TWI431914B - A boost converter with positive and negative outputs - Google Patents
A boost converter with positive and negative outputs Download PDFInfo
- Publication number
- TWI431914B TWI431914B TW99138138A TW99138138A TWI431914B TW I431914 B TWI431914 B TW I431914B TW 99138138 A TW99138138 A TW 99138138A TW 99138138 A TW99138138 A TW 99138138A TW I431914 B TWI431914 B TW I431914B
- Authority
- TW
- Taiwan
- Prior art keywords
- capacitor
- positive
- output
- voltage
- electrically connected
- Prior art date
Links
Landscapes
- Dc-Dc Converters (AREA)
Description
本發明是有關於一種升壓型轉換器,特別是指一種具有正負輸出端之升壓型轉換器。The present invention relates to a boost converter, and more particularly to a boost converter having positive and negative outputs.
許多應用需要帶有穩壓輸出的正負電壓供應源,例如:自引擎帶動發電機對12V鉛酸電池充電後產生之車用電源可以供給車內電子裝置,包括引擎控制系統、音響以及其他娛樂設備。然而,使用車用電源的電子裝置會面臨輸入電壓變化過大的考驗,例如:車用電源即將耗盡之際,車用電池電壓將降低至10V,或當車用電池連接線鬆脫或斷裂時,前端穩壓電路會輸出高達16V的電壓至後端的電路等。Many applications require positive and negative voltage supply with regulated output. For example, the vehicle power generated by the engine-driven generator charging 12V lead-acid battery can supply in-vehicle electronic devices, including engine control systems, audio and other entertainment equipment. . However, electronic devices that use automotive power supplies are subject to excessive changes in input voltage. For example, when the vehicle power supply is about to run out, the vehicle battery voltage will be reduced to 10V, or when the vehicle battery cable is loose or broken. The front-end voltage regulator circuit will output a voltage of up to 16V to the circuit at the back end.
由於車用電池之電壓會隨引擎轉速而有所變化,就以12V的正常工作電壓,當應用於半橋驅動架構所設計的音響放大器時,僅能夠在常用的4歐姆的揚聲器負載上得到4.5W的輸出功率,這顯然是不足的。因此,有必要將放大器操作於更高電壓,且為了提供更好的低頻響應輸出,最好是使用正負電壓供應,使半橋驅動D類放大器可以省略直流阻隔電容。Since the voltage of the vehicle battery varies with the engine speed, the normal operating voltage of 12V, when applied to the acoustic amplifier designed by the half-bridge drive architecture, can only be obtained on the commonly used 4 ohm speaker load. The output power of W, which is obviously insufficient. Therefore, it is necessary to operate the amplifier at a higher voltage, and in order to provide a better low frequency response output, it is preferable to use a positive and negative voltage supply so that the half bridge driven class D amplifier can omit the DC blocking capacitor.
目前對於將單電源轉換為正負輸出的電路已經有許多先前的研究文獻,如羅方林(Luo,F.L.)發表的論文「雙輸出升壓技術(Double output Luo-converters-voltage lift technique)」,但是電路架構複雜,元件較多。而後亦有提出較為簡單的架構,但是負輸出之電容電壓會有電壓不平衡的 問題。There are many previous research literatures on circuits that convert single-supply to positive and negative outputs, such as the paper "Double output Luo-converters-voltage lift technique" by Luo, FL, but the circuit The architecture is complex and there are many components. Then there is a simpler architecture, but the negative output capacitor voltage will be unbalanced. problem.
因此,本發明之目的,即在提供一種電路易於實現的具有正負輸出端之升壓型轉換器。Accordingly, it is an object of the present invention to provide a boost converter having a positive and negative output that is easy to implement with a circuit.
於是,本發明具有正負輸出端之升壓型轉換器包括一開關元件、一電感、一正電壓輸出電路及一負電壓輸出電路。Therefore, the boost converter of the present invention having positive and negative outputs includes a switching element, an inductor, a positive voltage output circuit and a negative voltage output circuit.
該開關元件具有一電連接於電源的第一端及一第二端;該電感具有一接地之第一端及一與該開關元件之第二端電連接的第二端。The switching element has a first end electrically connected to the power source and a second end; the inductor has a grounded first end and a second end electrically connected to the second end of the switching element.
該正電壓輸出電路電連接該電感的第二端及該正輸出端之間,具有:一第一電容,具有一電連接該電感的第二端之第一端及一第二端;一第一導通元件,具有一與該第一電容的第二端電連接的第一端及一接地之第二端;一第二導通元件,具有一與該第一導通元件的第一端電連接的第一端及一電性連接該正輸出端之第二端;及一第二電容,具有一電連接於該第二導通元件之第二端及該正輸出端之間的第一端及一接地的第二端。The positive voltage output circuit is electrically connected between the second end of the inductor and the positive output end, and has: a first capacitor having a first end electrically connected to the second end of the inductor and a second end; a conducting component having a first end electrically connected to the second end of the first capacitor and a second end connected to the ground; a second conducting component having a first end electrically connected to the first end of the first conducting component a first end and a second end electrically connected to the positive output end; and a second capacitor having a first end electrically connected to the second end of the second conducting element and the positive output end The second end of the ground.
該負電壓輸出電路電連接該電感的第二端及該負輸出端之間,具有一第三電容,具有一電連接該電感的第二端之第一端及一第二端;一第三導通元件,具有一與該第三電容的第二端電連接的第一端及一接地之第二端;一第四導通元件,具有一與該第三導通元件的第一端電連接的第一端及一電性連接該負輸出端之第二端;及一第四電容,具有一電連接於該第四導通元件之第二端及該正輸出端之間的第一端 及一接地的第二端。The negative voltage output circuit is electrically connected between the second end of the inductor and the negative output end, and has a third capacitor having a first end and a second end electrically connected to the second end of the inductor; The conducting component has a first end electrically connected to the second end of the third capacitor and a second end connected to the ground; a fourth conducting component having a first electrical connection with the first end of the third conducting component And a fourth capacitor having a first end electrically connected to the second end of the fourth conducting component and the positive end And a grounded second end.
藉此,該開關元件導通或不導通時,該正電壓輸出電路之第一電容及第二電容及該負電壓輸出電路之第三電容及第四電容皆對該電感供應電流而使該電感激磁而令該正輸出端及該負輸出端升壓。Thereby, when the switching element is turned on or off, the first capacitor and the second capacitor of the positive voltage output circuit and the third capacitor and the fourth capacitor of the negative voltage output circuit respectively supply current to the inductor to make the inductor Magnetically boosts the positive output and the negative output.
本發明之技術特點即在於,無論該開關元件導通或不導通時,該正電壓輸出電路及該負電壓輸出電路皆對該電感供應電流而使該電感激磁而令正負輸出端升壓,因此可供給需要穩壓輸出的正負電壓供應源的電子裝置使用。The technical feature of the present invention is that when the switching element is turned on or off, the positive voltage output circuit and the negative voltage output circuit supply current to the inductor to excite the inductor and boost the positive and negative outputs. It can be used by electronic devices that supply positive and negative voltage supply sources that require regulated output.
有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之較佳實施例的詳細說明中,將可清楚的呈現。The foregoing and other objects, features, and advantages of the invention are set forth in the <RTIgt;
參閱圖1,本發明之較佳實施例中,升壓型轉換器100包括一開關元件Q 1 、一電感L 1 、一正電壓輸出電路101、一負電壓輸出電路102、一正輸出端61及一負輸出端62;其中,開關元件Q 1 具有一電連接於電源60的第一端11及一第二端12;電感L 1 具有一接地之第一端21及一與開關元件Q 1 之第二端12電連接的第二端22;正電壓輸出電路101電連接電感L 1 的第二端22及正輸出端61之間,該負電壓輸出電路電連接該電感L 1 的第二端22及負輸出端62之間。Referring to FIG. 1, in a preferred embodiment of the present invention, the boost converter 100 includes a switching element Q 1 , an inductor L 1 , a positive voltage output circuit 101 , a negative voltage output circuit 102 , and a positive output terminal 61 . 62, and a negative output terminal; wherein the switching element Q 1 has a power source 60 is electrically connected to a first end 11 and a second end 12; a first inductor L 1 having a grounded terminal 21 and a switching element Q 1 the second ends of the electrical connector 2212; the positive voltage output circuit 101 is electrically connected to a second end of the inductor L 221 and the positive output terminal 61, the negative voltage output circuit electrically connected to the second inductor L 1 Between the end 22 and the negative output 62.
本發明之技術特點即在於,電感L 1 具有類似於升壓(Buck-Boost)的功能,搭配正電壓輸出電路101及負電壓輸出電路102具有的電容以達成正負升壓輸出,無論開關元件Q 1 導通或不導通時,正電壓輸出電路101及負電壓輸出電路102皆對電感L 1 供應電流而使電感L 1 激磁而令正輸出端61及負輸出端62升壓,因此可供給需要帶有穩壓輸出的正負電壓供應源的電子裝置使用。The technical feature of the present invention is that the inductor L 1 has a function similar to a boost (Boost-Boost), and is matched with the capacitance of the positive voltage output circuit 101 and the negative voltage output circuit 102 to achieve positive and negative boost output, regardless of the switching element Q. when a conducting or non-conducting, a positive voltage output circuit 101 and the negative voltage output circuit 102 are supplied to the inductor L 1 the inductance L 1 magnetizing current thus rendering the output terminal 61 and the negative boost output terminal 62, and therefore needs to be supplied with It is used by electronic devices with positive and negative voltage supply sources for regulated output.
茲將本較佳實施例的詳細電路介紹如下。The detailed circuit of the preferred embodiment is described below.
開關元件Q 1 的第一端11與第二端12之間反向連接一二極體D b 1 ,開關元件Q 1 為N型金氧半場效電晶體,第一端11為源極,第二端12為汲極,其閘極受控決定導通與否。A first diode 11 and a second terminal 12 of the switching element Q 1 are oppositely connected to a diode D b 1 , the switching element Q 1 is an N-type gold-oxygen half field effect transistor, and the first terminal 11 is a source, The two ends 12 are bungee poles, and their gates are controlled to determine whether they are turned on or not.
正電壓輸出電路101具有一第一電容C 1 、一第一導通元件D 1 、一第二導通元件D 2 及一第二電容C 3 。The positive voltage output circuit 101 has a first capacitor C 1 , a first conducting component D 1 , a second conducting component D 2 , and a second capacitor C 3 .
第一電容C 1 具有一電連接電感L 1 的第二端22之第一端311及一第二端312,第一導通元件D 1 具有一與第一電容C 1 的第二端312電連接的第一端331及一接地之第二端332,第二導通元件D 2 具有一與第一導通元件D 1 的第一端331電連接的第一端321及一電性連接正輸出端61之第二端322,第二電容C 3 具有一電連接於第二導通元件D 2 之第二端322及正輸出端61之間的第一端341及一接地的第二端342;其中的第一電容C 1 及第二電容C 3 即是負責提供正輸出端61之升壓能量。The first capacitor C 1 has a first end 311 and a second end 312 electrically connected to the second end 22 of the inductor L 1 . The first conductive element D 1 has a first connection to the second end 312 of the first capacitor C 1 . The first end 331 and the grounded second end 332, the second conductive element D 2 has a first end 321 electrically connected to the first end 331 of the first conductive element D 1 and an electrical connection positive output end 61 The second end 322, the second capacitor C 3 has a first end 341 electrically connected between the second end 322 of the second conducting element D 2 and the positive output end 61 and a grounded second end 342; The first capacitor C 1 and the second capacitor C 3 are responsible for providing the boosting energy of the positive output terminal 61.
負電壓輸出電路102具有一第三電容C 2 、一第三導通元件D 3 、一第四導通元件D 4 及一第四電容C 4 。The negative voltage output circuit 102 has a third capacitor C 2 , a third conduction component D 3 , a fourth conduction component D 4 , and a fourth capacitor C 4 .
第三電容C 2 具有一電連接電感L 1 的第二端22之第一端511及一第二端512,第三導通元件D 3 具有一與第三電容C 2 的第二端512電連接的第一端531及一接地之第二端532, 第四導通元件D 4 具有一與第三導通元件D 3 的第一端531電連接的第一端521及一電性連接負輸出端62之第二端522,第四電容C 4 具有一電連接於第四導通元件D 4 之第二端522及負輸出端62之間的第一端541及一接地的第二端542;其中的第三電容C 2 及第四電容C 4 即是負責提供負輸出端62之升壓能量。The third capacitor C 2 has a first end 511 and a second end 512 electrically connected to the second end 22 of the inductor L 1 , and the third conductive element D 3 has a second end 512 electrically connected to the third capacitor C 2 . The first end 531 and the grounded second end 532, the fourth conductive element D 4 has a first end 521 electrically connected to the first end 531 of the third conductive element D 3 and an electrically connected negative output end 62 The second end 522, the fourth capacitor C 4 has a first end 541 electrically connected between the second end 522 and the negative output end of the fourth conducting element D 4 and a grounded second end 542; The third capacitor C 2 and the fourth capacitor C 4 are responsible for providing the boosting energy of the negative output terminal 62.
以下配合圖2及圖3為各元件的模擬電流、電壓時序波形圖,圖4為開關元件Q 1 導通期間為時間t0 至t1 (以下稱第一模式)之電流流向,及圖5為開關元件Q 1 不導通期間為時間t1 至t2 (以下稱第二模式)之電流流向,將本較佳實施例的各元件的動作原理介紹如下。2 and FIG. 3 are waveform diagrams of analog current and voltage timing of each element, and FIG. 4 is a current flow direction of the switching element Q 1 during the period t 0 to t 1 (hereinafter referred to as the first mode), and FIG. 5 is The non-conduction period of the switching element Q 1 is the current flow of the time t 1 to t 2 (hereinafter referred to as the second mode), and the operation principle of each element of the preferred embodiment will be described below.
第一模式: 參閱圖4,開關元件Q 1 導通(時間t0 至t1 )時,電感L 1 激磁使I L 1 電流上升,同時,第三導通元件D 3 因順偏而導通,第三電容C 2 被充電至輸入電壓V in ;此外,由於第一電容C 1 負端被提升至輸入電壓V in 以提供升壓能量,因此第二導通元件D 2 被順偏導通,所以正輸出端61之正輸出電壓V o 1 =V C 3 =V C 1 +V in ,負輸出端62之能量是由第四電容C 4 所提供升壓能量,所以負輸出端62之負輸出電壓V o 2 =V C 4 。 A first pattern: refer to FIG. 4, the switching element Q 1 turns on (time t 0 to t 1), the inductance L 1 magnetizing make I L 1 current rise, while the third conductive element D 3 due to forward bias is turned on, the third The capacitor C 2 is charged to the input voltage V in ; furthermore, since the negative terminal of the first capacitor C 1 is boosted to the input voltage V in to provide boosting energy, the second conducting element D 2 is turned on, so the positive output The positive output voltage V o 1 = V C 3 = V C 1 + V in , the energy of the negative output terminal 62 is the boosting energy provided by the fourth capacitor C 4 , so the negative output voltage V 0 of the negative output terminal 62 2 = V C 4 .
第二模式: 參閱圖5,開關元件Q 1 不導通(時間t1 至t2 )時,電感L 1 激磁使I L 1 電流上升,同時,電感L 1 串聯第三電容C 2 跨壓對第四電容C 4 充電,此時,正輸出端61之電壓V o 1 由第二電容C 3 提供升壓能量,因此正輸出端61之正輸出電壓V o 1 =V C 3 且負輸出端62之電壓V o 2 =V C 4 =-(V C 2 +V L 1 ),又由於電感L 1 亦對第一電容C 1 充電以提供升壓能量,所以電感L 1 之電壓V L 1 =-V C 1 ,因此負輸出端62之負輸出電壓V o 2 =-(V C 2 +V C 1 )。 Second mode: FIG. 5, the switching element Q 1 nonconducting (times t 1 to t 2), the inductance L 1 so that the exciting current I L 1 rises, while the inductance L 1 connected in series the voltage across the third capacitor C 2 to the first The four capacitor C 4 is charged. At this time, the voltage V o 1 of the positive output terminal 61 is supplied with the boosting energy by the second capacitor C 3 , so the positive output voltage V o 1 of the positive output terminal 61 is V C 3 and the negative output terminal 62 The voltage V o 2 = V C 4 = - ( V C 2 + V L 1 ), and since the inductor L 1 also charges the first capacitor C 1 to provide boosting energy, the voltage of the inductor L 1 is V L 1 = - V C 1 , thus the negative output voltage V o 2 of the negative output 62 = -( V C 2 + V C 1 ).
假設C 1
已經充電至V C
1
,藉由電感L 1
之伏秒平衡(volt-second balance)原理得知D
×V in
=(1-D
)×V C
1
,因此,
在第一模式時,
及V o 1 =V C 4 公式3And V o 1 = V C 4 Equation 3
在第二模式時,由於第二電容C 3
之跨壓仍穩住在公式2所表示之電壓,因此,
且V o 2 =-(V C 1 -V L 1 )=-(V C 1 -(-V C 2 ))=-(V C 1 +V C 2 ) 公式5And V o 2 =-( V C 1 - V L 1 )=-( V C 1 -(- V C 2 ))=-( V C 1 + V C 2 ) Formula 5
由於C 2
之跨壓於第一模式時已快速充電為輸入電壓V in
,因此公式5可改寫為
及
本較佳實施例之實驗條件為:(i)直流輸入電壓V in 為10至16伏;(ii)等比例輸出電壓V o 1 為+25伏及V o2 為-25伏;(iii)等比例輸出電流I c4 為1.25安培;(iv)等比例輸出功率為62.5 瓦;(v)開關頻率為200kHz;(vi)第一電容C 1 及第三電容C 2 之電容值為22μF;(vii)第二電容C 3 及第四電容C 4 之電容值為330μF;(viii)開關元件Q 1 的型號為IRF540NS;及(ix)第一導通元件D 1 、第二導通元件D 2 、第三導通元件D 3 及第四導通元件D 4 的型號為MS22。The experimental conditions of the preferred embodiment are: (i) the DC input voltage V in is 10 to 16 volts; (ii) the proportional output voltage V o 1 is +25 volts and V o2 is -25 volts; (iii) The proportional output current I c4 is 1.25 amps; (iv) the equal-ratio output power is 62.5 watts; (v) the switching frequency is 200 kHz; (vi) the capacitance values of the first capacitor C 1 and the third capacitor C 2 are 22 μF; (vii The capacitance values of the second capacitor C 3 and the fourth capacitor C 4 are 330 μF; (viii) the type of the switching element Q 1 is IRF 540 NS; and (ix) the first conduction element D 1 , the second conduction element D 2 , and the third The type of the conduction element D 3 and the fourth conduction element D 4 is MS22.
參閱圖6及圖7,為使用前述元件的電路架構,提供輸入電壓V in 為10伏時,對應於圖2的不同元件實際測得的電流、電壓時序波形圖。Referring to FIG. 6 and FIG. 7, for the circuit architecture using the foregoing components, current and voltage timing waveforms actually measured corresponding to different components of FIG. 2 are provided when the input voltage V in is 10 volts.
參閱圖8、圖9及圖10,圖8是在輸入電壓V in 為10伏所產生的電壓Vgs 、Vds 、Vd1 及Vd2 之波形;圖9是在輸入電壓V in 為12伏所產生的電壓Vgs 、Vds 、Vd1 及Vd2 之波形;圖10是在輸入電壓V in 為16伏所產生的電壓Vgs 、Vds 、Vd1 及Vd2 之波形。Referring to FIG. 8, FIG. 9, and FIG. 10, FIG. 8 is a waveform of voltages V gs , V ds , V d1 , and V d2 generated when the input voltage V in is 10 volts; FIG. 9 is an input voltage V in 12 volts. Waveforms of the generated voltages V gs , V ds , V d1 , and V d2 ; FIG. 10 is a waveform of voltages V gs , V ds , V d1 , and V d2 generated at an input voltage V in of 16 volts.
參閱圖11、圖12及圖13,分別是輸入電壓V in 為10伏、12伏及16伏,且各圖中均顯示開關元件Q 1 之閘級驅動訊號(gate driving signal)之電壓Vgs 、電感電流IL1 、第一電容C 1 及第三電容C 2 的電壓Vc1 及Vc2 時序波形圖。Referring to FIG. 11, 12 and 13, respectively, the input voltage V in is 10 volts, 12 volts and 16 volts, and the figures are indicative of the switching element Q gate-driver signal (gate driving signal) of the voltage V gs The timing waveforms of the voltages V c1 and V c2 of the inductor current I L1 , the first capacitor C 1 and the third capacitor C 2 .
配合圖2及前述時序波形圖可知,單一正電壓電源可以在正輸出端61及負輸出端62分別得到穩定的升壓輸出,此外,參閱圖14,無論是何種負載率(Load percentage),在輸入電壓10伏、12伏、14伏及16伏的轉換效率(Efficiency)皆在91.8%以上。As can be seen from FIG. 2 and the timing waveform diagram described above, a single positive voltage power supply can obtain a stable boost output at the positive output terminal 61 and the negative output terminal 62, respectively. Further, referring to FIG. 14, regardless of the load percentage, The conversion efficiency (Efficiency) at input voltages of 10 volts, 12 volts, 14 volts, and 16 volts is above 91.8%.
綜上所述,本發明具有的優點為:只需單一電源的輸入電壓V in 就可以得到升壓的正輸出電壓V o 1 及負輸出電壓V o2 、可 應用於D類放大器,以及電路易於實現,故確實能達成本發明之目的。In summary, the present invention has the advantages that only a single power supply input voltage V in can obtain a boosted positive output voltage V o 1 and a negative output voltage V o2 , can be applied to a class D amplifier, and the circuit is easy. It is achieved that the object of the invention can be achieved.
惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。The above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are All remain within the scope of the invention patent.
100‧‧‧升壓型轉換器100‧‧‧Boost converter
101‧‧‧正電壓輸出電路101‧‧‧ positive voltage output circuit
102‧‧‧負電壓輸出電路102‧‧‧Negative voltage output circuit
11、21、311、321、331、341、511、521、531、541‧‧‧第一端11, 21, 311, 321, 331, 341, 511, 521, 531, 541‧‧‧ first end
12、22、312、322、332、342、512、522、532、542‧‧‧第二端12, 22, 312, 322, 332, 342, 512, 522, 532, 542‧‧ second end
60‧‧‧電源60‧‧‧Power supply
61‧‧‧正輸出端61‧‧‧ positive output
62‧‧‧負輸出端62‧‧‧negative output
C 1 ‧‧‧第一電容 C 1 ‧‧‧first capacitor
C 3 ‧‧‧第二電容 C 3 ‧‧‧second capacitor
C 2 ‧‧‧第三電容 C 2 ‧‧‧ third capacitor
C 4 ‧‧‧第四電容 C 4 ‧‧‧fourth capacitor
D 1 ‧‧‧第一導通元件 D 1 ‧‧‧First conduction element
D 2 ‧‧‧第二導通元件 D 2 ‧‧‧second conduction element
D 3 ‧‧‧第三導通元件 D 3 ‧‧‧third conduction element
D 4 ‧‧‧第四導通元件 D 4 ‧‧‧fourth conducting component
D b 1 ‧‧‧二極體 D b 1 ‧‧‧ diode
L 1 ‧‧‧電感 L 1 ‧‧‧Inductance
Q 1 ‧‧‧開關元件 Q 1 ‧‧‧Switching elements
V o 1 ‧‧‧正輸出電壓 V o 1 ‧‧‧ positive output voltage
V o 2 ‧‧‧負輸出電壓 V o 2 ‧‧‧negative output voltage
圖1是一電路圖,說明本發明升壓型轉換器之較佳實施例;圖2是一時序波形圖,說明圖1的一部分元件的模擬電流、電壓波形;圖3是一時序波形圖,說明圖1的另一部分元件的模擬電流、電壓波形;圖4是一電路圖,說明圖1的開關元件導通的電流流向;圖5是一電路圖,說明圖1的開關元件不導通的電流流向;圖6是一時序波形圖,說明圖1的一部分元件實際測得的電流、電壓波形;圖7是一時序波形圖,說明圖1的另一部分元件實際測得的電流、電壓波形;圖8是一時序波形圖,說明在輸入電壓為10伏的的電壓Vgs 、Vds 、Vd1 及Vd2 之波形;圖9是一時序波形圖,說明在輸入電壓為12伏的的電壓Vgs 、Vds 、Vd1 及Vd2 之波形; 圖10是一時序波形圖,說明在輸入電壓為16伏的的電壓Vgs 、Vds 、Vd1 及Vd2 之波形;圖11是一時序波形圖,說明輸入電壓為10伏的開關元件之閘級驅動訊號之電壓、電感電流、第一電容及第三電容之電壓波形;圖12是一時序波形圖,說明輸入電壓為12伏的開關元件之閘級驅動訊號之電壓、電感電流、第一電容及第三電容之電壓波形;圖13是一時序波形圖,說明輸入電壓為16伏的開關元件之閘級驅動訊號之電壓、電感電流、第一電容及第三電容之電壓波形;及圖14是一波形圖,說明對應不同負載率在不同輸出電壓的轉換效率。1 is a circuit diagram showing a preferred embodiment of the boost converter of the present invention; FIG. 2 is a timing waveform diagram illustrating the analog current and voltage waveforms of a portion of the components of FIG. 1; FIG. 3 is a timing waveform diagram illustrating FIG. 4 is a circuit diagram illustrating the current flow of the switching element of FIG. 1; FIG. 5 is a circuit diagram illustrating the non-conducting current flow of the switching element of FIG. 1; FIG. Is a timing waveform diagram illustrating the current and voltage waveforms actually measured by a part of the components of FIG. 1; FIG. 7 is a timing waveform diagram illustrating current and voltage waveforms actually measured by another component of FIG. 1; FIG. A waveform diagram illustrating waveforms of voltages V gs , V ds , V d1 , and V d2 at an input voltage of 10 volts; and FIG. 9 is a timing waveform diagram illustrating voltages V gs , V ds at an input voltage of 12 volts , waveforms of V d1 and V d2 ; FIG. 10 is a timing waveform diagram illustrating waveforms of voltages V gs , V ds , V d1 , and V d2 at an input voltage of 16 volts; FIG. 11 is a timing waveform diagram illustrating Gate level of a switching element with an input voltage of 10 volts The voltage waveform of the driving signal, the inductor current, the first capacitor and the third capacitor; FIG. 12 is a timing waveform diagram illustrating the voltage, the inductor current, and the first capacitor of the gate driving signal of the switching element having an input voltage of 12 volts. And a voltage waveform of the third capacitor; FIG. 13 is a timing waveform diagram illustrating voltages of the gate driving signals, the inductor current, the first capacitor, and the third capacitor of the switching element having an input voltage of 16 volts; and FIG. It is a waveform diagram illustrating the conversion efficiency at different output voltages for different load rates.
100‧‧‧升壓型轉換器100‧‧‧Boost converter
101‧‧‧正電壓輸出電路101‧‧‧ positive voltage output circuit
102‧‧‧負電壓輸出電路102‧‧‧Negative voltage output circuit
11、21、311、321、331、 341、511、521、531、541‧‧‧第一端11, 21, 311, 321, 331, First end of 341, 511, 521, 531, 541‧‧
12、22、312、322、332、342、512、522、532、542‧‧‧第二端12, 22, 312, 322, 332, 342, 512, 522, 532, 542‧‧ second end
60‧‧‧電源60‧‧‧Power supply
61‧‧‧正輸出端61‧‧‧ positive output
62‧‧‧負輸出端62‧‧‧negative output
C 1 ‧‧‧第一電容 C 1 ‧‧‧first capacitor
C 3 ‧‧‧第二電容 C 3 ‧‧‧second capacitor
C 2 ‧‧‧第三電容 C 2 ‧‧‧ third capacitor
C 4 ‧‧‧第四電容 C 4 ‧‧‧fourth capacitor
D 1 ‧‧‧第一導通元件 D 1 ‧‧‧First conduction element
D 2 ‧‧‧第二導通元件 D 2 ‧‧‧second conduction element
D 3 ‧‧‧第三導通元件 D 3 ‧‧‧third conduction element
D 4 ‧‧‧第四導通元件 D 4 ‧‧‧fourth conducting component
D b 1 ‧‧‧二極體 D b 1 ‧‧‧ diode
L 1 ‧‧‧電感 L 1 ‧‧‧Inductance
Q 1 ‧‧‧開關元件 Q 1 ‧‧‧Switching elements
V o 1 ‧‧‧正輸出電壓 V o 1 ‧‧‧ positive output voltage
V o 2 ‧‧‧負輸出電壓 V o 2 ‧‧‧negative output voltage
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW99138138A TWI431914B (en) | 2010-11-05 | 2010-11-05 | A boost converter with positive and negative outputs |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW99138138A TWI431914B (en) | 2010-11-05 | 2010-11-05 | A boost converter with positive and negative outputs |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201220658A TW201220658A (en) | 2012-05-16 |
TWI431914B true TWI431914B (en) | 2014-03-21 |
Family
ID=46553222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW99138138A TWI431914B (en) | 2010-11-05 | 2010-11-05 | A boost converter with positive and negative outputs |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI431914B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102769379B (en) * | 2012-07-23 | 2015-04-15 | 广州慧智微电子有限公司 | Positive and negative voltage generation circuit applicable to silicon-on-insulator (SOI) process |
CN102843030B (en) * | 2012-09-24 | 2016-06-22 | 深圳Tcl新技术有限公司 | Topological circuit and electronic equipment |
CN104935164A (en) * | 2014-03-20 | 2015-09-23 | 广东易事特电源股份有限公司 | Direct current converter capable of outputting positive and negative voltage |
-
2010
- 2010-11-05 TW TW99138138A patent/TWI431914B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW201220658A (en) | 2012-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104218803B (en) | Bootstrap voltage charging circuit and voltage conversion circuit | |
JP5727300B2 (en) | Voltage regulator | |
KR101036867B1 (en) | Dc-dc converter | |
US8278884B2 (en) | DC-DC converter | |
TW200631294A (en) | Charge pumping circuit | |
TWI343695B (en) | ||
US20150171855A1 (en) | A switching circuit and the method thereof | |
TWI431914B (en) | A boost converter with positive and negative outputs | |
CN1897425A (en) | Flexible buck converter to generate an output voltage higher or lower than an input voltage | |
CN104852568A (en) | Cuk based current source | |
WO2017086028A1 (en) | Step-up/down power supply and power supply circuit | |
CN111736686B (en) | Protection circuit and server of SCC circuit are opened unusually | |
US10122258B2 (en) | DC-DC converter with pull-up or pull-down current and associated control method | |
TWI430550B (en) | With the positive and negative output of the step-up and down converter | |
CN110391730A (en) | The negative charge pump that output voltage range for boost LED driver doubles | |
JP5839899B2 (en) | Backflow prevention circuit and step-down DC / DC converter using the same, control circuit thereof, charging circuit, electronic device | |
US10903745B1 (en) | Average current mode control architecture | |
CN111130318B (en) | Switching power supply control circuit and method thereof | |
TWI444811B (en) | High boost ratio circuit | |
TWI433440B (en) | High boost converter | |
TWI455465B (en) | High pressurization device | |
TWI440290B (en) | Boost converter | |
TWI437804B (en) | Boost converter with active clamping function | |
TW200928659A (en) | Power converting device and method with boosted outputs | |
JP2004350344A (en) | Dc-dc converter and switching regulator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |