TWI431774B - Semiconductor device and lateral diffused metal-oxide-semiconductor transistor - Google Patents

Semiconductor device and lateral diffused metal-oxide-semiconductor transistor Download PDF

Info

Publication number
TWI431774B
TWI431774B TW98110629A TW98110629A TWI431774B TW I431774 B TWI431774 B TW I431774B TW 98110629 A TW98110629 A TW 98110629A TW 98110629 A TW98110629 A TW 98110629A TW I431774 B TWI431774 B TW I431774B
Authority
TW
Taiwan
Prior art keywords
doped region
type
gate
region
doped
Prior art date
Application number
TW98110629A
Other languages
Chinese (zh)
Other versions
TW201036158A (en
Inventor
Jimmy Lin
Shang Hui Tu
Ming Horng Hsiao
Original Assignee
Vanguard Int Semiconduct Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vanguard Int Semiconduct Corp filed Critical Vanguard Int Semiconduct Corp
Priority to TW98110629A priority Critical patent/TWI431774B/en
Publication of TW201036158A publication Critical patent/TW201036158A/en
Application granted granted Critical
Publication of TWI431774B publication Critical patent/TWI431774B/en

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

半導體裝置及橫向擴散金氧半電晶體Semiconductor device and laterally diffused MOS transistor

本發明係有關於一種半導體裝置,特別係有關於一種將矽控整流器(silicon controlled rectifier,SCR)整合在橫向擴散金氧半電晶體(lateral diffused metal-oxide-semiconductor transistor,LDMOS)中之半導體裝置。The present invention relates to a semiconductor device, and more particularly to a semiconductor device incorporating a silicon controlled rectifier (SCR) in a laterally diffused metal-oxide-semiconductor transistor (LDMOS). .

隨著半導體製程微縮技術的不斷進步,如何提升半導體裝置可靠度日趨重要。然而,半導體裝置在生產製造、加工、組裝、運送、使用等過程中,整個流程都會遭受靜電放電(electrostatic discharge,以下簡稱ESD)的威脅,若無適當防護措施,半導體裝置就會受到破壞而無法銷售。因此,靜電放電防護元件設計為任何半導體裝置所必須之技術。目前,特別是在高壓(high voltage)元件產品中,ESD防護元件的耐受度的標準須高達8kV。在習知技術中,為了增加ESD防護耐受度以及節省晶片面積,可應用矽控整流器(silicon controlled rectifier,SCR)來做為ESD防護元件。然而,如果矽控整流器的保持電壓(holding voltage)過低,則會在發生ESD時,甚至在元件正常操作電壓下觸發矽控整流器,發生拴鎖現象(latch-up)而損壞電路。With the continuous advancement of semiconductor process micro-shrinking technology, how to improve the reliability of semiconductor devices is becoming more and more important. However, in the process of manufacturing, processing, assembling, transporting, and using semiconductor devices, the entire process is subject to the threat of electrostatic discharge (ESD). Without proper protection measures, the semiconductor device may be damaged. Sales. Therefore, the ESD protection component is designed as a technology necessary for any semiconductor device. At present, especially in high voltage component products, the tolerance of ESD protection components must be as high as 8 kV. In the prior art, in order to increase the ESD protection tolerance and save the chip area, a silicon controlled rectifier (SCR) can be applied as an ESD protection component. However, if the holding voltage of the controlled rectifier is too low, the controlled rectifier will be triggered when the ESD occurs, even at the normal operating voltage of the component, and a latch-up will occur to damage the circuit.

在此技術領域中,有需要一種具有可調整保持電壓之ESD防護元件之半導體裝置,以改善上述缺點。There is a need in the art for a semiconductor device having an ESD protection element that can adjust the holding voltage to improve the above disadvantages.

有鑑於此,本發明之一實施例係提供一種半導體裝置,包括一基板,其具有一第一導電類型;一閘極,設置於上述基板上;一源極摻雜區,形成於上述基板中,且鄰近於上述閘極的一第一側邊,其中上述源極摻雜區具有相反於上述第一導電類型之一第二導電類型;一汲極摻雜區,形成於上述基板中,且鄰近上述閘極的相對於上述第一側邊之一第二側邊,其中上述汲極摻雜區由交錯設置的具有上述第一導電類型之複數個第一摻雜區和具有上述第二導電類型複數個第二摻雜區構成。In view of this, an embodiment of the present invention provides a semiconductor device including a substrate having a first conductivity type, a gate disposed on the substrate, and a source doped region formed in the substrate And adjacent to a first side of the gate, wherein the source doped region has a second conductivity type opposite to the first conductivity type; a drain doped region is formed in the substrate, and Adjacent to a second side of the first gate opposite to the first side, wherein the gate doped region is formed by staggering a plurality of first doped regions having the first conductivity type and having the second conductive The plurality of second doped regions are of a type.

本發明之另一實施例係提供一種橫向擴散金氧半電晶體(LDMOS),包括一p型基板;一閘極,設置於上述p型基板上;一源極摻雜區,形成於上述p型基板中,且鄰近於上述閘極的一第一側邊;一汲極摻雜區,形成於上述p型基板中,且鄰近上述閘極的相對於上述第一側邊之一第二側邊,其中上述汲極摻雜區由交錯設置的複數個p型摻雜區和複數個n型摻雜區構成。Another embodiment of the present invention provides a laterally diffused metal oxide semiconductor (LDMOS) comprising a p-type substrate; a gate disposed on the p-type substrate; and a source doped region formed on the p a first side of the gate and adjacent to the gate; a drain doped region formed in the p-type substrate adjacent to the second side of the gate opposite to the first side The side, wherein the above-mentioned drain doping region is composed of a plurality of p-type doped regions and a plurality of n-type doped regions arranged in a staggered manner.

以下以各實施例詳細說明並伴隨著圖式說明之範例,做為本發明之參考依據。在圖式或說明書描述中,相似或相同之部分皆使用相同之圖號。且在圖式中,實施例之形狀或是厚度可擴大,並以簡化或是方便標示。再者,圖式中各元件之部分將以分別描述說明之,值得注意的是,圖中未繪示或描述之元件,為所屬技術領域中具有通常知識者所知的形式,另外,特定之實施例僅為揭示本發明使用之特定方式,其並非用以限定本發明。The following is a detailed description of the embodiments and examples accompanying the drawings, which are the basis of the present invention. In the drawings or the description of the specification, the same drawing numbers are used for similar or identical parts. In the drawings, the shape or thickness of the embodiment may be expanded and simplified or conveniently indicated. In addition, the components of the drawings will be described separately, and it is noted that the components not shown or described in the drawings are known to those of ordinary skill in the art, and in particular, The examples are merely illustrative of specific ways of using the invention and are not intended to limit the invention.

第1圖為本發明實施例之半導體裝置500a的上視示意圖。第2a圖為沿第1圖之A-A’切線的剖面圖,而第2b圖為沿第1圖之B-B’切線的剖面圖。如第1圖所示,本發明實施例中之半導體裝置500a可包括兩個對稱且平行排列且共用汲極的例如橫向擴散金氧半電晶體(lateral diffused metal-oxide-semiconductor transistor,以下簡稱LDMOS)之電晶體,但電晶體的數量依設計而定,其數量並無限制。。半導體裝置500a的主要元件可包括基板200、閘極202a和202b、源極摻雜區204a和204b以及共用的汲極摻雜區206,其中閘極202a和202b、源極摻雜區204a和204b和汲極摻雜區206的形狀為長條形,且閘極202a和202b、源極摻雜區204a和204b和汲極摻雜區206彼此平行。如第2a和2b圖所示,閘極202a與源極摻雜區204a係藉由淺溝槽隔離物201隔開,閘極202a與汲極摻雜區206係藉由淺溝槽隔離物201隔開。在本發明之一實施例中,汲極摻雜區206可耦接至一高電源埠VDD,而源極摻雜區204a或204b可耦接至一接地埠GND。Fig. 1 is a top plan view showing a semiconductor device 500a according to an embodiment of the present invention. Fig. 2a is a cross-sectional view taken along line A-A' of Fig. 1, and Fig. 2b is a cross-sectional view taken along line B-B' of Fig. 1. As shown in FIG. 1, the semiconductor device 500a in the embodiment of the present invention may include two laterally diffused metal-oxide-semiconductor transistors (hereinafter referred to as LDMOS) which are symmetrically and in parallel and share a common drain. The transistor, but the number of transistors depends on the design, and the number is not limited. . The main components of the semiconductor device 500a may include a substrate 200, gates 202a and 202b, source doped regions 204a and 204b, and a common drain doped region 206, wherein the gates 202a and 202b, the source doped regions 204a and 204b The doped region 206 and the doped region 206 are elongated in shape, and the gates 202a and 202b, the source doped regions 204a and 204b, and the drain doped region 206 are parallel to each other. As shown in FIGS. 2a and 2b, the gate 202a and the source doped region 204a are separated by a shallow trench spacer 201, and the gate 202a and the drain doped region 206 are separated by a shallow trench spacer 201. Separated. In one embodiment of the invention, the drain doping region 206 can be coupled to a high power supply VDD, and the source doping region 204a or 204b can be coupled to a ground GND.

在本發明實施例中,基板200可為矽基板。在其他實施例中,可利用鍺化矽(SiGe)、塊狀半導體(bulk semiconductor)、應變半導體(strained semiconductor)、化合物半導體(compound semiconductor)、绝緣層上覆矽(silicon on insulator,SOI),或其他常用之半導體基板。基板200可可植入p型或n型不純物,以針對設計需要改變其導電類型。在本發明實施例中,基板200可的導電類型例如為p型,而本發明實施例之半導體裝置500a例如為n型LDMOS。In the embodiment of the present invention, the substrate 200 may be a germanium substrate. In other embodiments, silicon germanium (SiGe), bulk semiconductor, strained semiconductor, compound semiconductor, silicon on insulator (SOI) may be utilized. , or other commonly used semiconductor substrates. The substrate 200 can be implanted with p-type or n-type impurities to change its conductivity type for design needs. In the embodiment of the present invention, the conductivity type of the substrate 200 is, for example, a p-type, and the semiconductor device 500a of the embodiment of the present invention is, for example, an n-type LDMOS.

如第1圖所示,本發明實施例之半導體裝置500a的閘極202a和202b係設置於基板200上。在本發明實施例中,閘極202a和202b可為一下層之閘極絕緣層和一上層之閘極層所構成,其中閘極絕緣層可包括例如氧化物(oxide)、氮化物(nitride)、氮氧化物(oxynitride)、碳氧化物(oxycarbide)或其組合等常用的介電材料。閘極絕緣層224也可包括氧化鋁(aluminum oxide;Al2 O3 )、氧化鉿(hafnium oxide,HfO2 )、氮氧化鉿(hafnium oxynitride,HfON)、矽酸鉿(hafnium silicate,HfSiO4 )、氧化鋯(zirconium oxide,ZrO2 )、氮氧化鋯(zirconium oxynitride,ZrON)、矽酸鋯(zirconium silicate,ZrSiO4 )、氧化釔(yttrium oxide,Y2 O3 )、氧化鑭(lanthalum oxide,La2 O3 )、氧化鈰(cerium oxide,CeO2 )、氧化鈦(titanium oxide,TiO2 )、氧化鉭(tantalum oxide,Ta2 O5 )或其組合等高介電常數(high-k,介電常數大於8)之介電材料。而閘極層可包括矽或多晶矽(polysilicon)。閘極層較佳為摻雜摻質以降低其片電阻(sheet resistance)。在其他實施例中,閘極層係包括非晶矽(amorphous silicon)。As shown in FIG. 1, the gates 202a and 202b of the semiconductor device 500a of the embodiment of the present invention are disposed on the substrate 200. In the embodiment of the present invention, the gates 202a and 202b may be composed of a gate insulating layer of a lower layer and a gate layer of an upper layer, wherein the gate insulating layer may include, for example, an oxide or a nitride. A commonly used dielectric material such as oxynitride, oxycarbide or a combination thereof. The gate insulating layer 224 may also include aluminum oxide (Al 2 O 3 ), hafnium oxide (HfO 2 ), hafnium oxynitride (HfON), hafnium silicate (HfSiO 4 ). Zirconium oxide (ZrO 2 ), zirconium oxynitride (ZrON), zirconium silicate (ZrSiO 4 ), yttrium oxide (Y 2 O 3 ), lanthanum oxide High dielectric constant (high-k, La 2 O 3 ), cerium oxide (CeO 2 ), titanium oxide (TiO 2 ), tantalum oxide (Ta 2 O 5 ), or combinations thereof A dielectric material having a dielectric constant greater than 8). The gate layer may include germanium or polysilicon. The gate layer is preferably doped with a dopant to reduce its sheet resistance. In other embodiments, the gate layer comprises amorphous silicon.

如第1圖所示,本發明實施例之源極摻雜區204a和204b係形成於基板200中,且分別鄰近於閘極202a和202b的一側邊。舉例來說,源極摻雜區204a鄰近於閘極202a的側邊214。在本發明實施例中,源極摻雜區204a和204b的導電類型與基板200相反,舉例來說,如果基板200的導電類型為p型,源極摻雜區204a和204b的導電類型則為n型。另外,本發明實施例之汲極摻雜區206係形成於基板200中,其可為兩個LDMOS之共用汲極區。如第1圖所示,汲極摻雜區206係鄰近閘極202a或202b的鄰近於於源極摻雜區204a和204b之側邊的相反側邊。舉例來說,汲極摻雜區206鄰近於閘極202a的側邊216,而側邊214和側邊216互為相反側。在本發明實施例中,汲極摻雜區206係由沿汲極摻雜區206的一長軸方向300交錯設置(alternatively)的複數個第一摻雜區208a和複數個第二摻雜區208b構成。如第1圖所示,第一摻雜區208a與閘極202a的側邊216的間距d1 和第二摻雜區208b與閘極202a的側邊216的間距d2 相等,且第一摻雜區208a與第二摻雜區208b具有相同的寬度W。在本發明實施例中,第一摻雜區208a與第二摻雜區208b具有相反的導電類型。如果第一摻雜區208a與基板200的導電類型同為p型,第二摻雜區208b的導電類型為n型時,則第一摻雜區208a的總面積與汲極摻雜區206的總面積的比值大於0且小於1。As shown in FIG. 1, the source doping regions 204a and 204b of the embodiment of the present invention are formed in the substrate 200 and adjacent to one side of the gates 202a and 202b, respectively. For example, source doped region 204a is adjacent to side edge 214 of gate 202a. In the embodiment of the present invention, the conductivity types of the source doping regions 204a and 204b are opposite to those of the substrate 200. For example, if the conductivity type of the substrate 200 is p-type, the conductivity types of the source doping regions 204a and 204b are Type n. In addition, the gate doped region 206 of the embodiment of the present invention is formed in the substrate 200, which may be a common drain region of two LDMOSs. As shown in FIG. 1, the drain doped region 206 is adjacent the opposite side of the gate 202a or 202b adjacent to the sides of the source doped regions 204a and 204b. For example, the drain doped region 206 is adjacent to the side edge 216 of the gate 202a, while the side edge 214 and the side edge 216 are opposite sides of each other. In the embodiment of the present invention, the gate doped region 206 is composed of a plurality of first doped regions 208a and a plurality of second doped regions alternately arranged along a long axis direction 300 of the drain doped region 206. 208b constitutes. As shown in FIG. 1, the side of the first doped region 208a and 202a of the gate 216 of the pitch D 1 and D and the spacing of the second doped region 208b of the gate 202a of the side 216 is equal to 2, and the first doped The impurity region 208a has the same width W as the second doping region 208b. In an embodiment of the invention, the first doped region 208a and the second doped region 208b have opposite conductivity types. If the conductivity type of the first doping region 208a and the substrate 200 are p-type and the conductivity type of the second doping region 208b is n-type, the total area of the first doping region 208a and the gate doping region 206 are The ratio of the total area is greater than 0 and less than 1.

如第1、2a和2b圖所示,本發明實施例之半導體裝置500a可更包括第三摻雜區210a和210b,形成於基板200中,並分別包圍閘極202a和202b以及源極摻雜區204a和204b,其中第三摻雜區210a和210b與基板的導電類型可同為p型。在本發明實施例中,第三摻雜區210a和210b可視為p型主體摻雜區(p-type body region)210a和210b,以做為半導體裝置500a的通道區(channel region)以及源極的一部分。本發明實施例之半導體裝置500a可更包括第四摻雜區212,形成於基板200中,並包圍汲極摻雜區206。如果基板200的導電類型為p型,則第四摻雜區212的導電類型為n型。在本發明實施例中,第四摻雜區212可視為n型漂移摻雜區(n-type drift region)212,其係做為半導體裝置500a的汲極的一部分。As shown in the first, second, and second embodiments, the semiconductor device 500a of the embodiment of the present invention may further include third doping regions 210a and 210b formed in the substrate 200 and surrounding the gates 202a and 202b and the source doping, respectively. The regions 204a and 204b, wherein the third doping regions 210a and 210b and the conductivity type of the substrate may be the same p-type. In the embodiment of the present invention, the third doping regions 210a and 210b may be regarded as p-type body regions 210a and 210b as a channel region and a source of the semiconductor device 500a. a part of. The semiconductor device 500a of the embodiment of the present invention may further include a fourth doping region 212 formed in the substrate 200 and surrounding the gate doping region 206. If the conductivity type of the substrate 200 is p-type, the conductivity type of the fourth doping region 212 is n-type. In the embodiment of the present invention, the fourth doping region 212 can be regarded as an n-type drift region 212, which is a part of the drain of the semiconductor device 500a.

第3圖為本發明另一實施例之半導體裝置500b的上視示意圖。在本發明另一實施例中,閘極202c的形狀為環形,源極摻雜區204a和204b以及汲極摻雜區206的形狀為長條形,其中汲極摻雜區206被閘極202c包圍。另外,包圍源極摻雜區204a和204b以及閘極202c之第三摻雜區210c的形狀也為環形。如第3圖所示,第一摻雜區208a與與閘極202c的側邊216的間距d1 和第二摻雜區208b與閘極202c的側邊216的間距d2 相等,且第一摻雜區208a與第二摻雜區208b具有相同的寬度W。Fig. 3 is a top plan view showing a semiconductor device 500b according to another embodiment of the present invention. In another embodiment of the invention, the gate 202c is annular in shape, the source doped regions 204a and 204b and the drain doped region 206 are elongated, and the gate doped region 206 is gated 202c. Surrounded. In addition, the shape of the third doping region 210c surrounding the source doping regions 204a and 204b and the gate 202c is also annular. As shown in FIG. 3, the first doped region 208a is equal to the distance d 1 from the side 216 of the gate 202c and the distance d 2 between the second doped region 208b and the side 216 of the gate 202c, and is first The doped region 208a and the second doped region 208b have the same width W.

第4圖為本發明實施例之半導體裝置500a或500b的等效電路示意圖。半導體裝置500a或500b的汲極摻雜區206係由具有相反導電類型之複數個第一摻雜區208a和複數個第二摻雜區208b沿著汲極摻雜區206之長軸方向交錯設置構成。在本發明之一實施例中,汲極摻雜區206之第一摻雜區208a和第二摻雜區208b可耦接至一高電源埠VDD,而源極摻雜區204a可耦接至一接地埠GND。在本發明之一實施例中,如第4圖所示,如果基板200的導電類型為p型,在半導體裝置500a之例如為n型漂移摻雜區之第四摻雜區212中的p型第一摻雜區208a和n型第二摻雜區208b與例如為p型主體摻雜區(p-type body region)之第三摻雜區210a係構成係構成一寄生之p型-n型-p型接面雙載子電晶體410(PNP bipolar junction transistor,以下簡稱PNP BJT)。其中p型第一摻雜區208a可視為上述寄生之PNP BJT 410的射極(emitter),n型第二摻雜區208b和例如為n型漂移摻雜區(n-type drift region)之第四摻雜區212可視為上述寄生之PNP BJT 410的基極(base),而例如為p型主體摻雜區(p-type body region)之第三摻雜區210a可視為上述寄生之PNP BJT 410的集極(collector)。另外,例如為n型漂移摻雜區(n-type drift region)之第四摻雜區212、例如為p型主體摻雜區(p-type body region)之第三摻雜區210a和n型的源極摻雜區204a係構成一寄生之n型-p型-n型接面雙載子電晶體420(NPN bipolar junction transistor,以下簡稱NPN BJT)。其中例如為n型漂移摻雜區(n-type drift region)之第四摻雜區212可視為上述寄生之NPN BJT 420的射極(emitter),例如為p型主體摻雜區(p-type body region)之第三摻雜區210a可視為上述寄生之NPN BJT 420的基極(base),而n型的源極摻雜區204a可視為上述寄生之NPN BJT 420的集極(collector)。上述PNP BJT 410和NPN BJT 420可構成一寄生之矽控整流器600(silicon controlled rectifier,以下簡稱SCR)。當遭受ESD或來自高電源埠VDD的轟擊(zapping)時,上述寄生之SCR 600會被觸發,會形成從高電源埠VDD至接地埠GND的通路。因此,大量的電洞會由p型第一摻雜區208a經由例如為n型漂移摻雜區(n-type drift region)之第四摻雜區212注入於p型基板200中,再經由例如為p型主體摻雜區(p-type body region)之第三摻雜區210a中的n型源極摻雜區204a將電洞導至接地埠GND。由此可知,矽控整流器600可以傳導大量的ESD暫態電流,而不會破壞半導體裝置500a或500b。另外,可經由調整第一摻雜區208a和第二摻雜區208b的面積比例,來調整SCR 600的保持電壓(holding voltage),避免在發生ESD時,甚至在元件正常操作電壓下觸發SCR 600,發生拴鎖現象(latch-up)而損壞電路。因此,本發明實施例之半導體裝置500a或500b可將例如矽控整流器之ESD防護元件整合在橫向擴散金氧半電晶體(LDMOS)的汲極摻雜區中,因而可不須額外的光罩、製程和晶片面積來製作ESD防護元件。4 is a schematic diagram showing an equivalent circuit of a semiconductor device 500a or 500b according to an embodiment of the present invention. The gate doped region 206 of the semiconductor device 500a or 500b is staggered by a plurality of first doped regions 208a and a plurality of second doped regions 208b having opposite conductivity types along the long axis direction of the drain doped region 206. Composition. In one embodiment of the present invention, the first doped region 208a and the second doped region 208b of the drain doped region 206 can be coupled to a high power supply VDD, and the source doped region 204a can be coupled to A ground 埠 GND. In an embodiment of the present invention, as shown in FIG. 4, if the conductivity type of the substrate 200 is p-type, the p-type in the fourth doping region 212 of the semiconductor device 500a, for example, an n-type drift doping region. The first doped region 208a and the n-type second doped region 208b are combined with a third doped region 210a such as a p-type body region to form a parasitic p-type n-type -p type bipolar junction transistor 410 (hereinafter referred to as PNP BJT). The p-type first doping region 208a can be regarded as the emitter of the parasitic PNP BJT 410, the n-type second doping region 208b and the first n-type drift region. The four-doped region 212 can be regarded as the base of the parasitic PNP BJT 410, and the third doped region 210a, which is, for example, a p-type body region, can be regarded as the parasitic PNP BJT. The collector of 410. In addition, for example, a fourth doping region 212 of an n-type drift region, a third doping region 210a and an n-type such as a p-type body region The source doped region 204a constitutes a parasitic n-type p-type n-type junction bipolar junction transistor (hereinafter referred to as NPN BJT). The fourth doping region 212, for example, an n-type drift region may be regarded as an emitter of the parasitic NPN BJT 420, for example, a p-type body doped region (p-type) The third doped region 210a of the body region can be regarded as the base of the parasitic NPN BJT 420, and the n-type source doped region 204a can be regarded as the collector of the parasitic NPN BJT 420. The PNP BJT 410 and the NPN BJT 420 may constitute a parasitic silicon controlled rectifier (hereinafter referred to as SCR). When subjected to ESD or zapping from a high power supply VDD, the parasitic SCR 600 is triggered to form a path from the high power supply VDD to the ground GND. Therefore, a large number of holes are injected into the p-type substrate 200 from the p-type first doping region 208a via the fourth doping region 212, which is, for example, an n-type drift region, and The n-type source doped region 204a in the third doped region 210a of the p-type body region leads the hole to the ground 埠 GND. It can be seen that the voltage controlled rectifier 600 can conduct a large amount of ESD transient current without damaging the semiconductor device 500a or 500b. In addition, the holding voltage of the SCR 600 can be adjusted by adjusting the area ratio of the first doping region 208a and the second doping region 208b to avoid triggering the SCR 600 even when the ESD is generated, even at the normal operating voltage of the component. The latch-up occurs and the circuit is damaged. Therefore, the semiconductor device 500a or 500b of the embodiment of the present invention can integrate an ESD protection component such as a controlled rectifier in a drain-doped region of a laterally diffused metal oxide semiconductor (LDMOS), thereby eliminating the need for an additional mask, Process and wafer area to make ESD protection components.

第1表依據本發明實施例製成的具有不同面積之p型第一摻雜區的n型LDMOS元件(起始電壓(Vt)=200V,通道長度(L)=0.9μm,通道寬度(W)=500μm)與習知不具p型第一摻雜區之n型LDMOS元件(起始電壓(Vt)=200V,通道長度(L)=0.9μm,通道寬度(W)=500μm),在ESD人體放電模式(human body mode,HBM)(其中汲極摻雜區接收ESD電流,源極摻雜區接地,閘極浮接)之耐受電壓測試結果比較表。Table 1 is an n-type LDMOS device having p-type first doped regions of different areas prepared according to an embodiment of the present invention (starting voltage (Vt) = 200 V, channel length (L) = 0.9 μm, channel width (W) ) = 500 μm) and an n-type LDMOS device having a p-type first doped region (starting voltage (Vt) = 200 V, channel length (L) = 0.9 μm, channel width (W) = 500 μm), in ESD A comparison table of the withstand voltage test results of the human body mode (HBM) (in which the drain-doped region receives the ESD current, the source-doped region is grounded, and the gate is floating).

由第1表可知,習知不具p型第一摻雜區之n型LDMOS元件,不具有ESD防護功能,在ESD人體放電模式(HBM)之耐受電壓僅為0.12kV。依據本發明實施例製成的具有不同面積之p型第一摻雜區的n型LDMOS元件,在ESD人體放電模式(HBM)之耐受電壓均大於8kV,均可通過ESD人體放電模式(HBM)之標準。As can be seen from the first table, the n-type LDMOS device which does not have the p-type first doping region does not have the ESD protection function, and the withstand voltage in the ESD human body discharge mode (HBM) is only 0.12 kV. An n-type LDMOS device having a p-type first doped region having different areas prepared according to an embodiment of the present invention has an withstand voltage of more than 8 kV in an ESD human body discharge mode (HBM), and can pass an ESD human body discharge mode (HBM). ) the standard.

本發明實施例之半導體裝置500a和500b係具有以下優點。本發明實施例之半導體裝置500a和500b汲極摻雜區206係由具有相反導電類型之複數個第一摻雜區208a和複數個第二摻雜區208b沿著汲極摻雜區206之長軸方向交錯設置構成。可將例如矽控整流器(SCR)之ESD防護元件整合在橫向擴散金氧半電晶體(LDMOS)的汲極摻雜區中。因而,本發明實施例之半導體裝置500a和500b為同時具有ESD防護功能和橫向擴散金氧半電晶體(LDMOS)功能的半導體裝置,可不須額外的光罩、製程和晶片面積來製作ESD防護元件。另外,可經由調整第一摻雜區208a和第二摻雜區208b的面積比例,來調整例如矽控整流器(SCR)之ESD防護元件的保持電壓(holding voltage),避免發生ESD時,甚至在元件正常操作電壓下觸發矽控整流器(SCR),發生拴鎖現象(latch-up)而損壞電路。The semiconductor devices 500a and 500b of the embodiments of the present invention have the following advantages. The semiconductor device 500a and 500b of the embodiment of the present invention are doped with a plurality of first doped regions 208a and a plurality of second doped regions 208b having opposite conductivity types along the length of the drain doping region 206. The axial direction is arranged alternately. An ESD protection element such as a voltage controlled rectifier (SCR) can be integrated into the drain doped region of a laterally diffused metal oxide semiconductor (LDMOS). Thus, the semiconductor devices 500a and 500b of the embodiments of the present invention are semiconductor devices having both an ESD protection function and a laterally diffused metal oxide semiconductor (LDMOS) function, and can manufacture ESD protection components without additional mask, process, and wafer area. . In addition, the holding voltage of the ESD protection component such as a controlled rectifier (SCR) can be adjusted by adjusting the area ratio of the first doping region 208a and the second doping region 208b to avoid ESD, even in the case of ESD The component controls the rectifier (SCR) under normal operating voltage, and latch-up occurs to damage the circuit.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope is defined as defined in the scope of the patent application.

200...基板200. . . Substrate

201...淺溝槽隔離物201. . . Shallow trench spacer

202a、202b、202c...閘極202a, 202b, 202c. . . Gate

204a、204b...源極摻雜區204a, 204b. . . Source doping region

206...汲極摻雜區206. . . Bipolar doping zone

208a...第一摻雜區208a. . . First doped region

208b...第二摻雜區208b. . . Second doped region

210a、210b、210c...第三摻雜區210a, 210b, 210c. . . Third doped region

212...第四摻雜區212. . . Fourth doped region

214...第一側邊214. . . First side

216...第二側邊216. . . Second side

300...長軸方向300. . . Long axis direction

410...p型-n型-p型接面雙載子電晶體410. . . P-type-n-p-type junction bipolar transistor

420...n型-p型-n型接面雙載子電晶體420. . . N-type-p-n-type junction double-carrier transistor

500a、500b...半導體裝置500a, 500b. . . Semiconductor device

600...矽控整流器600. . . Voltage controlled rectifier

VDD...高電源埠VDD. . . High power supply

GND...接地埠GND. . . Grounding埠

d1 、d2 ...間距d 1 , d 2 . . . spacing

W...寬度W. . . width

第1圖為本發明實施例之半導體裝置的上視示意圖。Fig. 1 is a top plan view showing a semiconductor device according to an embodiment of the present invention.

第2a圖為沿第1圖之A-A’切線的剖面圖。Fig. 2a is a cross-sectional view taken along line A-A' of Fig. 1.

第2b圖為沿第1圖之B-B’切線的剖面圖。Fig. 2b is a cross-sectional view taken along line B-B' of Fig. 1.

第3圖為本發明另一實施例之半導體裝置的上視示意圖。Fig. 3 is a top plan view showing a semiconductor device according to another embodiment of the present invention.

第4圖為本發明實施例之半導體裝置的等效電路示意圖。4 is a schematic diagram showing an equivalent circuit of a semiconductor device according to an embodiment of the present invention.

200...基板200. . . Substrate

202a、202b...閘極202a, 202b. . . Gate

204a、204b...源極摻雜區204a, 204b. . . Source doping region

206...汲極摻雜區206. . . Bipolar doping zone

208a...第一摻雜區208a. . . First doped region

208b...第二摻雜區208b. . . Second doped region

210a、210b...第三摻雜區210a, 210b. . . Third doped region

212...第四摻雜區212. . . Fourth doped region

214...第一側邊214. . . First side

216...第二側邊216. . . Second side

300...長軸方向300. . . Long axis direction

d1 、d2 ...間距d 1 , d 2 . . . spacing

W...寬度W. . . width

Claims (27)

一種半導體裝置,包括:一基板,其具有一第一導電類型;一閘極,設置於該基板上;一源極摻雜區,形成於該基板中,且鄰近於該閘極的一第一側邊,其中該源極摻雜區僅具有相反於該第一導電類型之一第二導電類型;以及一汲極摻雜區,形成於該基板中,且鄰近該閘極的相對於該第一側邊之一第二側邊,其中該汲極摻雜區由交錯設置的具有該第一導電類型之複數個第一摻雜區和具有該第二導電類型複數個第二摻雜區構成。 A semiconductor device comprising: a substrate having a first conductivity type; a gate disposed on the substrate; a source doped region formed in the substrate and adjacent to the first of the gates a side, wherein the source doped region has only a second conductivity type opposite to the first conductivity type; and a drain doped region is formed in the substrate adjacent to the gate relative to the first a second side of one side, wherein the drain doped region is composed of a plurality of first doped regions having the first conductivity type and a plurality of second doped regions having the second conductivity type . 如申請專利範圍第1項所述之半導體裝置,其中該閘極、該源極摻雜區和該汲極摻雜區的形狀為長條形。 The semiconductor device of claim 1, wherein the gate, the source doped region, and the drain doped region have an elongated shape. 如申請專利範圍第1項所述之半導體裝置,其中該閘極的形狀為環形,該源極摻雜區和該汲極摻雜區的形狀為長條形,其中該汲極摻雜區被該閘極包圍。 The semiconductor device of claim 1, wherein the gate is annular in shape, the source doped region and the drain doped region are elongated, wherein the drain doped region is The gate is surrounded. 如申請專利範圍第1項所述之半導體裝置,其中該閘極、該源極摻雜區和該汲極摻雜區彼此平行。 The semiconductor device of claim 1, wherein the gate, the source doped region, and the drain doped region are parallel to each other. 如申請專利範圍第1項所述之半導體裝置,其中複數個該第一摻雜區和複數個該第二摻雜區係沿該汲極摻雜區的的一長軸方向交錯設置,且複數個該第一摻雜區和複數個該第二摻雜區具有相同的寬度。 The semiconductor device of claim 1, wherein the plurality of the first doped regions and the plurality of the second doped regions are staggered along a long axis direction of the drain doped region, and plural The first doped region and the plurality of the second doped regions have the same width. 如申請專利範圍第1項所述之半導體裝置,其中複數個該第一摻雜區和複數個該第二摻雜區與該閘極的該第二側邊的間距相等。 The semiconductor device of claim 1, wherein a plurality of the first doped regions and the plurality of second doped regions are equal to a pitch of the second side of the gate. 如申請專利範圍第1項所述之半導體裝置,更包括:一第三摻雜區,形成於該基板中,並包圍該閘極和該源極摻雜區,其中該第三摻雜區具有該第一導電類型;以及一第四摻雜區,形成於該基板中,並包圍該汲極摻雜區,其中該第四摻雜區具有該第二導電類型。 The semiconductor device of claim 1, further comprising: a third doped region formed in the substrate and surrounding the gate and the source doped region, wherein the third doped region has The first conductivity type; and a fourth doping region formed in the substrate and surrounding the gate doping region, wherein the fourth doping region has the second conductivity type. 如申請專利範圍第1項所述之半導體裝置,其中該第一導電類型為p型,該第二導電類型為n型。 The semiconductor device of claim 1, wherein the first conductivity type is p-type and the second conductivity type is n-type. 如申請專利範圍第8項所述之半導體裝置,其中該第一摻雜區的總面積與該汲極摻雜區的總面積的比值大於0且小於1。 The semiconductor device of claim 8, wherein a ratio of a total area of the first doped region to a total area of the drain doped region is greater than 0 and less than 1. 如申請專利範圍第1項所述之半導體裝置,其中該閘極與該源極摻雜區係藉由一淺溝槽隔離物隔開。 The semiconductor device of claim 1, wherein the gate and the source doped region are separated by a shallow trench spacer. 如申請專利範圍第1項所述之半導體裝置,其中該閘極與該汲極摻雜區係藉由一淺溝槽隔離物隔開。 The semiconductor device of claim 1, wherein the gate and the drain doping region are separated by a shallow trench spacer. 如申請專利範圍第7項所述之半導體裝置,其中該第一摻雜區、相鄰之該第二摻雜區與該第三摻雜區係構成一第一雙載子電晶體。 The semiconductor device of claim 7, wherein the first doped region, the adjacent second doped region and the third doped region form a first bipolar transistor. 如申請專利範圍第7項所述之半導體裝置,其中該第四摻雜區、該第三摻雜區與該源極摻雜區係構成一第二雙載子電晶體。 The semiconductor device of claim 7, wherein the fourth doped region, the third doped region and the source doped region form a second bipolar transistor. 如申請專利範圍第12或13項所述之半導體裝置,其中該第一雙載子電晶體和該第二雙載子電晶體構成一矽控整流器。 The semiconductor device of claim 12, wherein the first bipolar transistor and the second bipolar transistor form a controlled rectifier. 一種橫向擴散金氧半電晶體(LDMOS),包括: 一p型基板;一閘極,設置於該p型基板上;一源極摻雜區,形成於該p型基板中,且鄰近於該閘極的一第一側邊,其中該源極摻雜區由一單一n型源極摻雜區構成;以及一汲極摻雜區,形成於該p型基板中,且鄰近該閘極的相對於該第一側邊之一第二側邊,其中該汲極摻雜區由交錯設置的複數個p型摻雜區和複數個n型摻雜區構成。 A laterally diffused metal oxide semi-transistor (LDMOS) comprising: a p-type substrate; a gate disposed on the p-type substrate; a source doped region formed in the p-type substrate adjacent to a first side of the gate, wherein the source is doped The doped region is formed by a single n-type source doped region; and a drain doped region is formed in the p-type substrate adjacent to a second side of the gate opposite to one of the first side edges, The gate doped region is composed of a plurality of p-type doped regions and a plurality of n-type doped regions arranged in a staggered manner. 如申請專利範圍第15項所述橫向擴散金氧半電晶體,其中該閘極、該源極摻雜區和該汲極摻雜區的形狀為長條形。 The laterally diffused MOS transistor according to claim 15, wherein the gate, the source doped region and the drain doped region have an elongated shape. 如申請專利範圍第15項所述橫向擴散金氧半電晶體,其中該閘極的形狀為環形,該源極摻雜區和該汲極摻雜區的形狀為長條形,其中該汲極摻雜區被該閘極包圍。 The laterally diffused MOS transistor according to claim 15, wherein the gate has a ring shape, and the source doped region and the drain doped region have an elongated shape, wherein the buck is The doped region is surrounded by the gate. 如申請專利範圍第15項所述橫向擴散金氧半電晶體,其中該閘極、該源極摻雜區和該汲極摻雜區彼此平行。 The laterally diffused MOS transistor according to claim 15, wherein the gate, the source doped region and the drain doped region are parallel to each other. 如申請專利範圍第15項所述橫向擴散金氧半電晶體,其中複數個該n型摻雜區和複數個該p型摻雜區係沿該汲極摻雜區的的一長軸方向交錯設置,且複數個該n型摻雜區和複數個該p型摻雜區具有相同的寬度。 The laterally diffused MOS transistor according to claim 15, wherein the plurality of n-type doped regions and the plurality of p-type doped regions are staggered along a long axis direction of the drain doped region. And a plurality of the n-type doped regions and the plurality of the p-type doped regions have the same width. 如申請專利範圍第15項所述橫向擴散金氧半電晶體,其中每一個該n型摻雜區和每一個該p型摻雜區與該閘極的該第二側邊之間的間距相等。 The laterally diffused MOS transistor according to claim 15, wherein an interval between each of the n-type doped regions and each of the p-type doped regions and the second side of the gate is equal . 如申請專利範圍第15項所述橫向擴散金氧半電晶體,更包括: 一p型主體摻雜區,形成於該基板中,並包圍該閘極和該源極摻雜區;以及一n型漂移摻雜區,形成於該基板中,並包圍該汲極摻雜區。 The laterally diffused MOS semi-transistor as described in claim 15 of the patent application, further comprising: a p-type body doped region formed in the substrate and surrounding the gate and the source doped region; and an n-type drift doped region formed in the substrate and surrounding the gate doped region . 如申請專利範圍第15項所述橫向擴散金氧半電晶體,其中該p型摻雜區的總面積與該汲極摻雜區的總面積的比值大於0且小於1。 The laterally diffused MOS transistor according to claim 15, wherein a ratio of a total area of the p-type doped region to a total area of the drain-doped region is greater than 0 and less than 1. 如申請專利範圍第15項所述橫向擴散金氧半電晶體,其中該閘極與該源極摻雜區係藉由一淺溝槽隔離物隔開。 The laterally diffused MOS transistor according to claim 15, wherein the gate and the source doped region are separated by a shallow trench spacer. 如申請專利範圍第15項所述橫向擴散金氧半電晶體,其中該閘極與該汲極摻雜區係藉由一淺溝槽隔離物隔開。 The laterally diffused MOS transistor according to claim 15, wherein the gate and the drain doping region are separated by a shallow trench spacer. 如申請專利範圍第21項所述橫向擴散金氧半電晶體,其中該p型摻雜區、相鄰之該n型摻雜區與該p型主體摻雜區係構成一第一雙載子電晶體。 The laterally diffused MOS transistor according to claim 21, wherein the p-type doped region, the adjacent n-type doped region and the p-type body doped region form a first double carrier Transistor. 如申請專利範圍第21項所述橫向擴散金氧半電晶體,其中該n型擴散摻雜區、該p型主體摻雜區與該源極摻雜區係構成一第二雙載子電晶體。 The laterally diffused MOS transistor according to claim 21, wherein the n-type diffusion doping region, the p-type body doping region and the source doping region form a second bipolar transistor. . 如申請專利範圍第25或26項所述之橫向擴散金氧半電晶體,其中該第一雙載子電晶體和該第二雙載子電晶體構成一矽控整流器。The laterally diffused MOS transistor according to claim 25 or 26, wherein the first bipolar transistor and the second bipolar transistor constitute a sigma rectifier.
TW98110629A 2009-03-31 2009-03-31 Semiconductor device and lateral diffused metal-oxide-semiconductor transistor TWI431774B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98110629A TWI431774B (en) 2009-03-31 2009-03-31 Semiconductor device and lateral diffused metal-oxide-semiconductor transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98110629A TWI431774B (en) 2009-03-31 2009-03-31 Semiconductor device and lateral diffused metal-oxide-semiconductor transistor

Publications (2)

Publication Number Publication Date
TW201036158A TW201036158A (en) 2010-10-01
TWI431774B true TWI431774B (en) 2014-03-21

Family

ID=44856130

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98110629A TWI431774B (en) 2009-03-31 2009-03-31 Semiconductor device and lateral diffused metal-oxide-semiconductor transistor

Country Status (1)

Country Link
TW (1) TWI431774B (en)

Also Published As

Publication number Publication date
TW201036158A (en) 2010-10-01

Similar Documents

Publication Publication Date Title
US8963253B2 (en) Bi-directional bipolar junction transistor for high voltage electrostatic discharge protection
US9401352B2 (en) Field-effect device and manufacturing method thereof
US8569836B2 (en) Semiconductor device
TWI455275B (en) Electrostatic discharge (esd) protection device
KR101847227B1 (en) Electrostatic discharge transistor
JP2007535127A (en) Horizontal high-voltage junction device
US8643111B1 (en) Electrostatic discharge (ESD) protection device
US8093630B2 (en) Semiconductor device and lateral diffused metal-oxide-semiconductor transistor
US20210175226A1 (en) Electrostatic discharge protection element and semiconductor devices including the same
KR20100037814A (en) Electrostatic discharge protection semiconductor device and method for mafacturing the same
US9054524B2 (en) Bi-directional bipolar junction transistor for high voltage electrostatic discharge protection
US10978870B2 (en) Electrostatic discharge protection device
TW201801289A (en) Semiconductor device and method of manufacturing a semiconductor device
TW201539745A (en) High voltage semiconductor device and method for manufacturing the same
US20150372134A1 (en) Semiconductor structure and method for manufacturing the same
TWI431774B (en) Semiconductor device and lateral diffused metal-oxide-semiconductor transistor
CN101859795B (en) Semiconductor device
TWI566376B (en) Semiconductor device and manufacturing method for the same
US10741542B2 (en) Transistors patterned with electrostatic discharge protection and methods of fabrication
TW201824558A (en) Semiconductor device
CN113948567A (en) Device for improving breakdown voltage of LDMOS high-voltage side and preparation method thereof
TWI678790B (en) Electrostatic discharge protection device
TW201535747A (en) Semiconductor structure
TWI394277B (en) Lateral diffused metal-oxide semiconductor
KR20230036859A (en) Electrostatic discharge protection device and semiconductor device including the same