TWI435947B - Preparation of metal oxide thin film via cyclic cvd or ald - Google Patents

Preparation of metal oxide thin film via cyclic cvd or ald Download PDF

Info

Publication number
TWI435947B
TWI435947B TW098111881A TW98111881A TWI435947B TW I435947 B TWI435947 B TW I435947B TW 098111881 A TW098111881 A TW 098111881A TW 98111881 A TW98111881 A TW 98111881A TW I435947 B TWI435947 B TW I435947B
Authority
TW
Taiwan
Prior art keywords
group
carbon atoms
metal
alicyclic
fluoroalkyl
Prior art date
Application number
TW098111881A
Other languages
Chinese (zh)
Other versions
TW200944612A (en
Inventor
Moo-Sung Kim
Xinjian Lei
Daniel P Spence
Sang-Hyun Yang
Original Assignee
Air Prod & Chem
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Prod & Chem filed Critical Air Prod & Chem
Publication of TW200944612A publication Critical patent/TW200944612A/en
Application granted granted Critical
Publication of TWI435947B publication Critical patent/TWI435947B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/409Oxides of the type ABO3 with A representing alkali, alkaline earth metal or lead and B representing a refractory metal, nickel, scandium or a lanthanide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Description

通過循環性CVD或ALD製備金屬氧化物薄膜的方法Method for preparing metal oxide film by cyclic CVD or ALD 引用的相關申請Related applications cited

本專利申請要求2008年4月11日提交的美國臨時專利申請序列號US61/044,270的優先權。This patent application claims priority to US Provisional Patent Application Serial No. 61/044,270, filed on Apr. 11, 2008.

本發明涉及利用循環CVD或ALD製備金屬氧化物薄膜。This invention relates to the preparation of metal oxide films using cyclic CVD or ALD.

作為下一代動態隨機記憶體(DRAM)器件的有前景的電容器材料之一,高介電常數(高k)薄膜比如SrTiO3 (STO)和Ba(Sr)TiO3 (BST)已得到了廣泛的研究。鑒於此用途,需要在三維(3-D)電容器結構式上實施膜厚度和成分都非常均勻的沉積。As one of the promising capacitor materials for next-generation dynamic random access memory (DRAM) devices, high dielectric constant (high-k) films such as SrTiO 3 (STO) and Ba(Sr)TiO 3 (BST) have been widely used. the study. In view of this use, it is necessary to perform a very uniform deposition of film thickness and composition on a three-dimensional (3-D) capacitor structure.

近年來,人們利用各種源材料進行原子層沉積(ALD)製程的研究,以滿足這些要求。由於其獨特的自限制沉積機制,ALD是最有前景的技術之一。利用逐層膜沉積製程,ALD通常可顯示出低的沉積溫度、在高縱橫比特徵件(feature)上優良的步進覆蓋度、良好的厚度均勻性以及精確的厚度控制。In recent years, various source materials have been used for the study of atomic layer deposition (ALD) processes to meet these requirements. ALD is one of the most promising technologies due to its unique self-limiting deposition mechanism. With a layer-by-layer film deposition process, ALD typically exhibits low deposition temperatures, excellent step coverage over high aspect ratio features, good thickness uniformity, and precise thickness control.

由於具有比如較高的沉積速率和較低的沉積溫度等優點,同時也保持了ALD的優點,電漿增強的ALD(PEALD)也得到了發展。Plasma enhanced ALD (PEALD) has also evolved due to advantages such as higher deposition rates and lower deposition temperatures while maintaining the advantages of ALD.

關於前驅物材料,例如可利用雙(2,2,6,6-四甲基-3,5-庚二酮酸(dionato))鍶、即(Sr(thd)2 )作為Sr的前驅物,TTIP(Ti-四異丙基氧化物)作為Ti的前驅物,並且O3 、O2 電漿或水蒸氣作為氧化劑來沉積STO薄膜。尤其是對於Sr的前驅物,儘管已廣泛研究了Sr(thd)2 和一些其他的Sr的前驅物,但這些前驅物仍有局限,比如蒸氣壓太低以及低溫熱分解等。As the precursor material, for example, bis(2,2,6,6-tetramethyl-3,5-heptadioic acid) can be used, that is, (Sr(thd) 2 ) as a precursor of Sr. TTIP (Ti-tetraisopropyl oxide) is used as a precursor of Ti, and O 3 , O 2 plasma or water vapor is used as an oxidant to deposit an STO film. Especially for the precursor of Sr, although the precursors of Sr(thd) 2 and some other Sr have been extensively studied, these precursors are still limited, such as low vapor pressure and low temperature thermal decomposition.

因此,仍然需要開發一種適宜的第2族或第4族金屬的前驅物以及相應的沉積製程,特別重要的是找到具有相似配位體的第2族和第4族金屬的錯合物,從而使得它們的物理和化學性能相一致,比如熔點、溶解度、蒸發行為以及相對於半製品型的半導體表面的反應性方面相一致。因此,第2族和第4族金屬的錯合物可被溶解在溶劑中,並且被傳輸至反應室,以沉積用於DRAM的多成分金屬氧化物薄膜。Therefore, there is still a need to develop a suitable precursor of a Group 2 or Group 4 metal and a corresponding deposition process, and it is particularly important to find a complex of a Group 2 and Group 4 metal having a similar ligand, thereby Their physical and chemical properties are consistent, such as melting point, solubility, evaporation behavior, and reactivity with respect to semi-product type semiconductor surfaces. Therefore, the complex of the Group 2 and Group 4 metals can be dissolved in a solvent and transferred to the reaction chamber to deposit a multi-component metal oxide film for DRAM.

本發明是一種在基材上製備金屬氧化物膜的循環沉積方法,它包括如下步驟:將金屬酮亞胺鹽(ketoiminate)引入沉積室,並在加熱的基材上沉積金屬酮亞胺鹽;吹掃沉積室,以去除未反應的金屬酮亞胺鹽和任何副產物;將含氧源引至加熱的基材;吹掃沉積室以去除任何副產物;重複循環的沉積製程,直至形成了所需厚度的膜。The present invention is a cyclic deposition method for preparing a metal oxide film on a substrate, comprising the steps of: introducing a metal ketoiminate into a deposition chamber, and depositing a metal ketimine salt on the heated substrate; Purging the deposition chamber to remove unreacted metal ketimine salt and any by-products; directing the oxygen-containing source to the heated substrate; purging the deposition chamber to remove any by-products; repeating the cyclic deposition process until formation A film of the desired thickness.

本發明描述了一種製備金屬或多成分金屬氧化物膜,比如氧化鍶、氧化鈦或鈦酸鍶的方法,所述膜可用來生產半導體器件。本發明公開的方法所提供的金屬或多成分金屬氧化物膜的介電常數顯著高於傳統的熱二氧化矽、氮化矽或鋯/鉿氧化物介電材料。The present invention describes a method of preparing a metal or multi-component metal oxide film, such as hafnium oxide, titanium oxide or barium titanate, which film can be used to produce semiconductor devices. The metal or multi-component metal oxide film provided by the method disclosed by the present invention has a dielectric constant that is significantly higher than that of a conventional thermal ceria, tantalum nitride or zirconium/niobium oxide dielectric material.

本發明使用循環化學氣相沉積(CCVD)或原子層沉積(ALD)技術來沉積金屬氧化物膜。在特定的實施方式中,通過電漿增強的ALD(PEALD)或電漿增強的CCVD(PECCVD)製程來沉積金屬氧化物膜。在該實施方式中,沉積溫度可以相對較低,例如為200-600℃,以控制達到DRAM或其他半導體應用領域所要求的膜性能的具體規範。本發明所公開的方法利用金屬酮亞胺鹽前驅物和氧源來形成金屬氧化物膜。The present invention uses a cyclic chemical vapor deposition (CCVD) or atomic layer deposition (ALD) technique to deposit a metal oxide film. In a particular embodiment, the metal oxide film is deposited by a plasma enhanced ALD (PEALD) or plasma enhanced CCVD (PECCVD) process. In this embodiment, the deposition temperature can be relatively low, for example 200-600 ° C, to control specific specifications for film properties required to achieve DRAM or other semiconductor applications. The disclosed method utilizes a metal ketimide salt precursor and an oxygen source to form a metal oxide film.

典型的方法描述如下:A typical method is described below:

步驟1:使金屬酮亞胺鹽前驅物的蒸氣與加熱的基材接觸,以使該前驅物化學吸附在加熱的基材上;Step 1: contacting the vapor of the metal ketimine salt precursor with the heated substrate to chemically adsorb the precursor on the heated substrate;

步驟2:清除任何未被吸附的金屬酮亞胺鹽前驅物以及任何的副產物;Step 2: remove any unabsorbed metal ketimine salt precursor and any by-products;

步驟3:將氧源引至加熱的基材上,以使其與吸附的金屬酮亞胺鹽前驅物反應;和Step 3: introducing an oxygen source onto the heated substrate to react with the adsorbed metal ketimide precursor; and

步驟4:清除任何未反應的氧源以及副產物。Step 4: Remove any unreacted oxygen source and by-products.

在一個實施方式中,酮亞胺鹽前驅物選自由以下結構所代表的組:In one embodiment, the ketimine salt precursor is selected from the group consisting of the following structures:

其中,M是包括鈣、鎂、鍶、鋇在內的第2族二價金屬。可利用一系列的有機基團,例如其中R1 選自由具有1-10個碳原子且優選含有1-6個碳原子的烷基、氟烷基、脂環基以及具有6-12個碳原子的芳基組成的組;R2 選自由氫、具有1-10個碳原子且優選含有1-6個碳原子的烷基、烷氧基、脂環基以及具有6-12個碳原子的芳基組成的組;R3 選自由具有1-10個碳原子且優選含有1-6個碳原子的烷基、氟烷基、脂環基以及具有6-12個碳原子的芳基組成的組;R4 是帶有或不帶有對掌性碳原子的C2-3 直鏈或支鏈烷基橋鍵,由此與金屬中心構成五元或六元配位環。實例性的烷基橋鍵包括但不限於-(CH2 )2 -,-(CH2 )3 -,-CH(Me)CH2 -,-CH2 CH(Me)-;R5-6 獨立地選自由具有1-10個碳原子且優選含有1-6個碳原子的烷基、氟烷基、脂環基以及具有6-12個碳原子的芳基組成的組,並且它們能夠連接從而形成含碳、氧或氮原子的環。結構A的金屬酮亞胺鹽優選選自由Sr{t BuC(O)CHC(NCH2 CH2 N Me2 )Me}2 滿Sr{t BuC(O)CHC(NCH2 CH2 NEt2 )Me}2 ,Sy{t BuC(O)CHC(NCH(Me)CH2 NMe2 )Me}2 和Sr{t BuC(O)CHC(NCH(Me)CH2 NEt2 )Me}2 組成的組。 Among them, M is a Group 2 divalent metal including calcium, magnesium, strontium, and barium. A series of organic groups may be utilized, for example wherein R 1 is selected from an alkyl group having from 1 to 10 carbon atoms and preferably from 1 to 6 carbon atoms, a fluoroalkyl group, an alicyclic group, and having 6 to 12 carbon atoms a group consisting of aryl groups; R 2 is selected from the group consisting of hydrogen, an alkyl group having 1 to 10 carbon atoms and preferably having 1 to 6 carbon atoms, an alkoxy group, an alicyclic group, and an aromatic having 6 to 12 carbon atoms. a group consisting of a group; R 3 is selected from the group consisting of an alkyl group having 1 to 10 carbon atoms and preferably 1 to 6 carbon atoms, a fluoroalkyl group, an alicyclic group, and an aryl group having 6 to 12 carbon atoms. R 4 is a C 2-3 linear or branched alkyl bridge with or without a palmitic carbon atom, thereby forming a five- or six-membered coordination ring with the metal center. Exemplary alkyl bridges include, but are not limited to, -(CH 2 ) 2 -, -(CH 2 ) 3 -, -CH(Me)CH 2 -, -CH 2 CH(Me)-; R 5-6 independently Is selected from the group consisting of an alkyl group having 1 to 10 carbon atoms and preferably 1 to 6 carbon atoms, a fluoroalkyl group, an alicyclic group, and an aryl group having 6 to 12 carbon atoms, and they are capable of linking A ring containing a carbon, oxygen or nitrogen atom is formed. The metal ketimine salt of structure A is preferably selected from Sr{ t BuC(O)CHC(NCH 2 CH 2 N Me 2 )Me} 2 full Sr{ t BuC(O)CHC(NCH 2 CH 2 NEt 2 )Me} 2 , a group consisting of Sy{ t BuC(O)CHC(NCH(Me)CH 2 NMe 2 )Me} 2 and Sr{ t BuC(O)CHC(NCH(Me)CH 2 NEt 2 )Me} 2 .

在另一個實施方式中,酮亞胺鹽前驅物選自由以下結構所代表的組: 其中,M是包括鈦、鋯或鉿在內的第4族四價金屬。可利用一系列的有機基團,例如其中R7 選自由具有1-10個碳原子且優選含有1-6個碳原子的烷基、氟烷基、脂環基以及具有6-12個碳原子的芳基組成的組;R8-9 選自由氫、具有1-10個碳原子且優選含有1-6個碳原子的烷基、烷氧基、脂環基以及具有6-12個碳原子的芳基組成的組;R10 是帶有或不帶有對掌性碳原子的C2-3 直鏈或支鏈烷基橋鍵,與金屬中心構成五元或六元配位環。實例性的烷基橋鍵包括但不限於-(CH2 )2 -,-(CH2 )3 -,-CH(Me)CH2 -,-CH2 CH(Me)-。In another embodiment, the ketimine salt precursor is selected from the group consisting of the following structures: Wherein M is a Group 4 tetravalent metal including titanium, zirconium or hafnium. A series of organic groups may be utilized, for example wherein R 7 is selected from alkyl, fluoroalkyl, alicyclic and having 6 to 12 carbon atoms having from 1 to 10 carbon atoms and preferably from 1 to 6 carbon atoms Group of aryl groups; R 8-9 is selected from the group consisting of hydrogen, an alkyl group having 1 to 10 carbon atoms and preferably having 1 to 6 carbon atoms, an alkoxy group, an alicyclic group, and having 6 to 12 carbon atoms a group consisting of aryl groups; R 10 is a C 2-3 linear or branched alkyl bridge with or without a palmitic carbon atom, and a five- or six-membered coordination ring with a metal center. Exemplary alkyl bridges include, but are not limited to, -(CH 2 ) 2 -, -(CH 2 ) 3 -, -CH(Me)CH 2 -, -CH 2 CH(Me)-.

本發明所公開的方法可包括一種或多種吹掃氣體。在清除未反應的反應物和/或副產物的步驟中,所使用的吹掃氣體是不與前驅物反應的惰性氣體,並且優選可以選自由Ar、N2 、He及其混合組成的組中的氣體。根據沉積方法,將吹掃氣體例如Ar輸送至反應器內,例如以約0.1-1000秒輸送約10-2000sccm的流速提供氣體,由此清除仍存在於反應室內的未反應物和任何副產物。The disclosed methods can include one or more purge gases. In the step of removing unreacted reactants and/or by-products, the purge gas used is an inert gas that does not react with the precursor, and may preferably be selected from the group consisting of Ar, N 2 , He, and mixtures thereof. gas. Depending on the deposition method, a purge gas, such as Ar, is delivered to the reactor, for example to provide a gas at a flow rate of about 10-2000 sccm for about 0.1-1000 seconds, thereby removing unreacted materials and any by-products still present in the reaction chamber.

反應器內、即沉積室內的基材溫度可優選低於約600℃,並且更優選低於約500℃,同時製程壓力可優選為約0.01托-約100托,並且更優選為約0.1托-約5托。The substrate temperature within the reactor, i.e., within the deposition chamber, may preferably be less than about 600 ° C, and more preferably less than about 500 ° C, while the process pressure may preferably be from about 0.01 Torr to about 100 Torr, and more preferably about 0.1 Torr - About 5 Torr.

步驟3中的氧源可以是選自由氧氣、氧電漿、水、水電漿、臭氧、一氧化二氮及其混合組成的組中的含氧源。The oxygen source in step 3 may be an oxygen-containing source selected from the group consisting of oxygen, oxygen plasma, water, water plasma, ozone, nitrous oxide, and mixtures thereof.

在輸送前驅物和氧源氣體的各個步驟中,可通過改變它們的輸送持續時間,來改變所得到的金屬氧化物膜的化學計量組成。對於多成分金屬氧化物膜而言,在步驟1中,可將選自結構“A”或“B”的酮亞胺鹽前驅物交替引入反應室。In each step of transporting the precursor and the oxygen source gas, the stoichiometric composition of the resulting metal oxide film can be varied by varying their delivery duration. For a multi-component metal oxide film, in step 1, a ketimine salt precursor selected from the structure "A" or "B" can be introduced alternately into the reaction chamber.

通過將酮亞胺鹽溶解於合適的溶劑或溶劑混合物中以根據所使用的溶劑或溶劑混合物製備出摩爾濃度為0.01-2M的溶液,可以採用直接的液體輸送法。本發明所使用的溶劑可包括任何相容的溶劑或它們的混合物,這包括脂肪烴、芳香烴、直鏈或環狀醚、酯、腈、醇、胺、聚胺和有機醯胺化合物,優選具有高沸點的溶劑,比如1,3,5-三甲基苯(沸點164℃)或N-甲基-2-吡咯烷酮(沸點202℃),並且更優選由極性溶劑比如四氫呋喃(THF)或N-甲基吡咯烷酮(NMP)和非極性溶劑比如十二烷組成的溶劑混合物。A direct liquid transport method can be employed by dissolving the ketimine salt in a suitable solvent or solvent mixture to prepare a solution having a molar concentration of from 0.01 to 2 M depending on the solvent or solvent mixture used. The solvent used in the present invention may include any compatible solvent or a mixture thereof, and includes aliphatic hydrocarbons, aromatic hydrocarbons, linear or cyclic ethers, esters, nitriles, alcohols, amines, polyamines, and organic decylamine compounds, preferably. A solvent having a high boiling point such as 1,3,5-trimethylbenzene (boiling point 164 ° C) or N-methyl-2-pyrrolidone (boiling point 202 ° C), and more preferably a polar solvent such as tetrahydrofuran (THF) or N a solvent mixture of methylpyrrolidone (NMP) and a non-polar solvent such as dodecane.

電漿產生製程包括:直接在反應器內產生電漿的直接電漿產生製程,或在反應器之外產生電漿並且將其輸送至反應器內的遠端電漿產生製程。The plasma generation process includes a direct plasma generation process that produces plasma directly within the reactor, or a plasma generated outside of the reactor and delivered to a remote plasma generation process within the reactor.

為了形成三元金屬氧化物膜,本發明也設計了循環沉積製程,其中,依次將多種前驅物引入沉積室,使之蒸發並且在形成所述三元金屬氧化物膜的條件下沉積在基材上。In order to form a ternary metal oxide film, the present invention also devises a cyclic deposition process in which a plurality of precursors are sequentially introduced into a deposition chamber, evaporated, and deposited on a substrate under conditions in which the ternary metal oxide film is formed. on.

本發明還設計可以將所得到的金屬氧化物膜曝露於電漿進行處理,以使所得到的多成分金屬氧化物膜緻密化。The present invention also contemplates that the obtained metal oxide film can be exposed to a plasma for treatment to densify the obtained multi-component metal oxide film.

本發明是一種有效沉積金屬氧化物或多成分金屬氧化物薄膜的方法,所述薄膜可用於半導體器件結構中。利用本發明,根據製程條件,可選擇使用原子層沉積ALD或CCVD方法來形成金屬氧化物膜。SUMMARY OF THE INVENTION The present invention is a method of efficiently depositing a metal oxide or multi-component metal oxide film which can be used in a semiconductor device structure. With the present invention, it is possible to selectively form a metal oxide film using an atomic layer deposition ALD or CCVD method depending on process conditions.

將基材表面交替曝露於不同的前驅物來進行ALD生長。其與CVD的區別在於,氣相前驅物之間彼此嚴格分隔開。在理想的ALD製程條件下,通過自限制控制的表面反應來實施膜的生長,如果表面飽和的話,則每種前驅物的脈衝長度以及沉積溫度對生長速度沒有影響。ALD growth is performed by alternately exposing the surface of the substrate to different precursors. It differs from CVD in that the gas phase precursors are strictly separated from each other. Under ideal ALD process conditions, the growth of the film is carried out by self-limiting controlled surface reactions. If the surface is saturated, the pulse length of each precursor and the deposition temperature have no effect on the growth rate.

可在比ALD製程更高的溫度範圍內實施CCVD製程,在CCVD中前驅物被分解。就前驅物的分隔開而言,CCVD區別於傳統的CVD。在CCVD中,按照次序並且完全以分隔開的方式將每種前驅物引入,但是在傳統的CVD中,所有的反應物前驅物被引入反應器,並且使之在氣相中彼此之間互相反應。CCVD和傳統CVD的共有特徵是,二者都涉及前驅物的熱分解。The CCVD process can be performed in a higher temperature range than the ALD process in which the precursor is decomposed. CCVD is distinguished from conventional CVD in terms of the separation of precursors. In CCVD, each precursor is introduced in order and completely in a separate manner, but in conventional CVD, all of the reactant precursors are introduced into the reactor and are allowed to interact with each other in the gas phase. reaction. A common feature of CCVD and conventional CVD is that both involve thermal decomposition of the precursor.

本發明也是一種有效利用電漿增強的ALD_(PEALD)技術來沉積金屬氧化物膜從而製造半導體器件結構的方法。可利用CVD和典型的熱ALD方法來製備金屬氧化物膜,但是,利用PEALD可以提高沉積速度,並且已知PEALD改進了膜性能並且拓寬了加工視窗(process window)。The present invention is also a method for efficiently fabricating a metal oxide film by using a plasma enhanced ALD_(PEALD) technique to fabricate a semiconductor device structure. Metal oxide films can be prepared by CVD and typical thermal ALD methods, however, deposition speed can be improved by PEALD, and PEALD is known to improve film properties and broaden the process window.

實施例1Example 1

該實施例描述了利用溶解於1,3,5-三甲基苯的Sr的酮亞胺鹽前驅物Sr{t BuC(O)CHC(NCH2 CH2 NMe2 )Me}2 和O2 電漿來沉積SrO的CCVD。沉積溫度的範圍是200-400℃,並且利用帶有蒸發器的DLI(直接液體注射器)來輸送Sr前驅物。沉積室的壓力範圍為約1.5托,這取決於氣體流速。金屬容器內裝有溶解於液體(1,3,5-三甲基苯)的Sr前驅物,其封液管側被連接於DLI系統的注射閥,並且加壓的N2 (~30psig)被連接於金屬容器的另一側以推進液體。SrO的CCVD的一個循環由5個步驟組成。This example describes the use of a ketimine salt precursor Sr{ t BuC(O)CHC(NCH 2 CH 2 NMe 2 )Me} 2 and O 2 in Sr dissolved in 1,3,5-trimethylbenzene. Slurry to deposit CCVD of SrO. The deposition temperature ranged from 200 to 400 ° C and the Sr precursor was delivered using a DLI (direct liquid injector) with an evaporator. The pressure in the deposition chamber ranges from about 1.5 Torr, depending on the gas flow rate. The metal container contains a Sr precursor dissolved in a liquid (1,3,5-trimethylbenzene), the sealing tube side of which is connected to the injection valve of the DLI system, and the pressurized N 2 (~30 psig) is Attached to the other side of the metal container to propel the liquid. One cycle of CCVD for SrO consists of five steps.

1.1,3,5-三甲基苯中的0.1M Sr前驅物溶液的注射:打開注射閥幾毫秒,將會在蒸發器中提供含Sr前驅物的蒸氣;Injection of a 0.1 M Sr precursor solution in 1.1,3,5-trimethylbenzene: opening the injection valve for a few milliseconds will provide a vapor containing the Sr precursor in the evaporator;

2.Sr脈衝:將Sr前驅物的蒸氣引入沉積室;並且使Sr前驅物化學吸附在加熱的基材上;2. Sr pulse: introducing the vapor of the Sr precursor into the deposition chamber; and chemically adsorbing the Sr precursor on the heated substrate;

3.Ar吹掃:利用Ar吹掃除去任何未吸附的Sr前驅物;3. Ar purge: use Ar purge to remove any unadsorbed Sr precursors;

4.O2 電漿脈衝:將O2 引入沉積室,同時提供射頻(RF)功率(此時為50瓦(W)),使之與吸附在加熱的基材上的Sr前驅物反應;並且4. O 2 plasma pulse: introducing O 2 into the deposition chamber while providing radio frequency (RF) power (in this case 50 watts (W)) to react with the Sr precursor adsorbed on the heated substrate;

5.Ar吹掃:利用Ar吹掃除去任何未反應的O2 和副產物。5. Ar purge: Any unreacted O 2 and by-products were removed using an Ar purge.

在該實施例中,得到了SrO膜,這表明沉積溫度對該SrO膜有一定的影響。注射時間為2毫秒,Sr的脈衝時間為5秒,Sr脈衝之後的Ar吹掃時間是10秒,O2 電漿脈衝時間是3秒,並且O2 電漿脈衝之後的Ar吹掃時間是10秒。重複循環150次。In this example, an SrO film was obtained, which indicates that the deposition temperature has a certain influence on the SrO film. The injection time is 2 milliseconds, the pulse time of Sr is 5 seconds, the Ar purge time after the Sr pulse is 10 seconds, the O 2 plasma pulse time is 3 seconds, and the Ar purge time after the O 2 plasma pulse is 10 second. Repeat the cycle 150 times.

結果示於圖3中,其中ALD製程視窗高達~320℃。The results are shown in Figure 3, where the ALD process window is as high as ~320 °C.

實施例2Example 2

在該實施例中,經由以下的製程條件來沉積SrO膜:1,3,5-三甲基苯中的0.1M Sr前驅物-Sr{t BuC(O)CHC(NCH2 CH2 NMe2 )Me}2 溶液的注射時間是2毫秒,Sr前驅物的脈衝時間為5秒,Sr脈衝之後Ar吹掃時間是10秒,O2 電漿脈衝時間是3秒,並且O2 電漿脈衝之後的Ar吹掃時間是10秒。晶片溫度是250℃。該實驗分別進行了50、150、250、300和600次的重複循環。結果示於圖4中,這表明膜厚度和循環次數之間有線性關係,這是ALD製程的一個特徵。In this example, the SrO film was deposited via the following process conditions: 0.1 M Sr precursor in the 1,3,5-trimethylbenzene-Sr{ t BuC(O)CHC(NCH 2 CH 2 NMe 2 ) The injection time of the Me} 2 solution is 2 milliseconds, the pulse time of the Sr precursor is 5 seconds, the Ar purge time after the Sr pulse is 10 seconds, the O 2 plasma pulse time is 3 seconds, and after the O 2 plasma pulse The Ar purge time is 10 seconds. The wafer temperature was 250 °C. The experiment was repeated at 50, 150, 250, 300 and 600 cycles. The results are shown in Figure 4, which shows a linear relationship between film thickness and number of cycles, which is a feature of the ALD process.

實施例3Example 3

在該實施例中,經由以下的製程條件來沉積SrO膜:1,3,5-三甲基苯中的0.1M Sr前驅物-Sr{t BuC(O)CHC(NCH2 CH2 NMe2 )Me}2 溶液的注射時間是2毫秒,Sr前驅物脈衝之後Ar吹掃時間是10秒,O2 電漿脈衝時間是3秒,並且O2 電漿脈衝之後的Ar吹掃時間是10秒。晶片溫度是250℃。Sr脈衝時間在1-7秒之間變化。結果示於圖5中,顯示出約5秒時的Sr脈衝飽和曲線,這意味著在這些製程條件下是典型的自限制ALD製程。In this example, the SrO film was deposited via the following process conditions: 0.1 M Sr precursor in the 1,3,5-trimethylbenzene-Sr{ t BuC(O)CHC(NCH 2 CH 2 NMe 2 ) The injection time of the Me} 2 solution was 2 milliseconds, the Ar purge time after the Sr precursor pulse was 10 seconds, the O 2 plasma pulse time was 3 seconds, and the Ar purge time after the O 2 plasma pulse was 10 seconds. The wafer temperature was 250 °C. The Sr pulse time varies between 1 and 7 seconds. The results are shown in Figure 5, which shows the Sr pulse saturation curve at about 5 seconds, which means a typical self-limiting ALD process under these process conditions.

實施例4Example 4

該實施例描述了利用溶解於1,3,5-三甲基苯的Sr的酮亞胺鹽前驅物Sr{t BuC(O)CHC(NCH2 CH2 NMe2 )Me}2 和臭氧來沉積SrO的ALD或CCVD。沉積溫度的範圍是200-425℃,並且利用帶有蒸發器的DLI(直接液體注射器)來輸送Sr前驅物。沉積室內的壓力範圍約為1.5托,這取決於氣體流速。金屬容器內裝有溶解於液體(1,3,5-三甲基苯)的Sr前驅物,其封液管側被連接於DLI系統的注射閥,並且加壓的N2 (~30psig)被連接於金屬容器的另一側以推進液體。SrO的CCVD製程的一個循環由5個步驟組成。This example describes the deposition of a ketimine salt precursor Sr{ t BuC(O)CHC(NCH 2 CH 2 NMe 2 )Me} 2 and ozone dissolved in Sr of 1,3,5-trimethylbenzene. ALD or CCVD of SrO. The deposition temperature ranged from 200 to 425 ° C and the Sr precursor was delivered using a DLI (direct liquid injector) with an evaporator. The pressure in the deposition chamber ranges from about 1.5 Torr, depending on the gas flow rate. The metal container contains a Sr precursor dissolved in a liquid (1,3,5-trimethylbenzene), the sealing tube side of which is connected to the injection valve of the DLI system, and the pressurized N 2 (~30 psig) is Attached to the other side of the metal container to propel the liquid. One cycle of the SrO CCVD process consists of five steps.

1.1,3,5-三甲基苯中的0.1M Sr前驅物溶液的注射:打開注射閥幾毫秒將會在蒸發器中提供含Sr前驅物的蒸氣;Injection of a 0.1 M Sr precursor solution in 1.1,3,5-trimethylbenzene: opening the injection valve for a few milliseconds will provide a vapor containing the Sr precursor in the evaporator;

2.Sr脈衝:將Sr前驅物的蒸氣引入沉積室;並且使Sr前驅物化學吸附在加熱的基材上;2. Sr pulse: introducing the vapor of the Sr precursor into the deposition chamber; and chemically adsorbing the Sr precursor on the heated substrate;

3.Ar吹掃:利用Ar吹掃除去任何未吸附的Sr前驅物;3. Ar purge: use Ar purge to remove any unadsorbed Sr precursors;

4.臭氧脈衝:將臭氧引入沉積室;並且4. Ozone pulse: introducing ozone into the deposition chamber;

5.Ar吹掃:利用Ar吹掃除去任何未反應的臭氧和任何副產物。5. Ar purge: Any unreacted ozone and any by-products were removed using an Ar purge.

在該實施例中,得到了SrO膜,這表明沉積溫度對所得到的SrO膜的沉積速度有一定的影響。注射時間為2毫秒,Sr脈衝時間為5秒,Sr脈衝之後Ar吹掃時間是10秒,臭氧脈衝時間是5秒,並且臭氧脈衝之後的Ar吹掃時間是10秒。In this example, an SrO film was obtained, which indicates that the deposition temperature has a certain influence on the deposition rate of the obtained SrO film. The injection time was 2 milliseconds, the Sr pulse time was 5 seconds, the Ar purge time was 10 seconds after the Sr pulse, the ozone pulse time was 5 seconds, and the Ar purge time after the ozone pulse was 10 seconds.

結果示於圖6中,其中ALD製程視窗高達~340℃。The results are shown in Figure 6, where the ALD process window is as high as ~340 °C.

實施例5Example 5

該實施例描述了:利用溶解於十二烷中的10%(wt)THF中的Sr酮亞胺鹽前驅物Sr{t BuC(O)CHC(NCH(Me)CH2 NMe2 )Me}2 和臭氧來沉積SrO的ALD或CCVD製程。沉積溫度的範圍是200-425℃,並且利用市售的DLI(直接液體注射器)來輸送Sr前驅物。沉積室的壓力範圍為約1.5托,這取決於氣體流速。金屬容器裝有溶解於十二烷中的10%(wt)THF中的Sr前驅物,其封液管側被連接於DLI系統的注射閥,並且加壓的N2 (~30psig)被連接於金屬容器的另一側以推進液體。在該情況中,注射閥是常開的,並且通過噴嘴(噴霧器)使得Sr前驅物以及上述溶劑的液體混合物蒸發。Ar載氣有助於蒸發行為。SrO的ALD或CCVD製程的一個循環由4個步驟組成。This example describes the use of a Srketimine salt precursor Sr{ t BuC(O)CHC(NCH(Me)CH 2 NMe 2 )Me} 2 in 10% by weight of THF dissolved in dodecane. And ozone to deposit SrO in ALD or CCVD processes. The deposition temperature ranged from 200 to 425 ° C and the Sr precursor was delivered using a commercially available DLI (Direct Liquid Syringe). The pressure in the deposition chamber ranges from about 1.5 Torr, depending on the gas flow rate. The metal vessel was filled with Sr precursor in 10% (wt) THF dissolved in dodecane, the sealing tube side was attached to the injection valve of the DLI system, and pressurized N 2 (~30 psig) was attached The other side of the metal container is used to propel the liquid. In this case, the injection valve is normally open, and the liquid mixture of the Sr precursor and the above solvent is evaporated by a nozzle (atomizer). The Ar carrier gas contributes to the evaporation behavior. One cycle of SrO's ALD or CCVD process consists of four steps.

1.使得十二烷中的10%(wt)THF中的0.1M Sr{t BuC(O)CHC(NCH(Me)CH2 NMe2 )Me}2 溶液注射,以將Sr前驅物的蒸氣輸送至沉積室;並且使Sr前驅物化學吸附在加熱的基材上;1. Injecting 0.1 M Sr{ t BuC(O)CHC(NCH(Me)CH 2 NMe 2 )Me} 2 solution in 10% (wt) THF in dodecane to vaporize the Sr precursor To the deposition chamber; and chemically adsorbing the Sr precursor on the heated substrate;

2.Ar吹掃:利用Ar吹掃除去任何未吸附的Sr前驅物;2. Ar purge: use Ar purge to remove any unadsorbed Sr precursors;

3.臭氧脈衝:將臭氧引入沉積室;並且3. Ozone pulse: introducing ozone into the deposition chamber;

4.Ar吹掃:利用Ar吹掃除去任何未反應的臭氧和任何副產物。4. Ar purge: Any unreacted ozone and any by-products were removed using an Ar purge.

在該實施例中,得到了SrO膜,並且表明沉積溫度對所得到的SrO膜厚度有一定的影響。Sr脈衝時間的注射時間為5秒,Sr脈衝之後Ar吹掃時間是5秒,臭氧脈衝時間是5秒,並且臭氧脈衝之後的Ar吹掃時間是5秒。In this example, an SrO film was obtained, and it was shown that the deposition temperature had a certain influence on the thickness of the obtained SrO film. The injection time of the Sr pulse time was 5 seconds, the Ar purge time after the Sr pulse was 5 seconds, the ozone pulse time was 5 seconds, and the Ar purge time after the ozone pulse was 5 seconds.

結果示於圖7中,其中ALD製程視窗高達~320℃。The results are shown in Figure 7, where the ALD process window is as high as ~320 °C.

實施例6Example 6

在該實施例中,當通過加熱的注射器使得溶解於溶劑中的Sr前驅物-Sr{t BuC(O)CHC(NCH2 CH2 NMe2 )Me}2 蒸發時,對直接液體注射蒸發器進行監測。在該情況中,注射器被加熱至185℃,載氣是流速為500sccm的氦氣,前驅物一溶劑的質量流速是1g/min。壓力監測器位於注射器之前,它直接位於載氣氣流中。In this embodiment, the direct liquid injection evaporator is performed when the Sr precursor -Sr{ t BuC(O)CHC(NCH 2 CH 2 NMe 2 )Me} 2 dissolved in the solvent is evaporated by a heated syringe. monitor. In this case, the syringe was heated to 185 ° C, the carrier gas was helium at a flow rate of 500 sccm, and the mass flow rate of the precursor-solvent was 1 g/min. The pressure monitor is located in front of the syringe and is located directly in the carrier gas stream.

圖8的結果表明:在~3小時的運行時間內,利用十二烷中的10%(wt)THF的組合溶劑顯示出非常穩定的反壓力。相反地,當其他前驅物流經注射器系統時,溶解於1,3,5-三甲基苯中的鍶前驅物的相同濃度卻表現出連續增加的反壓力。溶劑十二烷較高的沸點與通過添加THF而獲得的額外的溶解性的協同作用,導致在該流體測試的整個過程中都具有穩定的注射性能。The results in Figure 8 show that a combination of 10% (wt) THF in dodecane exhibits a very stable back pressure over a ~3 hour run time. Conversely, the same concentration of the ruthenium precursor dissolved in 1,3,5-trimethylbenzene exhibits a continuously increasing counter pressure as the other precursor streams pass through the injector system. The synergistic effect of the higher boiling point of the solvent dodecane and the additional solubility obtained by the addition of THF resulted in stable injection performance throughout the fluid test.

圖1為Sr{t BuC(O)CHC(NCH2 CH2 NMe2 )Me}2 (實線)和Ti{MeC(O)CHC(NCH2 CH2 O)Me}2 (點劃線)的熱重分析/差示掃描量熱法(TGA/DSC)圖譜,由此表明這兩種錯合物因具有非常相似的蒸發行為而具有相容性。Figure 1 is a graph of Sr{ t BuC(O)CHC(NCH 2 CH 2 NMe 2 )Me} 2 (solid line) and Ti{MeC(O)CHC(NCH 2 CH 2 O)Me} 2 (dotted line) Thermogravimetric analysis/differential scanning calorimetry (TGA/DSC) maps indicate that the two complexes are compatible due to very similar evaporation behavior.

圖2為Sr{t BuC(O)CHC(NCH(Me)CH2 NMe2 )Me}2 (實線)和Ti(MeC(O)CHC(NCH(Me)CH2 O)Me)2 (點劃線)的TGA/DSC圖譜,由此表明這兩種錯合物由於具有相同的熔點和相似的蒸發行而顯示出相容性。Figure 2 is Sr{ t BuC(O)CHC(NCH(Me)CH 2 NMe 2 )Me} 2 (solid line) and Ti(MeC(O)CHC(NCH(Me)CH 2 O)Me) 2 (point The TGA/DSC pattern of the underlined shows that the two complexes show compatibility due to the same melting point and similar evaporation lines.

圖3為利用Sr{t BuC(O)CHC(NCH2 CH2 NMe2 )Me}2 和O2 電漿沉積SrO時的PEALD的溫度關係曲線。3 is a graph showing the temperature relationship of PEALD when SrO is deposited by using Sr{ t BuC(O)CHC(NCH 2 CH 2 NMe 2 )Me} 2 and O 2 plasma.

圖4表示利用Sr{t BuC(O)CHC(NCH2 CH2 NMe2 )Me}2 和O2 電漿、在250℃的溫度下進行PEALD所得到的SrO的厚度與沉積循環次數的關係曲線。Figure 4 is a graph showing the relationship between the thickness of SrO obtained by PEALD at a temperature of 250 ° C and the number of deposition cycles using Sr{ t BuC(O)CHC(NCH 2 CH 2 NMe 2 )Me} 2 and O 2 plasma. .

圖5表示利用在250℃下進行PEALD時,所得到的SrO厚度與Sr前驅物-Sr{t BuC(O)CHC(NCH2 CH2 NMe2 )Me}2 脈衝時間的關係。Figure 5 shows the relationship between the thickness of SrO obtained and the Sr precursor -Sr{ t BuC(O)CHC(NCH 2 CH 2 NMe 2 )Me} 2 pulse time when PEALD was carried out at 250 °C.

圖6為利用Sr{t BuC(O)CHC(NCH2 CH2 NMe2 )Me}2 和臭氧沉積SrO時熱ALD的溫度關係曲線。Figure 6 is a graph showing the temperature dependence of thermal ALD when Sr{ t BuC(O)CHC(NCH 2 CH 2 NMe 2 )Me} 2 and ozone are used to deposit SrO.

圖7為利用Sr{t BuC(O)CHC(NCH(Me)CH2 NMe2 )Me}2 和臭氧沉積SrO時熱ALD的溫度關係曲線。Figure 7 is a graph showing the temperature dependence of thermal ALD when Sr{ t BuC(O)CHC(NCH(Me)CH 2 NMe 2 )Me} 2 and ozone are used to deposit SrO.

圖8表示在注射孔口之前通過反壓力監測而證實的直接液體噴射穩定性。b)0.1M鍶前驅物-Sr{t BuC(O)CHC(NCH(Me)CH2 NMe2 )Me}2 溶解於1,3,5-三甲 基苯時的情況;a)0.1M鍶前驅物-Sr{t BuC(O)CHC(NCH(Me)CH2 NMe2 )Me}2 溶解於十二烷中的10%(wt)四氫呋喃時的情況。Figure 8 shows the direct liquid ejection stability as demonstrated by back pressure monitoring prior to injection of the orifice. b) 0.1M 锶 precursor - Sr{ t BuC(O)CHC(NCH(Me)CH 2 NMe 2 )Me} 2 when dissolved in 1,3,5-trimethylbenzene; a) 0.1M锶The precursor -Sr{ t BuC(O)CHC(NCH(Me)CH 2 NMe 2 )Me} 2 was dissolved in 10% by weight of tetrahydrofuran in dodecane.

Claims (31)

一種形成三元金屬氧化物膜的循環沉積方法,其中,依次將多種前驅物引入沉積室,使之蒸發並且在形成所述三元金屬氧化物膜的條件下沉積在基材上,其改進之處包括:利用第一種金屬酮亞胺鹽作為第一前驅物;利用含氧源;利用第二種金屬酮亞胺鹽作為不同於前者的第二前驅物;和利用含氧源,其中該第一種或第二種金屬酮亞胺鹽中的一種選自由以下結構A所代表的組: 其中,M是第2族二價金屬,其選自由鈣、鎂、鍶和鋇組成的組;其中R1 選自由具有1-10個碳原子的烷基、氟烷基、脂環基,以及具有6-12個碳原子的芳基組成的組;R2 選自由氫、具有1-10個碳原子的烷基、烷氧基、脂環 基,以及具有6-12個碳原子的芳基組成的組;R3 選自由具有1-10個碳原子的烷基、氟烷基、脂環基,以及具有6-12個碳原子的芳基組成的組;R4 是帶有或不帶有對掌性碳原子的C2-3 直鏈或支鏈亞烷基橋鍵,由此與金屬中心構成五元或六元配位環;R5-6 獨立地選自由具有1-10個碳原子的烷基、氟烷基、脂環基以及具有6-12個碳原子的芳基組成的組,並且它們能夠連接從而形成含碳、氧或氮原子的環;並且該第一種或第二種金屬酮亞胺鹽中的另外一種選自由以下結構B所代表的組: 其中,M是四價金屬,其選自由鈦、鋯和鉿組成的組;其中R7 選自由具有1-10個碳原子的烷基、氟烷基、脂環基,以及具有6-12個碳原子的芳基組成的組;R8-9 選自由氫、具有1-10個碳原子的烷基、烷氧基、脂環基,以及具有6-12個碳原子的芳基組成的組;R10 是帶有或不帶有對掌性碳原子的C2-3 直鏈或支鏈亞烷基橋鍵,由此與金屬中心構成五元或六元配位環。A cyclic deposition method for forming a ternary metal oxide film, wherein a plurality of precursors are sequentially introduced into a deposition chamber, evaporated, and deposited on a substrate under conditions for forming the ternary metal oxide film, which is improved The method comprises: using a first metal ketimine salt as a first precursor; using an oxygen source; using a second metal ketimine salt as a second precursor different from the former; and utilizing an oxygen source, wherein One of the first or second metal ketimine salts is selected from the group consisting of the following structure A: Wherein M is a Group 2 divalent metal selected from the group consisting of calcium, magnesium, strontium and barium; wherein R 1 is selected from the group consisting of an alkyl group having 1 to 10 carbon atoms, a fluoroalkyl group, an alicyclic group, and a group consisting of aryl groups having 6 to 12 carbon atoms; R 2 is selected from the group consisting of hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkoxy group, an alicyclic group, and an aryl group having 6 to 12 carbon atoms. a group consisting of; R 3 is selected from the group consisting of an alkyl group having 1 to 10 carbon atoms, a fluoroalkyl group, an alicyclic group, and an aryl group having 6 to 12 carbon atoms; R 4 is with or without a C 2-3 linear or branched alkylene bridge having a palmitic carbon atom, thereby forming a five- or six-membered coordination ring with a metal center; R 5-6 independently selected from having from 1 to 10 a group consisting of an alkyl group of a carbon atom, a fluoroalkyl group, an alicyclic group, and an aryl group having 6 to 12 carbon atoms, and they are capable of linking to form a ring containing a carbon, oxygen or nitrogen atom; and the first one or The other of the second metal ketimine salts is selected from the group consisting of the following structure B: Wherein M is a tetravalent metal selected from the group consisting of titanium, zirconium and hafnium; wherein R 7 is selected from the group consisting of an alkyl group having 1 to 10 carbon atoms, a fluoroalkyl group, an alicyclic group, and having 6 to 12 a group consisting of aryl groups of carbon atoms; R 8-9 is selected from the group consisting of hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkoxy group, an alicyclic group, and an aryl group having 6 to 12 carbon atoms. R 10 is a C 2-3 linear or branched alkylene bridge with or without a palmitic carbon atom, thereby forming a five- or six-membered coordination ring with the metal center. 如申請專利範圍第1項所述的方法,其中,通過將金屬酮亞胺鹽溶解於溶劑或溶劑混合物以製備出摩爾濃度為0.01-2M的溶液,經由直接液體輸送來輸送該金屬酮亞胺鹽。 The method of claim 1, wherein the metal ketimine is delivered via direct liquid transport by dissolving a metal ketimine salt in a solvent or solvent mixture to prepare a solution having a molar concentration of 0.01-2 M. salt. 如申請專利範圍第2項所述的方法,其中,溶劑選自由脂肪烴、芳香烴、直鏈或環狀醚、酯、腈、醇、胺、聚胺、有機醯胺及其混合組成的組。 The method of claim 2, wherein the solvent is selected from the group consisting of aliphatic hydrocarbons, aromatic hydrocarbons, linear or cyclic ethers, esters, nitriles, alcohols, amines, polyamines, organic guanamines, and mixtures thereof. . 如申請專利範圍第3項所述的方法,其中,溶劑選自由四氫呋喃(THF)、1,3,5-三甲基苯、十二烷、N-甲基吡咯烷酮(NMP)及其混合組成的組。 The method of claim 3, wherein the solvent is selected from the group consisting of tetrahydrofuran (THF), 1,3,5-trimethylbenzene, dodecane, N-methylpyrrolidone (NMP), and mixtures thereof. group. 如申請專利範圍第1項所述的方法,其中,金屬氧化物是鈦酸鍶。 The method of claim 1, wherein the metal oxide is barium titanate. 如申請專利範圍第1項所述的方法,其中,循環沉積方法是循環的化學氣相沉積方法。 The method of claim 1, wherein the cyclic deposition method is a cyclic chemical vapor deposition method. 如申請專利範圍第1項所述的方法,其中,循環沉積方法是原子層沉積方法。 The method of claim 1, wherein the cyclic deposition method is an atomic layer deposition method. 如申請專利範圍第1項所述的方法,其中,沉積室中 的壓力是50毫托-100托,並且所述沉積室內的溫度低於500℃。 The method of claim 1, wherein the deposition chamber is The pressure is 50 mTorr to 100 Torr and the temperature in the deposition chamber is below 500 °C. 如申請專利範圍第1項所述的方法,其中,含氧源選自由氧氣、氧電漿、水、水電漿、臭氧、一氧化二氮及其混合組成的組。 The method of claim 1, wherein the oxygen-containing source is selected from the group consisting of oxygen, oxygen plasma, water, water plasma, ozone, nitrous oxide, and mixtures thereof. 如申請專利範圍第1項所述的方法,其中,將所得到的三元金屬氧化物膜進行快速熱退火或電漿處理,以使所得到的三元金屬氧化物膜緻密化。 The method of claim 1, wherein the obtained ternary metal oxide film is subjected to rapid thermal annealing or plasma treatment to densify the obtained ternary metal oxide film. 如申請專利範圍第1項所述的方法,其中,結構A的金屬酮亞胺鹽選自由Sr{t BuC(O)CHC(NCH2 CH2 NMe2 )Me}2 ,Sr{t BuC(O)CHC(NCH2 CH2 NEt2 )Me}2 ,Sr{t BuC(O)CHC(NCH(Me)CH2 NMe2 )Me}2 和Sr{t BuC(O)CHC(NCH(Me)CH2 NEt2 )Me}2 組成的組;結構B的金屬酮亞胺鹽選自由Ti{MeC(O)CHC(NCH2 CH2 O)Me}2 和Ti(MeC(O)CHC(NCH(Me)CH2 O)Me)2 組成的組。The method of claim 1, wherein the metal ketimine salt of structure A is selected from the group consisting of Sr{ t BuC(O)CHC(NCH 2 CH 2 NMe 2 )Me} 2 , Sr{ t BuC(O CHC(NCH 2 CH 2 NEt 2 )Me} 2 ,Sr{ t BuC(O)CHC(NCH(Me)CH 2 NMe 2 )Me} 2 and Sr{ t BuC(O)CHC(NCH(Me)CH 2 NEt 2 )Me} 2 group; the metal ketone imide salt of structure B is selected from Ti{MeC(O)CHC(NCH 2 CH 2 O)Me} 2 and Ti(MeC(O)CHC(NCH(Me) a group consisting of CH 2 O)Me) 2 . 一種形成多成分金屬氧化物膜的循環沉積方法,其中,將多種前驅物引入沉積室,使之蒸發並且在形成所述多成分金屬氧化物膜的條件下沉積在基材上,其改進之處包括: 使至少兩種金屬酮亞胺鹽溶解於溶劑或溶劑混合物中,以製備溶液;和利用含氧源,其中,所述的至少兩種金屬酮亞胺鹽包括結構A所代表的金屬酮亞胺鹽和結構B所代表的另一金屬酮亞胺鹽,每種溶液都具有0.01-2M的摩爾濃度;其中結構A和B的定義分別如下: 其中,M是第2族二價金屬,其選自由鈣、鎂、鍶和鋇組成的組;其中R1 選自由具有1-10個碳原子的烷基、氟烷基、脂環基,以及具有6-12個碳原子的芳基組成的組;R2 選自由氫、具有1-10個碳原子的烷基、烷氧基、脂環基,以及具有6-12個碳原子的芳基組成的組;R3 選自由具有1-10個碳原子的烷基、氟烷基、脂環基,以及具有6-12個碳原子的芳基組成的組;R4 是帶有或不帶有對掌性碳原子的C2-3 直鏈或支鏈亞烷基橋鍵,由此與金屬中心構成五元或六元配位環;R5-6 獨立地選自由具有1-10個碳 原子的烷基、氟烷基、脂環基,以及具有6-12個碳原子的芳基組成的組,並且它們能夠連接從而形成含碳、氧或氮原子的環; 其中,M是四價金屬,其選自由鈦、鋯和鉿組成的組;其中R7 選自由具有1-10個碳原子的烷基、氟烷基、脂環基,以及具有6-12個碳原子的芳基組成的組;R8-9 選自由氫、具有1-10個碳原子的烷基、烷氧基、脂環基,以及具有6-12個碳原子的芳基組成的組;R10 是帶有或不帶有對掌性碳原子的C2-3 直鏈或支鏈亞烷基橋鍵,由此與金屬中心構成五元或六元配位環。A cyclic deposition method for forming a multi-component metal oxide film, wherein a plurality of precursors are introduced into a deposition chamber, evaporated, and deposited on a substrate under conditions in which the multi-component metal oxide film is formed, and the improvement thereof The method comprises: dissolving at least two metal ketimine salts in a solvent or a solvent mixture to prepare a solution; and utilizing an oxygen-containing source, wherein the at least two metal ketimine salts comprise a metal ketone represented by structure A The imine salt and another metal ketimine salt represented by structure B each have a molar concentration of 0.01-2 M; wherein the definitions of structures A and B are as follows: Wherein M is a Group 2 divalent metal selected from the group consisting of calcium, magnesium, strontium and barium; wherein R 1 is selected from the group consisting of an alkyl group having 1 to 10 carbon atoms, a fluoroalkyl group, an alicyclic group, and a group consisting of aryl groups having 6 to 12 carbon atoms; R 2 is selected from the group consisting of hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkoxy group, an alicyclic group, and an aryl group having 6 to 12 carbon atoms. a group consisting of; R 3 is selected from the group consisting of an alkyl group having 1 to 10 carbon atoms, a fluoroalkyl group, an alicyclic group, and an aryl group having 6 to 12 carbon atoms; R 4 is with or without a C 2-3 linear or branched alkylene bridge having a palmitic carbon atom, thereby forming a five- or six-membered coordination ring with a metal center; R 5-6 independently selected from having from 1 to 10 a group consisting of an alkyl group of a carbon atom, a fluoroalkyl group, an alicyclic group, and an aryl group having 6 to 12 carbon atoms, and they are capable of linking to form a ring containing a carbon, oxygen or nitrogen atom; Wherein M is a tetravalent metal selected from the group consisting of titanium, zirconium and hafnium; wherein R 7 is selected from the group consisting of an alkyl group having 1 to 10 carbon atoms, a fluoroalkyl group, an alicyclic group, and having 6 to 12 a group consisting of aryl groups of carbon atoms; R 8-9 is selected from the group consisting of hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkoxy group, an alicyclic group, and an aryl group having 6 to 12 carbon atoms. R 10 is a C 2-3 linear or branched alkylene bridge with or without a palmitic carbon atom, thereby forming a five- or six-membered coordination ring with the metal center. 如申請專利範圍第12項所述的方法,其中,利用直接液體注射來輸送金屬酮亞胺鹽的溶液。 The method of claim 12, wherein the solution of the metal ketimine salt is delivered by direct liquid injection. 如申請專利範圍第12項所述的方法,其中,溶劑選自由脂肪烴、芳香烴、直鏈或環狀醚、酯、腈、醇、胺、 聚胺、有機醯胺及其混合組成的組。 The method of claim 12, wherein the solvent is selected from the group consisting of aliphatic hydrocarbons, aromatic hydrocarbons, linear or cyclic ethers, esters, nitriles, alcohols, amines, A group consisting of a polyamine, an organic guanamine, and a mixture thereof. 如申請專利範圍第14項所述的方法,其中,溶劑選自由四氫呋喃(THF)、1,3,5-三甲基苯、十二烷、N-甲基吡咯烷酮(NMP)及其混合組成的組。 The method of claim 14, wherein the solvent is selected from the group consisting of tetrahydrofuran (THF), 1,3,5-trimethylbenzene, dodecane, N-methylpyrrolidone (NMP), and mixtures thereof. group. 如申請專利範圍第12項所述的方法,其中,多成分金屬氧化物是鈦酸鍶。 The method of claim 12, wherein the multi-component metal oxide is barium titanate. 如申請專利範圍第12項所述的方法,其中,循環沉積方法是循環的化學氣相沉積方法。 The method of claim 12, wherein the cyclic deposition method is a cyclic chemical vapor deposition method. 如申請專利範圍第12項所述的方法,其中,結構A的金屬酮亞胺鹽選自由Sr{t BuC(O)CHC(NCH2 CH2 NMe2 )Me}2 ,Sr{t BuC(O)CHC(NCH2 CH2 NEt2 )Me}2 ,Sr{t BuC(O)CHC(NCH(Me)CH2 NMe2 )Me}2 和Sr{t BuC(O)CHC(NCH(Me)CH2 NEt2 )Me}2 組成的組。The method of claim 12, wherein the metal ketimine salt of structure A is selected from the group consisting of Sr{ t BuC(O)CHC(NCH 2 CH 2 NMe 2 )Me} 2 , Sr{ t BuC(O CHC(NCH 2 CH 2 NEt 2 )Me} 2 ,Sr{ t BuC(O)CHC(NCH(Me)CH 2 NMe 2 )Me} 2 and Sr{ t BuC(O)CHC(NCH(Me)CH 2 NEt 2 )Me} 2 group. 如申請專利範圍第12項所述的方法,其中,結構B的金屬酮亞胺鹽選自由Ti{MeC(O)CHC(NCH2 CH2 O)Me}2 和Ti{MeC(O)CHC(NCH(Me)CH2 O)Me}2 組成的組。The method of claim 12, wherein the metal ketimine salt of structure B is selected from the group consisting of Ti{MeC(O)CHC(NCH 2 CH 2 O)Me} 2 and Ti{MeC(O)CHC ( A group consisting of NCH(Me)CH 2 O)Me} 2 . 如申請專利範圍第1項所述的方法,其中R1 選自由具有1-6個碳原子的烷基、氟烷基及脂環基所組成的組。The method of claim 1, wherein R 1 is selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, a fluoroalkyl group, and an alicyclic group. 如申請專利範圍第1項所述的方法,其中R2 選自由具有1-6個碳原子的烷基、氟烷基及脂環基所組成的組。The method of claim 1, wherein R 2 is selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, a fluoroalkyl group, and an alicyclic group. 如申請專利範圍第1項所述的方法,其中R3 選自由具有1-6個碳原子的烷基、氟烷基及脂環基所組成的組。The method of claim 1, wherein R 3 is selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, a fluoroalkyl group, and an alicyclic group. 如申請專利範圍第1項所述的方法,其中R5-6 選自由具有1-6個碳原子的烷基、氟烷基及脂環基所組成的組。The method of claim 1, wherein R 5-6 is selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, a fluoroalkyl group, and an alicyclic group. 如申請專利範圍第1項所述的方法,其中R7 選自由具有1-6個碳原子的烷基、氟烷基及脂環基所組成的組。The method of claim 1, wherein R 7 is selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, a fluoroalkyl group, and an alicyclic group. 如申請專利範圍第1項所述的方法,其中R8-9 選自由具有1-6個碳原子的烷基、氟烷基及脂環基所組成的組。The method of claim 1, wherein R 8-9 is selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, a fluoroalkyl group, and an alicyclic group. 如申請專利範圍第12項所述的方法,其中R1 選自由具有1-6個碳原子的烷基、氟烷基及脂環基所組成的組。The method of claim 12, wherein R 1 is selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, a fluoroalkyl group, and an alicyclic group. 如申請專利範圍第12項所述的方法,其中R2 選自由具有1-6個碳原子的烷基、氟烷基及脂環基所組成的組。The method of claim 12, wherein R 2 is selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, a fluoroalkyl group, and an alicyclic group. 如申請專利範圍第12項所述的方法,其中R3 選自由具有1-6個碳原子的烷基、氟烷基及脂環基所組成的組。The method of claim 12, wherein R 3 is selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, a fluoroalkyl group, and an alicyclic group. 如申請專利範圍第12項所述的方法,其中R5-6 選自由具有1-6個碳原子的烷基、氟烷基及脂環基所組成的組。The method of claim 12, wherein R 5-6 is selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, a fluoroalkyl group, and an alicyclic group. 如申請專利範圍第12項所述的方法,其中R7 選自由具有1-6個碳原子的烷基、氟烷基及脂環基所組成的組。The method of claim 12, wherein R 7 is selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, a fluoroalkyl group, and an alicyclic group. 如申請專利範圍第12項所述的方法,其中R8-9 選自由具有1-6個碳原子的烷基、氟烷基及脂環基所組成的組。The method of claim 12, wherein R 8-9 is selected from the group consisting of an alkyl group having 1 to 6 carbon atoms, a fluoroalkyl group, and an alicyclic group.
TW098111881A 2008-04-11 2009-04-09 Preparation of metal oxide thin film via cyclic cvd or ald TWI435947B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US4427008P 2008-04-11 2008-04-11
US12/410,529 US8092870B2 (en) 2008-04-11 2009-03-25 Preparation of metal oxide thin film via cyclic CVD or ALD

Publications (2)

Publication Number Publication Date
TW200944612A TW200944612A (en) 2009-11-01
TWI435947B true TWI435947B (en) 2014-05-01

Family

ID=40839635

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098111881A TWI435947B (en) 2008-04-11 2009-04-09 Preparation of metal oxide thin film via cyclic cvd or ald

Country Status (6)

Country Link
US (1) US8092870B2 (en)
EP (1) EP2116633B1 (en)
JP (2) JP2009256799A (en)
KR (1) KR20110139163A (en)
CN (1) CN101555591B (en)
TW (1) TWI435947B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101150124B1 (en) * 2009-03-11 2012-06-08 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Method for preparing metal complexes of polydentate beta-ketoiminates
US8202808B2 (en) * 2009-06-03 2012-06-19 Intermolecular, Inc. Methods of forming strontium titanate films
US8507704B2 (en) * 2009-09-08 2013-08-13 Air Products And Chemicals, Inc. Liquid composition containing aminoether for deposition of metal-containing films
CN102583533A (en) * 2011-01-18 2012-07-18 南京大学 Synthetic method of anhydrous hafnium zirconium composite nitrate and application of synthetic method to atomic layer deposition (ALD) high-dielectric composite oxide film
CN103773083B (en) * 2012-10-18 2015-04-22 上海纳米技术及应用国家工程研究中心有限公司 Optical interference color change pigment and its preparation method and application
CN103628037A (en) * 2013-12-10 2014-03-12 中国科学院微电子研究所 Preparation method of high-dielectric-constant oxide
US9583337B2 (en) * 2014-03-26 2017-02-28 Ultratech, Inc. Oxygen radical enhanced atomic-layer deposition using ozone plasma
US10364259B2 (en) * 2016-12-30 2019-07-30 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Zirconium, hafnium, titanium precursors and deposition of group 4 containing films using the same
WO2020050974A1 (en) * 2018-09-03 2020-03-12 Applied Materials, Inc. Direct liquid injection system for thin film deposition
EP3656889B1 (en) * 2018-10-08 2022-06-01 Shenzhen Goodix Technology Co., Ltd. Method for preparing copper calcium titanate thin film

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5820664A (en) * 1990-07-06 1998-10-13 Advanced Technology Materials, Inc. Precursor compositions for chemical vapor deposition, and ligand exchange resistant metal-organic precursor solutions comprising same
EP1184365A3 (en) * 2000-08-26 2003-08-06 Samsung Electronics Co., Ltd. Novel group IV metal precursors and chemical vapor deposition method using thereof
JP3626421B2 (en) 2001-04-05 2005-03-09 株式会社東芝 Method and apparatus for forming metal oxide thin film
KR100421219B1 (en) * 2001-06-14 2004-03-02 삼성전자주식회사 Method for depositing atomic layer using organometallic complex having β-diketone ligand
US6669990B2 (en) * 2001-06-25 2003-12-30 Samsung Electronics Co., Ltd. Atomic layer deposition method using a novel group IV metal precursor
KR20030000423A (en) 2001-06-25 2003-01-06 삼성전자 주식회사 Atomic Layer Deposition Using Group IV Metal Precursor
DE10229040A1 (en) * 2002-06-28 2004-01-29 Solvay Barium Strontium Gmbh New alkaline earth metal complexes and their use
US7947814B2 (en) * 2006-04-25 2011-05-24 Air Products And Chemicals, Inc. Metal complexes of polydentate beta-ketoiminates
US7755128B2 (en) * 2007-03-20 2010-07-13 Tokyo Electron Limited Semiconductor device containing crystallographically stabilized doped hafnium zirconium based materials
US20080254218A1 (en) 2007-04-16 2008-10-16 Air Products And Chemicals, Inc. Metal Precursor Solutions For Chemical Vapor Deposition
US7691984B2 (en) 2007-11-27 2010-04-06 Air Products And Chemicals, Inc. Metal complexes of tridentate β-ketoiminates

Also Published As

Publication number Publication date
EP2116633A1 (en) 2009-11-11
JP2012214910A (en) 2012-11-08
TW200944612A (en) 2009-11-01
US20100075067A1 (en) 2010-03-25
CN101555591B (en) 2015-08-19
EP2116633B1 (en) 2013-06-19
JP5662389B2 (en) 2015-01-28
CN101555591A (en) 2009-10-14
US8092870B2 (en) 2012-01-10
KR20110139163A (en) 2011-12-28
JP2009256799A (en) 2009-11-05

Similar Documents

Publication Publication Date Title
TWI435947B (en) Preparation of metal oxide thin film via cyclic cvd or ald
TWI481617B (en) Volatile group 2 metal precursors
TWI496929B (en) Hafnium-and zirconium-containing precursors and methods of using the same
JP6865306B2 (en) Composition for forming niobium-containing film and vapor deposition of niobium-containing film
KR20210041843A (en) Novel precursor for metal containing thin film, deposition method of film and semiconductor device of the same
JP2010258411A (en) Zirconium precursor useful in atomic layer deposition of zirconium-containing film
TWI756959B (en) Film or coating by an ald process on a substrate
KR20120056827A (en) High dielectric constant films deposited at high temperature by atomic layer deposition
KR101094611B1 (en) Preparation of metal oxide thin film via cyclic cvd or ald
KR100480499B1 (en) Lanthanum complex and method for the preparation of a blt thin layer using same
KR20210041830A (en) Precursor for group 5 metal containing thin film, deposition method of film and semiconductor device of the same
KR102562274B1 (en) Organometallic precursor compounds
JP7262912B2 (en) Precursor composition for forming a metal film, method for forming a metal film using the same, and semiconductor device including the metal film
KR100622309B1 (en) Compound for depositing semiconductor film and method of depositing film using the same
KR100480501B1 (en) Process for the formation of pzt thin film by metal-organic chemical vapor deposition
JP2004026763A (en) Organotitanium compound, solution raw material containing the same and titanium-containing dielectric thin film prepared therefrom
KR20220073275A (en) Metal precursor compound and deposition method for preparing film using the same
EP2708542B1 (en) Salen-type barium precursors for vapor phase deposition of thin films
EP2708545A1 (en) Pentadienyl strontium-organic compounds and their use for thin films deposition
CN116829763A (en) Hafnium precursor compound, composition for forming hafnium-containing film containing same, and method for forming hafnium-containing film
JP2004051619A (en) Raw zirconium material for cvd and method for producing lead titanate zirconate-based thin film
EP2468755A1 (en) Novel barium precursors for vapor phase deposition of thin films
EP2468754A1 (en) Novel diazacrown barium and strontium precursors for vapor phase deposition of thin film
EP2468757A1 (en) Novel diazacrown barium precursors for vapor phase deposition of thin films
JP2004260023A (en) Process for depositing ferroelectric film

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees