TW200915488A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
TW200915488A
TW200915488A TW097126596A TW97126596A TW200915488A TW 200915488 A TW200915488 A TW 200915488A TW 097126596 A TW097126596 A TW 097126596A TW 97126596 A TW97126596 A TW 97126596A TW 200915488 A TW200915488 A TW 200915488A
Authority
TW
Taiwan
Prior art keywords
wiring
layer
layer wiring
upper layer
lower layer
Prior art date
Application number
TW097126596A
Other languages
Chinese (zh)
Other versions
TWI437665B (en
Inventor
Nobuhiro Tsuda
Original Assignee
Renesas Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Tech Corp filed Critical Renesas Tech Corp
Publication of TW200915488A publication Critical patent/TW200915488A/en
Application granted granted Critical
Publication of TWI437665B publication Critical patent/TWI437665B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

CMOS inverters are included in a standard cell. Power supply lines are electrically connected to CMOS inverters, and include lower layer interconnects and upper layer interconnect. Lower layer interconnects extend along a boundary of standard cells adjacent to each other and on the boundary. Upper layer interconnects are positioned more inside in standard cell than lower layer interconnects, as viewed from a plane. CMOS inverters are electrically connected through upper layer interconnects to lower layer interconnects. Thus, a semiconductor device is obtained that can achieve both higher speeds and higher integration.

Description

200915488 六、發明說明: 【發明所屬之技術領域】 本發明有關於半導體裝置,特別有關於具有排列多個之標準 單元之半導體裝置。 【先前技術】 近年來在S0C(System On Chip,晶片系統)由於電路之大規 模化,一般進行使用有標準單元資料庫(standard ceU library)之佈置設計。另外,隨著s〇c之高功能化、高性能化, 而要求標準單对料庫高積體化、高速化。另外—方面,隨著 高速化使消耗電流增加,因此由於IR — Dr〇p(電流丨在某一路 徑流動時’當該路徑為電阻值R時,在路徑之兩端產生以⑽ 表不之電位差)等之電源雜訊引起之特性劣化會成為大問題。 在先前技術之構造,在標準單元資料庫之標準單元形成有作 為力月b 元件之例如 cM〇S(Complementary Metal OxideBACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device, and more particularly to a semiconductor device having a plurality of standard cells arranged in series. [Prior Art] In recent years, in the SOC (System On Chip), the layout of the standard ceU library is generally used due to the large-scale circuit design. In addition, with the high functionality and high performance of s〇c, the standard single-pair library is required to be highly integrated and high-speed. On the other hand, as the speed increases, the current consumption increases. Therefore, since IR — Dr〇p (current 丨 flows in a certain path 'when the path is the resistance value R, it is generated at both ends of the path by (10). Deterioration of characteristics caused by power supply noise such as potential difference may become a big problem. In the construction of the prior art, the standard unit of the standard unit database is formed as a component of the force month b. For example, cM〇S (Complementary Metal Oxide)

Semiconductor,互補式金氧半導體)反相器。在該構造中,在 η型井區域之表面形成有P通道M0S電晶體(以下稱為pMOS電 B曰體)在p型井區域之表面形成有n通道電晶體(以下稱 為nMOS電晶體)。在該等之pM〇s電晶體和nM〇s電晶體之各個 連接有電祕(_佈線、GND佈線)。料n線之各個接 觸到基板,㈣基板電位固定,並共同設在各個標準單元之功 能元件。 因為隨著標準單元資料庫之高速化使標準單元之消耗電流 97126596 200915488 礼大所以在電源線流動之電流亦增加。另外,在各個標準單 元共用之電源線流入有多個之標準單元之電流。因此,因為在 . 電源線流動之電流值變大,所以需要考慮IR —Drop之影響。 , 電源線之1R—Dr〇P與電源線之電阻值相關,電阻值越小IR—Semiconductor, Complementary Metal Oxide Semiconductor Inverter. In this configuration, a P-channel MOS transistor (hereinafter referred to as a pMOS electric B-body) is formed on the surface of the n-type well region, and an n-channel transistor (hereinafter referred to as an nMOS transistor) is formed on the surface of the p-type well region. . Electromagnets (_wiring, GND wiring) are connected to each of the pM〇s transistor and the nM〇s transistor. Each of the n-lines is in contact with the substrate, and (4) the substrate has a fixed potential and is commonly provided in the functional elements of each standard cell. Because the current consumption of the standard unit is increased with the speed of the standard unit database, the current flowing through the power line is also increased. In addition, the power lines shared by the standard cells flow into the currents of a plurality of standard cells. Therefore, since the current value flowing in the power supply line becomes large, it is necessary to consider the influence of IR-Drop. , the power line 1R-Dr〇P is related to the resistance value of the power line, and the smaller the resistance value is IR—

Drop之f彡響變彳、。目此’先前技朗進行之對策是使電源線 之線寬變大。 另外一方面,隨著標準單元資料庫之高積體化,有將汲極 C 節點不同之2個之CMOS電晶體配置在i個之標準單元内。在 此種情況,先前技術所進行之手法是配置4個之電晶體在俯視 圖中排列在縱方向成為一列,用來達成標準單元之高積體化。 在此種手法中,連接電晶體間之佈線,和用以連接電晶體和電 源線之佈線變多,佈線佈置會有變為複雜之傾向。 另外,先前技術之配置有多個標準單元之佈置,例如被揭示 在日本專利特開2000-223575號公報。在該公報揭示設有第 ti 1層電源線(3VDD1、3VSS1)和與其平行之第3層電源線 (3VDD3、3VSS3),和使信號線(3S2)通過第2層,用來以第3 層電源線補強第1層電源線而不會在第2層之配置產生限制。 - 但是,在上述方式之先前技術之標準單元構造,為能實現高 -積體而且高速之標準單元,要同時成為針對高速化之使電源: 變粗之構造,和針對高積體化之將多個電晶體配置在縱方向之 構造會有困難。其理由是由於使電源線變粗,所以要確保構成 反相器之_S電晶體和_S電晶體之各個汲極之連接用佈 97126596 c 200915488 線,和使電源線連接到電晶 【發明内容】 體之佈線部份之間隔會有 困難。 本發明針對上述之問題,其目 積體化之半導體裝置。 的是提供可以同時高速化和高 態之半«打,㈣被排狀多個之標準 2,其t具财德元件和電树。魏元件被包含在標準 早兀。電源線電氣連接到功能元件,並且具有下層佈線和上層 佈線。下層佩具有沿著互相鄰接之標準單元境界,而在境界 上延伸之部份。上層佈線在俯視w +,具有位於比下層佈線更 在標準單元_之部份。魏元件經由上料線魏連接到下 層佈線。 依照本發明之實施形態之半導體裝置時,電源線分離成為下 層佈線和上層佈線,當與電源線為單—層之情況比較時,因為 可以增加電流路徑,所以可以達成高速化。另外,因為電源線 之線寬不需要增加就可以使電祕徑增加,所以可以達成高積 體化。 、 另卜目為下層佈線沿著標準單元之境界延伸,所以在鄰接 之標準單元之間,可以共用下層佈線。利用此種方式,因為在 鄰接之標準單元之各個不f要個麟形成下層佈線,所以可以 達成高積體化。 另外’因為功能元件經由上層佈線連接到下層佈線,所以不 需要使位於標準單元境界之下層佈線,朝向魏元件所在位置 97126596 200915488 之標準單〇之中央部延伸。_此種方式 ,因為在使下層佈線 朝向標準單元之中央部延伸之部份,產生空的空間,所以在該 •空的㈣可以配置其他之佈線等,可以達成高積體化。 .利用此财式,可崎得_高速化和高積體錢方之半導 體裝置。 本毛月之上述和其他目的、特徵、觀點和優點,由所附圖式 和關於本發明之以下詳細說明當可明白。 () 【實施方式】 以下根據圖式用來說明本發明之實施形態。 (實施形態1) 參照圖1,半導體裝置(例如半導體晶片)50在其表面主要地 具有:標準單元區域51 ; I/0(I_t/0utput,輸入/輪出) 單元區域52,配置在該標準單元區域51之周圍;和襯墊(未 圖示),用在與外部之輸入輸出。 〇 標準單元區域51具有被配置成矩陣狀(行列狀)之多個之 標準單元51a。在使用有標準單元資料庫之s〇c,在該標準單 元區域51内形成有cPU(Central Processing Unit,中央處 理单元)、RAM(Random Access Memory,隨機存取記憶器)、 ' FIF0(First — In First — Out,先進先出)、scSI(Small Computer System Interface,小電腦系統界面)、s〇G(Sea OfThe drop of f is 彳 彳. The countermeasure against the prior art is to make the line width of the power line larger. On the other hand, with the high integration of the standard cell database, two CMOS transistors having different B-nodes are arranged in i standard cells. In this case, the prior art has been carried out by arranging four transistors in a top view and arranging them in a vertical direction to achieve a high integration of standard cells. In such a method, the wiring between the connection transistors and the wiring for connecting the transistor and the power supply line become large, and the wiring arrangement tends to become complicated. Further, the prior art configuration has a plurality of standard unit arrangements, for example, disclosed in Japanese Laid-Open Patent Publication No. 2000-223575. In this publication, it is disclosed that a ti 1st power supply line (3VDD1, 3VSS1) and a third layer power supply line (3VDD3, 3VSS3) parallel thereto are provided, and a signal line (3S2) is passed through the second layer for use in the third layer. The power line reinforces the first layer power line without placing a limit on the configuration of the second layer. - However, in the standard cell structure of the prior art in the above-described manner, in order to realize a high-integrated and high-speed standard cell, it is necessary to simultaneously achieve a power supply for speeding up: a structure that is thickened, and a structure that is high-integrated. It is difficult to configure a plurality of transistors in the longitudinal direction. The reason is that since the power supply line is made thicker, it is necessary to secure the connection fabric 97126596 c 200915488 line constituting the respective NMOS of the inverter and the _S transistor, and to connect the power supply line to the electric crystal [invention Content] It is difficult to separate the wiring parts of the body. SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and it is an integrated semiconductor device. It is to provide a standard that can be both high-speed and high-speed at the same time, and (four) is arranged in multiples. 2, it has a wealthy component and an electric tree. Wei components are included in the standard. The power cord is electrically connected to the functional components and has the underlying wiring and the upper wiring. The lower layer has a portion extending along the standard unit boundary adjacent to each other and extending in the realm. The upper layer wiring is in the top view w + and has a portion located in the standard cell _ than the lower layer wiring. The Wei component is connected to the lower wiring via the feed line Wei. According to the semiconductor device of the embodiment of the present invention, the power supply line is separated into the lower layer wiring and the upper layer wiring, and when compared with the case where the power source line is a single layer, the current path can be increased, so that the speed can be increased. In addition, since the line width of the power supply line does not need to be increased, the electric path can be increased, so that high integration can be achieved. In addition, the lower layer wiring extends along the boundary of the standard unit, so the lower layer wiring can be shared between adjacent standard cells. In this way, since the lower layer wiring is formed in each of the adjacent standard cells, high integration can be achieved. In addition, since the functional element is connected to the lower layer wiring via the upper layer wiring, it is not necessary to extend the layer wiring under the standard cell boundary toward the central portion of the standard unit of the position of the Wei element 97126596 200915488. In this manner, since a space is formed in a portion where the lower layer wiring is extended toward the central portion of the standard cell, other wirings and the like can be disposed in the space (4), and high integration can be achieved. By using this financial model, you can get a high-speed and high-level semiconductor device. The above and other objects, features, aspects and advantages of the present invention will become apparent from (Embodiment) Hereinafter, embodiments of the present invention will be described based on the drawings. (Embodiment 1) Referring to Fig. 1, a semiconductor device (e.g., a semiconductor wafer) 50 mainly has a standard cell region 51 on its surface; I/0 (I_t/0utput, input/round-out) cell region 52, which is disposed in the standard The periphery of the unit area 51; and a spacer (not shown) are used for input and output with the outside. 〇 The standard cell area 51 has a plurality of standard cells 51a arranged in a matrix (array). In the standard cell area 51, a cPU (Central Processing Unit), a RAM (Random Access Memory), and a 'FIF0 (First) are formed in the standard cell area 51. In First — Out, first in, first out, scSI (Small Computer System Interface), s〇G (Sea Of)

Gate ’標準閘電子組件)等。 參照圖2,形成在標準單元51a内之功能元件之電路有例如 97126596 7 200915488Gate 'standard brake electronic components) and so on. Referring to Fig. 2, the circuit of the functional elements formed in the standard unit 51a has, for example, 97126596 7 200915488

TriState(三態)用緩衝器之一部份電路,具有輸出段和驅動 器部。輸出段係例如包含有由pMOS電晶體PT1與nMOS電晶體 NT1構成之CMOS反相器所構成。驅動器部係例如包含有由pm〇s 電晶體PT2與nMOS電晶體NT2構成之CMOS反相器,和由pMOS 電晶體PT3與nMOS電晶體NT3構成之CMOS反相器所構成。 〆由pMOS電晶體PT2和nMOS電晶體NT2構成之CMOS反相器 之輸出,輸入到輸出段之nMOS電晶體NT1。另外,由pMOS電 〇 晶體PT3和nMOS電晶體NT3構成之CMOS反相器之輸出,輸入 到輸出段之pMOS電晶體PT1。 在該電路當對驅動器部之2個CMOS反相器輸入“High”之 情況時,從輸出段之CMOS反相器輸出“High” 。另外,當對 驅動器部之2個CMOS反相器輸入“Low”之情況時,從輸出段 之CM〇S反相器輸出“Low” 。另外,當對由pMOS電晶體PT3 和nM〇S電晶體NT3構成之CMOS反相器輸入“Low” ,而對由 〇 pMOS電晶牌DTn ^ 曰體PT2和nM〇S電晶體NT2構成之CMOS反相器輸入 “High” 主 之情況時’輸出段之CMOS反相器之輸出成為浮動狀 悲’成為所★ 晋夕“u. u . 丨明之 High impedance (高阻抗)。 在該>、,、圖3和圖4,在半導體基板之表面形成P型井區域1, 二^P型井區域丨内之表面,選擇性地形成η型井區域2。在 该ρ型井^ p 士七 °°或1内之表面’形成nMOS電晶體m、ΝΤ2、ΝΤ3。 在η型井^ 场^内之表面’形成pMOS電晶體ΡΤ1、ΡΤ2、ΡΤ3。 卜沿著標準單元51a之縱方向(圖3中Y方向)之境界之 97126596 200915488 一方(圖3中之Y方向下側之境界乃在口型井區域丨内之表面, 形成在橫方向(圖3中X方向)延伸之+區域15。 另外,沿著 標準單元51a之縱方向(圖3中γ方向)之境界之另外—方( . 3中之Y方向上侧之境界),在n型井區域2内之表面,彤成 在橫方向(圖3中X方向)延伸之n+區域25。 為能使多個之M0S電晶體之形成區域,p+區域15和一區域 25之各個互相電氣隔離,在半導體基板之表面形成例如 〇 STI(Shall〇w Trench Isolation,淺溝槽隔離)構成之元件隔 離區域3。該STI由設在半導體基板之表面之溝,和充填在= 溝内之絕緣性充填物構成。 、^ nMOS電晶體ΝΠ、ΝΤ2、ΝΤ3之各個具有汲極區域Ua和源 極區域lib、閘絕緣層12 ’和閘電極層13。沒極區域山和 源極區域lib由η型之雜質區域構成,在p型井區域丨之^面 形成互相之距離。閘電極層13經由閘絕緣層12形成在被汲極 Ο 區域11a和源極區域lib包夾之區域上。 PM0S電晶體PT卜PT2、PT3之各個具有沒極區域21&和源 極區域21b ’閘絕緣層22 ’和閘電極層23。沒極區域…和 源極區域211)由P型之雜質區域構成,在η型井區域2之表面 '形成互相之距離。’極層23經由閘絕緣層22形成在被沒極 區域21a和源極區域21b包夹之區域上。 nMOS電晶體NT2之閘電極層13和_s電晶體pm之問電 極層23由共同之導電層形成,互相電氣連接。另外,咖$電 97126596 n 200915488 晶體NT3之閘電極層13和pMOS電晶體PT3之閘電極層23由 共同之導電層形成,互相電氣連接。 以覆蓋該等之各個M0S電晶體NT1〜NT3、PT1〜PT3之方式, • 形成在半導體基板表面上之疊層層間絕緣層31A、31B。層間 絕緣層31A例如由TE0S(Tetra_Ethyl —〇rth〇〜&以伽, 四乙氧基矽烷)氧化膜形成,層間絕緣層31B例如由si〇c、 MSQ(Methyl Silses —Quioxane,曱基倍半氧矽烷)等形成。 〇 在層間絕緣層_形成有從其上面達到層間絕緣層31A之佈 線用溝31b,在層間絕緣㉟31A形成有從佈線用溝仙之底部 到達半導體基板之接觸孔31a。在上述之佈線用溝拙之各個 内部形成埋人有例如由CuAl合金(A1含有量為例如〇.卜1〇 %程度)構成之佈線層32a〜32h之各個。另外,在上述之接觸 孔31a之各個之内部,形成埋入有例如由鶴(w)構成之检塞 層。 G #外’在接觸孔31a之側面和底面形成有障壁金屬層(未圖 示)。該障壁金屬層位於上述栓塞層與層間絕緣層W之門, 和上述栓塞層與半導縣板之間。壁金屬料有例域 (Τι)和氮化鈦(TiN)之疊層構造。 -在佈線用溝31b之側面和底面亦形成有障壁金屬層(未圖 示)。該障壁金屬層位於上述佈線層32_與層間絕緣層· 之間,上述佈線層32a〜32h與上述栓塞層之間,和上述佈線層 32a~32h與層間絕緣層31A之間。該障壁金屬層例如由组❿曰) 97126596 , 200915488 構成。 在層間絕緣層31A與層間絕緣層31B之間形成有例如由SiCN 構成之#刻阻擋層(未圖示)。 利用佈線層32e使_S電晶體NT1之汲極區域1 la和pMOS 電晶體PT1之汲極區域21a互相電氣連接。另外利用佈線層 32c使nMOS電晶體NT2之汲極區域na和pm〇S電晶體PT2之TriState (three-state) uses a part of the circuit of the buffer, with an output section and a driver section. The output section is composed of, for example, a CMOS inverter composed of a pMOS transistor PT1 and an nMOS transistor NT1. The driver portion includes, for example, a CMOS inverter composed of a pm〇s transistor PT2 and an nMOS transistor NT2, and a CMOS inverter composed of a pMOS transistor PT3 and an nMOS transistor NT3. The output of the CMOS inverter composed of the pMOS transistor PT2 and the nMOS transistor NT2 is input to the nMOS transistor NT1 of the output section. Further, the output of the CMOS inverter composed of the pMOS transistor PT3 and the nMOS transistor NT3 is input to the pMOS transistor PT1 of the output section. When the circuit inputs "High" to the two CMOS inverters of the driver section, "High" is output from the CMOS inverter of the output section. Further, when "Low" is input to the two CMOS inverters of the driver section, "Low" is output from the CM 〇 S inverter of the output section. In addition, when a "Low" is input to a CMOS inverter composed of a pMOS transistor PT3 and an nM〇S transistor NT3, a CMOS composed of a 〇pMOS electrocardiograph DTn^ body PT2 and an nM〇S transistor NT2 is formed. When the inverter inputs "High", the output of the CMOS inverter of the output section becomes a floating sorrow. It becomes the high impedance (high impedance) of the U. u. 丨明. , FIG. 3 and FIG. 4, forming a P-type well region 1 on the surface of the semiconductor substrate, and a surface in the ^P-type well region ,, selectively forming an n-type well region 2. In the ρ-type well ^ p 士七The surface of °° or 1 'forms nMOS transistors m, ΝΤ2, ΝΤ3. On the surface of the n-type well ^ field ^, pMOS transistors ΡΤ1, ΡΤ2, ΡΤ3 are formed. 卜 along the longitudinal direction of the standard cell 51a (Fig. In the boundary of the Y-direction of the 3rd direction, the surface of the lower side of the Y-direction is the surface of the cavity in the mouth-shaped well region, and the + region 15 extending in the lateral direction (the X direction in Fig. 3) is formed. In addition, along the other side of the realm of the standard unit 51a (the gamma direction in Fig. 3) - the Y direction in . On the surface in the n-type well region 2, the n+ region 25 extending in the lateral direction (X direction in Fig. 3) is formed. To form a region of a plurality of MOS transistors, p+ region 15 and Each of the regions 25 is electrically isolated from each other, and an element isolation region 3 composed of, for example, 〇STI (Shall〇w Trench Isolation) is formed on the surface of the semiconductor substrate. The STI is formed by a trench provided on the surface of the semiconductor substrate, and It is filled with an insulating filler filled in the groove. Each of the nMOS transistors ΝΠ, ΝΤ2, ΝΤ3 has a drain region Ua and a source region lib, a gate insulating layer 12', and a gate electrode layer 13. The source region lib is composed of impurity regions of the n-type, and is formed at a distance from each other in the p-type well region. The gate electrode layer 13 is formed in the gated region 11a and the source region lib via the gate insulating layer 12. On the region of the clip, each of the PM0S transistors PT, PT2, PT3 has a non-polar region 21 & and a source region 21b 'gate insulating layer 22' and a gate electrode layer 23. The gate region ... and the source region 211) are P Type of impurity region, in the n-type well region 2 The surface 'forms a distance from each other.' The pole layer 23 is formed on the region sandwiched by the gate region 21a and the source region 21b via the gate insulating layer 22. The gate electrode layer 13 of the nMOS transistor NT2 and the _s transistor pm The electrode layer 23 is formed of a common conductive layer and electrically connected to each other. In addition, the gate electrode layer 13 of the crystal NT3 and the gate electrode layer 23 of the pMOS transistor PT3 are formed by a common conductive layer and electrically connected to each other. . The laminated interlayer insulating layers 31A and 31B formed on the surface of the semiconductor substrate are covered so as to cover the respective MOS transistors NT1 to NT3 and PT1 to PT3. The interlayer insulating layer 31A is formed, for example, of a TEOS (Tetra_Ethyl - 〇rth〇~& gamma, tetraethoxy decane) oxide film, and the interlayer insulating layer 31B is, for example, Si〇c, MSQ (Methyl Silses - Quioxane, 曱 倍 倍Oxane or the like is formed. 〇 In the interlayer insulating layer _, the wiring trench 31b which reaches the interlayer insulating layer 31A from the upper surface thereof is formed, and the interlayer insulating layer 3531A is formed with a contact hole 31a which reaches the semiconductor substrate from the bottom of the wiring trench. Each of the wiring layers 32a to 32h which is made of, for example, a CuAl alloy (the A1 content is, for example, about 1%) is formed in each of the above-described wiring trenches. Further, inside each of the contact holes 31a described above, a plug layer made of, for example, a crane (w) is embedded. A barrier metal layer (not shown) is formed on the side and the bottom surface of the contact hole 31a. The barrier metal layer is located between the plug layer and the interlayer insulating layer W, and between the plug layer and the semi-conducting plate. The wall metal has a laminated structure of an example (Τι) and titanium nitride (TiN). A barrier metal layer (not shown) is also formed on the side surface and the bottom surface of the wiring trench 31b. The barrier metal layer is located between the wiring layer 32_ and the interlayer insulating layer, between the wiring layers 32a to 32h and the plug layer, and between the wiring layers 32a to 32h and the interlayer insulating layer 31A. The barrier metal layer is composed, for example, of the group 97) 97126596, 200915488. An #etch barrier layer (not shown) made of, for example, SiCN is formed between the interlayer insulating layer 31A and the interlayer insulating layer 31B. The drain region 1 la of the _S transistor NT1 and the drain region 21a of the pMOS transistor PT1 are electrically connected to each other by the wiring layer 32e. Further, the drain region 32 of the nMOS transistor NT2 and the pm?S transistor PT2 are made by the wiring layer 32c.

汲極區域21a互相電氣連接,並且電氣連接到nM〇s電晶體NT1 之閘電極層13。另外利用佈線層32d使nMOS電晶體NT3之汲 極區域1 la和pMOS電晶體PT3之汲極區域21 a互相電氣連接, 並且電氣連接到pMOS電晶體PT1之閘電極層23。該等之佈線 層32c、32d相當於將信號從驅動器部傳達到輸出段之信號線。 另外佈線層32a延伸成沿著標準單元51a之縱方向境界之一 方(圖3中之γ方向下側之境界),在該境界上橫方向(圖3中 X方向)延伸。另外佈線層32b延伸成沿著標準單元仙之縱 =兄界之另外方(圖3中之γ方向上側之境界),在該境界 上橫方向(圖3中X方向)延伸。該等之沿著標準單元境界上延 伸之佈線層32a、32b之各個,可以施加電源電位⑽、gnd), 而對應到電源線之下層佈線。 、體而。在佈線層32a可以施加GND電位,在佈線層娜 可以施加VDD電位。 將P型井區域1之電位 圖3中之Y方向)境界之 佈線層32a電氣連接到p+區域15, 固定。另外佈線層32a從沿著縱方向( 97126596 11 200915488 一方(圖3中之Y方向下側之境界)之直線延伸之部份而分支, 具有在nMOS電晶體ΝΤ2、ΝΤ3之各個之源極區域llb上延伸之 部份,在該部份電氣連接該等之源極區域llb。 . 佈線層32b電氣連接到n+區域25,將η型井區域2之電位 固疋。另外佈線層32b從沿著縱方向(圖3中之γ方向)境界之 另卜方(圖3甲之γ方向上側之境界)之直線延伸之部份而分 支,具有在PM0S電晶體pp2之源極區域批上延伸之部份, Γί 在4部份電氣連接該源極區域21b。 另外在nM0S電晶體肪之源極區域lib,PM〇s電晶體PT1 之源極區域21b和_S電晶體PT3之源極區域21b之各個, 電氣連接有佈線層32g、32h、32f之各個。 另外佈線層32a〜32h之各個與形成半導體基板之表面之雜 質區域之連接,為經由形成在層間絕緣層31A之接觸孔31a内 之栓塞層。 以覆盍佈線層32a屬之方式,在層間絕緣層上形成例 々由SiOC、MSQ構成之層間絕緣層33。在該層間絕緣層犯之 上面形成有佈線用溝33b,和形成有從佈線用溝3北之底部到 達下層之各個饰線層之通溝33a。以埋入該通溝撕和佈線用 溝33b内之方式,形成例如由⑽合金(A1含有量為例如 〇. 1〜1. 〇%程度)構成之佈線層34a〜34d之各個。 另外在通溝33a和佈線用㈣b之側面和底面形成有障壁金 屬層(未圖示)。該障壁金屬層位於饰線層施〜34d之各個與 97126596 12 200915488 層間絕緣層33之間,通溝33a之各個與層間絕緣層33之間, 和通溝33a之各個與下層之佈線層之間。該障壁金屬層具有例 如钽(Ta)和氮化鈕(TaN)之疊層構造。 另外在層間絕緣層33之下,形成有例如由siCN構成之蝕刻 阻擔層(未圖示)。 利用佈線層34c使nMOS電晶體NT1之源極區域llb(佈線層 32g)和nMOS電晶體NT3之源極區域lib互相電氣連接,並且 C 電氣連接到可以施加GND電位之佈線層32a。另外利用佈線層 34d使pMOS電晶體PT1之源極區域21b(佈線層32h)和pMOS 電晶體PT3之源極區域21b(佈線層32f)及pMOS電晶體PT2之 源極區域21b互相電氣連接,並且電氣連接到可以施加Vj)D電 位之佈線層32b。 佈線層34c,在圖3所示之俯視圖中,當與電源線之下層佈 線層32a比較,被配置在標準單元51a之内側(中央侧)。另外 〇 佈線層34d,在圖3所示之俯視圖中,當與電源線之下層佈線 層32b比較,被配置在標準單元51a之内側(中央側)。 另外佈線層34a延伸成沿著標準單元5ia之縱方向(圖3中 . 之Y方向)境界之一方(圖3中之Y方向下侧之境界),在該境 • 界上橫方向(圖3中X方向)延伸。另外佈線層3牝延伸成沿著 標準單元51a之縱方向(圖3中之Y方向)境界之另外一方(圖 3中之Y方向上側之境界)’在該境界上橫方向(圖3中χ方向) 延伸。佈線層34a連接到在其下層並行延伸之佈線層32a,佈 97126596 13 200915488 線層34b連接到在其下層並行延伸之佈線層犯匕。 另外佈線層34a具有比在其下層並行延伸之佈線層3如之線 寬Wla為大之線寬W2a。另外佈線層34b具有比在其下層並行 延伸之佈線層32b之線寬Wlb為大之線寬W2b。 依照此種方式,該標準單元51a内之所有之佈線層施、 34b、34c、34d因為成為VDD和GND之任一方之電源電位,所 以相當於電源線之上層佈線。 C 另外佈線層34a〜34d之各個和佈線層32a、32b、32e〜32h之 各個之電氣連接,為經由埋入在佈線層34a〜34d之各個之通溝 33a内之部份。 依照上述之方式,_S電晶體NT1之源極區域仙經由_ 電位之電源線之上層佈線3 4 c f氣連接到G N D電位之電源線之 下層佈線32a。另外pM0S電晶體m、ρτ3之各個之源極區域 21b經由_電位之電源線之上層佈線34d t氣連接到_電 C/ 位之電源線之下層佈線32b。 另外信號線32c被配置成在圖3所示之俯視圖中,位於電源 線之上層佈線34c與佈線層跑之連接部(通孔咖),和沿著 .下層佈線32a之標準單元51a境界之直線延伸之部份之間。信 號線32d被配置成在圖3所示之俯視圖中,位於電源線之上層° 佈線34d與佈線層32h之連接部(通孔咖),和沿著下層輕 32b之標準單元51a境界之直線延伸之部份之間。 依照本實施形態時,使GND電位之電源線分離成為下層佈線 97126596 14 200915488 32a和上層佈、線34a,並且使獅電位之電源線分離成為下層 佈線32b和上層佈線34b。因此,當與電源線為單一層之情況 比較’因為電流路徑增加,所以可以達成高速化。另外,因為 不舄要使電源線之線寬變大就可以增加電流路徑,所以亦可以 達成高積體化。 另外上層佈線34a、34b具有比下層佈線32a、32b之線寬The drain regions 21a are electrically connected to each other and electrically connected to the gate electrode layer 13 of the nM〇s transistor NT1. Further, the drain region 21a of the nMOS transistor NT3 and the drain region 21a of the pMOS transistor PT3 are electrically connected to each other by the wiring layer 32d, and are electrically connected to the gate electrode layer 23 of the pMOS transistor PT1. These wiring layers 32c and 32d correspond to signal lines for transmitting signals from the driver unit to the output section. Further, the wiring layer 32a extends along one of the vertical direction boundaries of the standard cell 51a (the boundary of the lower side in the γ direction in Fig. 3), and extends in the lateral direction (X direction in Fig. 3) in this boundary. Further, the wiring layer 32b extends along the other side of the standard cell (the upper side of the gamma direction in Fig. 3), and extends in the horizontal direction (X direction in Fig. 3). The power supply potentials (10), gnd) may be applied to each of the wiring layers 32a, 32b extending along the boundary of the standard cell, and correspond to the underlying wiring of the power supply line. Body. A GND potential can be applied to the wiring layer 32a, and a VDD potential can be applied to the wiring layer. The wiring layer 32a of the boundary of the P-type well region 1 in the Y direction of Fig. 3 is electrically connected to the p+ region 15, and is fixed. Further, the wiring layer 32a is branched from a portion extending in a straight line along the longitudinal direction (the state of the lower side in the Y direction in FIG. 3), and has a source region 11b in each of the nMOS transistors ΝΤ2, ΝΤ3. The upper extension portion electrically connects the source regions 11b to the portion. The wiring layer 32b is electrically connected to the n+ region 25 to fix the potential of the n-type well region 2. Further, the wiring layer 32b is longitudinally The direction (the gamma direction in Fig. 3) is branched by a straight line extending from the other side (the boundary of the upper side in the gamma direction of Fig. 3), and has a portion extending in the source region of the PM0S transistor pp2 , Γί is electrically connected to the source region 21b in part 4. In addition, in the source region lib of the nM0S transistor, the source region 21b of the PM〇s transistor PT1 and the source region 21b of the _S transistor PT3. Each of the wiring layers 32a, 32h, and 32f is electrically connected to each other. The connection between each of the wiring layers 32a to 32h and the impurity region forming the surface of the semiconductor substrate is via a plug layer formed in the contact hole 31a of the interlayer insulating layer 31A. Covering the wiring layer 32a In the embodiment, an interlayer insulating layer 33 made of SiOC or MSQ is formed on the interlayer insulating layer. A wiring trench 33b is formed on the interlayer insulating layer, and a bottom portion is formed from the bottom of the wiring trench 3 to the lower layer. The wiring layer 33a of each of the reticle layers is formed by, for example, a (10) alloy (amount of A1 is, for example, 〇.1 to 1. 〇%), so as to be embedded in the trench and the wiring trench 33b. Each of 34a to 34d is provided with a barrier metal layer (not shown) on the side surface and the bottom surface of the through hole 33a and the wiring (4) b. The barrier metal layer is located in each of the decorative layer layers ~34d and the interlayer insulating layer of 97126596 12 200915488 Between 33, between each of the through grooves 33a and the interlayer insulating layer 33, and between the respective layers of the through grooves 33a and the underlying wiring layer, the barrier metal layer has a stack of, for example, tantalum (Ta) and nitride (TaN) buttons. Further, under the interlayer insulating layer 33, an etching resist layer (not shown) made of, for example, siCN is formed. The source region 11b (wiring layer 32g) of the nMOS transistor NT1 and the nMOS are made by the wiring layer 34c. The source region lib of the transistor NT3 is electrically connected to each other. And C is electrically connected to the wiring layer 32a to which the GND potential can be applied. Further, the source region 21b (wiring layer 32h) of the pMOS transistor PT1 and the source region 21b (wiring layer 32f) of the pMOS transistor PT3 are made by the wiring layer 34d. The source regions 21b of the pMOS transistor PT2 are electrically connected to each other, and are electrically connected to the wiring layer 32b to which the Vj)D potential can be applied. In the plan view shown in Fig. 3, the wiring layer 34c is disposed on the inner side (center side) of the standard unit 51a as compared with the lower layer wiring layer 32a of the power supply line. Further, in the plan view shown in Fig. 3, the wiring layer 34d is disposed on the inner side (center side) of the standard cell 51a as compared with the lower layer wiring layer 32b of the power supply line. Further, the wiring layer 34a extends along one of the boundaries of the longitudinal direction of the standard cell 5ia (the Y direction in Fig. 3) (the boundary of the lower side in the Y direction in Fig. 3), and the horizontal direction in the boundary (Fig. 3) The middle X direction) extends. Further, the wiring layer 3牝 extends in the horizontal direction (the boundary of the upper side in the Y direction in FIG. 3) along the vertical direction (the Y direction in FIG. 3) of the standard cell 51a' in the horizontal direction (Fig. 3 Direction) Extension. The wiring layer 34a is connected to the wiring layer 32a extending in parallel in the lower layer thereof, and the wiring layer 34b is connected to the wiring layer extending in parallel in the lower layer thereof. Further, the wiring layer 34a has a line width W2a larger than the wiring layer 3 extending in parallel with the lower layer thereof, such as the line width Wla. Further, the wiring layer 34b has a line width W2b which is larger than the line width Wlb of the wiring layer 32b extending in parallel with the lower layer. In this manner, all of the wiring layers 34b, 34c, and 34d in the standard cell 51a are equivalent to the power supply potential of either of VDD and GND, and thus correspond to the upper layer wiring of the power supply line. Further, the electrical connection between each of the wiring layers 34a to 34d and the wiring layers 32a, 32b, 32e to 32h is a portion which is buried in the through trench 33a of each of the wiring layers 34a to 34d. According to the above manner, the source region of the _S transistor NT1 is connected to the lower layer wiring 32a of the power supply line of the G N D potential via the upper layer wiring 3 4 c f of the power supply line of the _ potential. Further, the source region 21b of each of the pM0S transistors m and ρτ3 is connected to the power line lower layer wiring 32b of the _ electric C/bit via the power line upper layer wiring 34d of the _ potential. Further, the signal line 32c is arranged in a plan view shown in Fig. 3, a line connecting the upper layer wiring 34c of the power supply line to the wiring layer (through hole), and a line along the boundary of the standard unit 51a of the lower layer wiring 32a. Between the extended parts. The signal line 32d is arranged in a top view shown in FIG. 3, and is located at a connection portion (via) of the upper layer wiring 34d and the wiring layer 32h on the power supply line, and a straight line extending along the boundary of the standard unit 51a of the lower layer light 32b. Between the parts. According to the present embodiment, the power supply line of the GND potential is separated into the lower layer wiring 97126596 14 200915488 32a and the upper layer wiring and the line 34a, and the power supply line of the lion potential is separated into the lower layer wiring 32b and the upper layer wiring 34b. Therefore, when the power line is a single layer, the speed is increased because the current path is increased. In addition, since it is not necessary to increase the line width of the power supply line, the current path can be increased, so that high integration can be achieved. Further, the upper layer wirings 34a, 34b have a line width wider than the lower layer wirings 32a, 32b.

Wla、Wlb $大之線寬W2a、W2b ’所以可以減小電源線之電阻 (') 值。 另外下層佈線32a、32b具有比上層佈、線34a、之線寬 W2a、小之線寬Wla、Wlb,所以可以使該部份之佈線配 置用之空的空間變大。因此,在與下層佈線相同之層配置其他 之佈線(例如信號線32c、32d)等變為容易,而可以提高其他 之佈線之平面佈置之自由度。 另外下層佈線32a、32b之各個沿著標準單元51a之境界延 °伸。因此’在相鄰之標準單元51—,可以共用下層佈線32a、 32b。利用此種方式,在相鄰之標準單元51&之各個不需要個 別地形成下層佈線32a、32b,所以可以達成高積體化。 另外上層佈線34a、34b之各個沿著標準單元51a之境界延 ,伸。因此,與上述同樣地,在相鄰之標準單元51a之各個不需 要個別地形成上層佈線34a、34b,所以可以達成高積體化。 另外nMOS電晶體NT1之源極區域llb經由GND電位之電源 線之上層佈線34c電氣連接到GND電位之電源線之下層佈線 97126596 15 200915488 32a。另外pM0S電晶體m、ρτ3之各個之源極區域训經由 VDD電位之電源線之上層佈、線34d f氣連接到_ |位之電源 線之下層佈線32b。因此’成為不需要使位於標準單元%之 .境界之下層佈線孤、32b之各個,朝向電晶體所在位置之標 準單元51a之中央部延伸。利用此種方式,因為在使下層佈線 32a、32b之各個應朝向標準單%…之中央部延伸之部份, 產生空的空間’所以在該空的空間可以配置信號線版、咖 〇 等之其他佈線,而可以達成高積體化。 依照此種方式,在空的空間配置信號線32c、32d之結果, 所獲得之配置是信號線32c在圖3所示之俯視圖中,位於電源 線之上層佈線34c與柿線層32g之連接部,和沿著下層佈線 32a之標準單元5la境界之延伸部份之間。另外賴得之配置 是信號線32d在圖3所示之俯視圖中,位於電源線之上層佈線 34d與佈線層32h之連接部,和沿著下層佈線咖之標準單元 Ο 51a境界之延伸部份之間。 利用上述方式’可以獲得_高速化和高積體化雙方之半導 體裝置。 (實施形態2) 參照圖5和圖6,在本實施形態中,所說明之構造是在多 個之標準單元51a之各個,戦由福電晶體m和_電 晶體PT1構成之CMOS反相器。 在半導體基板之表面形成P型輕域丨,在該p型井區域工 97126596 16 200915488 内之表面選擇性地形成β井區域2。在?型井區域1内之表 面形成_s電晶體_。在η型井區域2内之表面形成_s 電晶體PT1。 沿著標準單元51a之縱方向(圖5中之Y方向)境界之-方 (圖5中之Y方向下側之境界)’在P型井區域1内之表面’形 成在橫方向(圖5中X方向)延伸之P+區域15。另外沿著標準 單元51a之縱方向(圖5中之Y方向)境界之另外一方(圖5中 (_.、 之Y方向上側之境界),在η型井區域2内之表面,形成在橫 方向(圖5中X方向)延伸之η+區域25。 為月t*使夕個之M0S電晶體之形成區域’ ρ區域15和η +區域 25之各個互相電氣隔離,在半導體基板之表面形成例如由STI 構成之元件隔離區域3。該STI由設在半導體基板之表面之 溝,和充填在該溝内之絕緣性之充填物構成。 nM〇S電晶體NT1具有汲極區域11a和源極區域lib,閘絕緣 G層12 ’和閘電極層13。沒極區域和源極區域仙由η型 之雜質區域構成’在ρ型井區域】之表面形成互相之距離。問 電極層13、、.二由閘絕緣層12形成在被汲極區域牙口源極區域 • Hb包夾之區域上。 pMOS電曰曰||pT1具有沒極區域加和源極區域仙,閑絕緣 層22 ^°間甩極層23。沒極區域21a和源極區域21b由p型 之雜貝區域構成’在n型井區域2之表面形成互相之距離。問 ^ 、工由閑絕緣層22形成在被没極區域21a和源極區域 97126596 17 200915488 21b包炎之區域上。 nMOS電晶體NT2之閘電極層13和_s電晶體pT2之閘電 極層23由共同之導電層形成,互相電氣連接。 , 以覆盍該等之各個M0S電晶體ΝΤ1、ΡΤ1之方式,形成在半 導體基板表面上之疊層層間絕緣層31Α、31β。層間絕緣層31A 例如由TE0S氧化膜形成,層間絕緣層31B例如由黨、, 等形成。在層間絕緣層31B形成有從其上面到達層間絕緣層 31A之佈線用溝31b,在層間絕緣層31A形成有從佈線用溝灿 底到達半導體基板之接觸孔31a。在上述之佈線用溝31b之 各個之内部形成埋入有例如由CuA1合金(A1含有量為例如 〇. M. 0%程度)構成之佈線層32a、32b、32e、32g、32h之各 個。另外,在上述之接觸孔3la之各個之内部,形成埋入有例 如由鎢(W)構成之栓塞層。 另外,在接觸孔31a之侧面和底面形成有障壁金屬層(未圖 G不)。轉壁金屬層位於上述栓塞層與層親緣層31A之間, 和上述栓塞層與半導體基板之間。該障壁金屬層具有例如鈦 (Ti)和氮化鈦(TiN)之疊層構造。 • 在佈線用溝31b之側面和底面亦形成有障壁金屬層(未圖 示)。該障壁金屬層位於上述佈線層32a、32b、32e、32g、32h 之各個與層間絕緣層31B之間,上述佈線層32a 、32b、32e、 32g、32h之各個與上述栓塞層之間,和上述佈線層32a、32b、 32e、32g、32h之各個與層間絕緣層31A之間。該障壁金屬層 97126596 18 200915488 例如由鈕(Ta)構成。 另外在層間絕緣層31A和層間絕緣層31B之間形成例如由 SiCN構成之姓刻阻擋層(未圖示)。 . 利用佈線層32e使nMOS電晶體NT1之汲極區域丨丨a和pM〇s 電晶體PT1之汲極區域21a互相電氣連接。另外佈線層32&延 伸成沿著標準單元51a之縱方向(圖5中之γ方向)境界之一方 (圖5中之Y方向下側之境界),在該境界上橫方向(圖5中χ 方向)延伸。另外佈線層32b延伸成沿著標準單元51a之縱方 向(圖5中之Y方向)境界之另外一方(圖5中之γ方向上侧之 境界)’在該境界上橫方向(圖5中X方向)延伸。該佈線層挪 電氣連接到其下層之n+區域25,利用其將n型井區域2之電 位固定。該等之沿著標準單元51a之境界線上延伸之佈線層 32a、32b之各個,可以施加VDD和GND之任一方之電源電位, 而對應到電源線之下層佈線。 ϋ 具體而言,在佈線層32a可以施加GND電位,在佈線層32b 可以施加VDD電位。 佈線層32a電氣連接到其下層之p+區域15,利用其將p型 . 井區域1之電位固定。另外佈線層32a從沿著縱方向(圖5中 . 之Y方向)境界之一方(圖5中之Y方向下側之境界)之直線延 伸之部份而分支,具有在未形成有CM0S反相器等之功能元件 之標準單元51a上延伸之部份。 佈線層32b電氣連接到n+區域25,利用其將n型井區域2 97126596 19 200915488 之電位固定。另外佈線層娜從沿著縱方向(圖5中之γ方向) 境界之另外-方(圖5中之γ方向上侧之境界)之直線延伸之°部 :而分支,具有在未形成有⑽s反姆等之功能元件之標準 單元51a上延伸之部份。 另外在nMOS電晶體NT1之源極區域丨丨b和pM〇s電晶體 之源極區域21b之各個,電氣連接有佈線層跑、32h之各個。 另外佈線層32a、32b、32e、32g、32h之各個和形成在半導 f'體基板表面之雜質區域之連接,為經由形成在層間絕緣層… 之接觸孔31a内之栓塞層。 以覆蓋佈線層32a、32b、32e ' 32g、32h之方式,在層間絕 緣層318上形成例如由Si〇C、MSQ構成之層間絕緣層33。在 該層間絕緣層33之上面形成有佈線用溝咖,和形成有從佈 線用溝33b之底部到達下層之各個佈線層之通溝3如。以埋入 該通溝33a和佈線用溝33b内之方式,形成例如由CuM合金 (J (A1含有量為例如0.1〜1.0%程度)構成之佈線層34c、34d之 各個。 另外在通溝33a和佈線用溝33b之側面和底面形成有障壁金 _ 屬層(未圖示)。該障壁金屬層位於佈線層34c、34d之各個與 .層間絕緣層33之間,通溝33a之各個與層間絕緣層33之間, 和通溝33a之各個與下層之佈線層之間。該障壁金屬層具有例 如鈕(Ta)和氮化鈕(TaN)之疊層構造。 另外在層間絕緣層33之下’形成有例如由SiCN構成之蝕刻 97126596 20 200915488 阻播層(未圖示)。 利用佈線層34c使各個之標準單元5la之祕電晶體m 之源極區域llb(佈線層32g)互相電氣連接。另外佈線層⑽ •在未形成有CM〇S反相器之標準單元51a Θ,形成與電源線之 下層佈線32a之分支部電氣連接。 另外利用佈線層34d使各個之標準單元他之_電晶體 PT1之源極區域21b(佈線層32h)互相電氣連接。另外佈線層 〇 34d在未形成有⑽S反姉之標準單元51a a,形成與電源 線之下層佈線32b之分支部電氣連接。 佈線層34c,在圖5所示之俯視圖中,當與電源線之下層佈 線層32a比較,被配置在標準單元51a之内侧(中央侧)。另外 佈線層34d,在圖5所示之俯視圖中,當與電源線之下層佈線 層32b比較,被配置在標準單元5ia之内側(中央侧)。 另外佈線層34c、34d之各個和佈線層32a、32b、32g、3沈 ◎ 之各個之電氣連接,為經由埋入在佈線層34c、34d之各個之 通溝33a内之部份。Wla, Wlb $ large line width W2a, W2b ' so you can reduce the resistance (') value of the power line. Further, the lower layer wirings 32a and 32b have a line width W2a and a smaller line width Wla and Wlb than the upper layer cloth and the line 34a, so that the space for the wiring arrangement of the portion can be made large. Therefore, it is easy to arrange other wirings (e.g., signal lines 32c, 32d) and the like in the same layer as the lower wiring, and it is possible to improve the degree of freedom in the planar arrangement of other wirings. Further, each of the lower layer wirings 32a, 32b extends along the boundary of the standard unit 51a. Therefore, the lower layer wirings 32a, 32b can be shared by the adjacent standard cells 51. In this manner, the lower layer wirings 32a and 32b are not separately formed in the adjacent standard cells 51 & respectively, so that high integration can be achieved. Further, each of the upper layer wirings 34a, 34b extends along the boundary of the standard unit 51a. Therefore, in the same manner as described above, the upper layer wirings 34a and 34b are not separately formed in each of the adjacent standard cells 51a, so that high integration can be achieved. Further, the source region 11b of the nMOS transistor NT1 is electrically connected to the power supply line under the GND potential via the power supply line upper layer wiring 34c of the GND potential, 97126596 15 200915488 32a. In addition, the source regions of each of the pM0S transistors m and ρτ3 are connected to the upper layer wiring 32b of the power line of the _ | bit via the upper layer of the power line of the VDD potential and the line 34d f gas. Therefore, it is not necessary to extend each of the layer wirings 32b below the boundary of the standard cell, and to extend toward the central portion of the standard cell 51a at the position where the transistor is located. In this way, since each of the lower layer wirings 32a and 32b is extended toward the central portion of the standard single..., an empty space is generated. Therefore, a signal line plate, a curry, or the like can be disposed in the empty space. Other wiring can achieve high integration. In this manner, as a result of arranging the signal lines 32c, 32d in the empty space, the obtained configuration is that the signal line 32c is in the plan view shown in Fig. 3, and is located at the connection portion between the upper layer wiring 34c and the persimmon layer 32g of the power supply line. And between the extended portions of the standard cell 5la of the lower layer wiring 32a. In addition, the configuration of the signal line 32d is in the top view shown in FIG. 3, at the connection portion of the upper layer wiring 34d and the wiring layer 32h of the power supply line, and the extension of the boundary between the standard unit Ο 51a of the lower layer wiring between. According to the above method, a semiconductor device in which both high speed and high integrated body can be obtained can be obtained. (Embodiment 2) Referring to Fig. 5 and Fig. 6, in the present embodiment, the structure described is a CMOS inverter composed of a buckwheat transistor m and a transistor PT1 in each of a plurality of standard cells 51a. . A P-type light domain 形成 is formed on the surface of the semiconductor substrate, and the β well region 2 is selectively formed on the surface in the p-type well region 97126596 16 200915488. in? The surface in the well region 1 forms a _s transistor_. A _s transistor PT1 is formed on the surface in the n-type well region 2. The side along the boundary of the standard unit 51a (the Y direction in FIG. 5) (the boundary of the lower side in the Y direction in FIG. 5) 'the surface in the P-type well region 1' is formed in the lateral direction (FIG. 5). The P+ region 15 extends in the middle X direction. Further, along the other side of the vertical direction (Y direction in FIG. 5) of the standard unit 51a (the boundary of the upper side in the Y direction in FIG. 5 (the _., the upper side in the Y direction), the surface in the n-type well region 2 is formed in the horizontal direction. η+ region 25 extending in the direction (X direction in Fig. 5). Each of the formation regions ρ region 15 and η + region 25 of the MOS transistor is electrically isolated from each other on the surface of the semiconductor substrate for the month t* For example, the element isolation region 3 composed of STI is composed of a trench provided on the surface of the semiconductor substrate and an insulating filler filled in the trench. The nM〇S transistor NT1 has a drain region 11a and a source. The region lib, the gate insulating G layer 12' and the gate electrode layer 13. The non-polar region and the source region are formed by the impurity regions of the n-type impurity region forming a distance from each other on the surface of the p-type well region. 2. The gate insulating layer 12 is formed on the region of the source region of the region to be gated by the drain region • Hb. The pMOS device has a immersed region and a source region, and the insulating layer is 22 ^°. The drain layer 23. The gate region 21a and the source region 21b are p-type bay regions Forming a distance from each other on the surface of the n-type well region 2. The insulating layer 22 is formed on the region of the insufficiency region 21a and the source region 97126596 17 200915488 21b. nMOS transistor NT2 The gate electrode layer 13 and the gate electrode layer 23 of the _s transistor pT2 are formed by a common conductive layer and are electrically connected to each other. The MOSFETs 1 and ΡΤ1 are formed on the surface of the semiconductor substrate by covering the respective MOS transistors ΝΤ1 and ΡΤ1. The interlayer insulating layers 31A and 31β are laminated, and the interlayer insulating layer 31A is formed of, for example, a TEOS oxide film, and the interlayer insulating layer 31B is formed of, for example, a party, etc. The interlayer insulating layer 31B is formed with a wiring from the upper surface thereof to the interlayer insulating layer 31A. In the trench 31b, the contact hole 31a which reaches the semiconductor substrate from the wiring trench can be formed in the interlayer insulating layer 31A. The CuA1 alloy is embedded in each of the wiring trenches 31b (the A1 content is, for example, 〇). M. 0%) Each of the wiring layers 32a, 32b, 32e, 32g, and 32h is formed. Further, in each of the contact holes 31a, a plug layer made of, for example, tungsten (W) is formed. . Further, a barrier metal layer is formed on the side surface and the bottom surface of the contact hole 31a (not shown). The transition metal layer is located between the plug layer and the layer affinity layer 31A, and between the plug layer and the semiconductor substrate. The metal layer has a laminated structure of, for example, titanium (Ti) and titanium nitride (TiN). A barrier metal layer (not shown) is also formed on the side surface and the bottom surface of the wiring trench 31b. The barrier metal layer is located on the wiring layer. Between each of 32a, 32b, 32e, 32g, and 32h and the interlayer insulating layer 31B, between each of the wiring layers 32a, 32b, 32e, 32g, and 32h and the plug layer, and the wiring layers 32a, 32b, and 32e, Between each of 32g and 32h and the interlayer insulating layer 31A. The barrier metal layer 97126596 18 200915488 is composed of, for example, a button (Ta). Further, a surname blocking layer (not shown) made of, for example, SiCN is formed between the interlayer insulating layer 31A and the interlayer insulating layer 31B. The drain region 丨丨a of the nMOS transistor NT1 and the drain region 21a of the pM 〇s transistor PT1 are electrically connected to each other by the wiring layer 32e. Further, the wiring layer 32 & extends to one side of the boundary of the vertical direction of the standard cell 51a (the γ direction in FIG. 5) (the boundary of the lower side in the Y direction in FIG. 5), and the horizontal direction in the boundary (in FIG. 5 Direction) extends. Further, the wiring layer 32b extends along the other side of the boundary of the standard unit 51a (the Y direction in FIG. 5) (the boundary of the upper side in the γ direction in FIG. 5) in the horizontal direction (X in FIG. 5). Direction) extends. The wiring layer is electrically connected to the n+ region 25 of its lower layer, by which the potential of the n-type well region 2 is fixed. Each of the wiring layers 32a, 32b extending along the boundary line of the standard cell 51a can apply a power supply potential of either of VDD and GND, and corresponds to the underlying wiring of the power supply line. Specifically, a GND potential can be applied to the wiring layer 32a, and a VDD potential can be applied to the wiring layer 32b. The wiring layer 32a is electrically connected to the p+ region 15 of the lower layer thereof, by which the potential of the p-type well region 1 is fixed. Further, the wiring layer 32a is branched from a portion extending in a straight line along one of the vertical direction (the Y direction in Fig. 5) (the boundary of the lower side in the Y direction in Fig. 5), and has a CM0S inversion which is not formed. The extension of the standard unit 51a of the functional component of the device or the like. The wiring layer 32b is electrically connected to the n+ region 25, with which the potential of the n-type well region 2 97126596 19 200915488 is fixed. In addition, the wiring layer Na is extended from the straight line of the other side of the boundary in the longitudinal direction (the γ direction in FIG. 5) (the boundary of the upper side in the γ direction in FIG. 5): and branches, having the (10)s not formed. A portion of the standard unit 51a of the functional element such as the reverse ohm. Further, each of the source region 丨丨b of the nMOS transistor NT1 and the source region 21b of the pM〇s transistor is electrically connected to each of the wiring layers for 32 hours. Further, the connection of each of the wiring layers 32a, 32b, 32e, 32g, 32h and the impurity region formed on the surface of the semiconductor substrate is a via layer formed in the contact hole 31a formed in the interlayer insulating layer. An interlayer insulating layer 33 made of, for example, Si〇C and MSQ is formed on the interlayer insulating layer 318 so as to cover the wiring layers 32a, 32b, 32e' 32g, and 32h. A wiring trench 3 is formed on the upper surface of the interlayer insulating layer 33, and a trench 3 is formed, for example, from the bottom of the wiring trench 33b to the respective wiring layers of the lower layer. Each of the wiring layers 34c and 34d made of a CuM alloy (J (A1 content is, for example, about 0.1 to 1.0%) is formed, for example, so as to be buried in the through-grooves 33a and the wiring grooves 33b. A barrier gold layer (not shown) is formed on the side surface and the bottom surface of the wiring trench 33b. The barrier metal layer is located between each of the wiring layers 34c and 34d and the interlayer insulating layer 33, and each of the vias 33a and the interlayer Between the insulating layers 33, and between the respective trenches 33a and the underlying wiring layer. The barrier metal layer has a laminated structure such as a button (Ta) and a nitride button (TaN). Further under the interlayer insulating layer 33 An etching layer 97126596 20 200915488 (not shown) made of, for example, SiCN is formed. The source regions 11b (wiring layers 32g) of the crystal cells m of the respective standard cells 51a are electrically connected to each other by the wiring layer 34c. Further, the wiring layer (10) is electrically connected to the branch portion of the lower layer wiring 32a of the power supply line in the standard cell 51a which is not formed with the CM〇S inverter. Further, each of the standard cells is formed by the wiring layer 34d. Source region 21b of PT1 (wiring layer 32h) The wiring layer 34d is electrically connected to the branch portion of the lower layer wiring 32b of the power supply line in a standard unit 51aa in which the (10) S is not formed. The wiring layer 34c is in the plan view shown in FIG. The wiring layer 34d is disposed on the inner side (center side) of the standard unit 51a as compared with the lower layer wiring layer 32a of the power supply line. The wiring layer 34d is compared with the lower wiring layer 32b of the power supply line in the plan view shown in FIG. It is disposed on the inner side (center side) of the standard unit 5ia. The electrical connection between each of the wiring layers 34c and 34d and the wiring layers 32a, 32b, 32g, and 3 is immersed in each of the wiring layers 34c and 34d. The part inside the channel 33a.

依照上述之方式’ nMOS電晶體NT1之源極區域lib經由GND . 電位之電源線之上層佈線34c電氣連接到GND電位之電源線之 下層佈線32a。另外pMOS電晶體PT1之源極區域21b經由VDD 電位之電源線之上層佈線3 4 d電氣連接到V D D電位之電源線之 下層佈線32b。 依照本實施形態時,下層佈線32a、32b之各個沿著標準單 97126596 200915488 元51a之境界延伸。因此,在鄰接之標準單元51&間,可以丘 用下層佈線32a、32b。利用此種方式,在鄰接之標準單元他 之各個,因為不需要個別地形成下層佈線32a、32b,所以可 以達成高積體化。 另外上層佈線34a、34b之各個沿著標準單元51a之境界延 伸。因此,與上述同樣地,鄰接之標準單元51a之各個,因為 不需要個別地形成上層佈線34a、34b,所以可以達成高積體 ζ) 化。 另外nMOS電晶體ΝΤ1之源極區域lib經由gnd電位之電源 線之上層佈線34c電氣連接到GND電位之電源線之下層佈線 32a。另外PM0S電晶體PT1之源極區域2ib經由VDD電位之電 源線之上層佈線34d電氣連接到VDD電位之電源線之下層佈線 32b。因此,成為不需要使位於標準單元51&境界之下層佈線 32a、32b之各個,朝向各電晶體所在位置之標準單元5^之 〇 中央部延伸。利用此種方式,因為在使下層佈線32a、32b之 各個應朝向標準單元51a之中央部延伸之部份,產生空的空 間,所以在該空的空間可以配置信號線32c、32d等之其他之 • 佈線,而可以達成高積體化。 利用上述方式,可以獲得同時高速化和高積體化雙方之半導 體裝置。 另外’在實施形態2中,亦可以在圖5中之未形成有功能元 件(例如CMOS反相器)之標準單元51a,配置如圖7所示之熔 97126596 22 200915488 線(fuse)4〇。由配置有此種熔線之多個之標準單元η構 成之列,亦可以更存在於半導體裝置内。該熔線4〇例如亦可 以配置在電源線之下層佈線32a、32b之分支部份之路徑之々 中。 1逆 除此之外之圖7之構造因為與上述之圖5和圖6之構造大致 相同’所以對相同之元件附加相同之元件符號,不再重複其說 明。 〇 在圖5中,所說明之構造是在未形成有功能元件之標準單元 51a ’使電源線之上層佈線34c電氣連接到下層佈線咖,並 且使電源線之上層佈線34d電氣連接到下層佈線3此。但是, 在實施形態2中,亦可以如圖8所示,在未形成有功能元件之 標準單元51a内,使電源線之上層佈線3知不電氣連接到下層 佈線32a ’並且以電源線之上層佈線34d不電氣連接到下層佈 線32b之方式,使由多個之標準單元51a構成之列更存在於半 ϋ 導體裝置内。 除此之外之圖8之構造因為與上述之圖5和圖6之構造大致 相同,所以對相同之元件附加相同之元件符號,不再重複其說 - 明。 如實郷悲2之圖5所示,使在未形成有魏元件之標準單 兀51a,電源線之上層佈線3如電氣連接到下層佈線孤,並 且電源線之上層佈線34df氣連接到下層佈線挪之形態成為 A。另外如圖8所示,使在未形成有功能元件之標準單元 97126596 23 200915488 51a ’電源線之上層佈線34c不電氣連接到下層佈線孤,並 且電源線之上層佈線34(1不電氣連接到下層佈線咖之形態成 為B形態。 ' . 在半導體裝置之科階段只要交替該等之Α形態和β形態, 可以設計成能夠使用具有A形態之多個之標準單元仏列作為 可高速動作之單元列,和可以設計成能夠使用具有B形態之多 個之標準單元51a列作為可低消耗電力動作之單元列。 ° 在具有“態之多個之標準單元51a列,因為從多個層利用 電源線供給動作電流,所以可以高速動作。另外在具有B形態 之多個之標準單元51&列,電位關係成為下層佈線32a<上層 佈線34c<上層佈、線34d<下層佈、線咖。利用此種方式,供 給與_S電晶體NT1或_電晶體m之基板電位和源極電 位不同之電位電壓,利用基板效應使電晶體之臨限值(V比)變 大’可以用來使包含標準單元仙之電路之等待電流減小,成 〇為可以以低消耗電力動作。 j之A形態和B形態,因為單元之大小非f相似,所以可 以簡單地交替,可以簡單地交替能夠高速動作之單元列和能夠 • 低消耗電力動作之單元列。 $外如目7所示’使在未形成有功能元件之標準單元51a配 置炼線40之形態成為G形態。經由具有該c形態,在製品之 測试步驟依照炼線之有無切斷,可以交替上述方式之高速動作 #低肖耗電力動作。隨著半導體處理之微細化,製品之晶圓處 97126596 24 200915488 理完成後之特性變動之問題變大。但是,在測試步驟經由以高 速動作或低消耗電力動作為導向選擇標準單元51a,可以使特 性變動變小。例如,可考慮之情況是使電晶體之臨限電壓補 . 朝向變低方向偏移,使動作速度遠大於目標速度,同時可以使 消耗電力大於目標之消耗電力。在此種情況時,切斷熔線, 利用具有B形態之多個之標準單元51a列之電位關係,經由減 小基板效應所產生之消耗電力,可以將消耗電力抑制在目標之 0 消耗電力内。 (實施形態3) 本實施形態經由變化實施形態2之構造用來實現圖2所示之 電路構造。 參照圖9和圖10,在本實施形態之構造中,例如在具有反 相器之3個並排之標準單元5ia中,中央之標準單元5la内之 nMOS電晶體NT1和pMOS電晶體ΡΠ對應到圖2之輸出段之 〇 CMOS反相器。 另外,由中央之標準單元51a之圖中右侧之標準單元5ia之 nMOS電晶體NT2與pMOS電晶體PT2構成之CMOS反相器,和 • 由圖中左侧之標準單元51a之nMOS電晶體NT3與pMOS電晶體 PT3構成之CMOS反相器對應到圖2之驅動器。 由中央之標準單元51a内之nM0S電晶體NT1之閘電極層13 和pMOS電晶體PT1之閘電極層23被電氣隔離。在右侧之標準 單元51 a之佈線層32e!電氣連接到中央之標準單元5丨a之閘電 97126596 25 200915488 極層13,而對應到實施形態1中之信號線32c。該佈線層32ei 電氣連接riMOS電晶體NT2之汲極區域丨la和pM〇s電晶體打2 之没極區域21a。 另外左側之標準單元5丨a之佈線層32ez電氣連接到中央之標 準單兀51a之閘電極層23,對應到實施形態1中之信號線 32d。該佈線層32e2電氣連接nMOS電晶體NT3之汲極區域i la 和PM0S電晶體PT3之汲極區域21a。 〇 電源線之上層佈線34c具有比在其下層並行延伸之下層佈 線32a之線寬Wla為大之線寬W2a,上層佈線34d具有比在其 下層並行延伸之下層佈線32b之線寬Wlb為大之線寬W2b。利 用此種方式,上層佈線34c在圖9所示之俯視圖中,當與下層 佈線層32a比較,具有位於標準單元51a内侧之部份。上層佈 線34c之位於較下層佈線32a為内側之部份,在佈線層平 面地重複,並且經由通孔33a電氣連接到佈線層3故。 1/ 另外,電源線之上層佈線34d在圖9所示之俯視圖中,當與 下層佈線層32b比較,具有位於標準單元51a之内侧之部份。 上層佈線34d之位於較下層佈線32b更内侧之部份,在佈線層 32h平面地重複,並且經由通孔33a電氣連接到佈線層3汕。 電源線之下層佈線32a、32b之各個沿著標準單元51a之境 界線直線地延伸,未具有從該境界部朝向標準單元51a之内側 延伸之分支部份。 依照上述之方式,nMOS電晶體NT1之源極區域llb,經由 97126596 26 200915488 GND電位之電源線之上層佈、線34c,電氣連接到_電位之電 源線之下層佈線32a。另外PM0S電晶體PT1之源極區域训, 經由·電位之電源線之上層佈線34d,電氣連制_電位 之電源線之下層佈線32b。 另外信號層32ei在圖9所示之俯視圖中,被配置成位於電源 線之上層佈線34c與佈線層32g之連接部(通孔33a)和下層 佈線32a之間。信號線32ez在圖9所示之俯視圖中,被配置成 Ο 位於電源線之上層佈線34d與佈線層32h之連接部(通孔33a) 和下層佈線32b之間。 另外,本實施形態之上述以外之構造,因為與圖5和圖6所 示之實施形態2之構造大致相同,所以對相同之元件附加相同 之元件符號,不再重複其說明。 依照本實施形態時,使G N D電位之電源線分離成為下層佈線 32a和上層佈線34c,並且使VDD電位之電源線分離成為下層 〇 佈線32b和上層佈線34d。因此,當與電源線為單一層之情況 比較’因為電流路徑增加,所以可以達成高速化。另外,因為 不需要使電源線之線寬變大就可以增加電流路徑,所以亦可以 • 達成高積體化。 另外上層佈線34c、34d具有比下層佈線32a、32b之線寬According to the above-described manner, the source region lib of the nMOS transistor NT1 is electrically connected to the lower layer wiring 32a of the power supply line of the GND potential via the GND. power supply line upper layer wiring 34c. Further, the source region 21b of the pMOS transistor PT1 is electrically connected to the lower layer wiring 32b of the power supply line of the V D D potential via the power line upper layer wiring 34 d of the VDD potential. According to the present embodiment, each of the lower layer wirings 32a, 32b extends along the boundary of the standard sheet 97126596 200915488, 51a. Therefore, the lower layer wirings 32a, 32b can be used between the adjacent standard cells 51 & In this manner, in the adjacent standard cells, since it is not necessary to form the lower layer wirings 32a and 32b individually, it is possible to achieve high integration. Further, each of the upper layer wirings 34a, 34b extends along the boundary of the standard unit 51a. Therefore, in the same manner as described above, since each of the adjacent standard cells 51a does not need to be individually formed with the upper layer wirings 34a and 34b, it is possible to achieve a high integrated structure. Further, the source region lib of the nMOS transistor ΝΤ1 is electrically connected to the power line lower layer wiring 32a of the GND potential via the power line upper layer wiring 34c of the gnd potential. Further, the source region 2ib of the PMOS transistor PT1 is electrically connected to the power line lower layer wiring 32b of the VDD potential via the power line upper layer wiring 34d of the VDD potential. Therefore, it is not necessary to extend each of the layer wirings 32a and 32b located under the standard cell 51&; toward the central portion of the standard cell 5^ where the respective transistors are located. In this manner, since the empty space is generated in a portion where the lower layer wirings 32a and 32b are to be extended toward the central portion of the standard unit 51a, the signal lines 32c, 32d and the like can be disposed in the empty space. • Wiring, and high integration can be achieved. According to the above aspect, it is possible to obtain a semiconductor device which is both high speed and high in integration. Further, in the second embodiment, the standard unit 51a in which the functional element (e.g., CMOS inverter) is not formed in Fig. 5 may be arranged as shown in Fig. 7 by the fuse 97126596 22 200915488. A plurality of standard cells η in which such fuses are arranged may also be present in the semiconductor device. The fuse 4 can be disposed, for example, in the path of the branch portion of the power line lower layer wirings 32a, 32b. The configuration of Fig. 7 is substantially the same as that of Figs. 5 and 6 described above, and the same reference numerals will be given to the same elements, and the description thereof will not be repeated. In FIG. 5, the configuration is such that the power line upper layer wiring 34c is electrically connected to the lower layer wiring coffee in the standard unit 51a' where the functional elements are not formed, and the power line upper layer wiring 34d is electrically connected to the lower layer wiring 3 this. However, in the second embodiment, as shown in Fig. 8, in the standard unit 51a in which the functional elements are not formed, the upper layer wiring 3 of the power supply line may be electrically connected to the lower layer wiring 32a' and the upper layer of the power supply line. The wiring 34d is not electrically connected to the lower wiring 32b, and the column composed of the plurality of standard cells 51a is more present in the semiconductor device. The configuration of Fig. 8 is substantially the same as that of Figs. 5 and 6 described above, and the same reference numerals are given to the same elements, and the description thereof will not be repeated. As shown in Fig. 5 of Fig. 2, in the standard unit 51a in which the Wei element is not formed, the upper layer wiring 3 of the power supply line is electrically connected to the lower layer wiring, and the upper layer wiring 34df of the power supply line is connected to the lower layer wiring. The form becomes A. Further, as shown in FIG. 8, the standard unit 97126596 23 200915488 51a 'the power line upper layer wiring 34c is not electrically connected to the lower layer wiring, and the power line upper layer wiring 34 (1 is not electrically connected to the lower layer). The form of the wiring coffee is in the form of B. In the semiconductor device stage, it is possible to design a plurality of standard cell arrays having the A form as a unit column capable of high-speed operation by alternately changing the shape and the β form. And can be designed to use a plurality of standard cells 51a having a B form as a cell column capable of low power consumption operation. ° In a standard cell 51a column having a plurality of states, since power lines are utilized from multiple layers In addition, in the standard cell 51 & column having a B form, the potential relationship is the lower layer wiring 32a < the upper layer wiring 34c < the upper layer cloth, the line 34d < the lower layer cloth, the line coffee. a method of supplying a potential voltage different from a substrate potential and a source potential of the _S transistor NT1 or the _ transistor m, and using a substrate effect to make the transistor The threshold value (V ratio) becomes larger, which can be used to reduce the waiting current of the circuit including the standard unit, and can be operated with low power consumption. The A form and the B form of j, because the size of the unit is not f Similar, it is possible to simply alternate, and it is possible to simply alternate the column of cells capable of high-speed operation and the column of cells capable of low-power operation. $External as shown in Fig. 7 'Configure the standard cell 51a in which functional elements are not formed The form of the line 40 is in the form of G. By having the c form, the test step of the product can be alternated with the high-speed operation of the above-described method according to the presence or absence of cutting of the line, and the operation of the semiconductor processing can be repeated. The wafer of the product is 97126596 24 200915488. The problem of the characteristic change after completion is increased. However, in the test step, the standard variation unit 51a is guided by the high-speed operation or the low-power consumption operation, so that the characteristic variation can be made small. The situation is considered to make the threshold voltage of the transistor shift toward the lower direction, so that the action speed is much larger than the target speed, and the power consumption can be made at the same time. In this case, the fuse is cut, and the potential relationship between the plurality of standard cells 51a having the B form is used, and the power consumption can be suppressed by reducing the power consumption generated by the substrate effect. (Embodiment 3) The present embodiment is configured to realize the circuit structure shown in Fig. 2 via the structure of the second embodiment. Referring to Fig. 9 and Fig. 10, for example, in the structure of the present embodiment, for example In the three side-by-side standard cells 5ia having inverters, the nMOS transistor NT1 and the pMOS transistor 内 in the central standard cell 5la correspond to the 〇CMOS inverter of the output section of Fig. 2. In addition, the standard from the center a CMOS inverter composed of a nMOS transistor NT2 and a pMOS transistor PT2 of a standard cell 5ia on the right side of the cell 51a, and a nMOS transistor NT3 and a pMOS transistor PT3 of a standard cell 51a on the left side of the figure. The CMOS inverter corresponds to the driver of Figure 2. The gate electrode layer 13 of the nMOS transistor NT1 in the central standard cell 51a and the gate electrode layer 23 of the pMOS transistor PT1 are electrically isolated. The wiring layer 32e of the standard unit 51a on the right side is electrically connected to the gate unit of the standard unit 5丨a of the center, 97126596 25 200915488, and corresponds to the signal line 32c in the first embodiment. The wiring layer 32ei is electrically connected to the drain region 丨la of the riMOS transistor NT2 and the gate region 21a of the pM〇s transistor. Further, the wiring layer 32ez of the standard cell 5a on the left side is electrically connected to the gate electrode layer 23 of the standard cell 51a in the center, corresponding to the signal line 32d in the first embodiment. The wiring layer 32e2 is electrically connected to the drain region i la of the nMOS transistor NT3 and the drain region 21a of the PMOS transistor PT3. The upper power line upper layer wiring 34c has a line width W2a larger than the line width W1 of the layer wiring 32a extending in parallel with the lower layer thereof, and the upper layer wiring 34d has a larger line width W1 than the layer wiring 32b extending in parallel with the lower layer thereof. Line width W2b. In this manner, the upper layer wiring 34c has a portion located inside the standard cell 51a as compared with the lower wiring layer 32a in the plan view shown in Fig. 9. The upper layer wiring 34c is located on the inner side of the lower layer wiring 32a, is planarly repeated on the wiring layer, and is electrically connected to the wiring layer 3 via the via hole 33a. 1/ In addition, the power line upper layer wiring 34d has a portion located inside the standard unit 51a as compared with the lower wiring layer 32b in the plan view shown in FIG. The portion of the upper layer wiring 34d located further inside than the lower layer wiring 32b is planarly repeated in the wiring layer 32h, and is electrically connected to the wiring layer 3 via the via hole 33a. Each of the power line lower layer wirings 32a, 32b linearly extends along the boundary line of the standard unit 51a, and does not have a branch portion extending from the boundary portion toward the inner side of the standard unit 51a. According to the above manner, the source region 11b of the nMOS transistor NT1 is electrically connected to the power line lower layer wiring 32a of the _ potential via the layer wiring and the line 34c of the power supply line of the GND potential of 97126596 26 200915488. Further, the source region of the PMOS transistor PT1 is electrically connected to the lower layer wiring 32b of the power supply line via the power supply line upper layer wiring 34d. Further, in the plan view shown in Fig. 9, the signal layer 32ei is disposed between the connection portion (via hole 33a) of the power line upper layer wiring 34c and the wiring layer 32g and the lower layer wiring 32a. In the plan view shown in Fig. 9, the signal line 32ez is disposed so as to be located between the connection portion (via hole 33a) and the lower layer wiring 32b of the power line upper layer wiring 34d and the wiring layer 32h. It is to be noted that the same components as those of the second embodiment shown in Fig. 5 and Fig. 6 are denoted by the same reference numerals, and the description thereof will not be repeated. According to the present embodiment, the power supply line of the G N D potential is separated into the lower layer wiring 32a and the upper layer wiring 34c, and the power supply line of the VDD potential is separated into the lower layer wiring 32b and the upper layer wiring 34d. Therefore, when the power line is a single layer, the speed is increased because the current path is increased. In addition, since it is not necessary to increase the line width of the power supply line to increase the current path, it is also possible to achieve high integration. Further, the upper layer wirings 34c, 34d have a line width wider than the lower layer wirings 32a, 32b.

Wla、Wlb為大之線寬W2a、W2b,所以可以減小電源線之電阻 值。 另外下層佈線32a、32b具有比上層佈線34c、34d之線寬 97126596 27 200915488 W2a、W2b為小之線寬Wla、仙,所以可以使該部份之佈線配 置用之空的空間變大。因此,在與下層佈線咖、咖相同之 層配置其他之佈線(例如信號線32ei、32e2)等變為容易,而可 以提高其他之佈線之平面佈置之自由度。 另外下層饰、線32a、32b之各個沿著標準單元…之境界咬 伸。因此’在相鄰之標準單元51a之間,可以共用下層佈緣 32a、32b。利用此種方式,在鄰接之標準單元51&之各個不需 0要個別地形成下層佈線32a、咖,所以可以達成高積體化。 另外上層佈線34c、34d之各個沿著標準單元…之境界延 伸因此’與上述同樣地,在鄰接之標準單元⑽之各個不需 要個別地形成上層佈線34c、34d,所以可以達成高積體化。 另外祕電晶冑NT1〜NT3之各個之源極區域山,經由_ 電位之電源線之上層佈線34c魏連接到_電位之電源線之 下層佈線32a。另外pM0S電晶體m〜pT3之各個之源極區域 ίί 21b ’經由電位之電源線之上層佈線34d電氣連接到· ^立之電源線之下層佈線32b。因此,成為不需要使位於標準 早兀51a之境界之下層佈線32a、咖之各個,朝向各電晶體 ,所在位置之標準單元51a之中央部延伸。利用此種方式,因為 在使下層佈線32a、32b之各個應朝向標準單元51a之中央部 延伸之部份’產生空的空間,所以在該空的空間可以配置信號 線32ei、32〇等之其他之佈線,而可以達成高積體化。 依照此種方式,在空的空間配置信號線32ei、32&之結果, 97126596 28 200915488 所獲得之配置是信號線32ei在圖9所示之俯視財,位於電源 線之上層佈線34c與佈線層32g之連接部’和下層佈線32a之 間。另外所獲得之配置是錢線32e2在圖9料之俯視圖中, 位於電源線之上層佈線34d與佈線層32h之連接部,和下層佈 線32b之間。 利用上述方式,可以獲得同時高速化和高積體化雙方之半導 體裝置。 〇 另外在上述之實施形態1〜3中是說明作為功能元件之具有 CMOS反相器之元件,但是本發明並不只限於該種,亦可以適 用在CMOS之NAND或N0R電路,或其以外之其他之功能元件。 (實施形態4) 參照圖11和圖12,本實施形態之電路具有2輸入之nmd 閘Ml、NA2 ’缓衝器BUI、BU2、BU3和反相器IN。 2輸入之NAND閘NA1具有圖12所示之連接之pM〇s電晶體 ό ΡΤ11、ΡΤ12 和 nMOS 電晶體 ΝΤ11、ΝΤ12。在 pM〇S 電晶體 ΡΤ11 和nMOS電晶體NT11之各個閘極電氣連接有端子a,在pM〇s 電晶體PT12和nMOS電晶體NT12之各個閘極電氣連接有端子 B 〇 - 緩衝器BU1之構成包含有由pMOS電晶體ρτΐ3與nMOS電晶 體NT13構成之CMOS反相器,和由pMOS電晶體ρτΐ4與nMOS 電晶體NT14構成之CMOS反相器。該緩衝器βυΐ構建成被輸入 有NAND閘NA1之輸出。 97126596 29 200915488 緩衝器BU2之構成包含有由pM〇S電晶體ρτΐ5與nMOS電晶 體NT15構成之CMOS反相器,和由pMOS電晶體ρτΐ6與nMOS 電晶體NT16構成之CMOS反相器。該緩衝器別2構建成被輸入 有緩衝器BU1之輸出。 缓衝器BU3之構成包含有由pM〇S電晶體ρτΐ7與nMOS電晶 體NT17構成之CMOS反相器,和由pMOS電晶體ρτΐ8與nMOS 電晶體NT18構成之CMOS反相器。在pMOS電晶體ρτΐ7和nMOS () 電晶體NT17之各個閘極電氣連接有端子C。 2輸入之NAND閘M2具有如圖12所示之連接之電晶 體 PT19、PT20 和 nMOS 電晶體 NT19、NT20。在 PM0S 電晶體 PT19 和nMOS電晶體NT19之各個之閘極電氣連接有緩衝器bu2之輸 出。在pMOS電晶體PT20和nMOS電晶體NT20之各個閘極電氣 連接有緩衝器BU3之輸出。 反相器IN之構成包含有由pM〇s電晶體PT21和nMOS電晶體 〇 NT21構成之CMOS反相器。在pMOS電晶體PT21和nMOS電晶 體NT21之各個閘極電氣連接有NAND閘NA2之輸出。另外反相 器IN之輸出電氣連接到端子γ。 . 其次,說明構成圖Π和圖12所示之電路之半導體裝置之平 面佈置構造。 圖13表鄉成在半導縣板之擴散區域與元件隔離區域, 和形成在半導體基板上之閘電極層等之多晶矽層。圖14主要 地表不上述之多晶矽層和其上之第1層之金屬層。另外圖15 97126596 30 200915488 表示上述之第1犀 之金屬層。胃金屬層和其上之第2層之金屬層和第3層 參照圖13,在半導#盆』 龍1 _ 導體基板SUB之表面具有NAND閘之形成區 域ΝΑΙ、M2,緩衝^ °形成區域刖1、肌2、8113,反相器之形 成£域IN和非電路構 . 战^域(non-circuit regi〇n)N0N。該等 之形成區域之各個物準單元。 /緩衝器之t成區蜮_,非電路構成區域 NON ’和反相器之 Γ區域1N被配置成以該_列在财之X方向。另外卿 二:成區域NA1、緩衝器之形成區域則、緩衝器之形成區 S彳_D閘之形成區域NA2被配置成以該順序 中之X方向。 在麵閘之形成區域NA1形成有上述之pMOS電晶體ρτΐ 1、 咖和祕電晶請卜㈣。在緩衝器之形成區域腿形Wla and Wlb are the line widths W2a and W2b, so the resistance of the power line can be reduced. Further, the lower layer wirings 32a and 32b have a line width of 97126596 27 200915488 W2a and W2b which are smaller than the line widths of the upper layer wirings 34c and 34d. Therefore, the space for the wiring of the portion can be made larger. Therefore, it is easy to arrange other wirings (e.g., signal lines 32ei, 32e2) in the same layer as the lower wiring, and to improve the degree of freedom in the layout of other wirings. Further, each of the lower layer trimming lines 32a, 32b is bitten along the boundary of the standard unit. Therefore, the lower fabric edges 32a, 32b can be shared between adjacent standard cells 51a. In this manner, the lower layer wirings 32a and the coffee are formed separately in the adjacent standard cells 51 & 0, so that high integration can be achieved. Further, each of the upper layer wirings 34c and 34d extends along the boundary of the standard unit. Therefore, as in the above, the upper layer wirings 34c and 34d are not separately formed in the adjacent standard cells (10), so that high integration can be achieved. Further, the source region of each of the secret crystals NT1 to NT3 is connected to the lower layer wiring 32a of the power line of the _ potential via the upper layer wiring 34c of the _ potential. Further, each of the source regions of the pM0S transistors m to pT3 is electrically connected to the lower layer wiring 32b of the power supply line via the potential power line upper layer wiring 34d. Therefore, it is not necessary to extend the layer wiring 32a and the coffee which are located below the boundary of the standard early 51a, and to extend toward the central portion of the standard unit 51a at the position of each of the transistors. In this manner, since an empty space is generated in a portion where each of the lower layer wirings 32a and 32b is to be extended toward the central portion of the standard unit 51a, the signal lines 32ei, 32, etc. can be disposed in the empty space. The wiring can be achieved with high integration. In this manner, as a result of arranging the signal lines 32ei, 32& in the empty space, the configuration obtained by 97126596 28 200915488 is that the signal line 32ei is in the top view shown in FIG. 9, and is located above the power line upper layer wiring 34c and the wiring layer 32g. Between the connection portion 'and the lower layer wiring 32a. Further, the obtained configuration is that the money line 32e2 is located between the upper portion of the power line upper layer wiring 34d and the wiring layer 32h and the lower layer wiring 32b in the plan view of Fig. 9. According to the above aspect, it is possible to obtain a semiconductor device which is both high speed and high in integration. Further, in the first to third embodiments described above, an element having a CMOS inverter as a functional element is described. However, the present invention is not limited to this, and may be applied to a CMOS NAND or NOR circuit, or the like. Functional components. (Embodiment 4) Referring to Fig. 11 and Fig. 12, the circuit of this embodiment has two input nmd gates M1, NA2' buffers BUI, BU2, BU3 and an inverter IN. The 2-input NAND gate NA1 has the pM〇s transistors ό11, ΡΤ12 and nMOS transistors ΝΤ11, ΝΤ12 shown in Fig. 12. A terminal a is electrically connected to each gate of the pM〇S transistor ΡΤ11 and the nMOS transistor NT11, and a terminal B 〇-buffer BU1 is electrically connected to each gate of the pM〇s transistor PT12 and the nMOS transistor NT12. A CMOS inverter composed of a pMOS transistor ρτΐ3 and an nMOS transistor NT13, and a CMOS inverter composed of a pMOS transistor ρτΐ4 and an nMOS transistor NT14 are included. The buffer βυΐ is constructed to be input with the output of the NAND gate NA1. 97126596 29 200915488 The configuration of the buffer BU2 includes a CMOS inverter composed of a pM〇S transistor ρτΐ5 and an nMOS transistor NT15, and a CMOS inverter composed of a pMOS transistor ρτΐ6 and an nMOS transistor NT16. The buffer 2 is constructed to be input with the output of the buffer BU1. The buffer BU3 is composed of a CMOS inverter composed of a pM〇S transistor ρτΐ7 and an nMOS transistor NT17, and a CMOS inverter composed of a pMOS transistor ρτΐ8 and an nMOS transistor NT18. A terminal C is electrically connected to each of the gates of the pMOS transistor ρτΐ7 and the nMOS () transistor NT17. The 2-input NAND gate M2 has the connected transistor PT19, PT20 and nMOS transistors NT19, NT20 as shown in FIG. The gate of each of the PM0S transistor PT19 and the nMOS transistor NT19 is electrically connected to the output of the buffer bu2. The outputs of the buffer BU3 are electrically connected to the respective gates of the pMOS transistor PT20 and the nMOS transistor NT20. The configuration of the inverter IN includes a CMOS inverter composed of a pM 〇s transistor PT21 and an nMOS transistor 〇 NT21. An output of the NAND gate NA2 is electrically connected to each of the gates of the pMOS transistor PT21 and the nMOS transistor NT21. In addition, the output of the inverter IN is electrically connected to the terminal γ. Next, a plan layout configuration of the semiconductor device constituting the circuit shown in Fig. 12 and Fig. 12 will be described. Fig. 13 shows a polycrystalline germanium layer formed in a diffusion region and an element isolation region of a semi-conducting plate, and a gate electrode layer formed on a semiconductor substrate. Fig. 14 mainly shows the above polycrystalline germanium layer and the metal layer of the first layer thereon. In addition, Fig. 15 97126596 30 200915488 represents the metal layer of the first rhinoceros described above. The metal layer of the stomach metal layer and the second layer and the third layer thereon are as shown in FIG. 13, and the NAND gate forming region ΝΑΙ, M2 is formed on the surface of the semi-conducting pot 1 _ conductor substrate SUB, and the buffer forming region is formed.刖1, muscle 2, 8113, the formation of the inverter is the domain IN and the non-circuit structure. The non-circuit regi〇n N0N. The respective leveling units of the forming regions. The buffer/t buffer region 蜮_, the non-circuit configuration region NON ’ and the inverter Γ region 1N are arranged such that the _ column is in the X direction. Further, the second region: the region NA1, the buffer formation region, and the buffer formation region S彳_D gate formation region NA2 are arranged in the X direction in the order. The above-described pMOS transistor ρτΐ 1 , coffee and crystal cell (4) are formed in the formation region NA1 of the face gate. In the formation area of the bumper

L 成有上述之_S電晶體PT13、PT14和_S電晶體NT13、 NT14°在缓衝器之形成區域即2形成有上述之pM〇s電晶體 ;15 PT16和nM〇s電晶體NT15、NT16。在_D問之形成區 域NA2形成有上述之鄉電晶體m9、ρτ2〇和祕電晶體 ΝΤ19 、 ΝΤ20 。 在緩衝态之形成區域βυ3形成有上述之pM〇s電晶體打Η、 ΡΠ8和顧電晶體膨、刪。在反相器之形成區域in形 成有上述之PM〇s電晶體PT21和nM〇s電晶體町21。 以沿著緩衝器之形成區域則,非電路構成區域腦和反相 97126596 31 200915488 ^成區域IN之®中Y方向上側之境界,在圖中χ方向延 申之方式在半導體基板SUB内之表面形成Ρ+區域pri。另外 、著NAND閘之形成區域NA1,緩衝器之形成區域BU丨、BU2 # NAND閘之形成區域M2之圖中γ方向下側之境界,在圖中 之X方向延伸之方式’在半導體基板識内之表面形成p+區 域 PR2。 。另外在緩衝器之形成區域_、非電路構成區域画和反相 Γ 之^成區域IN之®巾γ方向Ή狀境界,亦即沿著MND閘 之形成區域ΝΑ1,緩衝器之形成區域腦、觀和麵閘之形 成區域M2之圖中Y方向上側之境界,形成n+區域NR。該n+ 區域NR亦是以沿著該境界在圖中X方向延伸之方式’形成在 半導體基板SUB内之表面。 參照圖14,在M0S電晶體上經由層間絕緣層(未圖示)形成 被圖案製作之第1層之金屬層。該第丨層之金屬層具有_電 ϋ位之電源線之下層佈線GNDU、眺2,電位之電源線之下 層佈線VDDL,和其他之信號線su。 下層佈線GNDL1沿著緩衝器之形成區域腦,非電路構成區 .域議和反相器之形成區域Μ之圖中γ方向上側之境界,在 圖中X方向延伸。該下層佈線GNDL1經由多個之接觸孔ch, 電氣連接到下層之P+區域PR1。 下層佈線·2沿著咖問之形成區域麗,缓衝器之形 成區域腿、BU2和_閑之形成區域脱之圖中γ方向下側 97126596 32 200915488 之i兄界,在圖中X方向延伸。該下層佈線經由多個之接 觸孔CH,電氣連接到下層之ρ+區域pR2。 下層佈線VDDL在緩衝器之形成區域BU3,非電路構成區域 ._和反相ϋ之形成區域lN之圖中γ方向下側之境界,亦即 MNAND閘之形成區域NA1 ’緩衝器之形成區域則、順和 讎閘之形成區域NA2之圖中γ方向上側之境界,在圖中χ 方向L伸下層佈、線VDDL經由多個之接觸孔CH,電氣連接到 下層之n+區域NR。 參照圖15’在第1層之金屬層上經由層間絕緣層(未圖示) 形成被圖賴作之第2層之金制。該第2層之金屬層具有 GND電位之電源線之上層佈線GNDU1、GNDU2,電位之電源 線之上層饰線VDDU和其他之信號線。 上層佈線G_沿著緩衝器之形成區域BU3,非電路構成區 域NON和反相器之形成區域IN之圖中γ方向上侧之境界,在 ◎ 圖中X方向延伸。5亥上層佈線GNDU1經由多個之通孔VH1,電 氣連接到下層之下層佈線GNDL1。另外上層佈線GNDU1具有比 下層佈線GNDL1之線寬Wlai為大之線寬W2ai。 . 上層佈線GNDU2沿著閘之形成區域NA1,緩衝器之形 • 成區域BU1、BU2和NAND閘之形成區域NA2之圖中Y方向下側 之境界,在圖中X方向延伸。該上層佈線GNDU2經由多個之通 孔VH1,電氣連接到下層之下層佈線GNDL2。另外上層佈線 GNDU2具有比下層佈線GNDL2之線寬Wla2為大之線寬W2a2。 97126596 33 200915488 上層佈線VDDU在緩衝器之形成區域BU3,#電路構成區域 NON和反相器之形成區域IN之圖中¥方向下側之境界,亦即 沿著NAND閘之形成區域NA1 ’緩衝器之形成區域Βυ^Βυ2和 麵閘之形成區域M2之圖中γ方向上側之境界,在圖中χ 方向延伸。該上層佈線VDDU經由多個之通孔仰1,電氣連接 到下層之T層佈線卿L。糾上層佈線VDDU具有比下層佈線 VDDL之線寬Wlb為大之線寬W2b。 在該第2層之金屬層上經由層間絕緣層(未圖示)形成被圖 案製作之第3層之金屬層。該第3層之金屬層具有補強GND電 位之電源線之電位之補強佈線GNDS,補強電位之電源線 之電位之補強佈線VDDS,和其他之信號線乩3。 補強佈線GNDS和補強佈線VDDS之各個在俯視圖中,在上層 佈線G酬1、GNDU2、刪之正交方向(亦即圖中γ方向)延伸θ。 補強佈、線GNDS在俯視圖中,與上層佈線_麵、㈣2之各個 Ο交叉’在1個之父點經由多個(例如4個)之通孔VH2,電氣連 接到上層佈線G_、刪2之各個。另外補強佈線娜在俯 視圖中,與上層佈線侧交叉,在1個之交點經由多個(例如 • 4個)之通孔VH2,電氣連接到上層佈線仰卯。 另外各層之信號線SL卜SL2、SL3電氣連接簡電晶體之各 個,而成為圖11和圖12所示之電路構造。另外在圖13中, 斜線所示之部位是形成在半導體基板上之閘電極層等之多晶 矽層,以圖點花樣表示之部位是形成在半導體基板上之擴散區 97126596 34 200915488 域。該等之多轉層或擴散區域電氣連接M0S電晶體之各個, 而成為圖11和圖12所示之電路構造。 另外,連接圖Η # + β 斤之下層佈線GNDL1和上層佈線GNDUl 之多«孔™之配置間距Pv,成為與圖13所示之電晶體之 配置門距ρτ成相同之間距。另外,連接下層佈線讀^與上層 佈線G_2之多個通孔VH1之配置_ Ρν,和連接下層佈線 祖與上層佈線VDDU之多個通孔之配置間距A,亦成為 與圖13所不之電晶體之配㈣㈣成相狀間距。利用此種 方式’可以減小電源線之電阻值,並且可以強化下層佈線和上 層佈線之電位。 參照圖16,配置成使多根之補強佈線、卿❻多根之 上層佈線GNDU、VDDU在俯視圖中,構成格子。 多根之補強佈線_之各個,經由通孔.電氣連接到多 根之上層佈線G_(包含G麵、_2)。另外多根之補強佈 ϋ線屬之各個,經由通孔㈣電氣連接到多根之上層佈線 VDDU。 依照本實施形態時,使GND電位之電源線分離成為下層佈線 GNDL1、GNDL2和上層佈線GNDUb GNDU2,並且使VDD電位之 電源線分離成為下層佈線VDDL和上層佈線VDDU。因此,當與 電源線為單-層之情況比較時,因為增加電流雜,所以可以 達成高速化。另外’因為不需要使電源狀線寬變大就可以增 加電流路徑’所以可以達成高積體化。 97126596 35 200915488 另外上層佈線 GNDUl、GNDU2、VDDU 之線寬 W2ai、W2az、W2b 之各個,因為大於下層佈線GNDU、GNDL2、VDDL之線寬叽出、 Wla2、Wlb,所以可以減小電源線之電阻值。 另外,下層佈線GNDL1、GNDL2、VDDL之線寬Wla丨、Wla2、L is formed with the above-mentioned _S transistors PT13, PT14 and _S transistors NT13, NT14° in the formation region of the buffer, that is, 2, the above-mentioned pM〇s transistor; 15 PT16 and nM〇s transistor NT15, NT16. The above-mentioned home crystals m9, ρτ2 〇 and the crystals ΝΤ19 and ΝΤ20 are formed in the formation region NA2 of the _D. In the formation region β缓冲3 of the buffer state, the above-mentioned pM〇s transistor snoring, ΡΠ8, and the crystal expansion and deletion are formed. The above-described PM〇s transistor PT21 and nM〇s transistor 21 are formed in the formation region of the inverter. In the region along the formation of the buffer, the non-circuit-forming region brain and the reverse phase of the Y-direction of the region IN, in the direction of the upper side of the Y-direction in the figure, extend the surface in the semiconductor substrate SUB. A Ρ+region pri is formed. In addition, the formation region NA1 of the NAND gate, the boundary region of the γ direction in the region of the formation region M2 of the buffer BU 丨, BU2 # NAND gate, and the manner of extending in the X direction in the figure 'in the semiconductor substrate The inner surface forms a p+ region PR2. . In addition, in the buffer forming region _, the non-circuit forming region, and the Γ 成 forming region IN of the 巾 γ direction, that is, along the MND gate forming region ,1, the buffer forming region brain, The boundary between the upper side of the Y direction and the area of the formation region M2 of the face gate forms an n+ region NR. The n + region NR is also formed on the surface of the semiconductor substrate SUB in such a manner as to extend along the boundary in the X direction in the drawing. Referring to Fig. 14, a patterned metal layer of a first layer is formed on an MOS transistor via an interlayer insulating layer (not shown). The metal layer of the second layer has a power line under the power line GNDU, 眺2, a potential line below the power line VDDL, and other signal lines su. The lower layer wiring GNDL1 extends along the region where the buffer is formed, the non-circuit forming region, and the boundary region between the domain and the forming region of the inverter in the gamma direction, extending in the X direction in the figure. The lower layer wiring GNDL1 is electrically connected to the P+ region PR1 of the lower layer via a plurality of contact holes ch. The lower layer wiring·2 is along the area where the coffee is formed, and the formation area of the buffer, the formation area of the BU2 and the _ idle, and the lower side of the γ direction in the figure are 97126596 32 200915488, which extends in the X direction in the figure. . The lower layer wiring is electrically connected to the ρ+ region pR2 of the lower layer via a plurality of contact holes CH. The lower layer wiring VDDL is in the buffer formation region BU3, the non-circuit formation region ._ and the reverse ϋ formation region 1N in the lower side of the γ direction, that is, the formation region of the MNAND gate formation region NA1 'buffer In the graph of the formation region NA2 of the sum gate and the gate, the boundary of the upper side in the γ direction, in the figure, the L direction L extends the layer, and the line VDDL is electrically connected to the n+ region NR of the lower layer via the plurality of contact holes CH. Referring to Fig. 15', a metal layer of the second layer of the first layer is formed on the metal layer of the first layer via an interlayer insulating layer (not shown). The metal layer of the second layer has a GND potential power line upper layer wiring GNDU1, GNDU2, a potential power line above the layer trim line VDDU and other signal lines. The upper layer wiring G_ extends along the buffer forming region BU3, the non-circuit forming region NON and the inverter forming region IN in the upper side in the γ direction, and extends in the X direction in the drawing. The upper layer wiring GNDU1 is electrically connected to the lower layer wiring GNDL1 via a plurality of via holes VH1. Further, the upper layer wiring GNDU1 has a line width W2ai larger than the line width Wlai of the lower layer wiring GNDL1. The upper layer wiring GNDU2 is formed along the gate formation region NA1, the shape of the buffer, and the boundary between the region BU1, BU2 and the NAND gate formation region NA2 in the Y direction lower side, and extends in the X direction in the drawing. The upper layer wiring GNDU2 is electrically connected to the lower layer lower layer wiring GNDL2 via a plurality of via holes VH1. Further, the upper layer wiring GNDU2 has a line width W2a2 which is larger than the line width Wla2 of the lower layer wiring GNDL2. 97126596 33 200915488 The upper layer wiring VDDU is in the buffer forming region BU3, the circuit forming region NON and the forming region IN of the inverter are in the lower boundary of the ¥ direction, that is, along the NAND gate forming region NA1 'buffer The boundary between the formation region Βυ^2 and the gate formation region M2 in the upper side in the γ direction extends in the χ direction in the drawing. The upper layer wiring VDDU is raised by one via a plurality of via holes, and is electrically connected to the lower layer T wiring wiring L. The upper layer wiring VDDU has a line width W2b larger than the line width Wlb of the lower layer wiring VDDL. A metal layer of the third layer produced by the pattern is formed on the metal layer of the second layer via an interlayer insulating layer (not shown). The metal layer of the third layer has a reinforcing wiring GNDS for reinforcing the potential of the power supply line of the GND potential, a reinforcing wiring VDDS for the potential of the power supply line for reinforcing the potential, and other signal lines 乩3. Each of the reinforcing wiring GNDS and the reinforcing wiring VDDS is extended by θ in the orthogonal direction (i.e., the γ direction in the figure) in the upper layer wiring G, GNDU2, and the top surface wiring GNDS. In the plan view, the reinforcing cloth and the line GNDS are electrically connected to the upper layer wiring G_ and the second layer by the plurality of (for example, four) through holes VH2 at the parent point of the upper layer wiring _ surface and (four) 2 . each. In addition, in the top view, the reinforcing wiring is crossed with the upper wiring side, and is electrically connected to the upper wiring via the plurality of (for example, four) through holes VH2 at one intersection. Further, the signal lines SLb and SL3 of the respective layers are electrically connected to each of the simple transistors, and become the circuit configuration shown in Figs. 11 and 12 . Further, in Fig. 13, the portion indicated by the oblique line is a polysilicon layer formed on the gate electrode layer or the like on the semiconductor substrate, and the portion indicated by the dot pattern is a diffusion region formed on the semiconductor substrate 97126596 34 200915488. The plurality of layers or diffusion regions are electrically connected to each of the MOS transistors to form the circuit configuration shown in FIGS. 11 and 12. Further, the arrangement pitch Pv of the plurality of holes TM of the lower layer wiring GNDL1 and the upper layer wiring GNDU1 of the connection pattern +# + β 斤 is the same as the arrangement gate distance ρτ of the transistor shown in Fig. 13 . In addition, the arrangement _ ν of the plurality of via holes VH1 connecting the lower layer wiring read and the upper layer wiring G_2, and the arrangement pitch A of the plurality of via holes connecting the lower layer wiring ancestor and the upper layer wiring VDDU also become the same as those of FIG. The crystals are matched (4) and (4) into phase spacing. In this way, the resistance value of the power supply line can be reduced, and the potentials of the lower layer wiring and the upper layer wiring can be enhanced. Referring to Fig. 16, a plurality of reinforcing wirings and a plurality of upper layer wirings GNDU and VDDU are arranged in a plan view to form a lattice. Each of the plurality of reinforcing wirings is electrically connected to a plurality of upper layer wirings G_ (including G planes, _2) via via holes. In addition, each of the plurality of reinforcing wires is electrically connected to a plurality of upper layer wirings VDDU via via holes (4). According to the present embodiment, the power supply line of the GND potential is separated into the lower layer wirings GNDL1, GNDL2 and the upper layer wiring GNDUb GNDU2, and the power supply line of the VDD potential is separated into the lower layer wiring VDDL and the upper layer wiring VDDU. Therefore, when compared with the case where the power supply line is a single-layer, the speed is increased, so that the speed can be increased. Further, since it is not necessary to increase the power supply line width, the current path can be increased, so that high integration can be achieved. 97126596 35 200915488 In addition, the line widths W2ai, W2az, and W2b of the upper layer wiring GNDU1, GNDU2, and VDDU are smaller than the line widths of the lower layer wirings GNDU, GNDL2, and VDDL, and Wla2 and Wlb, so that the resistance value of the power line can be reduced. . In addition, the line widths Wla丨, Wla2 of the lower layer wirings GNDL1, GNDL2, and VDDL

Wlb之各個,因為小於上層佈線⑶臟、G_2、VDDU之線寬 W2ai、W2az、W2b ’所以就該部份佈線之配置用之空的空間變大。 因此在與下層佈線GNDL1、GNDL2、VDDL相同之層配置其他之 C 佈線等變為容易,可以提高其他之佈線之平面佈置之自由度。 另外,下層佈線GNDL1、GNDL2、VDDL和上層佈線GNDU1、 GNDU2、VDDU分別沿著標準單元之境界而延伸。因此,在鄰接 之標準單兀之各個,可以共用該等之電源線。利用此種方式, 因為不需要在每一標準單元個別地形成該等之電源線,所以可 以達成高積體化。 另外,第1層之金屬層之信號線SLi被使用作為標準單元内 (J佈線。第2層之金屬層之信號線SL2沿著圖中χ方向而延伸, 以被下層伟線GNDL1、GNDL2、VDDL之電源系之佈線包夾之方 式’被使用作為連接被配置之標準單元間之佈線。另外,第3 金屬層之k號線SL3沿者圖中Υ方向而延伸,以跨越下層 '佈線GNDL1、GNDL2、VDDL·之電源系之佈線之方式,被使用作 為連接標準單元間之佈線。利用此種方式,使P&R(Place and R〇ute:自動佈線配置)之佈線設計變為容易。 利用此種方式,可以獲得同時高速化和高積體化雙方之半導 97126596 36 200915488 體裝置。 (實施形態5) 在本實施職巾,綱具有高料元和高積料元之 裝置。 參照圖17, S0C晶片S0C例如具有高積體優先之邏輯區域 肌,高性能優先之邏輯區域HRL,和邏輯以外之區域他。在 高積體優先之邏輯區域HIL以適於高迷動作之高速單元所形 成。另外在高性能優先之邏輯區域亂以適於高積體之高積體 單元所形成。 、 圖18表示形成在半導縣板之擴散_與元件隔離區域, 和形成在半導體基板上之閘電極層等之多轉層。目Μ主要 地表示上述之多糾層和其上之第丨層之金屬層。另外,圖 2〇主要地表示上述之第1層之金屬層和其上之第2層之金屬 層。 參照圖18,高速單元和高積體單元雙方均由藏電晶體ρτ 和nMOS電晶體ΝΤ構成之CM〇s反相器所形成。 在高速單元和高㈣單元往—方,侧電晶體ρτ且有i 對之P型源極A極區域SD,_緣膜(相幻,和間電極 層诎。該i對之㈣源極/沒極區域如之各個形成在半導雜 基板SUB之表面。閘電極層证經由閘絕緣膜形成在被1對之 P型:極:汲極區域SD包夹之半導體基編之表面上。 在同速早凡和高積體單元之任一方,_S電晶體Ντ具有1 97126596 37 200915488 對之η型源極/波極區域SD,閘絕緣膜(未圖示),和閘電極 層GE。該1對之n型源極/波極區域仰之各個形成在半導體 基板SUB之表面。閘電極層GE經由閘絕緣膜形成在被!對之 η型源極/汲極區域邠包夾之半導體基板SUB之表面上。 在高速單元和高積料元之任-方,p㈣電晶體打之間電 極層GE和nM0S電晶體NT之閘電極層GE形成一體,而互相電 氣連接。 % f、 在高料元和高積料元之任m標準單元區域之圖 中γ方向上側之境界,以在圖中x方向延伸之方式,在半導體 基板SUB内之表面形成區域NIR。另外,沿著標準單元區域 之圖中Y方向下側之境界,以在圖中X方向延伸之方式,在半 導體基板SUB内之表面形成p+區域pir。 在此處之高速單元之CMOS反相器之平面佈置和高積體單元 之CMOS反相器之平面佈置成為相同。另外,高速單元之〇+區 C 域NIR和P+區域PIR之各個之平面佈置與高積體單元之n+區 域NIR和p+區域PIR之各個之平面佈置相同。 參照圖19,在M0S電晶體PT、NT上經由層間絕緣膜(未圖 • 不),形成被圖案製作之第1層之金屬層。該第1層之金屬層 . 具有GND電位之電源線之下層佈線gnd、GNDL,VDD電位之電 源線之下層佈線VDD、VDDL,和其他之信號線SLL1、SLL2。 下層佈線GNDL在高速單元沿著標準單元區域之圖中γ方向 下側之境界,而在圖中X方向延伸。該下層佈線GNDL經由多 97126596 38 200915488 個之接觸孔CH電氣連接到下層之p+區域piR。另外下層佈線 GNDL經由多個之接觸孔CH電氣連接到_s電晶體Ντ之源極 /汲極區域SD之一方。 下層佈線VDDL在高速單元沿著標準單元區域之圖中γ方向 上側之i兄界ffij在圖中X方向延伸。該下層佈線獅L經由多 個之接觸孔CH電氣軸到下層之n+區域_。另外下層佈線Since each of Wlb is smaller than the line widths W2ai, W2az, and W2b' of the upper layer wiring (3) dirty, G_2, and VDDU, the space for arranging the partial wiring becomes large. Therefore, it is easy to arrange other C wirings and the like in the same layer as the lower layer wirings GNDL1, GNDL2, and VDDL, and it is possible to improve the degree of freedom in the planar arrangement of other wirings. Further, the lower layer wirings GNDL1, GNDL2, VDDL and the upper layer wirings GNDU1, GNDU2, VDDU extend along the boundary of the standard cell, respectively. Therefore, the power lines can be shared among the adjacent standard units. In this way, since it is not necessary to form the power lines individually in each standard cell, high integration can be achieved. Further, the signal line SLi of the metal layer of the first layer is used as a standard cell (J wiring. The signal line SL2 of the metal layer of the second layer extends in the direction of the χ in the figure to be the lower layer GNDL1, GNDL2 The wiring pattern of the VDDL power supply is used as the wiring between the standard cells to be connected. In addition, the k-line SL3 of the third metal layer extends along the Υ direction in the figure to cross the lower layer 'GNDL1' The wiring of the power supply system of GNDL2 and VDDL is used as the wiring between the standard cells. In this way, the wiring design of P&R (Place and R〇ute) is made easy. In this way, it is possible to obtain a semiconductor device that is both high-speed and high-integrated at the same time. (Embodiment 5) In the present embodiment, a device having a high material element and a high accumulation material element is used. 17, the SOC wafer SOC has, for example, a high-integral-priority logic region muscle, a high-performance-priority logic region HRL, and a region other than logic. The high-integral-priority logic region HIL is a high-speed unit suitable for a high-motion operation. In addition, in the high-performance-priority logic region, it is formed by a high-integral unit suitable for a high-product body. FIG. 18 shows a diffusion-integration region formed in a semi-conducting plate, and is formed on a semiconductor substrate. a plurality of layers of the gate electrode layer, etc. The target mainly indicates the above-mentioned multi-deformation layer and the metal layer of the second layer thereon. Further, FIG. 2A mainly shows the metal layer of the first layer and the above The metal layer of the second layer. Referring to Fig. 18, both the high-speed unit and the high-integral unit are formed by a CM〇s inverter composed of a storage cell ρτ and an nMOS transistor 。. In the high-speed unit and the high (four) unit- Side, side transistor ρτ and i have a P-type source A-pole region SD, _ edge film (phase phantom, and inter-electrode layer 诎. The i-to (four) source/no-polar region is formed in half The surface of the impurity-conducting substrate SUB is formed on the surface of the semiconductor substrate of the P-type: pole: drain region SD package by the gate insulating film at the same speed and the high-speed integrated unit Either _S transistor Ντ has 1 97126596 37 200915488 η type source/wave region S D, a gate insulating film (not shown), and a gate electrode layer GE. The pair of n-type source/wave regions are formed on the surface of the semiconductor substrate SUB. The gate electrode layer GE is formed via a gate insulating film. The surface of the semiconductor substrate SUB of the n-type source/drain region is sandwiched between the high-speed cell and the high-concentration element, and the p(tetra) transistor is struck between the electrode layer GE and the nM0S transistor NT. The gate electrode layers GE are integrally formed and electrically connected to each other. % f, in the diagram of the m standard cell region of the high and high accumulation elements, the upper boundary of the γ direction, in the manner of extending in the x direction in the figure, A region NIR is formed on the surface in the semiconductor substrate SUB. Further, a p+ region pir is formed on the surface of the semiconductor substrate SUB so as to extend in the X direction in the figure along the boundary of the standard cell region in the lower side in the Y direction. The planar arrangement of the CMOS inverter of the high speed unit here and the planar arrangement of the CMOS inverter of the high integrated unit are the same. Further, the plane arrangement of each of the C field NIR and the P+ area PIR of the 高速+ zone of the high speed unit is the same as the plane arrangement of each of the n+ area NIR and the p+ area PIR of the high integrated unit. Referring to Fig. 19, a patterned metal layer of the first layer is formed on the MOS transistors PT and NT via an interlayer insulating film (not shown). The metal layer of the first layer. The power line lower layer wirings gnd and GNDL having the GND potential, the power line lower layer wirings VDD and VDDL of the VDD potential, and the other signal lines SLL1 and SLL2. The lower layer wiring GNDL extends in the X direction in the γ direction of the high-speed unit along the figure of the standard cell area. The lower layer wiring GNDL is electrically connected to the lower p+ region piR via a plurality of contact holes CH of 97,126, 596, 38, 2009. Further, the lower layer wiring GNDL is electrically connected to one of the source/drain regions SD of the _s transistor Ντ via a plurality of contact holes CH. The lower layer wiring VDDL extends in the X direction in the figure in the upper side of the γ direction in the figure of the high-speed unit along the standard cell area. The lower layer wiring lion L passes through a plurality of contact holes CH electrical axis to the lower layer n+ region _. Inferior wiring

VDDL左由多個之接觸孔CH電氣連接到卩職電晶體π之源極 /没極區域SD之一方。 4。號線SLL1、左由接觸孔cjj電氣連接到nM〇s電晶體Ντ之源 極/錄區域SD之另外—方和_電晶體ρτ之源極/没極 品或SD之另外方之各個。信號線虹2經由接觸孔〇η電氣 連接到閘電極層GE。 ' 在此處高速單元之下層佈線GNDL與下層佈線VDDL之各個之 平面佈置,和崎體單元之下層佈線GND與下層佈線_之各 個之平面佈置相同。另外,高速單元之信麟sLU與信號線 SLL2之平面佈置’和高積體單元之信號線SLL1與信號線SLL2 之平面佈置相同。 _“、、圖2〇在第1層之金屬層上,經由層間絕緣層(未圖 不),形成被_製作之第2層之金屬層。該第2層之金屬層 具有GND電位之電源線之上層佈線圆,電位之電源線之 上層佈線侧,和其他之信號線·〜腿。 上層佈線GNDU沿著高速單元之標準單元區域之圖中γ方向 97126596 39 200915488 下侧之境界,在圖中χ方向延伸。該上層佈線GNDU經由多個 之通孔VH1電氣連接到下層之下層佈線GNDL。另外上層佈線 GNDU具有比下層佈線GNDL之線寬Wla為大之線寬W2a。 上層佈線VDDU沿著高速單元之標準單元區域之圖中γ方向 上侧之境界,在圖中X方向延伸。該上層佈線刪經由多個 之通孔VH1電氣連接到下層之下層佈線vm)L。另外上層佈線 VDDU具有比下層佈線VDDL之線寬Wlb為大之線寬w2b。The left side of the VDDL is electrically connected to a plurality of contact holes CH to one of the source/no-polar region SD of the 电 电 transistor. 4. The line SLL1, the left contact hole cjj is electrically connected to the source of the nM〇s transistor Ντ, the other of the source/recording area SD, and the source of the _ transistor ρτ/the other of the products or SD. The signal line rainbow 2 is electrically connected to the gate electrode layer GE via the contact hole 〇η. Here, the planar arrangement of each of the lower layer wiring GNDL and the lower layer wiring VDDL of the high-speed unit is the same as that of the lower layer wiring GND and the lower layer wiring_. Further, the planar arrangement of the letter sLU of the high speed unit and the signal line SLL2 and the plane arrangement of the signal line SLL1 and the signal line SLL2 of the high integrated unit are the same. _", Fig. 2 〇 on the metal layer of the first layer, through the interlayer insulating layer (not shown), the metal layer of the second layer formed by _ is formed. The metal layer of the second layer has a power supply of GND potential The upper layer of the line is rounded, the power line of the potential is above the wiring side, and the other signal lines are ~~ legs. The upper layer wiring GNDU is along the standard cell area of the high-speed unit in the γ direction 97126596 39 200915488 The lower side of the realm, in the figure The upper layer wiring GNDU is electrically connected to the lower layer lower layer wiring GNDL via the plurality of via holes VH1. The upper layer wiring GNDU has a line width W2a larger than the line width Wla of the lower layer wiring GNDL. The upper layer wiring VDDU is along The upper boundary of the γ direction in the figure of the standard cell area of the high speed unit extends in the X direction in the figure. The upper layer wiring is electrically connected to the lower layer wiring vm)L via the plurality of via holes VH1. The upper layer wiring VDDU has The line width Wlb is larger than the lower layer wiring VDDL by the line width w2b.

另外信號線SLU3、SLU4之各個形成在高速單元之標準單元 内。該等之信號線SLU3、SUJ4之各個在圖中χ方向(亦即在俯 視圖中’在與上層佈線G_、v咖之延伸方向之相同方向) 延伸’域1¾速單TL之鮮單元區域之境界。健線SLU3經 由通孔VH1電氣連接到信號線SLU。另外,信號線㈣經由 通孔VH1電氣連接到信號線SLL2。 另外,在南積體單兀之標準單元β,信號線㈣卜㈣之 各個在圖中Y方向(亦即在俯視圖中,與下層佈線G·、卿之 延伸方向正交之方向)延伸。信號線SLU1經由通孔™電氣連 接到t號線SLL卜另外,信號線咖經由通孔腿電氣連接 到信號線SLL2。 另外信號線SLU1、SLU2之夂+L 一 LL^之各個亦在圖中Y方向延伸,橫斷 鬲積體單元之標準單元區域之境界。 其久δ兒明關於而積體優务夕、溫^^l ^ 媪彳愛无之邏輯區域HIL和高性能優先之 邏輯區域HRL之各個之多個標準單元。 97126596 200915488 圖21表示第i層之金屬層。圖22表示第 上之第2層之金屬層。圖2 曰之孟屬層和其 甘…… 表不第1層與第2層之金屬展 其上之弟3層之金屬層和更其上之第4金屬層。、屬層、 參照圖2卜即使在多個之標準單元之 準單元之情況同樣地,第】層之金屬層和2^^票 平面佈置構造,在高速單元和高積體單元均為相之同層之各個之 -^=2^23,即使在多個之縣單元之纽,亦與單 之“丰mb關樣地,第2層之金屬 =:一 _一速單:Further, each of the signal lines SLU3, SLU4 is formed in a standard unit of the high speed unit. Each of the signal lines SLU3 and SUJ4 extends in the χ direction of the figure (that is, in the same direction as the direction in which the upper layer wirings G_ and v are extended in the top view), the boundary of the fresh unit area of the '1⁄4 speed single TL' . The wire SLU3 is electrically connected to the signal line SLU via the through hole VH1. Further, the signal line (4) is electrically connected to the signal line SLL2 via the via hole VH1. Further, in the standard cell β of the south integrated body unit, each of the signal lines (4) and (4) extends in the Y direction in the drawing (i.e., in the plan view, in the direction orthogonal to the extending direction of the lower layer wiring G·, 卿). The signal line SLU1 is electrically connected to the t-line SLL via the through-hole TM. In addition, the signal line is electrically connected to the signal line SLL2 via the through-hole leg. Further, each of the signal lines SLU1 and SLU2 + L - LL ^ also extends in the Y direction in the figure, and traverses the boundary of the standard cell area of the entangled unit. The long-term δ 儿 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 97126596 200915488 Figure 21 shows the metal layer of the i-th layer. Fig. 22 shows the metal layer of the second layer of the first layer. Fig. 2 The genus of genus and its ...... The metal of the first and second layers is shown on the metal layer of the third layer and the fourth metal layer above it. And the genus layer, referring to FIG. 2, even in the case of the quasi-units of the plurality of standard cells, the metal layer of the 】 layer and the 2^^ ticket plane layout structure are in the high-speed unit and the high-integral unit. -^=2^23 of the same layer, even in the multiple units of the county, and the single "Feng mb off the plot, the second layer of metal =: a _ one speed list:

C 在高速單元,由第2層之金屬層構成之上層佈線_、 画,以比下層佈線GNDL、狐之線寬為小之線寬,形成沿 者標準單元之境界延伸。另外由第2層之金屬層構成之信號線 SLU在與下層佈線瓢、舰之延伸方向相同之方向延伸。 另外-方面’在高積體單元,未設有由第2層之金屬層構成 之上層佈線G_、刪。錯㈣2層之舖層構成之信號 線SLU在與下層佈線GNDL、VDDL之延伸方向正交之方向延伸: 在高速單元,如圖22所示,設有由第2層之金屬層構成之 上層佈線GNDU、VDDU。因此,不能使由第2層之金屬層構成 之信號線SLU延伸成跨越圖中Y方向上侧之標準單元和下侧之 寺示準單元之境界。因此,在高速單元,如圖23所示,當不使 用第3層之金屬層和第4層之金屬層時,就不能使在圖中γ方 97126596 41 200915488 向鄰接之標準單元内之元件彼此間,和名 和在圖中X方向鄰接之標 準單元内之元件彼此間’產生電氣連接。 ㈣,經由將第3層之金屬層構成之信號線如配置成跨越 圖中Y方向之上下之標準單元間之境界,可以使在圖中γ方向 鄰接之標準單元内之元件彼此間產生電氣連接。另外,經由將 第4層之金屬層構成之信號線SL4配置成跨越圖中χ方向之左 右之標準單元間之境界,可以使在圖中χ方向鄰接之標準單元 (' 内之元件彼此間產生電氣連接。 另外一方面,在高積體單元,如圖22所示,未設有由第2 層之金屬層構成之上層佈線GNDU、VDDU。因此,可以使由第2 層之金屬層構成之彳§ 5虎線SLU延伸成跨越圖中γ方向上下鄰接 之標準單元間之境界。因此,在高積體單元,如圖23所示, 即使不使用第4層之金屬層,經由使用第2層之金屬層和第3 層之金屬層,亦可以使在圖中Υ方向鄰接之標準單元内之元件 C.J 彼此間,和在圖中χ方向鄰接之標準單元内之元件彼此間,產 生電氣連接。 亦即’經由將由第2層之金屬層構成之信號線SLU配置成跨 越圖中Y方向之上下之標準單元間之境界,可以使在圖中γ方 - 向鄰接之標準單元内之元件彼此間,產生電氣速接。另外,經 由將由第3層之金屬層構成之信號線SL3配置成跨越圖中X方 向之左右之標準單元間之境界,可以使在圖中X方向鄰接之標 準單元内之元件彼此間,產生電氣連接。 97126596 42 200915488 依照本實施形態時,在高速單元之標準單元内,使_電位C In the high-speed unit, the upper layer wiring _, drawn by the metal layer of the second layer, is smaller than the line width of the lower layer wiring GNDL and the fox line, and forms a boundary extending along the boundary of the standard cell. Further, the signal line SLU composed of the metal layer of the second layer extends in the same direction as the lower layer wiring and the extending direction of the ship. Further, in the high-integration unit, the upper layer wiring G_ and the metal layer of the second layer are not provided. The signal line SLU composed of the layers of the two layers of the fourth layer extends in a direction orthogonal to the extending direction of the lower layer wirings GNDL and VDDL: In the high-speed unit, as shown in FIG. 22, the upper layer wiring is formed of the metal layer of the second layer. GNDU, VDDU. Therefore, the signal line SLU composed of the metal layer of the second layer cannot be extended to the boundary between the standard cell on the upper side in the Y direction and the temple display cell on the lower side in the figure. Therefore, in the high-speed unit, as shown in FIG. 23, when the metal layer of the third layer and the metal layer of the fourth layer are not used, the elements in the adjacent standard cells in the figure γ 97 97126596 41 200915488 cannot be made to each other. The elements in the standard cell adjacent to the name and the X direction in the figure are 'electrically connected to each other'. (4) By arranging the signal lines constituting the metal layer of the third layer so as to span the boundary between the standard cells above and below the Y direction in the figure, the components in the standard cells adjacent to each other in the γ direction in the figure can be electrically connected to each other. . Further, by arranging the signal line SL4 composed of the metal layer of the fourth layer so as to straddle the boundary between the standard cells on the left and right in the χ direction in the drawing, it is possible to cause the standard cells adjacent to each other in the χ direction in the drawing (the components in the ' On the other hand, in the high-integral unit, as shown in Fig. 22, the upper layer wirings GNDU and VDDU are not provided by the metal layer of the second layer. Therefore, the metal layer of the second layer can be formed.彳§ 5 The tiger line SLU extends to the boundary between the standard cells that are adjacent to each other in the γ direction in the figure. Therefore, in the high integrated unit, as shown in Fig. 23, even if the metal layer of the fourth layer is not used, the second layer is used. The metal layer of the layer and the metal layer of the third layer can also make electrical connection between the components CJ in the standard cell adjacent in the Υ direction in the figure and the components in the standard cell adjacent to the χ direction in the figure. That is, by arranging the signal line SLU composed of the metal layer of the second layer so as to span the boundary between the standard cells above and below the Y direction in the figure, the elements in the standard cell adjacent to the γ-direction in the figure can be made to each other. Production Further, by arranging the signal line SL3 composed of the metal layer of the third layer so as to straddle the boundary between the standard cells in the X direction in the drawing, the elements in the standard cells adjacent to each other in the X direction in the drawing can be made to each other. In the meantime, an electrical connection is made. 97126596 42 200915488 In accordance with this embodiment, the _ potential is made in the standard unit of the high speed unit.

之電源線分離成為下層佈線GNDL和上層佈線GNDU,並且使VDD 電狀電_錄成為下層佈線祖和上層佈線VDDU。因 此’當與電源線為單-層之情況比較時,因為增加電流路徑, 所以可以達成高速化。另外,因為不需要使電源線之線寬變大 就可以增加電流路徑,所以可以達成高積體化。 另外,上層佈線GNDU、VDDU之線寬f2a、W2b之各個,因為 大於下層佈線GNDL、狐之線寬Wla、Wlb,所以可以減小電 源線之電阻值。 另外,下層佈線GNDL、VDDL之線寬wia、Wlb之各個,因為 小於上層佈線GNDU、VDDU之線寬W2a '聊,所以就該部份佈 線之配置用之空的空間變大。因此在與下層佈線相同層配置其 他之佈線等變為容易,可以提高其他之佈線之平面佈置之自由 度。 〇 另外,下層佈線GNDL、VDDL和上層佈線GNDU、VDDU之各個 分別沿著標準單元之境界而延伸。因此,在鄰接之標準單元之 各個可以共用遠等之電源線。利用此種方式,因為不需要在 •每一標準單元個別地形成該等之電源線,所以可以達成高積體 - 化。 利用以上方式,可以獲得同時高速化和高積體化雙方之半導 體裝置。 ' 另外,依照本實施形態時,第丨層之金屬層和其下層之平面 97126596 43 200915488 佈置在高速單元和高積體單元共同化。因此,平面饰置之#叶 變為容易。該設計之P&R(PlaceandR〇ute:自動佈線配置)济 程如下。 首先,使第1層之金屬層和其下層之平面佈置成為言速單元 和高積體單元之共同佈置,登錄在標準單元資料庫。另外一方 面’準備登騎在高速單元之端子存取之通孔和使用在高 積體單元之端子存取之通孔之技術檔案。 在p紐流程,從登錄在標準單元資料庫之共同之佈置,追加 P紐技術檔案之登錄資料,藉以用來設計高速單元和高積體單 元。 用此種方式,因為使第1層之金屬層和其下層之平面佈置成 為在高速單元和高積體單元共同化,所以不需要準備就高速單 元和高積體單元之單元構造不同之多個之資料庫,使設計變為 容易。 〇 另外’只要變更第2層之金屬層和其上層之圖案,就在高積 體優先之邏輯區域HIL形成高速單元,並且在高性能優先之邏 輯區域HRL形成高積體單元。利用此種方式,因為在高速單元 * 和高積體單元可以使第2層之金屬層和其下層之平面圖案成 為相同,所以可以使能夠同時高速化和高積體化雙方之半導體 裝置之圖案設計變為容易。 另外在本實施形態中,在高積體優先之邏輯區域HIL形成高 速單元,並且在高性能優先之邏輯區域HRL形成高積體單元。 97126596 44 200915488 在該高速單元,電源線⑽佈線、GND佈線)分配給下層佈線 、祖和上層佈線圆、刪,此,當與電源料單 一層之情況比較時,因為增加電流路徑,所以可以達成高速化 另外在高積體單s,因為電源線⑽佈線、G·佈:):為 單-層,所料以達成#層方向之高積體化。料,因為電源 線(VD D佈線、G ND佈線)由單-層形成,所以由第2層之金屬 層構成之彳讀線可㈣高速單元自由地配置。例如如圖2〇所 示,可以使由第2層之金屬層構成之信號線,橫斷對下層佈線 GND、VDD在俯視圖中之正交方向延伸之標準單元之产界 用此種方式,可以使由第2層之金屬層構成之 置之自由度變高。 τ (實施形態6) 參照圖24 ’本實施形態之構造,當與圖 圃d所不之實 Ο 施形態5之構造比較時,其不同之點是具有高矜_抑_ 、,、 佈置對高速單元之平面佈置㈣旋轉9『之構造體單兀之平面 利用此種方式,由第3層之金屬層構成之= 、 0號線SL3之延伸 方向,可以在高速單元和高積體單元雙方成為相门口 另外,本實施形態之上述以外之構造, α 所示之實施形態5之構造大致相同,所以:、圖21圖23 同之元件槪,其朗科錢。 元件附加相 依照本實施形態時,由第3層之金屬層構成丄 延伸方向’ ϋ為可以在高速單元和高積體單=_線%3之 又為相同方向, 97126596 45 200915488 所以佈線設計變為容易。利用此種方式,可以達成積體度之提 高和自動佈線之收斂時間之縮短等。 料,在上述之實施形態1〜6 t ’成對之互相鄰接之標準單 元内之功能元件和佈線之平面佈置構造,亦可以對該等之標準 單元之境界線具有線_之躲。料是在多種之標準單元 間’設在標準單元境界之地線佈線和電源佈線,在單元境界成 為線對稱構造。利用此種方式,利用存在於單元境界上下之標 〇準單元可以使地線佈線和電源絲共同化,在佈置之縮小或 P&R(P1脱and R〇ute:自動佈線配置)使單元配置設計變為 容易。 另外在上述之實施形態4〜6 +,所說明之功能树是且有 CMOS反相n、_D等之元件,但是本發明並不只限於該者, 亦可以適用在CMOS之議或歷電路,正反器電路、三態緩 衝電路、和其以外之其他之功能元件。 本發明特別有利於適用在具有排列多個之標準單元之 體裝置。 此處所揭示之實施雜之财部如作舉烟,不被視為用 來作為限制者。本發明之範圍不是以±述之說明岐以申請專 利範圍表示’包含與中請專利範圍同等之意義和範圍内之所有 之變更。 【圖式簡單說明】 圖1是俯視目,用來概略地表示本發明之實施形態i之半導 97126596 46 200915488 體裝置之構造。 圖2是電路圖’用來表示形成在圖1所示之1個之標準單元 51a内之功能元件之電路構造之一實例。 圖3是俯視圖,用來概略地表示形成有圖2所示之電路之1 個之標準單元之構造。 圖4是沿著圖3之IV—IV線之概略剖視圖。 圖5是俯視圖,用來概略地表示本發明之實施形態2之半導 〇. 體裝置之排列有多個之標準單元之樣子。 圖6是沿著圖5之^ —VI線之概略剖視圖。 圖7是俯視圖’用來概略地表示在圖5之構造中在未形成有 功能元件之標準單元,形成有熔線之構造。 圖^是俯視圖’时概略地表示在圖5之構造巾,在未形成 有2轉之標準單元’電源線之上層佈線和下層佈線未連接 〇 體多絲概略地表示本發明之實施形態3之半導 有多個之標準單元之樣子。 圖1 0是》VL甚_ jgj θ 9之X —X線之概略剖視圖。 圖i 1 Κ電跃勵 置之電路構造。·,时絲本㈣之纽職4之半導職 圖13是椒畋> +表不圖所不之電路圖。 路之半導體裝置 用來表示構成圖11和圖12所示之電 97126596 、之+面佈置構造’財表示形成在轉體基板 47 200915488 之擴散區域與元件隔離區域,和形成在半導體基板上之閘電極 層專之多晶發層。 圖14是概略俯視圖,用來表示構成圖u和圖12所示之電 路之半導體裝置之平面佈置構造,圖中主要地表示多晶矽層和 其上之第1層之金屬層。 圖15是概略俯視圖,用來表示構成圖u和圖12所示之電 路之半導體装置之平面佈置構造,圖中表示第1層之金屬層和 C? 其上之弟2層之金屬層和第3層之金屬層。 圖16是概略俯視圖,用來表示圖15所示之補強佈線GNDS 和補強佈線VDDS之配置之樣子。 圖Π是俯視圖,用來概略地表示作為本發明之實施形態5 之半導體裝置之S0C晶片之構造。 圖18是概略俯視圖,用來表示形成在高積體優先之邏輯區The power supply line is separated into the lower layer wiring GNDL and the upper layer wiring GNDU, and the VDD is electrically recorded as the lower layer wiring ancestor and the upper layer wiring VDDU. Therefore, when compared with the case where the power supply line is a single-layer, since the current path is increased, the speed can be increased. In addition, since it is not necessary to increase the line width of the power supply line, the current path can be increased, so that high integration can be achieved. Further, since each of the line widths f2a and W2b of the upper layer wirings GNDU and VDDU is larger than the lower layer wiring GNDL and the line widths Wla and Wlb of the foxes, the resistance value of the power supply line can be reduced. Further, since each of the line widths wia and Wlb of the lower layer wirings GNDL and VDDL is smaller than the line width W2a of the upper layer wirings GNDU and VDDU, the space for arranging the portion of the wiring is increased. Therefore, it is easy to arrange other wirings and the like in the same layer as the lower layer wiring, and it is possible to improve the degree of freedom in layout of other wirings. 〇 In addition, each of the lower layer wirings GNDL and VDDL and the upper layer wirings GNDU and VDDU extend along the boundary of the standard cell. Therefore, a distant power line can be shared by each of the adjacent standard cells. In this way, since it is not necessary to form the power lines individually in each standard cell, it is possible to achieve high integration. According to the above method, it is possible to obtain a semiconductor device which is both high-speed and high-integrated at the same time. Further, according to the present embodiment, the metal layer of the second layer and the plane of the lower layer thereof are arranged in a high-speed unit and a high-integral unit. Therefore, the #叶叶 of the flat decoration becomes easy. The P&R (PlaceandR〇ute) configuration of this design is as follows. First, the plane of the metal layer of the first layer and the lower layer thereof are arranged to be a common arrangement of the speech rate unit and the high integration unit, and are registered in the standard unit database. On the other hand, the technical file of the through hole for accessing the terminal of the high speed unit and the through hole for accessing the terminal of the high integrated unit are prepared. In the p-news process, from the common arrangement of the registration in the standard unit database, the registration data of the P-technical file is added to design the high-speed unit and the high-integration unit. In this way, since the plane of the metal layer of the first layer and the plane of the lower layer are arranged to be common to the high-speed unit and the high-integral unit, it is not necessary to prepare a plurality of different unit configurations of the high-speed unit and the high-integral unit. The database makes design easy. 〇 In addition, as long as the metal layer of the second layer and the pattern of the upper layer are changed, a high-speed cell is formed in the high-product priority logic region HIL, and a high-integral cell is formed in the high-performance priority logic region HRL. In this manner, since the planar pattern of the metal layer of the second layer and the lower layer can be made the same in the high-speed cell* and the high-integral cell, the pattern of the semiconductor device capable of both high speed and high integration can be obtained. Design becomes easy. Further, in the present embodiment, the high-speed unit is formed in the high-product priority logic region HIL, and the high-product unit is formed in the high-performance-priority logic region HRL. 97126596 44 200915488 In the high-speed unit, the power line (10) wiring and GND wiring are allocated to the lower layer wiring, the ancestor and the upper layer wiring circle, and deleted. When compared with the single layer of the power supply material, the current path can be increased because of the increase of the current path. In addition, the high-speed integrated single s is because the power supply line (10) wiring, G·cloth:): is a single-layer, and it is expected to achieve a high integration of the # layer direction. Since the power supply line (VD D wiring, G ND wiring) is formed of a single layer, the 彳 reading line composed of the metal layer of the second layer can be freely arranged (4). For example, as shown in FIG. 2A, the signal line formed of the metal layer of the second layer can be made to cross the standard of the standard cell in which the lower layer wiring GND and VDD extend in the orthogonal direction in the plan view. The degree of freedom in forming the metal layer of the second layer is increased. τ (Embodiment 6) Referring to Fig. 24', the structure of this embodiment is different from the structure of the embodiment 5 of Fig. d, and the difference is that it has a high 矜 抑 _, 、, arrangement pair Planar arrangement of high-speed unit (4) Rotating 9" The plane of the structure of the structure is formed by the metal layer of the third layer = the extension direction of the line 0 of the 0 line, which can be used in both the high-speed unit and the high-integral unit In addition, in the structure other than the above-described embodiment of the present embodiment, the structure of the fifth embodiment shown by α is substantially the same, and therefore, Fig. 21 and Fig. 23 are the same components, and Netac is the same. According to this embodiment, the element-added phase is composed of the metal layer of the third layer, and the direction of extension ' can be the same direction in the high-speed unit and the high-product unit _ line %3, 97126596 45 200915488 For the sake of ease. In this way, it is possible to achieve an increase in the degree of integration and a reduction in the convergence time of the automatic wiring. It is to be noted that the planar arrangement of the functional elements and the wiring in the standard cells adjacent to each other in the above-mentioned Embodiments 1 to 6 t ′ can also be hidden by the boundary line of the standard cells. It is a ground wiring and power wiring that is placed between standard cells in a variety of standard cells, and is a line-symmetric structure at the cell boundary. In this way, the ground wiring and the power supply wire can be made common by using the standard unit existing above and below the unit boundary, and the unit is configured in the reduction of the arrangement or P&R (P1 and R:) Design becomes easy. Further, in the above-described fourth to sixth embodiments, the function tree described above is an element having CMOS inverted n, _D, etc., but the present invention is not limited to this, and can be applied to a CMOS discussion or calendar circuit. A counter circuit, a tri-state buffer circuit, and other functional components other than the counter circuit. The present invention is particularly advantageous for use in a body device having a plurality of standard cells arranged in series. The implementation of the Miscellaneous Treasury as disclosed herein is not considered to be used as a restrictor. The scope of the present invention is defined by the scope of the claims BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a plan view schematically showing the configuration of a semiconductor device of a semiconductor guide of the embodiment i of the present invention. Fig. 2 is a circuit diagram showing an example of a circuit configuration of functional elements formed in one of the standard cells 51a shown in Fig. 1. Fig. 3 is a plan view schematically showing the configuration of a standard unit in which one of the circuits shown in Fig. 2 is formed. Fig. 4 is a schematic cross-sectional view taken along line IV-IV of Fig. 3. Fig. 5 is a plan view schematically showing a state in which a plurality of standard cells are arranged in a semiconductor device according to a second embodiment of the present invention. Fig. 6 is a schematic cross-sectional view taken along line VI-VI of Fig. 5; Fig. 7 is a plan view showing a structure in which a fuse is formed in a standard unit in which a functional element is not formed in the structure of Fig. 5; Fig. 2 is a plan view of the structure of Fig. 5, and the upper layer wiring and the lower layer wiring of the standard unit' without the two-turn power supply line are not connected to the body multifilament, and the third embodiment of the present invention is schematically shown. The semi-conductor has a number of standard cells. Figure 10 is a schematic cross-sectional view of the X-X line of "VL" _ jgj θ 9 . Figure i 1 电路 Electrical jump circuit configuration. ·, Shi Siben (four) of the new job 4 half of the guide Figure 13 is the pepper 畋 + + 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表 表The semiconductor device of the circuit is used to indicate that the electric surface structure of the electric circuit 97126596 shown in FIG. 11 and FIG. 12 is formed in the diffusion region and the element isolation region formed on the rotating substrate 47 200915488, and the gate formed on the semiconductor substrate. The electrode layer is specially designed for polycrystalline hair layers. Fig. 14 is a schematic plan view showing the planar arrangement of the semiconductor device constituting the circuit shown in Figs. 9 and 12, and mainly shows the polysilicon layer and the metal layer of the first layer thereon. Figure 15 is a schematic plan view showing the planar arrangement of the semiconductor device constituting the circuit shown in Figures u and 12, showing the metal layer of the first layer and the metal layer of the second layer of the C? 3 layers of metal. Fig. 16 is a schematic plan view showing the arrangement of the reinforcing wiring GNDS and the reinforcing wiring VDDS shown in Fig. 15. The drawing is a plan view schematically showing the structure of the SOC wafer as the semiconductor device of the fifth embodiment of the present invention. Figure 18 is a schematic plan view showing the logic region formed in the high product priority

域HIL之南速單元,和形成在高性能優先之邏輯區域hRL ϋ 1積體單元之平面佈置構造,圖中表示形成在半導體基板之 擴政區域與凡件隔離區域,和形成在半導體基板上之間電極層 等之多晶發層。a south-speed unit of the domain HIL, and a planar arrangement structure of the integrated unit of the high-performance-priority logic region hRL ϋ 1 , which is formed on the semiconductor substrate and the isolation region of the semiconductor substrate, and is formed on the semiconductor substrate A polycrystalline layer between the electrode layers and the like.

/ 19 π概略俯用來表示形成在高積體優先之邏輯區 " > 之巧速單70 ’和形成在高性能優先之邏輯區域HRL 積體單元之平面佈置構造,圖中主要地表示多晶珍層和其 上之第1層之金屬層。 ® 20 俯視圖’絲表示形成在高積體優先之邏輯區 97126596 48 200915488 , 之鬲迷單元,和形成在高性能優先之邏輯區域hrl 之回積體早TL之平面佈置構造,圖中表示第i層之金屬層和其 上之第2層之金屬層。 圖21是概略俯視圖,用來表示在高積體優先之邏輯區域HIL 以兩速早兀形成多個之標準單元,並且在高性能優先之邏輯區 戍HRL以呵積體單元形成多個之標準單元之情況時之平面佈 置構造,圖巾表示第1層之金屬層。 1 圖22是概略俯,從下層起依序地表示在高積體優先之 邈輯區域HIL以高速單元形成多個之標準單元,並且在高性能 優先之邏輯區域HRL以高積體單元形成多個之標準單元之情 況時之平面佈置構造,圖中表示第】層之金屬層和其上之第月 2 層之金屬層。 、四圖23是概略俯視圖’從下層起依序地表示在高積體優先之 邈輯區域HIL以高速單元形成多個之標準單元,並且在高性能 /優先之邏輯區域祖以高積體單元形成多個之標準單元讀 況時之平面佈置構造,圖中表示第1層與第2層之金屬層二 上之第3層之金屬層、和更在其上之第4金屬層。 / 24是俯視圖,絲概略地表示具有作為本發明之實施形 :之半導體裝置之高速單元和高積體單元雙方之I置之構 【主要元件符號說明】 1 P型井區域 97126596 49 200915488/ 19 π 俯 俯 用来 用来 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略 概略A polycrystalline layer and a metal layer of the first layer thereon. ® 20 top view 'wire' indicates the formation of the high-product priority logic area 97126596 48 200915488, and the planar arrangement of the back-body TL formed in the high-performance priority logical region hrl, the figure shows the i a metal layer of the layer and a metal layer of the second layer thereon. Figure 21 is a schematic plan view showing that a plurality of standard cells are formed at a high speed in the logic region HIL at a high speed, and a plurality of standard cells are formed in a high performance priority logic region 戍HRL. In the case of a unit, the planar arrangement is constructed, and the towel represents the metal layer of the first layer. 1 is a schematic diagram showing, in order from the lower layer, a plurality of standard cells are formed in a high-speed-preferred region HIL in a high-speed cell, and a high-performance-priority logical region HRL is formed in a high-integral cell. In the case of a standard unit, the planar arrangement is shown in the figure, which shows the metal layer of the first layer and the metal layer of the second layer of the second layer. FIG. 23 is a schematic plan view of the standard unit in which a plurality of high-speed unit-priority regions HIL are formed in a high-speed unit from the lower layer, and the high-performance/priority logic region is a high-level integrated unit. A planar arrangement structure in which a plurality of standard cell read conditions are formed, and the metal layer of the third layer on the metal layer 2 of the first layer and the second layer and the fourth metal layer further thereon are shown. / 24 is a plan view, and the wire schematically shows the structure of the high-speed unit and the high-level unit of the semiconductor device which is the embodiment of the present invention. [Main element symbol description] 1 P-type well region 97126596 49 200915488

2 n型井區域 3 元件隔離區域 11a >及極區域 lib 源極區域 12 閘絕緣層 13 閘電極層 15 p區域 21a >及極區域 21b 源極區域 22 閘絕緣層 23 閘電極層 25 n+區域 31A 層間絕緣層 31a 接觸孔 31B 層間絕緣層 31b 佈線用溝 32a〜32h 佈線層 32βι ' 32θ2 信號線 33 層間絕緣層 33a 通孔(通溝) 33b 佈線用溝 34a〜34d 佈線層 97126596 50 200915488 40 熔線 50 半導體裝置 51 標準單元區域 51a 標準單元 52 I/O單元區域 A、B、C、Y 端子 AR 邏輯以外之區域 BU1、BU2、BU3 緩衝器形成區域 CH 接觸孔 GE 閘電極層 GND 電位 GNDL 、 GNDL1 、 GNDL2 下層佈線 GNDS 補強佈線 GNDU、GNDU1、GNDU2 上層佈線2 n-type well region 3 element isolation region 11a > and polar region lib source region 12 gate insulating layer 13 gate electrode layer 15 p region 21a > and pole region 21b source region 22 gate insulating layer 23 gate electrode layer 25 n+ Area 31A Interlayer insulating layer 31a Contact hole 31B Interlayer insulating layer 31b Wiring grooves 32a to 32h Wiring layer 32β' 32θ2 Signal line 33 Interlayer insulating layer 33a Via hole (passing groove) 33b Wiring groove 34a to 34d Wiring layer 97126596 50 200915488 40 Fuse 50 Semiconductor device 51 Standard cell region 51a Standard cell 52 I/O cell region A, B, C, Y terminal AR Other than logic BU1, BU2, BU3 Buffer forming region CH Contact hole GE Gate electrode layer GND Potential GNDL , GNDL1 , GNDL2 Lower layer wiring GNDS Reinforced wiring GNDU, GNDU1, GNDU2 Upper layer wiring

HIL 高積體優先邏輯區域 HRL 高性能優先邏輯區域 IN 反相器 ΝΑΙ、NA2 NAND閘形成區域 NIR、NR n+區域 NON 非電路構成區域 NT、NT1 〜NT3、NT11 〜NT21 nMOS 電晶體 PIR、PR卜 PR2 p+區域 97126596 51 200915488 Ρτ 配置間距 ΡΤ、ΡΤ1 〜ΡΤ3、ΡΤ11 〜ΡΤ21 pMOS 電晶體HIL high product priority logic region HRL high performance priority logic region IN inverter NA, NA2 NAND gate formation region NIR, NR n+ region NON non-circuit configuration region NT, NT1 to NT3, NT11 to NT21 nMOS transistor PIR, PR PR2 p+ area 97126596 51 200915488 Ρτ Configure the pitch ΡΤ, ΡΤ1 ΡΤ3, ΡΤ11 ΡΤ21 pMOS transistor

Pv 配置間距 SD 源極/汲極區域 SL1〜SL4 、 SLL1〜SLL4 信號線 SLU1-SLU4 信號線 SOC 晶片糸統 SUB 半導體基板 VDD 電位 VDDL 下層佈線 VDDS 補強佈線 VDDU 上層佈線 VH1 ' VH2 通孔 線寬Pv Configuration pitch SD source/drain region SL1 to SL4, SLL1 to SLL4 signal line SLU1-SLU4 signal line SOC chip system SUB semiconductor substrate VDD potential VDDL lower layer wiring VDDS reinforcing wiring VDDU upper layer wiring VH1 'VH2 through hole line width

Wla、Wla丨、Wla2、Wlb、W2a、W2ai、W2a2、W2b 97126596 52Wla, Wla丨, Wla2, Wlb, W2a, W2ai, W2a2, W2b 97126596 52

Claims (1)

200915488 七、申請專利範圍: L種半導體裝置’具有被㈣之乡健料元(standard Cell);如此之半導财置,其具備有: 功能兀件,被包含在上述標準單元;和 包源線’電氣連接到上述功能元件,並且具有下層佈線和上 述下層佈、線具有沿著互相鄰接之上述標帛單元之境 ( 界而在上述境界上延伸之部份; 上述上層料在俯視圖巾,具有位槪上述下層佈線在上述 標準單元内侧之部份; 上述功能元件經由上述上層佈線電氣連制上述下層佈線。 2·如申請專利範圍第丨項之半導體裝置,其中, 更具備有:電氣連接到上述功能元件之信號線;和 上述信號線在俯視财,被配置成位於上述魏元件與上述 以上層佈線之連接部,和在上述下層佈線之上述境界上延伸 份之間。 3·如申請專利難第丨項之半導體裝置,其中, 在配置有上述功能元件之上述標準單元内,使上述上層佈線 和上述下層佈線連接。 4.如申請專利範圍第1項之半導體裝置,其中, 在未包含上述功能元件之上述標準單元内,使上述上層佈線 和上述下層佈線連接。 97126596 53 200915488 5.如申請專利範圍第4項之半導體裝置,其中, 更具備m倾置在未包含上述功能元件之上述標準 單元内’而且電氣連接到上述下層佈線。 6_如巾請專利範圍第1項之半導體裝置,其中, 上述上層佈線具有沿著上述標準單元境界,而在上述境界上 延伸之部份;和 在上述上層佈線之上述境界上延伸部份之線寬,大於在上述 G下層佈線之上述境界上延伸部份之線寬。 7.種半導體裝置’具有被排列之多個標準單元;如此之半 導體裝置,其具備有: 功能7L件,被包含在上述標準單元;和 第1電源線’電氣連接到上述功能元件,並且具有下層佈線 和上層佈線; 而上述下層佈線和上述上層佈線之各個互相電氣連接,而且 G具有沿著互相鄰接之上述標準單元之境界,而在上述境界上延 伸之部份;和 上述上層佈線在俯視圖中,具有比上述下層佈線為粗之線 見0 _ 8·如申請專利範圍第7項之半導體裝置,其中, 上述下層佈線和上述上層佈線利❹個之第1通孔電氣連 接;和 述夕们之第1通孔,以與構成上述功能元件之電晶體之配 97126596 54 200915488 置間距相同之間距而配置。 9.如申請專利範圍第7項之半導體裝置,其中, i相1電源線具有形成在上述上層佈線之上層之補強佈 線;和 上述補強佈線在俯視财,在與上述上層佈線正交之方向延 伸0 10·如申請專利範圍第9項之半導體裝置,其中, n更具财:形成在上述上層佈線和上述補強佈線之間之層間 絕緣層;和 上,層間絕緣層,在俯視圖中之上述上層佈線和上述補強佈 線之父又之1個交又部,具有用來使上述上層怖線和上述補強 佈線電氣連接之多個第2通孔。 11·如申請專利範圍第7項之半導體裝置,其中, 上述多叙標準單元包含第1鮮單元和第2標準單元; G 上述弟1標準單元包含有: ^述第1電源線,具有上述下層佈線和上述上層佈線;和 第L號線’在與上述上層佈線相同之層上延伸,而且在俯 視圖中在與上述下層佈線和上紅層佈線綱之方向延伸; 上述弟2標準單元包含有·· 第2電源線,只由在與上述下層佈線相同之層上延伸之佈線 層構成;和 第么號線在與上述上層佈線相同之層上延伸,而且在俯 97126596 55 200915488 視圖中在與上述佈線層正交之方向延伸。 Γ200915488 VII. Patent application scope: L kinds of semiconductor devices have the standard cell of (4); such a semi-conducting financial device, which has: functional components, which are included in the above standard unit; The wire 'electrically connected to the above functional element, and having the lower layer wiring and the lower layer cloth, the wire having a portion extending along the mutually adjacent target unit (the boundary extending over the boundary; the upper layer is in a top view towel, And a semiconductor device having the lower layer wiring disposed on the inner side of the standard unit; wherein the functional element is electrically connected to the lower layer wiring via the upper layer wiring. 2. The semiconductor device according to claim 2, further comprising: an electrical connection a signal line to the functional element; and the signal line is disposed between the above-mentioned Wei element and the above-mentioned layer wiring connection portion and the extension portion of the lower layer wiring in the above-mentioned upper layer wiring. A semiconductor device according to the third aspect of the invention, wherein, in the standard unit in which the functional element is disposed, 4. The semiconductor device according to the first aspect of the invention, wherein the upper layer wiring and the lower layer wiring are connected to the standard unit not including the functional element. 97126596 53 200915488 5 The semiconductor device of claim 4, wherein the semiconductor device is further disposed to be tilted in the standard unit not including the functional element and electrically connected to the lower layer wiring. 6_ a semiconductor device, wherein the upper layer wiring has a portion extending along the boundary of the standard cell and extending over the boundary; and a line width of the extended portion of the upper layer wiring is larger than the above-mentioned G lower layer wiring a line width of an extended portion of the boundary. 7. A semiconductor device 'having a plurality of standard cells arranged; such a semiconductor device having: a function 7L, included in the standard cell; and a first power supply line' Electrically connected to the above functional elements and having underlying wiring and upper wiring; and the lower layer Each of the wire and the upper layer wiring is electrically connected to each other, and G has a portion extending along the boundary between the standard cells adjacent to each other and extending over the boundary; and the upper layer wiring is thicker than the lower layer wiring in a plan view The semiconductor device of claim 7, wherein the lower layer wiring and the upper layer wiring are electrically connected to each of the first via holes; and the first via hole of the first layer is The semiconductor device of the seventh aspect of the present invention, wherein the i-phase 1 power supply line has a reinforcement formed on the upper layer of the upper layer wiring, is provided in the semiconductor device of the above-mentioned upper layer wiring. And the above-mentioned reinforcing wiring is extended in a direction orthogonal to the above-mentioned upper layer wiring. The semiconductor device according to the ninth aspect of the patent application, wherein n is more profitable: formed on the upper layer wiring and the above reinforcing wiring Interlayer insulating layer; and upper, interlayer insulating layer, said upper layer wiring and said reinforcing wiring in a top view The father has a cross-section and having a plurality of the upper layer for terror wiring line and electrically connected to the reinforcing of the second through-hole. The semiconductor device according to claim 7, wherein the plurality of standard units include a first fresh unit and a second standard unit; and the first unit 1 includes: a first power supply line having the lower layer The wiring and the upper layer wiring; and the line L' extend on the same layer as the upper layer wiring, and extend in the direction of the lower layer wiring and the upper red layer wiring in a plan view; the above-mentioned 2 standard unit includes a second power supply line consisting only of a wiring layer extending over the same layer as the lower layer wiring; and a second line extending over the same layer as the upper layer wiring, and in the view of the above-mentioned 97126596 55 200915488 The wiring layers extend in the direction orthogonal to each other. Γ 97126596 5697126596 56
TW097126596A 2007-07-25 2008-07-14 Semiconductor device TWI437665B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007193580 2007-07-25
JP2008137063A JP5293939B2 (en) 2007-07-25 2008-05-26 Semiconductor device

Publications (2)

Publication Number Publication Date
TW200915488A true TW200915488A (en) 2009-04-01
TWI437665B TWI437665B (en) 2014-05-11

Family

ID=40477685

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097126596A TWI437665B (en) 2007-07-25 2008-07-14 Semiconductor device

Country Status (4)

Country Link
JP (1) JP5293939B2 (en)
KR (1) KR20090012136A (en)
CN (1) CN101388391B (en)
TW (1) TWI437665B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5552775B2 (en) 2009-08-28 2014-07-16 ソニー株式会社 Semiconductor integrated circuit
JP5685457B2 (en) 2010-04-02 2015-03-18 ルネサスエレクトロニクス株式会社 Semiconductor integrated circuit device
JPWO2013018589A1 (en) * 2011-08-01 2015-03-05 国立大学法人電気通信大学 Semiconductor integrated circuit device
US8813016B1 (en) 2013-01-28 2014-08-19 Taiwan Semiconductor Manufacturing Company Limited Multiple via connections using connectivity rings
CN103546146B (en) * 2013-09-24 2016-03-02 中国科学院微电子研究所 Single-particle resistant transient pulse CMOS circuit
JP5776802B2 (en) * 2014-02-14 2015-09-09 ソニー株式会社 Semiconductor integrated circuit
US9653413B2 (en) * 2014-06-18 2017-05-16 Arm Limited Power grid conductor placement within an integrated circuit
US9454633B2 (en) * 2014-06-18 2016-09-27 Arm Limited Via placement within an integrated circuit
US11120190B2 (en) * 2017-11-21 2021-09-14 Advanced Micro Devices, Inc. Metal zero power ground stub route to reduce cell area and improve cell placement at the chip level
JP7140994B2 (en) 2018-08-28 2022-09-22 株式会社ソシオネクスト Semiconductor integrated circuit device
CN112771655A (en) * 2018-09-28 2021-05-07 株式会社索思未来 Semiconductor integrated circuit device and semiconductor package structure
JPWO2021192265A1 (en) * 2020-03-27 2021-09-30

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5923060A (en) * 1996-09-27 1999-07-13 In-Chip Systems, Inc. Reduced area gate array cell design based on shifted placement of alternate rows of cells
JP3672788B2 (en) * 2000-02-24 2005-07-20 松下電器産業株式会社 Cell layout structure and layout design method of semiconductor device
JP3718687B2 (en) * 2002-07-09 2005-11-24 独立行政法人 宇宙航空研究開発機構 Inverter, semiconductor logic circuit, static random access memory, and data latch circuit
JP4820542B2 (en) * 2004-09-30 2011-11-24 パナソニック株式会社 Semiconductor integrated circuit

Also Published As

Publication number Publication date
CN101388391A (en) 2009-03-18
JP5293939B2 (en) 2013-09-18
CN101388391B (en) 2012-07-11
JP2009049370A (en) 2009-03-05
KR20090012136A (en) 2009-02-02
TWI437665B (en) 2014-05-11

Similar Documents

Publication Publication Date Title
TW200915488A (en) Semiconductor device
US8264011B2 (en) Semiconductor device
US10163495B2 (en) Two-port SRAM connection structure
JP5629309B2 (en) Semiconductor device and test method thereof
JP4781040B2 (en) Semiconductor integrated circuit device
TWI358125B (en) New dual port cell structure
US11056489B2 (en) Integrated circuit devices including vertical field-effect transistors (VFETs)
TWI740555B (en) Semiconductor memory device
JP2013206905A (en) Semiconductor device and manufacturing method of the same
JP7315016B2 (en) semiconductor equipment
TWI692770B (en) Electronic circuit and electronic device including ternary content-addressable memory and method thereof
JPH09283632A (en) Semiconductor integrated circuit device
JP2023171884A (en) Semiconductor device
KR102514097B1 (en) Semiconductor device and method for fabricating the same
JP2024001284A (en) Semiconductor device
JPH1041406A (en) Semiconductor device
TW202036857A (en) Standard cell
US8994098B2 (en) Semiconductor device including pillar transistors
TWI835908B (en) Standard cell
JP2020004763A (en) Semiconductor device
JP7306470B2 (en) semiconductor equipment
JP2009158728A (en) Semiconductor device
JP2007027160A (en) Semiconductor integrated circuit
JP2011044651A (en) Memory

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees