the configuration of the second embodiment.

參照圖9和圖10,在本實施形態之構造中,例如在具有反相器之3個並排之標準單元51a中,中央之標準單元51a內之nMOS電晶體NT1和pMOS電晶體PT1對應到圖2之輸出段之CMOS反相器。Referring to Fig. 9 and Fig. 10, in the configuration of the present embodiment, for example, in three standard cells 51a arranged side by side with an inverter, the nMOS transistor NT1 and the pMOS transistor PT1 in the central standard cell 51a correspond to the figure. 2 output segment of the CMOS inverter.

另外,由中央之標準單元51a之圖中右側之標準單元51a之nMOS電晶體NT2與pMOS電晶體PT2構成之CMOS反相器,和由圖中左側之標準單元51a之nMOS電晶體NT3與pMOS電晶體PT3構成之CMOS反相器對應到圖2之驅動器。Further, a CMOS inverter composed of the nMOS transistor NT2 and the pMOS transistor PT2 of the standard cell 51a on the right side in the figure of the central standard cell 51a, and the nMOS transistor NT3 and pMOS of the standard cell 51a on the left side in the figure The CMOS inverter formed by the crystal PT3 corresponds to the driver of FIG.

由中央之標準單元51a內之nMOS電晶體NT1之閘電極層13和pMOS電晶體PT1之閘電極層23被電氣隔離。在右側之標準單元51a之佈線層32e1 電氣連接到中央之標準單元51a之閘電極層13,而對應到實施形態1中之信號線32c。該佈線層32e1 電氣連接nMOS電晶體NT2之汲極區域11a和pMOS電晶體PT2之汲極區域21a。The gate electrode layer 13 of the nMOS transistor NT1 in the central standard cell 51a and the gate electrode layer 23 of the pMOS transistor PT1 are electrically isolated. The wiring layer 32e 1 of the standard cell 51a on the right side is electrically connected to the gate electrode layer 13 of the central standard cell 51a, and corresponds to the signal line 32c in the first embodiment. The wiring layer 32e 1 is electrically connected to the drain region 11a of the nMOS transistor NT2 and the drain region 21a of the pMOS transistor PT2.

另外左側之標準單元51a之佈線層32e2 電氣連接到中央之標準單元51a之閘電極層23,對應到實施形態1中之信號線32d。該佈線層32e2 電氣連接nMOS電晶體NT3之汲極區域11a和pMOS電晶體PT3之汲極區域21a。Further, the wiring layer 32e 2 of the standard cell 51a on the left side is electrically connected to the gate electrode layer 23 of the standard cell 51a in the center, corresponding to the signal line 32d in the first embodiment. The wiring layer 32e 2 is electrically connected to the drain region 11a of the nMOS transistor NT3 and the drain region 21a of the pMOS transistor PT3.

電源線之上層佈線34c具有比在其下層並行延伸之下層佈線32a之線寬W1a為大之線寬W2a,上層佈線34d具有比在其下層並行延伸之下層佈線32b之線寬W1b為大之線寬W2b。利用此種方式,上層佈線34c在圖9所示之俯視圖中,當與下層佈線層32a比較,具有位於標準單元51a內側之部份。上層佈線34c之位於較下層佈線32a為內側之部份,在佈線層32g平面地重複,並且經由通孔33a電氣連接到佈線層32g。The power line upper layer wiring 34c has a line width W2a larger than the line width W1a of the layer wiring 32a extending in parallel below the lower layer thereof, and the upper layer wiring 34d has a line larger than the line width W1b of the layer wiring 32b extending in parallel below the lower layer thereof. Wide W2b. In this manner, the upper layer wiring 34c has a portion located inside the standard cell 51a as compared with the lower wiring layer 32a in the plan view shown in FIG. The upper layer wiring 34c is located on the inner side of the lower layer wiring 32a, is planarly repeated in the wiring layer 32g, and is electrically connected to the wiring layer 32g via the via hole 33a.

另外,電源線之上層佈線34d在圖9所示之俯視圖中,當與下層佈線層32b比較,具有位於標準單元51a之內側之部份。上層佈線34d之位於較下層佈線32b更內側之部份,在佈線層32h平面地重複,並且經由通孔33a電氣連接到佈線層32h。Further, the power line upper layer wiring 34d has a portion located inside the standard cell 51a as compared with the lower wiring layer 32b in the plan view shown in FIG. The portion of the upper layer wiring 34d located further inside than the lower layer wiring 32b is planarly repeated in the wiring layer 32h, and is electrically connected to the wiring layer 32h via the via hole 33a.

電源線之下層佈線32a、32b之各個沿著標準單元51a之境界線直線地延伸,未具有從該境界部朝向標準單元51a之內側延伸之分支部份。Each of the power line lower layer wirings 32a, 32b linearly extends along the boundary line of the standard unit 51a, and does not have a branch portion extending from the boundary portion toward the inner side of the standard unit 51a.

依照上述之方式,nMOS電晶體NT1之源極區域11b,經由GND電位之電源線之上層佈線34c,電氣連接到GND電位之電源線之下層佈線32a。另外pMOS電晶體PT1之源極區域21b,經由VDD電位之電源線之上層佈線34d,電氣連接到VDD電位之電源線之下層佈線32b。According to the above, the source region 11b of the nMOS transistor NT1 is electrically connected to the power line lower layer wiring 32a of the GND potential via the power line upper layer wiring 34c of the GND potential. Further, the source region 21b of the pMOS transistor PT1 is electrically connected to the power line lower layer wiring 32b of the VDD potential via the power line upper layer wiring 34d of the VDD potential.

另外信號層32e1 在圖9所示之俯視圖中,被配置成位於電源線之上層佈線34c與佈線層32g之連接部(通孔33a)和下層佈線32a之間。信號線32e2 在圖9所示之俯視圖中,被配置成位於電源線之上層佈線34d與佈線層32h之連接部(通孔33a)和下層佈線32b之間。Also the signal layer 32e 1 shown in the plan view of FIG. 9, the connecting portion is configured to be positioned (through hole 33a) and the upper layer wiring 34c of the wiring layer 32g power supply line between the sum of the lower layer wiring 32a. The signal line 32e 2 is disposed between the connection portion (via hole 33a) and the lower layer wiring 32b of the power line upper layer wiring 34d and the wiring layer 32h in the plan view shown in FIG.

另外,本實施形態之上述以外之構造,因為與圖5和圖6所示之實施形態2之構造大致相同,所以對相同之元件附加相同之元件符號,不再重複其說明。It is to be noted that the same components as those of the second embodiment shown in FIG. 5 and FIG. 6 are substantially the same as those of the second embodiment, and the same reference numerals will be given to the same elements, and the description thereof will not be repeated.

依照本實施形態時,使GND電位之電源線分離成為下層佈線32a和上層佈線34c,並且使VDD電位之電源線分離成為下層佈線32b和上層佈線34d。因此,當與電源線為單一層之情況比較,因為電流路徑增加,所以可以達成高速化。另外,因為不需要使電源線之線寬變大就可以增加電流路徑,所以亦可以達成高積體化。According to the present embodiment, the power supply line of the GND potential is separated into the lower layer wiring 32a and the upper layer wiring 34c, and the power supply line of the VDD potential is separated into the lower layer wiring 32b and the upper layer wiring 34d. Therefore, compared with the case where the power supply line is a single layer, since the current path is increased, the speed can be increased. In addition, since it is not necessary to increase the line width of the power supply line, the current path can be increased, so that high integration can be achieved.

另外上層佈線34c、34d具有比下層佈線32a、32b之線寬W1a、W1b為大之線寬W2a、W2b,所以可以減小電源線之電阻值。Further, the upper layer wirings 34c and 34d have line widths W2a and W2b larger than the line widths W1a and W1b of the lower layer wirings 32a and 32b, so that the resistance value of the power source line can be reduced.

另外下層佈線32a、32b具有比上層佈線34c、34d之線寬W2a、W2b為小之線寬W1a、W1b,所以可以使該部份之佈線配置用之空的空間變大。因此,在與下層佈線32a、32b相同之層配置其他之佈線(例如信號線32e1 、32e2 )等變為容易,而可以提高其他之佈線之平面佈置之自由度。Further, the lower layer wirings 32a and 32b have line widths W1a and W1b which are smaller than the line widths W2a and W2b of the upper layer wirings 34c and 34d. Therefore, the space for the wiring arrangement of the portion can be increased. Therefore, it is easy to arrange other wirings (for example, signal lines 32e 1 and 32e 2 ) in the same layer as the lower layer wirings 32a and 32b, and it is possible to improve the degree of freedom in the planar arrangement of other wirings.

另外下層佈線32a、32b之各個沿著標準單元51a之境界延伸。因此,在相鄰之標準單元51a之間,可以共用下層佈線32a、32b。利用此種方式,在鄰接之標準單元51a之各個不需要個別地形成下層佈線32a、32b,所以可以達成高積體化。Further, each of the lower layer wirings 32a, 32b extends along the boundary of the standard cell 51a. Therefore, the lower layer wirings 32a and 32b can be shared between the adjacent standard cells 51a. In this manner, it is not necessary to form the lower layer wirings 32a and 32b individually in the adjacent standard cells 51a, so that high integration can be achieved.

另外上層佈線34c、34d之各個沿著標準單元51a之境界延伸,因此,與上述同樣地,在鄰接之標準單元51a之各個不需要個別地形成上層佈線34c、34d,所以可以達成高積體化。Further, each of the upper layer wirings 34c and 34d extends along the boundary of the standard cell 51a. Therefore, in the same manner as described above, the upper layer wirings 34c and 34d need not be individually formed in the adjacent standard cells 51a, so that high integration can be achieved. .

另外nMOS電晶體NT1~NT3之各個之源極區域11b,經由GND電位之電源線之上層佈線34c電氣連接到GND電位之電源線之下層佈線32a。另外pMOS電晶體PT1~PT3之各個之源極區域21b,經由VDD電位之電源線之上層佈線34d電氣連接到VDD電位之電源線之下層佈線32b。因此,成為不需要使位於標準單元51a之境界之下層佈線32a、32b之各個,朝向各電晶體所在位置之標準單元51a之中央部延伸。利用此種方式,因為在使下層佈線32a、32b之各個應朝向標準單元51a之中央部延伸之部份,產生空的空間,所以在該空的空間可以配置信號線32e1 、32e2 等之其他之佈線,而可以達成高積體化。Further, the source region 11b of each of the nMOS transistors NT1 to NT3 is electrically connected to the power line lower layer wiring 32a of the GND potential via the power line upper layer wiring 34c of the GND potential. Further, each of the source regions 21b of the pMOS transistors PT1 to PT3 is electrically connected to the power line lower layer wiring 32b of the VDD potential via the power line upper layer wiring 34d of the VDD potential. Therefore, it is not necessary to extend each of the layer wirings 32a and 32b located below the boundary of the standard cell 51a toward the central portion of the standard cell 51a where the respective transistors are located. Using this embodiment, since the wiring in the lower layer 32a, 32b of the respective standard cells should be directed to the extending portion 51a of the central portion, an empty space is generated, so the empty space can be configured to a signal line 32e 1, 32e 2, etc. Other wiring can achieve high integration.

依照此種方式,在空的空間配置信號線32e1 、32e2 之結果,所獲得之配置是信號線32e1 在圖9所示之俯視圖中,位於電源線之上層佈線34c與佈線層32g之連接部,和下層佈線32a之間。另外所獲得之配置是信號線32e2 在圖9所示之俯視圖中,位於電源線之上層佈線34d與佈線層32h之連接部,和下層佈線32b之間。In this manner, as a result of arranging the signal lines 32e 1 , 32e 2 in the empty space, the obtained configuration is that the signal line 32e 1 is in the top view shown in FIG. 9 and is located above the power line upper layer wiring 34c and the wiring layer 32g. The connection portion is between the lower layer wiring 32a. Further, the configuration obtained is that the signal line 32e 2 is located between the power line upper layer wiring 34d and the wiring layer 32h and the lower layer wiring 32b in the plan view shown in FIG.

利用上述方式,可以獲得同時高速化和高積體化雙方之半導體裝置。According to the above aspect, it is possible to obtain a semiconductor device which is both high speed and high in integration.

另外在上述之實施形態1~3中是說明作為功能元件之具有CMOS反相器之元件,但是本發明並不只限於該種,亦可以適用在CMOS之NAND或NOR電路,或其以外之其他之功能元件。Further, in the first to third embodiments described above, an element having a CMOS inverter as a functional element is described. However, the present invention is not limited to this, and may be applied to a CMOS NAND or NOR circuit, or the like. Functional components.

(實施形態4)(Embodiment 4)

參照圖11和圖12,本實施形態之電路具有2輸入之NAND閘NA1、NA2,緩衝器BU1、BU2、BU3和反相器IN。Referring to Figures 11 and 12, the circuit of this embodiment has two input NAND gates NA1, NA2, buffers BU1, BU2, BU3 and inverter IN.

2輸入之NAND閘NA1具有圖12所示之連接之pMOS電晶體PT11、PT12和nMOS電晶體NT11、NT12。在pMOS電晶體PT11和nMOS電晶體NT11之各個閘極電氣連接有端子A,在pMOS電晶體PT12和nMOS電晶體NT12之各個閘極電氣連接有端子B。The 2-input NAND gate NA1 has the connected pMOS transistors PT11, PT12 and nMOS transistors NT11, NT12 shown in FIG. Terminals A are electrically connected to respective gates of the pMOS transistor PT11 and the nMOS transistor NT11, and terminals B are electrically connected to respective gates of the pMOS transistor PT12 and the nMOS transistor NT12.

緩衝器BU1之構成包含有由pMOS電晶體PT13與nMOS電晶體NT13構成之CMOS反相器,和由pMOS電晶體PT14與nMOS電晶體NT14構成之CMOS反相器。該緩衝器BU1構建成被輸入有NAND閘NA1之輸出。The buffer BU1 is composed of a CMOS inverter composed of a pMOS transistor PT13 and an nMOS transistor NT13, and a CMOS inverter composed of a pMOS transistor PT14 and an nMOS transistor NT14. The buffer BU1 is constructed to be input with the output of the NAND gate NA1.

緩衝器BU2之構成包含有由pMOS電晶體PT15與nMOS電晶體NT15構成之CMOS反相器,和由pMOS電晶體PT16與nMOS電晶體NT16構成之CMOS反相器。該緩衝器BU2構建成被輸入有緩衝器BU1之輸出。The buffer BU2 is composed of a CMOS inverter composed of a pMOS transistor PT15 and an nMOS transistor NT15, and a CMOS inverter composed of a pMOS transistor PT16 and an nMOS transistor NT16. This buffer BU2 is constructed to be input with the output of the buffer BU1.

緩衝器BU3之構成包含有由pMOS電晶體PT17與nMOS電晶體NT17構成之CMOS反相器,和由pMOS電晶體PT18與nMOS電晶體NT18構成之CMOS反相器。在pMOS電晶體PT17和nMOS電晶體NT17之各個閘極電氣連接有端子C。The buffer BU3 is composed of a CMOS inverter composed of a pMOS transistor PT17 and an nMOS transistor NT17, and a CMOS inverter composed of a pMOS transistor PT18 and an nMOS transistor NT18. A terminal C is electrically connected to each of the gates of the pMOS transistor PT17 and the nMOS transistor NT17.

2輸入之NAND閘NA2具有如圖12所示之連接之pMOS電晶體PT19、PT20和nMOS電晶體NT19、NT20。在pMOS電晶體PT19和nMOS電晶體NT19之各個之閘極電氣連接有緩衝器BU2之輸出。在pMOS電晶體PT20和nMOS電晶體NT20之各個閘極電氣連接有緩衝器BU3之輸出。The 2-input NAND gate NA2 has connected pMOS transistors PT19, PT20 and nMOS transistors NT19, NT20 as shown in FIG. An output of the buffer BU2 is electrically connected to each of the gates of the pMOS transistor PT19 and the nMOS transistor NT19. The outputs of the buffer BU3 are electrically connected to the respective gates of the pMOS transistor PT20 and the nMOS transistor NT20.

反相器IN之構成包含有由pMOS電晶體PT21和nMOS電晶體NT21構成之CMOS反相器。在pMOS電晶體PT21和nMOS電晶體NT21之各個閘極電氣連接有NAND閘NA2之輸出。另外反相器IN之輸出電氣連接到端子Y。The configuration of the inverter IN includes a CMOS inverter composed of a pMOS transistor PT21 and an nMOS transistor NT21. An output of the NAND gate NA2 is electrically connected to each of the gates of the pMOS transistor PT21 and the nMOS transistor NT21. In addition, the output of the inverter IN is electrically connected to the terminal Y.

其次,說明構成圖11和圖12所示之電路之半導體裝置之平面佈置構造。Next, the planar arrangement of the semiconductor device constituting the circuits shown in Figs. 11 and 12 will be described.

圖13表示形成在半導體基板之擴散區域與元件隔離區域,和形成在半導體基板上之閘電極層等之多晶矽層。圖14主要地表示上述之多晶矽層和其上之第1層之金屬層。另外圖15表示上述之第1層之金屬層和其上之第2層之金屬層和第3層之金屬層。Fig. 13 shows a polysilicon layer formed on a diffusion region and an element isolation region of a semiconductor substrate, and a gate electrode layer or the like formed on a semiconductor substrate. Fig. 14 mainly shows the above polycrystalline germanium layer and the metal layer of the first layer thereon. Further, Fig. 15 shows the metal layer of the first layer described above and the metal layer of the second layer and the metal layer of the third layer thereon.

參照圖13,在半導體基板SUB之表面具有NAND閘之形成區域NA1、NA2,緩衝器之形成區域BU1、BU2、BU3,反相器之形成區域IN和非電路構成區域(non-circuit region)NON。該等之形成區域之各個為標準單元。Referring to Fig. 13, a NAND gate formation region NA1, NA2, a buffer formation region BU1, BU2, BU3, an inverter formation region IN, and a non-circuit region NON are formed on the surface of the semiconductor substrate SUB. . Each of these forming regions is a standard unit.

緩衝器之形成區域BU3,非電路構成區域NON,和反相器之形成區域IN被配置成以該順序排列在圖中之X方向。另外NAND閘之形成區域NA1、緩衝器之形成區域BU1、緩衝器之形成區域BU2和NAND閘之形成區域NA2被配置成以該順序排列在圖中之X方向。The buffer formation region BU3, the non-circuit formation region NON, and the inverter formation region IN are arranged in the X direction in the figure in this order. Further, the NAND gate formation region NA1, the buffer formation region BU1, the buffer formation region BU2, and the NAND gate formation region NA2 are arranged in the X direction in the figure in this order.

在NAND閘之形成區域NA1形成有上述之pMOS電晶體PT11、PT12和nMOS電晶體NT11、NT12。在緩衝器之形成區域BU1形成有上述之pMOS電晶體PT13、PT14和nMOS電晶體NT13、NT14。在緩衝器之形成區域BU2形成有上述之pMOS電晶體PT15、PT16和nMOS電晶體NT15、NT16。在NAND閘之形成區域NA2形成有上述之pMOS電晶體PT19、PT20和nMOS電晶體NT19、NT20。The above-described pMOS transistors PT11, PT12 and nMOS transistors NT11, NT12 are formed in the NAND gate formation region NA1. The above-described pMOS transistors PT13, PT14 and nMOS transistors NT13, NT14 are formed in the buffer formation region BU1. The above-described pMOS transistors PT15, PT16 and nMOS transistors NT15, NT16 are formed in the buffer formation region BU2. The above-described pMOS transistors PT19, PT20 and nMOS transistors NT19, NT20 are formed in the NAND gate formation region NA2.

在緩衝器之形成區域BU3形成有上述之pMOS電晶體PT17、PT18和nMOS電晶體NT17、NT18。在反相器之形成區域IN形成有上述之pMOS電晶體PT21和nMOS電晶體NT21。The above-described pMOS transistors PT17, PT18 and nMOS transistors NT17, NT18 are formed in the buffer formation region BU3. The above-described pMOS transistor PT21 and nMOS transistor NT21 are formed in the formation region IN of the inverter.

以沿著緩衝器之形成區域BU3,非電路構成區域NON和反相器之形成區域IN之圖中Y方向上側之境界,在圖中X方向延伸之方式,在半導體基板SUB內之表面形成P+ 區域PR1。另外以沿著NAND閘之形成區域NA1,緩衝器之形成區域BU1、BU2和NAND閘之形成區域NA2之圖中Y方向下側之境界,在圖中之X方向延伸之方式,在半導體基板SUB內之表面形成P+ 區域PR2。A P is formed on the surface of the semiconductor substrate SUB in such a manner that the boundary between the non-circuit forming region NON and the forming region IN of the inverter in the Y direction on the upper side of the buffer forming region BU3, the non-circuit forming region NON and the inverter forming region IN in the figure. + Area PR1. Further, in a state along the NAND gate formation region NA1, the buffer formation regions BU1, BU2, and the NAND gate formation region NA2, the lower boundary in the Y direction is extended in the X direction in the drawing, on the semiconductor substrate SUB. The inner surface forms a P + region PR2.

另外在緩衝器之形成區域BU3、非電路構成區域NON和反相器之形成區域IN之圖中Y方向下側之境界,亦即沿著NAND閘之形成區域NA1,緩衝器之形成區域BU1、BU2和NAND閘之形成區域NA2之圖中Y方向上側之境界,形成n+ 區域NR。該n+ 區域NR亦是以沿著該境界在圖中X方向延伸之方式,形成在半導體基板SUB內之表面。Further, in the boundary between the buffer formation region BU3, the non-circuit formation region NON, and the formation region IN of the inverter, the lower boundary in the Y direction, that is, along the NAND gate formation region NA1, the buffer formation region BU1. The boundary between the BU2 and the NAND gate forming region NA2 in the upper side in the Y direction forms an n + region NR. The n + region NR is also formed on the surface of the semiconductor substrate SUB so as to extend along the boundary in the X direction in the drawing.

參照圖14,在MOS電晶體上經由層間絕緣層(未圖示)形成被圖案製作之第1層之金屬層。該第1層之金屬層具有GND電位之電源線之下層佈線GNDL1、GNDL2,VDD電位之電源線之下層佈線VDDL,和其他之信號線SL1。Referring to Fig. 14, a metal layer of a patterned first layer is formed on an MOS transistor via an interlayer insulating layer (not shown). The metal layer of the first layer has a power line lower layer wiring GNDL1, GNDL2 of a GND potential, a power line lower layer wiring VDDL of a VDD potential, and other signal lines SL1.

下層佈線GNDL1沿著緩衝器之形成區域BU3,非電路構成區域NON和反相器之形成區域IN之圖中Y方向上側之境界,在圖中X方向延伸。該下層佈線GNDL1經由多個之接觸孔CH,電氣連接到下層之p+ 區域PR1。The lower layer wiring GNDL1 extends along the buffer formation region BU3, the non-circuit configuration region NON, and the upper boundary of the formation region IN of the inverter in the Y direction, and extends in the X direction in the drawing. The lower layer wiring GNDL1 is electrically connected to the lower p + region PR1 via a plurality of contact holes CH.

下層佈線GNDL2沿著NAND閘之形成區域NA1,緩衝器之形成區域BU1、BU2和NAND閘之形成區域NA2之圖中Y方向下側之境界,在圖中X方向延伸。該下層佈線GNDL2經由多個之接觸孔CH,電氣連接到下層之p+ 區域PR2。The lower layer wiring GNDL2 extends along the NAND gate formation region NA1, the buffer formation regions BU1, BU2, and the NAND gate formation region NA2 in the lower side in the Y direction, and extends in the X direction in the drawing. The lower layer wiring GNDL2 is electrically connected to the lower p + region PR2 via a plurality of contact holes CH.

下層佈線VDDL在緩衝器之形成區域BU3,非電路構成區域NON和反相器之形成區域IN之圖中Y方向下側之境界,亦即沿著NAND閘之形成區域NA1,緩衝器之形成區域BU1、BU2和NAND閘之形成區域NA2之圖中Y方向上側之境界,在圖中X方向延伸。下層佈線VDDL經由多個之接觸孔CH,電氣連接到下層之n+ 區域NR。The underlying wiring VDDL is in the boundary region of the buffer forming region BU3, the non-circuit forming region NON and the forming region IN of the inverter in the Y direction, that is, the boundary region along the NAND gate forming region NA1, the buffer forming region The boundary of the upper side in the Y direction in the map of the formation area NA2 of the BU1, BU2 and the NAND gate extends in the X direction in the drawing. The lower layer wiring VDDL is electrically connected to the n + region NR of the lower layer via a plurality of contact holes CH.

參照圖15,在第1層之金屬層上經由層間絕緣層(未圖示)形成被圖案製作之第2層之金屬層。該第2層之金屬層具有GND電位之電源線之上層佈線GNDU1、GNDU2,VDD電位之電源線之上層佈線VDDU和其他之信號線SL2。Referring to Fig. 15, a metal layer of a second layer patterned in a pattern is formed on a metal layer of a first layer via an interlayer insulating layer (not shown). The metal layer of the second layer has a power supply line upper layer wiring GNDU1, GNDU2 of a GND potential, a power supply line upper layer wiring VDDU of VDD potential, and other signal lines SL2.

上層佈線GNDU1沿著緩衝器之形成區域BU3,非電路構成區域NON和反相器之形成區域IN之圖中Y方向上側之境界,在圖中X方向延伸。該上層佈線GNDU1經由多個之通孔VH1,電氣連接到下層之下層佈線GNDL1。另外上層佈線GNDU1具有比下層佈線GNDL1之線寬W1a1 為大之線寬W2a1The upper layer wiring GNDU1 extends along the buffer formation region BU3, the non-circuit configuration region NON, and the upper boundary of the formation region IN of the inverter in the Y direction, and extends in the X direction in the drawing. The upper layer wiring GNDU1 is electrically connected to the lower layer lower layer wiring GNDL1 via a plurality of via holes VH1. Further, the upper layer wiring GNDU1 has a line width W2a 1 which is larger than the line width W1a 1 of the lower layer wiring GNDL1.

上層佈線GNDU2沿著NAND閘之形成區域NA1,緩衝器之形成區域BU1、BU2和NAND閘之形成區域NA2之圖中Y方向下側之境界,在圖中X方向延伸。該上層佈線GNDU2經由多個之通孔VH1,電氣連接到下層之下層佈線GNDL2。另外上層佈線GNDU2具有比下層佈線GNDL2之線寬W1a2 為大之線寬W2a2The upper layer wiring GNDU2 extends along the NAND gate formation region NA1, the buffer formation regions BU1, BU2, and the NAND gate formation region NA2 in the lower side in the Y direction, and extends in the X direction in the drawing. The upper layer wiring GNDU2 is electrically connected to the lower layer lower layer wiring GNDL2 via a plurality of via holes VH1. Further, the upper layer wiring GNDU2 has a line width W2a 2 which is larger than the line width W1a 2 of the lower layer wiring GNDL2.

上層佈線VDDU在緩衝器之形成區域BU3,非電路構成區域NON和反相器之形成區域IN之圖中Y方向下側之境界,亦即沿著NAND閘之形成區域NA1,緩衝器之形成區域BU1、BU2和NAND閘之形成區域NA2之圖中Y方向上側之境界,在圖中X方向延伸。該上層佈線VDDU經由多個之通孔VH1,電氣連接到下層之下層佈線VDDL。另外上層佈線VDDU具有比下層佈線VDDL之線寬W1b為大之線寬W2b。The upper layer wiring VDDU is in the buffer forming region BU3, the non-circuit forming region NON and the inverter forming region IN in the lower side of the Y direction, that is, the NAND gate forming region NA1, the buffer forming region. The boundary of the upper side in the Y direction in the map of the formation area NA2 of the BU1, BU2 and the NAND gate extends in the X direction in the drawing. The upper layer wiring VDDU is electrically connected to the lower layer lower layer wiring VDDL via a plurality of via holes VH1. Further, the upper layer wiring VDDU has a line width W2b larger than the line width W1b of the lower layer wiring VDDL.

在該第2層之金屬層上經由層間絕緣層(未圖示)形成被圖案製作之第3層之金屬層。該第3層之金屬層具有補強GND電位之電源線之電位之補強佈線GNDS,補強VDD電位之電源線之電位之補強佈線VDDS,和其他之信號線SL3。A metal layer of the patterned third layer is formed on the metal layer of the second layer via an interlayer insulating layer (not shown). The metal layer of the third layer has a reinforcing wiring GNDS for reinforcing the potential of the power supply line of the GND potential, a reinforcing wiring VDDS for reinforcing the potential of the power supply line of the VDD potential, and other signal lines SL3.

補強佈線GNDS和補強佈線VDDS之各個在俯視圖中,在上層佈線GNDU1、GNDU2、VDDU之正交方向(亦即圖中Y方向)延伸。補強佈線GNDS在俯視圖中,與上層佈線GNDU1、GNDU2之各個交叉,在1個之交點經由多個(例如4個)之通孔VH2,電氣連接到上層佈線GNDU1、GNDU2之各個。另外補強佈線VDDS在俯視圖中,與上層佈線VDDU交叉,在1個之交點經由多個(例如4個)之通孔VH2,電氣連接到上層佈線VDDU。Each of the reinforcing wiring GNDS and the reinforcing wiring VDDS extends in the orthogonal direction of the upper layer wirings GNDU1, GNDU2, and VDDU (that is, the Y direction in the drawing) in plan view. In the plan view, the reinforcing wiring GNDS intersects with the upper layer wirings GNDU1 and GNDU2, and is electrically connected to each of the upper layer wirings GNDU1 and GNDU2 via a plurality of (for example, four) via holes VH2 at one intersection. Further, the reinforcing wiring VDDS crosses the upper layer wiring VDDU in a plan view, and is electrically connected to the upper layer wiring VDDU via a plurality of (for example, four) via holes VH2 at one intersection.

另外各層之信號線SL1、SL2、SL3電氣連接MOS電晶體之各個,而成為圖11和圖12所示之電路構造。另外在圖13中,斜線所示之部位是形成在半導體基板上之閘電極層等之多晶矽層,以圖點花樣表示之部位是形成在半導體基板上之擴散區域。該等之多晶矽層或擴散區域電氣連接MOS電晶體之各個,而成為圖11和圖12所示之電路構造。Further, the signal lines SL1, SL2, and SL3 of the respective layers are electrically connected to each of the MOS transistors to have the circuit configuration shown in Figs. 11 and 12 . Further, in Fig. 13, a portion indicated by a hatched line is a polysilicon layer formed on a gate electrode layer or the like on a semiconductor substrate, and a portion indicated by a dot pattern is a diffusion region formed on the semiconductor substrate. The polysilicon layers or diffusion regions are electrically connected to each of the MOS transistors to form the circuit configuration shown in FIGS. 11 and 12.

另外,連接圖15所示之下層佈線GNDL1和上層佈線GNDU1之多個通孔VH1之配置間距Pv ,成為與圖13所示之電晶體之配置間距PT 成相同之間距。另外,連接下層佈線GNDL2與上層佈線GNDU2之多個通孔VH1之配置間距Pv ,和連接下層佈線VDDL與上層佈線VDDU之多個通孔VH1之配置間距Pv ,亦成為與圖13所示之電晶體之配置間距PT 成相同之間距。利用此種方式,可以減小電源線之電阻值,並且可以強化下層佈線和上層佈線之電位。Further, the connector 15 shown in FIG lower layer wiring and upper wiring GNDL1 plurality of through holes VH1 GNDU1 the arrangement pitch P v, be the same as the arrangement pitch P T of the transistor 13 as shown in FIG pitch. Further, the lower layer wiring is connected to the upper wiring GNDL2 plurality of through holes VH1 GNDU2 the arrangement pitch P v, and a plurality of lower-layer wiring arrangement pitch VDDL connected with the upper wiring through hole VH1 VDDU of P v, shown in Figure 13 has become The arrangement pitch P T of the transistors is the same distance. In this way, the resistance value of the power supply line can be reduced, and the potentials of the lower layer wiring and the upper layer wiring can be enhanced.

參照圖16,配置成使多根之補強佈線GNDS、VDDS和多根之上層佈線GNDU、VDDU在俯視圖中,構成格子。Referring to Fig. 16, a plurality of reinforcing wirings GNDS and VDDS and a plurality of upper layer wirings GNDU and VDDU are arranged in a plan view to form a lattice.

多根之補強佈線GNDS之各個,經由通孔VH2電氣連接到多根之上層佈線GNDU(包含GNDU1、GNDU2)。另外多根之補強佈線VDDS之各個,經由通孔VH2電氣連接到多根之上層佈線VDDU。Each of the plurality of reinforcing wirings GNDS is electrically connected to a plurality of upper layer wirings GNDU (including GNDU1, GNDU2) via via holes VH2. Further, each of the plurality of reinforcing wirings VDDS is electrically connected to the plurality of upper layer wirings VDDU via the via holes VH2.

依照本實施形態時,使GND電位之電源線分離成為下層佈線GNDL1、GNDL2和上層佈線GNDU1、GNDU2,並且使VDD電位之電源線分離成為下層佈線VDDL和上層佈線VDDU。因此,當與電源線為單一層之情況比較時,因為增加電流路徑,所以可以達成高速化。另外,因為不需要使電源線之線寬變大就可以增加電流路徑,所以可以達成高積體化。According to the present embodiment, the power supply line of the GND potential is separated into the lower layer wirings GNDL1 and GNDL2 and the upper layer wirings GNDU1 and GNDU2, and the power supply line of the VDD potential is separated into the lower layer wiring VDDL and the upper layer wiring VDDU. Therefore, when compared with the case where the power supply line is a single layer, since the current path is increased, the speed can be increased. In addition, since it is not necessary to increase the line width of the power supply line, the current path can be increased, so that high integration can be achieved.

另外上層佈線GNDU1、GNDU2、VDDU之線寬W2a1 、W2a2 、W2b之各個,因為大於下層佈線GNDL1、GNDL2、VDDL之線寬W1a1 、W1a2 、W1b,所以可以減小電源線之電阻值。Further, each of the line widths W2a 1 , W2a 2 , and W2b of the upper layer wirings GNDU1, GNDU2, and VDDU is larger than the line widths W1a 1 , W1a 2 , and W1b of the lower layer wirings GNDL1, GNDL2, and VDDL, so that the resistance value of the power source line can be reduced. .

另外,下層佈線GNDL1、GNDL2、VDDL之線寬W1a1 、W1a2 、W1b之各個,因為小於上層佈線GNDU1、GNDU2、VDDU之線寬W2a1 、W2a2 、W2b,所以就該部份佈線之配置用之空的空間變大。因此在與下層佈線GNDL1、GNDL2、VDDL相同之層配置其他之佈線等變為容易,可以提高其他之佈線之平面佈置之自由度。In addition, each of the line widths W1a 1 , W1a 2 , and W1b of the lower layer wirings GNDL1, GNDL2, and VDDL is smaller than the line widths W2a 1 , W2a 2 , and W2b of the upper layer wirings GNDU1, GNDU2, and VDDU, so the arrangement of the portion of the wiring is performed. The space used for it becomes larger. Therefore, it is easy to arrange other wirings and the like in the same layer as the lower layer wirings GNDL1, GNDL2, and VDDL, and it is possible to improve the degree of freedom in the planar arrangement of other wirings.

另外,下層佈線GNDL1、GNDL2、VDDL和上層佈線GNDU1、GNDU2、VDDU分別沿著標準單元之境界而延伸。因此,在鄰接之標準單元之各個,可以共用該等之電源線。利用此種方式,因為不需要在每一標準單元個別地形成該等之電源線,所以可以達成高積體化。Further, the lower layer wirings GNDL1, GNDL2, VDDL and the upper layer wirings GNDU1, GNDU2, VDDU extend along the boundary of the standard cell, respectively. Therefore, the power lines can be shared among the adjacent standard cells. In this manner, since it is not necessary to form the power lines individually in each standard cell, high integration can be achieved.

另外,第1層之金屬層之信號線SL1被使用作為標準單元內佈線。第2層之金屬層之信號線SL2沿著圖中X方向而延伸,以被下層佈線GNDL1、GNDL2、VDDL之電源系之佈線包夾之方式,被使用作為連接被配置之標準單元間之佈線。另外,第3層之金屬層之信號線SL3沿著圖中Y方向而延伸,以跨越下層佈線GNDL1、GNDL2、VDDL之電源系之佈線之方式,被使用作為連接標準單元間之佈線。利用此種方式,使P&R(Place and Route:自動佈線配置)之佈線設計變為容易。Further, the signal line SL1 of the metal layer of the first layer is used as the standard cell internal wiring. The signal line SL2 of the metal layer of the second layer extends in the X direction in the drawing, and is used as a wiring between the standard cells to be connected by the wiring of the power supply system of the lower layer wirings GNDL1, GNDL2, and VDDL. . Further, the signal line SL3 of the metal layer of the third layer extends in the Y direction in the drawing, and is used as a wiring connecting the standard cells so as to cross the wiring of the power supply system of the lower layer wirings GNDL1, GNDL2, and VDDL. In this way, the wiring design of the P&R (Place and Route) is made easy.

利用此種方式,可以獲得同時高速化和高積體化雙方之半導體裝置。In this way, it is possible to obtain a semiconductor device in which both high speed and high integration are achieved.

(實施形態5)(Embodiment 5)

在本實施形態中,說明具有高速單元和高積體單元之半導體裝置。In the present embodiment, a semiconductor device having a high speed cell and a high integrated cell will be described.

參照圖17,SOC晶片SOC例如具有高積體優先之邏輯區域HIL,高性能優先之邏輯區域HRL,和邏輯以外之區域AR。在高積體優先之邏輯區域HIL以適於高速動作之高速單元所形成。另外在高性能優先之邏輯區域HRL以適於高積體之高積體單元所形成。Referring to Fig. 17, the SOC wafer SOC has, for example, a high integrated priority logic area HIL, a high performance priority logical area HRL, and an area other than logic AR. The high-level priority logic area HIL is formed by a high-speed unit suitable for high-speed operation. In addition, the high performance priority logic region HRL is formed by a high integrated unit suitable for a high integrated body.

圖18表示形成在半導體基板之擴散區域與元件隔離區域,和形成在半導體基板上之閘電極層等之多晶矽層。圖19主要地表示上述之多晶矽層和其上之第1層之金屬層。另外,圖20主要地表示上述之第1層之金屬層和其上之第2層之金屬層。Fig. 18 shows a polysilicon layer formed on a diffusion region and an element isolation region of a semiconductor substrate, and a gate electrode layer or the like formed on the semiconductor substrate. Fig. 19 mainly shows the above polycrystalline germanium layer and the metal layer of the first layer thereon. In addition, FIG. 20 mainly shows the metal layer of the first layer described above and the metal layer of the second layer thereon.

參照圖18,高速單元和高積體單元雙方均由pMOS電晶體PT和nMOS電晶體NT構成之CMOS反相器所形成。Referring to Fig. 18, both the high speed unit and the high integration unit are formed by a CMOS inverter composed of a pMOS transistor PT and an nMOS transistor NT.

在高速單元和高積體單元之任一方,pMOS電晶體PT具有1對之p型源極/汲極區域SD,閘絕緣膜(未圖示),和閘電極層GE。該1對之p型源極/汲極區域SD之各個形成在半導體基板SUB之表面。閘電極層GE經由閘絕緣膜形成在被1對之p型源極/汲極區域SD包夾之半導體基板SUB之表面上。In either of the high speed unit and the high integrated unit, the pMOS transistor PT has a pair of p-type source/drain regions SD, a gate insulating film (not shown), and a gate electrode layer GE. Each of the pair of p-type source/drain regions SD is formed on the surface of the semiconductor substrate SUB. The gate electrode layer GE is formed on the surface of the semiconductor substrate SUB sandwiched by a pair of p-type source/drain regions SD via a gate insulating film.

在高速單元和高積體單元之任一方,nMOS電晶體NT具有1對之n型源極/汲極區域SD,閘絕緣膜(未圖示),和閘電極層GE。該1對之n型源極/汲極區域SD之各個形成在半導體基板SUB之表面。閘電極層GE經由閘絕緣膜形成在被1對之n型源極/汲極區域SD包夾之半導體基板SUB之表面上。In either of the high speed unit and the high integration unit, the nMOS transistor NT has a pair of n-type source/drain regions SD, a gate insulating film (not shown), and a gate electrode layer GE. Each of the pair of n-type source/drain regions SD is formed on the surface of the semiconductor substrate SUB. The gate electrode layer GE is formed on the surface of the semiconductor substrate SUB sandwiched by the pair of n-type source/drain regions SD via a gate insulating film.

在高速單元和高積體單元之任一方,pMOS電晶體PT之閘電極層GE和nMOS電晶體NT之閘電極層GE形成一體,而互相電氣連接。In either of the high-speed unit and the high-level unit, the gate electrode layer GE of the pMOS transistor PT and the gate electrode layer GE of the nMOS transistor NT are integrally formed and electrically connected to each other.

在高速單元和高積體單元之任一方,沿著標準單元區域之圖中Y方向上側之境界,以在圖中X方向延伸之方式,在半導體基板SUB內之表面形成n+ 區域NIR。另外,沿著標準單元區域之圖中Y方向下側之境界,以在圖中X方向延伸之方式,在半導體基板SUB內之表面形成p+ 區域PIR。In either of the high-speed unit and the high-level unit, an n + region NIR is formed on the surface of the semiconductor substrate SUB along the boundary of the upper side in the Y direction in the figure of the standard cell region so as to extend in the X direction in the drawing. Further, along the boundary of the lower side in the Y direction in the figure of the standard cell region, a p + region PIR is formed on the surface of the semiconductor substrate SUB so as to extend in the X direction in the drawing.

在此處之高速單元之CMOS反相器之平面佈置和高積體單元之CMOS反相器之平面佈置成為相同。另外,高速單元之n+ 區域NIR和p+ 區域PIR之各個之平面佈置與高積體單元之n+ 區域NIR和p+ 區域PIR之各個之平面佈置相同。The planar arrangement of the CMOS inverter of the high speed unit here and the planar arrangement of the CMOS inverter of the high integrated unit are the same. Further, the planar arrangement of each of the n + region NIR and the p + region PIR of the high speed unit is the same as the planar arrangement of each of the n + region NIR and the p + region PIR of the high integrated unit.

參照圖19,在MOS電晶體PT、NT上經由層間絕緣膜(未圖示),形成被圖案製作之第1層之金屬層。該第1層之金屬層具有GND電位之電源線之下層佈線GND、GNDL,VDD電位之電源線之下層佈線VDD、VDDL,和其他之信號線SLL1、SLL2。Referring to Fig. 19, a metal layer of a patterned first layer is formed on MOS transistors PT and NT via an interlayer insulating film (not shown). The metal layer of the first layer has a power supply line under the GND potential, a lower layer wiring GND, GNDL, a VDD potential power line lower layer wiring VDD, VDDL, and other signal lines SLL1, SLL2.

下層佈線GNDL在高速單元沿著標準單元區域之圖中Y方向下側之境界,而在圖中X方向延伸。該下層佈線GNDL經由多個之接觸孔CH電氣連接到下層之p+ 區域PIR。另外下層佈線GNDL經由多個之接觸孔CH電氣連接到nMOS電晶體NT之源極/汲極區域SD之一方。The lower layer wiring GNDL extends in the X direction on the lower side of the Y direction in the figure of the high-speed unit along the standard cell area. The lower layer wiring GNDL is electrically connected to the lower p + region PIR via a plurality of contact holes CH. Further, the lower layer wiring GNDL is electrically connected to one of the source/drain regions SD of the nMOS transistor NT via a plurality of contact holes CH.

下層佈線VDDL在高速單元沿著標準單元區域之圖中Y方向上側之境界,而在圖中X方向延伸。該下層佈線VDDL經由多個之接觸孔CH電氣連接到下層之n+ 區域NIR。另外下層佈線VDDL經由多個之接觸孔CH電氣連接到pMOS電晶體PT之源極/汲極區域SD之一方。The lower layer wiring VDDL extends in the X direction in the figure in the upper direction of the Y direction in the figure of the high-speed unit along the standard cell area. The lower layer wiring VDDL is electrically connected to the lower n + region NIR via a plurality of contact holes CH. Further, the lower layer wiring VDDL is electrically connected to one of the source/drain regions SD of the pMOS transistor PT via a plurality of contact holes CH.

信號線SLL1經由接觸孔CH電氣連接到nMOS電晶體NT之源極/汲極區域SD之另外一方和pMOS電晶體PT之源極/汲極區域SD之另外一方之各個。信號線SLL2經由接觸孔CH電氣連接到閘電極層GE。The signal line SLL1 is electrically connected to the other of the source/drain region SD of the nMOS transistor NT and the other source/drain region SD of the pMOS transistor PT via the contact hole CH. The signal line SLL2 is electrically connected to the gate electrode layer GE via the contact hole CH.

在此處高速單元之下層佈線GNDL與下層佈線VDDL之各個之平面佈置,和高積體單元之下層佈線GND與下層佈線VDD之各個之平面佈置相同。另外,高速單元之信號線SLL1與信號線SLL2之平面佈置,和高積體單元之信號線SLL1與信號線SLL2之平面佈置相同。Here, the planar arrangement of each of the lower layer wiring GNDL and the lower layer wiring VDDL of the high speed unit is the same as the plane arrangement of each of the lower integrated layer lower layer wiring GND and the lower layer wiring VDD. Further, the plane of the signal line SLL1 of the high-speed unit and the signal line SLL2 are arranged, and the plane arrangement of the signal line SLL1 and the signal line SLL2 of the high-integral unit is the same.

參照圖20,在第1層之金屬層上,經由層間絕緣層(未圖示),形成被圖案製作之第2層之金屬層。該第2層之金屬層具有GND電位之電源線之上層佈線GNDU,VDD電位之電源線之上層佈線VDDU,和其他之信號線SLU1~SLU4。Referring to Fig. 20, a metal layer of a second layer patterned in a pattern is formed on a metal layer of the first layer via an interlayer insulating layer (not shown). The metal layer of the second layer has a power supply line upper layer wiring GNDU of a GND potential, a power supply line upper layer wiring VDDU of a VDD potential, and other signal lines SLU1 to SLU4.

上層佈線GNDU沿著高速單元之標準單元區域之圖中Y方向下側之境界,在圖中X方向延伸。該上層佈線GNDU經由多個之通孔VH1電氣連接到下層之下層佈線GNDL。另外上層佈線GNDU具有比下層佈線GNDL之線寬W1a為大之線寬W2a。The upper layer wiring GNDU extends along the boundary of the lower side in the Y direction in the figure of the standard cell area of the high speed cell, and extends in the X direction in the drawing. The upper layer wiring GNDU is electrically connected to the lower layer lower layer wiring GNDL via a plurality of via holes VH1. Further, the upper layer wiring GNDU has a line width W2a larger than the line width W1a of the lower layer wiring GNDL.

上層佈線VDDU沿著高速單元之標準單元區域之圖中Y方向上側之境界,在圖中X方向延伸。該上層佈線VDDU經由多個之通孔VH1電氣連接到下層之下層佈線VDDL。另外上層佈線VDDU具有比下層佈線VDDL之線寬W1b為大之線寬W2b。The upper layer wiring VDDU extends along the boundary of the upper side in the Y direction in the figure of the standard cell area of the high speed cell, and extends in the X direction in the drawing. The upper layer wiring VDDU is electrically connected to the lower layer lower layer wiring VDDL via a plurality of via holes VH1. Further, the upper layer wiring VDDU has a line width W2b larger than the line width W1b of the lower layer wiring VDDL.

另外信號線SLU3、SLU4之各個形成在高速單元之標準單元內。該等之信號線SLU3、SLU4之各個在圖中X方向(亦即在俯視圖中,在與上層佈線GNDU、VDDU之延伸方向之相同方向)延伸,橫斷高速單元之標準單元區域之境界。信號線SLU3經由通孔VH1電氣連接到信號線SLL1。另外,信號線SLU4經由通孔VH1電氣連接到信號線SLL2。Further, each of the signal lines SLU3 and SLU4 is formed in a standard unit of the high speed unit. Each of the signal lines SLU3 and SLU4 extends in the X direction in the drawing (that is, in the same direction as the direction in which the upper layers GNDU and VDDU extend in the plan view), and traverses the boundary of the standard cell area of the high-speed cell. The signal line SLU3 is electrically connected to the signal line SLL1 via the via hole VH1. In addition, the signal line SLU4 is electrically connected to the signal line SLL2 via the via hole VH1.

另外,在高積體單元之標準單元內,信號線SLU1、SLU2之各個在圖中Y方向(亦即在俯視圖中,與下層佈線GND、VDD之延伸方向正交之方向)延伸。信號線SLU1經由通孔VH1電氣連接到信號線SLL1。另外,信號線SLU2經由通孔VH1電氣連接到信號線SLL2。Further, in the standard cell of the high-integral cell, each of the signal lines SLU1, SLU2 extends in the Y direction in the drawing (that is, in a plan view, in a direction orthogonal to the extending direction of the lower layer wiring GND, VDD). The signal line SLU1 is electrically connected to the signal line SLL1 via the via hole VH1. In addition, the signal line SLU2 is electrically connected to the signal line SLL2 via the via hole VH1.

另外信號線SLU1、SLU2之各個亦在圖中Y方向延伸,橫斷高積體單元之標準單元區域之境界。Further, each of the signal lines SLU1 and SLU2 also extends in the Y direction in the figure, and traverses the boundary of the standard cell area of the high integrated unit.

其次說明關於高積體優先之邏輯區域HIL和高性能優先之邏輯區域HRL之各個之多個標準單元。Next, a plurality of standard units for each of the high-product priority logical region HIL and the high-performance priority logical region HRL will be described.

圖21表示第1層之金屬層。圖22表示第1層之金屬層和其上之第2層之金屬層。圖23表示第1層與第2層之金屬層、其上之第3層之金屬層和更其上之第4金屬層。Figure 21 shows the metal layer of the first layer. Figure 22 shows the metal layer of the first layer and the metal layer of the second layer thereon. Fig. 23 shows the metal layers of the first layer and the second layer, the metal layer of the third layer thereon, and the fourth metal layer thereon.

參照圖21,即使在多個之標準單元之情況,亦與單一之標準單元之情況同樣地,第1層之金屬層和其以下之層之各個之平面佈置構造,在高速單元和高積體單元均為相同。Referring to Fig. 21, even in the case of a plurality of standard cells, as in the case of a single standard cell, the planar arrangement of each of the metal layers of the first layer and the layers below it is in the high-speed cell and the high-product The units are all the same.

參照圖22和圖23,即使在多個之標準單元之情況,亦與單一之標準單元之情況同樣地,第2層之金屬層和其上之層(例如第3和第4金屬層)之各個之平面佈置構造,在高速單元和高積體單元成為不同。Referring to Fig. 22 and Fig. 23, even in the case of a plurality of standard cells, as in the case of a single standard cell, the metal layer of the second layer and the layers thereon (for example, the third and fourth metal layers) Each of the planar arrangement structures differs between the high speed unit and the high integrated unit.

在高速單元,由第2層之金屬層構成之上層佈線GNDU、VDDU,以比下層佈線GNDL、VDDL之線寬為小之線寬,形成沿著標準單元之境界延伸。另外由第2層之金屬層構成之信號線SLU在與下層佈線GNDL、VDDL之延伸方向相同之方向延伸。In the high-speed cell, the upper layer wirings GNDU and VDDU are composed of the metal layers of the second layer, and are formed to extend along the boundary of the standard cell with a line width smaller than the line width of the lower layer wirings GNDL and VDDL. Further, the signal line SLU composed of the metal layer of the second layer extends in the same direction as the extending direction of the lower layer wirings GNDL and VDDL.

另外一方面,在高積體單元,未設有由第2層之金屬層構成之上層佈線GNDU、VDDU。另外由第2層之金屬層構成之信號線SLU在與下層佈線GNDL、VDDL之延伸方向正交之方向延伸。On the other hand, in the high integrated unit, the upper layer wirings GNDU and VDDU are not provided by the metal layer of the second layer. Further, the signal line SLU composed of the metal layer of the second layer extends in a direction orthogonal to the extending direction of the lower layer wirings GNDL and VDDL.

在高速單元,如圖22所示,設有由第2層之金屬層構成之上層佈線GNDU、VDDU。因此,不能使由第2層之金屬層構成之信號線SLU延伸成跨越圖中Y方向上側之標準單元和下側之標準單元之境界。因此,在高速單元,如圖23所示,當不使用第3層之金屬層和第4層之金屬層時,就不能使在圖中Y方向鄰接之標準單元內之元件彼此間,和在圖中X方向鄰接之標準單元內之元件彼此間,產生電氣連接。In the high speed unit, as shown in FIG. 22, the upper layer wirings GNDU and VDDU are formed of the metal layers of the second layer. Therefore, the signal line SLU composed of the metal layer of the second layer cannot be extended to the boundary between the standard cell on the upper side in the Y direction and the standard cell on the lower side in the figure. Therefore, in the high-speed unit, as shown in FIG. 23, when the metal layer of the third layer and the metal layer of the fourth layer are not used, the elements in the standard cells adjacent to each other in the Y direction cannot be made to each other, and In the figure, the components in the standard cells adjacent in the X direction are electrically connected to each other.

亦即,經由將第3層之金屬層構成之信號線SL3配置成跨越圖中Y方向之上下之標準單元間之境界,可以使在圖中Y方向鄰接之標準單元內之元件彼此間產生電氣連接。另外,經由將第4層之金屬層構成之信號線SL4配置成跨越圖中X方向之左右之標準單元間之境界,可以使在圖中X方向鄰接之標準單元內之元件彼此間產生電氣連接。That is, by arranging the signal line SL3 composed of the metal layer of the third layer so as to cross the boundary between the standard cells above and below the Y direction in the drawing, it is possible to electrically generate the elements in the standard cells adjacent to each other in the Y direction in the drawing. connection. Further, by arranging the signal line SL4 composed of the metal layer of the fourth layer so as to cross the boundary between the standard cells on the left and right in the X direction in the drawing, it is possible to electrically connect the elements in the standard cells adjacent in the X direction in the drawing. .

另外一方面,在高積體單元,如圖22所示,未設有由第2層之金屬層構成之上層佈線GNDU、VDDU。因此,可以使由第2層之金屬層構成之信號線SLU延伸成跨越圖中Y方向上下鄰接之標準單元間之境界。因此,在高積體單元,如圖23所示,即使不使用第4層之金屬層,經由使用第2層之金屬層和第3層之金屬層,亦可以使在圖中Y方向鄰接之標準單元內之元件彼此間,和在圖中X方向鄰接之標準單元內之元件彼此間,產生電氣連接。On the other hand, in the high integrated unit, as shown in Fig. 22, the upper layer wirings GNDU and VDDU are not provided by the metal layer of the second layer. Therefore, the signal line SLU composed of the metal layer of the second layer can be extended to the boundary between the standard cells adjacent to each other in the Y direction in the drawing. Therefore, in the high-mass unit, as shown in FIG. 23, even if the metal layer of the fourth layer is not used, the metal layer of the second layer and the metal layer of the third layer can be adjacent to each other in the Y direction in the drawing. The components in the standard cell are electrically connected to each other and between the components in the standard cell adjacent in the X direction of the drawing.

亦即,經由將由第2層之金屬層構成之信號線SLU配置成跨越圖中Y方向之上下之標準單元間之境界,可以使在圖中Y方向鄰接之標準單元內之元件彼此間,產生電氣連接。另外,經由將由第3層之金屬層構成之信號線SL3配置成跨越圖中X方向之左右之標準單元間之境界,可以使在圖中X方向鄰接之標準單元內之元件彼此間,產生電氣連接。That is, by arranging the signal line SLU composed of the metal layer of the second layer so as to cross the boundary between the standard cells above and below the Y direction in the figure, it is possible to cause the elements in the standard cells adjacent to each other in the Y direction in the drawing to be generated. Electrical connections. Further, by arranging the signal line SL3 composed of the metal layer of the third layer so as to straddle the boundary between the standard cells on the left and right in the X direction in the drawing, it is possible to generate electrical components between the elements in the standard cells adjacent in the X direction in the drawing. connection.

依照本實施形態時,在高速單元之標準單元內,使GND電位之電源線分離成為下層佈線GNDL和上層佈線GNDU,並且使VDD電位之電源線分離成為下層佈線VDDL和上層佈線VDDU。因此,當與電源線為單一層之情況比較時,因為增加電流路徑,所以可以達成高速化。另外,因為不需要使電源線之線寬變大就可以增加電流路徑,所以可以達成高積體化。According to the present embodiment, in the standard cell of the high-speed cell, the power supply line of the GND potential is separated into the lower layer wiring GNDL and the upper layer wiring GNDU, and the power supply line of the VDD potential is separated into the lower layer wiring VDDL and the upper layer wiring VDDU. Therefore, when compared with the case where the power supply line is a single layer, since the current path is increased, the speed can be increased. In addition, since it is not necessary to increase the line width of the power supply line, the current path can be increased, so that high integration can be achieved.

另外,上層佈線GNDU、VDDU之線寬W2a、W2b之各個,因為大於下層佈線GNDL、VDDL之線寬W1a、W1b,所以可以減小電源線之電阻值。Further, since each of the line widths W2a and W2b of the upper layer wirings GNDU and VDDU is larger than the line widths W1a and W1b of the lower layer wirings GNDL and VDDL, the resistance value of the power supply line can be reduced.

另外,下層佈線GNDL、VDDL之線寬W1a、W1b之各個,因為小於上層佈線GNDU、VDDU之線寬W2a、W2b,所以就該部份佈線之配置用之空的空間變大。因此在與下層佈線相同層配置其他之佈線等變為容易,可以提高其他之佈線之平面佈置之自由度。In addition, since each of the line widths W1a and W1b of the lower layer wirings GNDL and VDDL is smaller than the line widths W2a and W2b of the upper layer wirings GNDU and VDDU, the space for arranging the partial wirings becomes large. Therefore, it is easy to arrange other wirings and the like in the same layer as the lower layer wiring, and it is possible to improve the degree of freedom in the planar arrangement of other wirings.

另外,下層佈線GNDL、VDDL和上層佈線GNDU、VDDU之各個分別沿著標準單元之境界而延伸。因此,在鄰接之標準單元之各個,可以共用該等之電源線。利用此種方式,因為不需要在每一標準單元個別地形成該等之電源線,所以可以達成高積體化。Further, each of the lower layer wirings GNDL, VDDL and the upper layer wirings GNDU, VDDU extends along the boundary of the standard cell. Therefore, the power lines can be shared among the adjacent standard cells. In this manner, since it is not necessary to form the power lines individually in each standard cell, high integration can be achieved.

利用以上方式,可以獲得同時高速化和高積體化雙方之半導體裝置。According to the above method, it is possible to obtain a semiconductor device which is both high speed and high integrated.

另外,依照本實施形態時,第1層之金屬層和其下層之平面佈置在高速單元和高積體單元共同化。因此,平面佈置之設計變為容易。該設計之P&R(Place and Route:自動佈線配置)流程如下。Further, according to the present embodiment, the planar arrangement of the metal layer of the first layer and the lower layer thereof is common to the high-speed unit and the high-integral unit. Therefore, the design of the floor plan becomes easy. The P&R (Place and Route) process of this design is as follows.

首先,使第1層之金屬層和其下層之平面佈置成為高速單元和高積體單元之共同佈置,登錄在標準單元資料庫。另外一方面,準備登錄有使用在高速單元之端子存取之通孔和使用在高積體單元之端子存取之通孔之技術檔案。First, the plane of the metal layer of the first layer and the lower layer thereof are arranged as a common arrangement of the high-speed unit and the high-integral unit, and are registered in the standard unit database. On the other hand, a technical file for accessing a through hole for terminal access of a high speed unit and a through hole for accessing a terminal of a high integrated unit is prepared.

在P&R流程,從登錄在標準單元資料庫之共同之佈置,追加P&R技術檔案之登錄資料,藉以用來設計高速單元和高積體單元。In the P&R process, the registration data of the P&R technical file is added from the common arrangement registered in the standard unit database, thereby designing the high-speed unit and the high-integrated unit.

用此種方式,因為使第1層之金屬層和其下層之平面佈置成為在高速單元和高積體單元共同化,所以不需要準備就高速單元和高積體單元之單元構造不同之多個之資料庫,使設計變為容易。In this way, since the plane of the metal layer of the first layer and the plane of the lower layer are arranged to be common to the high-speed unit and the high-integral unit, it is not necessary to prepare a plurality of different unit configurations of the high-speed unit and the high-integral unit. The database makes design easy.

另外,只要變更第2層之金屬層和其上層之圖案,就在高積體優先之邏輯區域HIL形成高速單元,並且在高性能優先之邏輯區域HRL形成高積體單元。利用此種方式,因為在高速單元和高積體單元可以使第2層之金屬層和其下層之平面圖案成為相同,所以可以使能夠同時高速化和高積體化雙方之半導體裝置之圖案設計變為容易。Further, by changing the pattern of the metal layer of the second layer and the pattern of the upper layer, a high-speed cell is formed in the high-product-first logic region HIL, and a high-integral cell is formed in the high-performance-priority logic region HRL. In this manner, since the planar pattern of the metal layer of the second layer and the lower layer can be made the same in the high-speed cell and the high-integral cell, the pattern design of the semiconductor device capable of both high speed and high integration can be achieved. It becomes easy.

另外在本實施形態中,在高積體優先之邏輯區域HIL形成高速單元,並且在高性能優先之邏輯區域HRL形成高積體單元。在該高速單元,電源線(VDD佈線、GND佈線)分配給下層佈線GNDL、VDDL和上層佈線GNDU、VDDU。因此,當與電源線為單一層之情況比較時,因為增加電流路徑,所以可以達成高速化。Further, in the present embodiment, the high-speed unit is formed in the high-product-first logical region HIL, and the high-integral unit is formed in the high-performance-priority logical region HRL. In the high speed unit, the power supply lines (VDD wiring, GND wiring) are allocated to the lower layer wirings GNDL, VDDL, and the upper layer wirings GNDU, VDDU. Therefore, when compared with the case where the power supply line is a single layer, since the current path is increased, the speed can be increased.

另外在高積體單元,因為電源線(VDD佈線、GND佈線)成為單一層,所以可以達成疊層方向之高積體化。另外,因為電源線(VDD佈線、GND佈線)由單一層形成,所以由第2層之金屬層構成之信號線可以比高速單元自由地配置。例如如圖20所示,可以使由第2層之金屬層構成之信號線,橫斷對下層佈線GND、VDD在俯視圖中之正交方向延伸之標準單元之境界。利用此種方式,可以使由第2層之金屬層構成之信號線之平面佈置之自由度變高。Further, in the high-integral unit, since the power supply line (VDD wiring, GND wiring) is a single layer, it is possible to achieve a high integration in the lamination direction. Further, since the power supply line (VDD wiring, GND wiring) is formed of a single layer, the signal line composed of the metal layer of the second layer can be freely arranged than the high-speed unit. For example, as shown in FIG. 20, the signal line formed of the metal layer of the second layer can be made to traverse the boundary of the standard cell extending in the direction orthogonal to the lower layer wiring GND and VDD in the plan view. In this way, the degree of freedom in the planar arrangement of the signal lines composed of the metal layers of the second layer can be made high.

(實施形態6)(Embodiment 6)

參照圖24,本實施形態之構造,當與圖21~圖23所示之實施形態5之構造比較時,其不同之點是具有高積體單元之平面佈置對高速單元之平面佈置相對旋轉90°之構造。Referring to Fig. 24, the structure of the present embodiment, when compared with the structure of the fifth embodiment shown in Figs. 21 to 23, is different in that the planar arrangement having the high integrated unit is relatively rotated 90 in the plane arrangement of the high speed unit. °The structure of °.

利用此種方式,由第3層之金屬層構成之信號線SL3之延伸方向,可以在高速單元和高積體單元雙方成為相同方向。In this manner, the direction in which the signal line SL3 composed of the metal layer of the third layer extends can be in the same direction in both the high speed unit and the high integrated unit.

另外,本實施形態之上述以外之構造,因為與圖21~圖23所示之實施形態5之構造大致相同,所以對相同之元件附加相同之元件符號,其說明不再重複。It is to be noted that the same components as those of the fifth embodiment shown in FIG. 21 to FIG. 23 are substantially the same as those of the fifth embodiment, and the same reference numerals will be given to the same elements, and the description thereof will not be repeated.

依照本實施形態時,由第3層之金屬層構成之信號線SL3之延伸方向,因為可以在高速單元和高積體單元成為相同方向,所以佈線設計變為容易。利用此種方式,可以達成積體度之提高和自動佈線之收斂時間之縮短等。According to the present embodiment, since the direction in which the signal line SL3 composed of the metal layer of the third layer is formed can be in the same direction in the high-speed unit and the high-integral unit, the wiring design becomes easy. In this way, it is possible to achieve an improvement in the degree of integration and a shortening of the convergence time of the automatic wiring.

另外,在上述之實施形態1~6中,成對之互相鄰接之標準單元內之功能元件和佈線之平面佈置構造,亦可以對該等之標準單元之境界線具有線對稱之構造。特別是在多種之標準單元間,設在標準單元境界之地線佈線和電源佈線,在單元境界成為線對稱構造。利用此種方式,利用存在於單元境界上下之標準單元可以使地線佈線和電源佈線共同化,在佈置之縮小或P&R(Place and Route:自動佈線配置)使單元配置設計變為容易。Further, in the above-described first to sixth embodiments, the planar arrangement of the functional elements and the wirings in the standard cells adjacent to each other in pairs may have a line symmetry structure with respect to the boundary line of the standard cells. In particular, between a plurality of standard cells, the ground wiring and the power wiring disposed at the boundary of the standard cell become a line-symmetric structure at the cell boundary. In this way, the ground wiring and the power wiring can be made common by using the standard cells existing above and below the cell boundary, and the layout reduction or P&R (Place and Route) makes the unit configuration design easy.

另外在上述之實施形態4~6中,所說明之功能元件是具有CMOS反相器、NAND等之元件,但是本發明並不只限於該者,亦可以適用在CMOS之NAND或NOR電路,正反器電路、三態緩衝電路、和其以外之其他之功能元件。Further, in the above-described fourth to sixth embodiments, the functional elements described above are elements having a CMOS inverter, NAND, etc., but the present invention is not limited to this, and can be applied to CMOS NAND or NOR circuits, positive and negative. Device circuit, tri-state buffer circuit, and other functional components.

本發明特別有利於適用在具有排列多個之標準單元之半導體裝置。The invention is particularly advantageous for use in semiconductor devices having a plurality of standard cells arranged in series.

此處所揭示之實施形態之所有部份只作舉例用,不被視為用來作為限制者。本發明之範圍不是以上述之說明而是以申請專利範圍表示,包含與申請專利範圍同等之意義和範圍內之所有之變更。All of the embodiments disclosed herein are for illustrative purposes only and are not to be considered as limiting. The scope of the present invention is defined by the scope of the claims and the scope of the claims.

1...p型井區域1. . . P-well area

2...n型井區域2. . . N-well area

3...元件隔離區域3. . . Component isolation area

11a...汲極區域11a. . . Bungee area

11b...源極區域11b. . . Source area

12...閘絕緣層12. . . Brake insulation

13...閘電極層13. . . Gate electrode layer

15...p+ 區域15. . . p + area

21a...汲極區域21a. . . Bungee area

21b...源極區域21b. . . Source area

22...閘絕緣層twenty two. . . Brake insulation

23...閘電極層twenty three. . . Gate electrode layer

25...n+ 區域25. . . n + area

31A...層間絕緣層31A. . . Interlayer insulation

31a...接觸孔31a. . . Contact hole

31B...層間絕緣層31B. . . Interlayer insulation

31b...佈線用溝31b. . . Wiring trench

32a~32h...佈線層32a~32h. . . Wiring layer

32e1 、32e2 ...信號線32e 1 , 32e 2 . . . Signal line

33...層間絕緣層33. . . Interlayer insulation

33a...通孔(通溝)33a. . . Through hole

33b...佈線用溝33b. . . Wiring trench

34a~34d...佈線層34a~34d. . . Wiring layer

40...熔線40. . . Melt line

50...半導體裝置50. . . Semiconductor device

51...標準單元區域51. . . Standard cell area

51a...標準單元51a. . . Standard unit

52...I/O單元區域52. . . I/O unit area

A、B、C、Y...端子A, B, C, Y. . . Terminal

AR...邏輯以外之區域AR. . . Area other than logic

BU1、BU2、BU3...緩衝器形成區域BU1, BU2, BU3. . . Buffer forming area

CH...接觸孔CH. . . Contact hole

GE...閘電極層GE. . . Gate electrode layer

GND...電位GND. . . Potential

GNDL、GNDL1、GNDL2...下層佈線GNDL, GNDL1, GNDL2. . . Lower wiring

GNDS...補強佈線GNDS. . . Reinforced wiring

GNDU、GNDU1、GNDU2...上層佈線GNDU, GNDU1, GNDU2. . . Upper wiring

HIL...高積體優先邏輯區域HIL. . . High product priority logic area

HRL...高性能優先邏輯區域HRL. . . High performance priority logic area

IN...反相器IN. . . inverter

NA1、NA2...NAND閘形成區域NA1, NA2. . . NAND gate forming region

NIR、NR...n+ 區域NIR, NR. . . n + area

NON...非電路構成區域NON. . . Non-circuit forming area

NT、NT1~NT3、NT11~NT21...nMOS電晶體NT, NT1~NT3, NT11~NT21. . . nMOS transistor

PIR、PR1、PR2...p+ 區域PIR, PR1, PR2. . . p + area

PT ...配置間距P T . . . Configuration spacing

PT、PT1~PT3、PT11~PT21...pMOS電晶體PT, PT1~PT3, PT11~PT21. . . pMOS transistor

Pv...配置間距Pv. . . Configuration spacing

SD...源極/汲極區域SD. . . Source/drain region

SL1~SL4、SLL1~SLL4...信號線SL1~SL4, SLL1~SLL4. . . Signal line

SLU1~SLU4...信號線SLU1~SLU4. . . Signal line

SOC...晶片系統SOC. . . Wafer system

SUB...半導體基板SUB. . . Semiconductor substrate

VDD...電位VDD. . . Potential

VDDL...下層佈線VDDL. . . Lower wiring

VDDS...補強佈線VDDS. . . Reinforced wiring

VDDU...上層佈線VDDU. . . Upper wiring

VH1、VH2...通孔VH1, VH2. . . Through hole

W1a、W1a1 、W1a2 、W1b、W2a、W2a1 、W2a2 、W2b...線寬W1a, W1a 1 , W1a 2 , W1b, W2a, W2a 1 , W2a 2 , W2b. . . Line width

圖1是俯視圖,用來概略地表示本發明之實施形態1之半導體裝置之構造。Fig. 1 is a plan view schematically showing the structure of a semiconductor device according to a first embodiment of the present invention.

圖2是電路圖,用來表示形成在圖1所示之1個之標準單元51a內之功能元件之電路構造之一實例。Fig. 2 is a circuit diagram showing an example of a circuit configuration of functional elements formed in one of the standard cells 51a shown in Fig. 1.

圖3是俯視圖,用來概略地表示形成有圖2所示之電路之1個之標準單元之構造。Fig. 3 is a plan view schematically showing the configuration of a standard unit in which one of the circuits shown in Fig. 2 is formed.

圖4是沿著圖3之IV-IV線之概略剖視圖。Fig. 4 is a schematic cross-sectional view taken along line IV-IV of Fig. 3.

圖5是俯視圖,用來概略地表示本發明之實施形態2之半導體裝置之排列有多個之標準單元之樣子。Fig. 5 is a plan view schematically showing a state in which a plurality of standard cells are arranged in a semiconductor device according to a second embodiment of the present invention.

圖6是沿著圖5之VI-VI線之概略剖視圖。Fig. 6 is a schematic cross-sectional view taken along line VI-VI of Fig. 5;

圖7是俯視圖,用來概略地表示在圖5之構造中在未形成有功能元件之標準單元,形成有熔線之構造。Fig. 7 is a plan view schematically showing a structure in which a fuse is formed in a standard unit in which a functional element is not formed in the structure of Fig. 5;

圖8是俯視圖,用來概略地表示在圖5之構造中,在未形成有功能元件之標準單元,電源線之上層佈線和下層佈線未連接之構造。Fig. 8 is a plan view schematically showing a configuration in which the upper layer wiring and the lower layer wiring of the power supply line are not connected in the standard unit in which the functional elements are not formed in the configuration of Fig. 5;

圖9是俯視圖,用來概略地表示本發明之實施形態3之半導體裝置之排列有多個之標準單元之樣子。FIG. 9 is a plan view schematically showing a state in which a plurality of standard cells are arranged in the semiconductor device according to the third embodiment of the present invention.

圖10是沿著圖9之X-X線之概略剖視圖。Fig. 10 is a schematic cross-sectional view taken along line X-X of Fig. 9.

圖11是電路圖,用來表示本發明之實施形態4之半導體裝置之電路構造。Figure 11 is a circuit diagram showing the circuit configuration of a semiconductor device according to a fourth embodiment of the present invention.

圖12是電路圖,用來以電晶體位準表示圖11所示之電路圖。Figure 12 is a circuit diagram for showing the circuit diagram shown in Figure 11 at the transistor level.

圖13是概略俯視圖,用來表示構成圖11和圖12所示之電路之半導體裝置之平面佈置構造,圖中表示形成在半導體基板之擴散區域與元件隔離區域,和形成在半導體基板上之閘電極層等之多晶矽層。Figure 13 is a schematic plan view showing the planar arrangement of the semiconductor device constituting the circuit shown in Figures 11 and 12, showing the diffusion region and the element isolation region formed on the semiconductor substrate, and the gate formed on the semiconductor substrate. A polycrystalline layer of an electrode layer or the like.

圖14是概略俯視圖,用來表示構成圖11和圖12所示之電路之半導體裝置之平面佈置構造,圖中主要地表示多晶矽層和其上之第1層之金屬層。Fig. 14 is a schematic plan view showing a planar arrangement of a semiconductor device constituting the circuit shown in Fig. 11 and Fig. 12, mainly showing a polysilicon layer and a metal layer of the first layer thereon.

圖15是概略俯視圖,用來表示構成圖11和圖12所示之電路之半導體裝置之平面佈置構造,圖中表示第1層之金屬層和其上之第2層之金屬層和第3層之金屬層。Figure 15 is a schematic plan view showing the planar arrangement of the semiconductor device constituting the circuit shown in Figures 11 and 12, showing the metal layer of the first layer and the metal layer and the third layer of the second layer thereon. The metal layer.

圖16是概略俯視圖,用來表示圖15所示之補強佈線GNDS和補強佈線VDDS之配置之樣子。Fig. 16 is a schematic plan view showing the arrangement of the reinforcing wiring GNDS and the reinforcing wiring VDDS shown in Fig. 15.

圖17是俯視圖,用來概略地表示作為本發明之實施形態5之半導體裝置之SOC晶片之構造。Fig. 17 is a plan view schematically showing the structure of an SOC wafer as a semiconductor device according to a fifth embodiment of the present invention.

圖18是概略俯視圖,用來表示形成在高積體優先之邏輯區域HIL之高速單元,和形成在高性能優先之邏輯區域HRL之高積體單元之平面佈置構造,圖中表示形成在半導體基板之擴散區域與元件隔離區域,和形成在半導體基板上之閘電極層等之多晶矽層。Figure 18 is a schematic plan view showing a planar arrangement of a high-speed cell formed in a high-product-first logic region HIL and a high-level integrated cell formed in a high-performance-preferred logic region HRL, which is shown formed on a semiconductor substrate. The diffusion region and the element isolation region, and the polysilicon layer formed on the semiconductor substrate or the gate electrode layer.

圖19是概略俯視圖,用來表示形成在高積體優先之邏輯區域HIL之高速單元,和形成在高性能優先之邏輯區域HRL之高積體單元之平面佈置構造,圖中主要地表示多晶矽層和其上之第1層之金屬層。Figure 19 is a schematic plan view showing a planar arrangement of a high-speed cell formed in a high-product priority logic region HIL and a high-level integrated cell formed in a high-performance-preferred logic region HRL, which mainly shows a polysilicon layer And the metal layer of the first layer thereon.

圖20是概略俯視圖,用來表示形成在高積體優先之邏輯區域HIL之高速單元,和形成在高性能優先之邏輯區域HRL之高積體單元之平面佈置構造,圖中表示第1層之金屬層和其上之第2層之金屬層。Fig. 20 is a schematic plan view showing the planar arrangement of the high-speed unit formed in the high-product-first logical region HIL and the high-integral unit formed in the high-performance-priority logical region HRL, and the first layer is shown. a metal layer and a metal layer of the second layer thereon.

圖21是概略俯視圖,用來表示在高積體優先之邏輯區域HIL以高速單元形成多個之標準單元,並且在高性能優先之邏輯區域HRL以高積體單元形成多個之標準單元之情況時之平面佈置構造,圖中表示第1層之金屬層。21 is a schematic plan view showing a case where a plurality of standard cells are formed in a high-speed-priority logic region HIL in a high-speed cell, and a plurality of standard cells are formed in a high-performance-priority logic region HRL in a high-integral unit. The planar layout of the time, the metal layer of the first layer is shown in the figure.

圖22是概略俯視圖,從下層起依序地表示在高積體優先之邏輯區域HIL以高速單元形成多個之標準單元,並且在高性能優先之邏輯區域HRL以高積體單元形成多個之標準單元之情況時之平面佈置構造,圖中表示第1層之金屬層和其上之第2層之金屬層。FIG. 22 is a schematic plan view showing, in order from the lower layer, a plurality of standard cells formed in a high-speed-priority logic region HIL in a high-speed cell, and a plurality of high-performance-preferred logic regions HRL in a high-integral cell. In the case of a standard cell, the planar arrangement is shown in the figure, which shows the metal layer of the first layer and the metal layer of the second layer thereon.

圖23是概略俯視圖,從下層起依序地表示在高積體優先之邏輯區域HIL以高速單元形成多個之標準單元,並且在高性能優先之邏輯區域HRL以高積體單元形成多個之標準單元之情況時之平面佈置構造,圖中表示第1層與第2層之金屬層、其上之第3層之金屬層、和更在其上之第4金屬層。FIG. 23 is a schematic plan view showing, in order from the lower layer, a plurality of standard cells formed in a high-speed-priority logic region HIL in a high-speed cell, and a plurality of high-performance-preferred logic regions HRL in a high-integral cell. In the case of a standard cell, the planar arrangement structure shows the metal layers of the first and second layers, the metal layer of the third layer thereon, and the fourth metal layer thereon.

圖24是俯視圖,用來概略地表示具有作為本發明之實施形態6之半導體裝置之高速單元和高積體單元雙方之裝置之構造。Fig. 24 is a plan view schematically showing the structure of a device having both a high-speed unit and a high-level unit of the semiconductor device according to the sixth embodiment of the present invention.

1...p型井區域1. . . P-well area

2...n型井區域2. . . N-well area

11a...汲極區域11a. . . Bungee area

11b...源極區域11b. . . Source area

13...閘電極層13. . . Gate electrode layer

15...p+ 區域15. . . p + area

21a...汲極區域21a. . . Bungee area

21b...源極區域21b. . . Source area

23...閘電極層twenty three. . . Gate electrode layer

25...n+ 區域25. . . n + area

31a...接觸孔31a. . . Contact hole

32a~32h...佈線層32a~32h. . . Wiring layer

33a...通孔(通溝)33a. . . Through hole

34a~34d...佈線層34a~34d. . . Wiring layer

51a...標準單元51a. . . Standard unit

NT1、NT2、NT3...nMOS電晶體NT1, NT2, NT3. . . nMOS transistor

PT1、PT2、PT3...pMOS電晶體PT1, PT2, PT3. . . pMOS transistor

W1a、W1b、W2a、W2b...線寬W1a, W1b, W2a, W2b. . . Line width

Claims (9)

一種半導體裝置,具有被排列之多個標準單元(standard cell);如此之半導體裝置,其具備有:功能元件,被包含在上述標準單元;及電源線,電氣連接到上述功能元件,並且具有下層佈線和上層佈線;而上述下層佈線具有沿著互相鄰接之上述標準單元之境界,而在上述境界上延伸之部份;上述上層佈線在俯視圖中,具有位於比上述下層佈線在上述標準單元內側之部份;上述功能元件經由上述上層佈線電氣連接到上述下層佈線;更具備有電氣連接到上述功能元件之信號線;而上述信號線在俯視圖中,被配置成位於上述功能元件與上述上層佈線之連接部,和在上述下層佈線之上述境界上延伸之部份之間。 A semiconductor device having a plurality of standard cells arranged; such a semiconductor device comprising: a functional element included in the standard unit; and a power supply line electrically connected to the functional element and having a lower layer a wiring and an upper layer wiring; and the lower layer wiring has a portion extending along the boundary between the standard cells adjacent to each other and extending over the boundary; wherein the upper layer wiring has a lower side wiring than the lower layer wiring on the inner side of the standard unit a portion; the functional element is electrically connected to the lower layer wiring via the upper layer wiring; and further includes a signal line electrically connected to the functional element; and the signal line is disposed in the top view to be located between the functional element and the upper layer wiring The connection portion is between the portion extending over the above-described boundary of the lower layer wiring. 如申請專利範圍第1項之半導體裝置,其中,在配置有上述功能元件之上述標準單元內,使上述上層佈線和上述下層佈線連接。 The semiconductor device according to claim 1, wherein the upper layer wiring and the lower layer wiring are connected to each other in the standard cell in which the functional element is disposed. 如申請專利範圍第1項之半導體裝置,其中,在未包含上述功能元件之上述標準單元內,使上述上層佈線和上述下層佈線連接。 The semiconductor device according to claim 1, wherein the upper layer wiring and the lower layer wiring are connected to each other in the standard unit not including the functional element. 如申請專利範圍第3項之半導體裝置,其中, 更具備有:熔線,被配置在未包含上述功能元件之上述標準單元內,而且電氣連接到上述下層佈線。 A semiconductor device as claimed in claim 3, wherein Further, the fuse is provided in the standard unit not including the functional element, and is electrically connected to the lower layer wiring. 如申請專利範圍第1至3項中任一項之半導體裝置,其中,上述上層佈線具有沿著上述標準單元境界,而在上述境界上延伸之部份;和在上述上層佈線之上述境界上延伸部份之線寬,大於在上述下層佈線之上述境界上延伸部份之線寬。 The semiconductor device according to any one of claims 1 to 3, wherein the upper layer wiring has a portion extending along the boundary of the standard unit and extending over the boundary; and extending over the boundary of the upper layer wiring The line width of the portion is greater than the line width of the extended portion of the above-mentioned lower layer wiring. 一種半導體裝置,具有被排列之多個標準單元;如此之半導體裝置,其具備有:功能元件,被包含在上述標準單元;及第1電源線,電氣連接到上述功能元件,並且具有下層佈線和上層佈線;而上述下層佈線和上述上層佈線之各個互相電氣連接,而且具有沿著互相鄰接之上述標準單元之境界,而在上述境界上延伸之部份;上述上層佈線在俯視圖中,具有比上述下層佈線為粗之線寬;上述多個之標準單元包含第1標準單元和第2標準單元;上述第1標準單元包含有:上述第1電源線,具有上述下層佈線和上述上層佈線;及第1信號線,在與上述上層佈線相同之層上延伸,而且在俯視圖中在與上述下層佈線和上述上層佈線相同之方向延伸; 上述第2標準單元包含有:第2電源線,只由在與上述下層佈線相同之層上延伸之佈線層構成;及第2信號線,在與上述上層佈線相同之層上延伸,而且在俯視圖中在與上述佈線層正交之方向延伸。 A semiconductor device having a plurality of standard cells arranged; such a semiconductor device comprising: a functional element included in the standard cell; and a first power supply line electrically connected to the functional component and having a lower layer wiring and The upper layer wiring and the upper layer wiring are electrically connected to each other, and have a portion extending along the boundary of the standard unit adjacent to each other and extending over the boundary; the upper layer wiring has a top view The lower layer wiring is a thick line width; the plurality of standard cells include a first standard unit and a second standard unit; and the first standard unit includes: the first power supply line, the lower layer wiring and the upper layer wiring; a signal line extending over the same layer as the upper layer wiring, and extending in the same direction as the lower layer wiring and the upper layer wiring in a plan view; The second standard unit includes a second power supply line formed of only a wiring layer extending over the same layer as the lower layer wiring, and a second signal line extending over the same layer as the upper layer wiring, and a plan view The middle extends in a direction orthogonal to the wiring layer. 如申請專利範圍第6項之半導體裝置,其中,上述下層佈線和上述上層佈線利用多個之第1通孔電氣連接;和上述多個之第1通孔,以與構成上述功能元件之電晶體之配置間距相同之間距而配置。 The semiconductor device of claim 6, wherein the lower layer wiring and the upper layer wiring are electrically connected by a plurality of first via holes; and the plurality of first via holes and the transistor constituting the functional element The configuration is configured with the same pitch. 如申請專利範圍第6或7項之半導體裝置,其中,上述第1電源線具有形成在上述上層佈線之上層之補強佈線;和上述補強佈線在俯視圖中,在與上述上層佈線正交之方向延伸。 The semiconductor device according to claim 6 or 7, wherein the first power supply line has a reinforcing wiring formed on an upper layer of the upper wiring; and the reinforcing wiring extends in a direction orthogonal to the upper wiring in a plan view. . 如申請專利範圍第8項之半導體裝置,其中,更具備有:形成在上述上層佈線和上述補強佈線之間之層間絕緣層;和上述層間絕緣層,在俯視圖中之上述上層佈線和上述補強佈線之交叉之1個交叉部,具有用來使上述上層佈線和上述補強佈線電氣連接之多個第2通孔。The semiconductor device of claim 8, further comprising: an interlayer insulating layer formed between the upper layer wiring and the reinforcing wiring; and the interlayer insulating layer, the upper layer wiring and the reinforcing wiring in a plan view One of the intersecting portions has a plurality of second through holes for electrically connecting the upper layer wiring and the reinforcing wiring.
TW097126596A 2007-07-25 2008-07-14 Semiconductor device TWI437665B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007193580 2007-07-25
JP2008137063A JP5293939B2 (en) 2007-07-25 2008-05-26 Semiconductor device

Publications (2)

Publication Number Publication Date
TW200915488A TW200915488A (en) 2009-04-01
TWI437665B true TWI437665B (en) 2014-05-11

Family

ID=40477685

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097126596A TWI437665B (en) 2007-07-25 2008-07-14 Semiconductor device

Country Status (4)

Country Link
JP (1) JP5293939B2 (en)
KR (1) KR20090012136A (en)
CN (1) CN101388391B (en)
TW (1) TWI437665B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5552775B2 (en) 2009-08-28 2014-07-16 ソニー株式会社 Semiconductor integrated circuit
JP5685457B2 (en) 2010-04-02 2015-03-18 ルネサスエレクトロニクス株式会社 Semiconductor integrated circuit device
JPWO2013018589A1 (en) * 2011-08-01 2015-03-05 国立大学法人電気通信大学 Semiconductor integrated circuit device
US8813016B1 (en) * 2013-01-28 2014-08-19 Taiwan Semiconductor Manufacturing Company Limited Multiple via connections using connectivity rings
CN103546146B (en) * 2013-09-24 2016-03-02 中国科学院微电子研究所 Single-event transient pulse resistant CMOS circuit
JP5776802B2 (en) * 2014-02-14 2015-09-09 ソニー株式会社 Semiconductor integrated circuit
US9454633B2 (en) * 2014-06-18 2016-09-27 Arm Limited Via placement within an integrated circuit
US9653413B2 (en) * 2014-06-18 2017-05-16 Arm Limited Power grid conductor placement within an integrated circuit
US11120190B2 (en) * 2017-11-21 2021-09-14 Advanced Micro Devices, Inc. Metal zero power ground stub route to reduce cell area and improve cell placement at the chip level
CN112567507B (en) * 2018-08-28 2024-07-05 株式会社索思未来 Semiconductor integrated circuit device with a plurality of semiconductor chips
CN112771655B (en) * 2018-09-28 2024-08-20 株式会社索思未来 Semiconductor integrated circuit device and semiconductor package structure
US11488947B2 (en) 2019-07-29 2022-11-01 Tokyo Electron Limited Highly regular logic design for efficient 3D integration
WO2021192265A1 (en) * 2020-03-27 2021-09-30 株式会社ソシオネクスト Semiconductor integrated circuit device
CN114492283A (en) * 2020-11-11 2022-05-13 Oppo广东移动通信有限公司 Method and device, device, and storage medium for configuring a chip

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5923060A (en) * 1996-09-27 1999-07-13 In-Chip Systems, Inc. Reduced area gate array cell design based on shifted placement of alternate rows of cells
JP3672788B2 (en) * 2000-02-24 2005-07-20 松下電器産業株式会社 Cell layout structure and layout design method of semiconductor device
JP3718687B2 (en) * 2002-07-09 2005-11-24 独立行政法人 宇宙航空研究開発機構 Inverter, semiconductor logic circuit, static random access memory, and data latch circuit
JP4820542B2 (en) * 2004-09-30 2011-11-24 パナソニック株式会社 Semiconductor integrated circuit

Also Published As

Publication number Publication date
CN101388391A (en) 2009-03-18
JP2009049370A (en) 2009-03-05
JP5293939B2 (en) 2013-09-18
CN101388391B (en) 2012-07-11
KR20090012136A (en) 2009-02-02
TW200915488A (en) 2009-04-01

Similar Documents

Publication Publication Date Title
TWI437665B (en) Semiconductor device
US8063415B2 (en) Semiconductor device
US11205645B2 (en) Semiconductor device
JP7415176B2 (en) Semiconductor integrated circuit device
US10943923B2 (en) Integrated circuits and semiconductor device including standard cell
US11195794B2 (en) Stacked integrated circuit devices including a routing wire
JP7315016B2 (en) semiconductor equipment
JP7363921B2 (en) semiconductor equipment
JP2013206905A (en) Semiconductor device and manufacturing method of the same
US20240274510A1 (en) Stacked integrated circuit devices
JP7529121B2 (en) Semiconductor Device
KR20210041737A (en) Semiconductor device, layout design method for the same and method for fabricating the same
CN110634860B (en) Semiconductor device with a plurality of semiconductor chips
CN114639674A (en) Semiconductor device and layout design method for semiconductor device
JP2017069513A (en) Semiconductor device and manufacturing method thereof
US20040203196A1 (en) Semiconductor integrated circuit
CN101226937A (en) Semiconductor devices and storage media
KR102650199B1 (en) Semiconductor device
TWI864243B (en) Stacked integrated circuit devices
KR20240124160A (en) Integrated circuit including backside wiring pattern
JP2009158728A (en) Semiconductor device
KR20220043738A (en) Integrated circuit including asymmetric decoupling cell and method for designing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees