TWI421411B - Vacuum evacuation device, vacuum processing device and vacuum treatment method - Google Patents

Vacuum evacuation device, vacuum processing device and vacuum treatment method Download PDF

Info

Publication number
TWI421411B
TWI421411B TW098138638A TW98138638A TWI421411B TW I421411 B TWI421411 B TW I421411B TW 098138638 A TW098138638 A TW 098138638A TW 98138638 A TW98138638 A TW 98138638A TW I421411 B TWI421411 B TW I421411B
Authority
TW
Taiwan
Prior art keywords
ozone
vacuum
exhaust gas
processing chamber
heat generating
Prior art date
Application number
TW098138638A
Other languages
English (en)
Other versions
TW201030234A (en
Inventor
Taku Komuro
Yukio Masuda
Shinji Furuya
Kazuya Saito
Shuji Osono
Shin Asari
Original Assignee
Ulvac Cryogenics Nc
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Cryogenics Nc, Ulvac Inc filed Critical Ulvac Cryogenics Nc
Publication of TW201030234A publication Critical patent/TW201030234A/zh
Application granted granted Critical
Publication of TWI421411B publication Critical patent/TWI421411B/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • F04B37/16Means for nullifying unswept space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/18Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use for specific elastic fluids

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treating Waste Gases (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Drying Of Semiconductors (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

真空排氣裝置、真空處理裝置及真空處理方法
本發明係有關使用冷凍泵的真空排氣裝置、真空處理裝置及真空處理方法。
冷凍泵是高真空排氣泵的一種,被使用在以膜形成、表面改質、圖案描繪、分析及蒸發乾燥等為目的之真空處理裝置。冷凍泵有利於水分子的排氣,原理上可容易獲得清浄的真空環境。亦即,冷凍泵係捕集式泵,其透過低溫凝結和低溫吸附之原理,將真空處理裝置內所放出的氣體、或被導入真空處理裝置內之處理氣體累積在泵殼內部而排放氣體。因此,有必要定期地進行將累積的氣體再氣化並排出之操作(再生)(參考專利文獻1、2)。
近年來,在光學裝置之製造領域中,隨著導入氧(O2 )作為處理氣體的真空處理變得普遍,在真空槽的內部,由活性化的氧分子經過化學性反應過程而產生臭氧(O3 )的事例逐漸增加。當在此種真空處理使用冷凍泵時,臭氧亦與來自真空處理的其他氣體同樣,在冷凍泵的內部被累積成氧/臭氧之混合凝結固體。氧/臭氧之混合凝結固體係在前述冷凍泵之操作過程中相變化成含臭氧的液態氧,接著再氣化、蒸發。此液態氧中,由於比臭氧沸點還低的氧會先行氣化、蒸發,故此液態氧中之溶存臭氧成為濃縮液態臭氧。
濃縮液態臭氧係不穩定而依物理、化學性刺激快速地分解成氧,但此分解反應係伴隨著發熱所引起之火花和爆炸衝撃而具有破壞性。再加上,若操作時在冷凍泵內部是 充滿可燃性氛圍氣體的狀態下發生臭氧的分解反應,則會有反應熱所產生的火花在氛圍氣體中著火而導致冷凍泵燒損之事故。
累積在冷凍泵之臭氧發火所造成的影響,係臭氧的量越大就越嚴重。於是,有透過頻繁地操作冷凍泵以防止臭氧蓄積量增加之方法。但是,於操作時真空裝置無法連續排氣,因而不得不頻繁地停止真空處理。又,因為沒有能直接且定量地監視真空處理環境中之臭氧生成量之觀測手法,所以要預測迄至臭氧被累積既定量為止之裝置運用時間(利用冷凍泵之連續排氣時間)乃極為困難。
另一方面,目前存在各種在真空下透過觸媒作用使臭氧無害化的技術。
例如,在專利文獻3記載一種含臭氧之廢氣的無害化方法及其裝置,係把具有臭氧分解觸媒作用的金屬氧化物成形體設置於廢氣的排出配管,分解廢氣中所含之臭氧使之無害化並朝大氣壓環境排出。
又,在專利文獻4記載一種臭氧處理裝置,係在臭氧分解裝置的上游側設置加熱機構,用以將光阻劑等在低溫時凝結的氣體成分熱分解。此臭氧處理裝置係藉由防止上述氣體成分在臭氧分解裝置中之觸媒表面凝結,而使臭氧分解裝置對廢氣中之臭氧分解的性能不致降低。
此外,在專利文獻5記載一種處理裝置,其係在將臭氧氣體分解成氧的分解槽之上游側,設置使廢臭氧成為乾燥狀態的分霧器及冷阱。
【先行技術文獻】 【專利文獻】
【專利文獻1】日本特開平11-166477號公報(段落[0006],第三圖)
【專利文獻2】日本特開平6-154505號公報(段落[0020])
【專利文獻3】日本專利第3520325號公報(段落[0009])
【專利文獻4】日本特開平5-29291號公報(段落[0015])
【專利文獻5】日本特開2004-167352號公報(段落[0013])
在專利文獻3、4所記載的裝置是利用觸媒分解臭氧。因此,無可否認該觸媒有可能會在真空中成為放出氣體源。放出氣體源係成為污染真空的原因,在需要冷凍泵的高真空處理並不適合利用臭氧分解觸媒。
又,在專利文獻5所記載的構成中,設置在臭氧分解層之上游側的水分除去用冷阱,不僅將水分亦將臭氧氣體捕集成固體或液體。因此,在操作該冷阱時,若溶存於水分中的臭氧之濃縮度高,則有濃縮液態臭氧產生分解反應而著火之虞,具有和上述同樣的問題。
又,專利文獻5所記載之構成,乃是以設置在臭氧分解槽上游的流量調整閥限縮大氣壓的廢臭氧流,而在臭氧分解槽內部做出依據其差壓的真空壓力之方式,故不適合作為需要冷凍泵那種高真空處理之真空排氣裝置。再者,專利文獻5所記載之構成,乃是利用設置在臭氧分解槽下游的體積移送式真空泵將廢臭氧流由真空壓力朝大氣側連續排出的方式,並非解決屬捕集式真空泵的冷凍泵中之前述問題者。
有鑒於以上的情事,本發明之目的在於提供一種可抑制冷凍泵中臭氧之累積的真空排氣裝置、真空處理裝置及真空排氣方法。
本發明之一形態的真空排氣裝置,係用以對真空處理用的處理室進行排氣,具備有泵單元及加熱單元。
上述泵單元具有:可捕集廢氣的冷阱、及用以將前述廢氣由前述處理室朝前述冷阱導引的排氣通路。上述加熱單元係於前述排氣通路,將由前述處理室朝向前述冷阱之前述廢氣中所含之臭氧熱分解。
本發明之一形態的真空處理裝置具備有:真空處理用的處理室、泵單元及加熱單元。
上述泵單元具有冷阱及排氣通路,該冷阱用以捕集廢氣,該排氣通路用以將前述廢氣由前述處理室朝前述冷阱導引。上述加熱單元係把由前述處理室朝向前述冷阱之前述廢氣中所含之臭氧熱分解。
本發明之一形態的真空排氣方法,係有關以冷凍泵將臭氧所存在的處理室進行排氣的真空排氣方法。以上述真空排氣方法而言,係包含在排氣途中使廢氣中之臭氧與發熱面接觸而進行熱分解者。接著,上述廢氣係在冷凍泵的冷阱被凝結。
本發明之一實施形態的真空排氣裝置,係用以對真空處理用的處理室進行排氣的真空排氣裝置,具備有:泵單元及加熱單元。
上述泵單元具有:可捕集廢氣的冷阱、及用以將上述廢氣由前述處理室朝上述冷阱導引的排氣通路。上述加熱 單元係於上述排氣通路將由上述處理室朝向上述冷阱之上述廢氣中所含之臭氧熱分解。
上述真空排氣裝置,係建構成在廢氣到達冷阱之前,以加熱單元將廢氣所含之臭氧作熱分解。藉此,使廢氣中之臭氧的濃度降低而能抑制冷阱中之臭氧的凝結量。
因此,依據上述真空排氣裝置,可抑制冷凍泵中臭氧之累積。藉此,可防止在冷凍泵操作時隨濃縮液態臭氧之分解反應而引起著火之危險及因此所造成之冷凍泵燒損。
上述泵單元可建構成具有:容置上述冷阱的泵室;及形成上述排氣通路的配管。又,上述加熱單元可建構成具有配置在上述配管內部的發熱面之構成。
依據上述構成,加熱單元之發熱面係配置在與泵單元的冷阱疏離的位置。因此,冷阱的表面可維持在既定的極低溫域而確保所期望之排氣作用。
上述發熱面亦可在與上述排氣通路的軸向交叉之方向取間隔配置複數個。
藉此,係可在無損及排氣效率之下,提高發熱面與廢氣之接觸機率而有效率地熱分解臭氧。
上述加熱單元亦可具有支撐上述發熱面的支撐體。又,上述發熱面亦可配置在上述支撐體之與上述處理室側相向的面。
藉此,可抑制因來自發熱面的熱輻射而造成泵單元之冷阱的溫度上昇。
上述支撐體亦可包含遮熱層。藉此,能遮斷從發熱面朝泵單元之冷阱的熱輻射,可將冷阱維持在所期望的極低溫域。
上述加熱單元亦可更具有旋動機構部,用以使上述支撐體在與上述配管軸向交叉的方向之周圍旋動。
藉此,可將發熱體設置在廢氣中的臭氧與發熱面之接觸機率提高的角度位置上。又,亦可調整通過排氣通路的廢氣之排氣速度。
一方面,上述發熱面亦可順著上述排氣通路的軸向取間隔而配置複數個。
依此構成,亦可在無損及排氣效率之下,提高發熱面與廢氣之接觸機率而有效率地熱分解臭氧。
再者,上述加熱單元亦可含有網目狀的發熱體。或者,上述加熱單元亦可含有筒狀的發熱體。
在此等構成中,亦可在無損及排氣效率之下,提高發熱面與廢氣之接觸機率而有效率地熱分解臭氧。
上述配管能以連接於上述處理室側之第一管構件及連接於上述泵室側之第二管構件來構成。在此情況,上述真空排氣裝置亦可更具備閥室,其配置在上述第一管構件與上述第二管構件之間。上述閥室係容置用以開閉上述排氣通路的閥體。
透過以閥體調整排氣通路的開度,可控制朝向泵室之廢氣流及排氣速度。又,利用上述構成,可變化廢氣中之臭氧分子對發熱面的衝撞頻度。
例如,可將上述發熱面配置於上述第一管構件的內部。此情況,發熱面係位在比上述閥體還靠處理室側。因此,透過廢氣中之臭氧分子與閥體衝撞以提高臭氧分子與發熱面接觸之機會。藉此,可提升臭氧的分解效率。
上述發熱面可配置於上述閥室的內部,配置於上述第 二管構件的內部亦可。此情況亦可因應閥體的開度而控制依據與發熱面之接觸所致臭氧的分解效率。發熱面的位置可依閥體的位置作適宜調整。
其次,本發明之一實施形態的真空處理裝置係具備:真空處理用的處理室、泵單元及加熱單元。
上述泵單元係具有可捕集廢氣的冷阱、及用以將上述廢氣由上述處理室朝上述冷阱導引之排氣通路。上述加熱單元係將由上述處理室朝向上述冷阱之上述廢氣中所含之臭氧熱分解。
依據上述真空處理裝置,可使廢氣中之臭氧濃度減低以抑制冷阱中之臭氧的凝結量。因此,可抑制冷凍泵中臭氧之累積,可防止在冷凍泵操作時隨濃縮液態臭氧之分解反應而引起著火之危險及因此所造成之冷凍泵燒損。
上述加熱單元可設置在上述排氣通路,設置在上述處理室亦可。又,上述加熱單元亦可分別設置在排氣通路和處理室雙方。
透過將加熱單元設置於排氣通路,可有效率地熱分解從處理室排出之氣體中的臭氧。又,透過將加熱單元設置於處理室,可將在處理室生成的臭氧於處理室內進行熱分解。
其次,本發明之一實施形態的真空排氣方法,係有關利用冷凍泵將臭氧所存在的處理室作排氣之真空排氣方法。上述真空排氣方法中,包含在排氣途中使廢氣中的臭氧接觸發熱面以進行熱分解。然後,上述廢氣被冷凍泵的冷阱所凝結。
上述真空排氣方法係在廢氣到達冷阱之前,利用加熱 單元熱分解廢氣所含之臭氧。藉此,可使廢氣中之臭氧濃度減低,抑制冷阱中之臭氧的凝結量。
因此,依據上述真空排氣方法,可抑制冷凍泵中臭氧之累積。藉此,可防止在冷凍泵操作時隨濃縮液態臭氧之分解反應而引起著火之危險及因此所造成之冷凍泵燒損。
以下,依據圖式來說明本發明的實施形態。
(第一實施形態)
第一圖係概略顯示本發明之一實施形態的真空處理裝置1之構成的側剖視圖。本實施形態的真空處理裝置1具備真空槽10。真空槽10包含:用以處理基板W的處理室11、用以將處理室11排氣的泵室12、及將處理室11和泵室12之間作連接的配管13。真空槽10整體係由鋁或不鏽鋼等之金屬材料所構成。
本實施形態中,配管13係形成從處理室11朝泵室12導引廢氣的排氣通路13A。配管13係由第一管構件131和第二管構件132所構成。第一管構件131連接於處理室11,第二管構件132連接於泵室12。然後,在第一管構件131和第二管構件132之間構成配管13的一部分,因此設置了亦屬真空槽10的一部分之閥室14。
處理室11具有支撐基板W之支撐台15。處理室11係形成將支撐台15所支撐的基板W進行真空處理的真空腔。在本實施形態中,作為真空處理,係例舉了使用處理氣體中含有氧、臭氧的氣體之成膜處理(例如濺鍍法、蒸鍍法)、或使用了此等氣體的電漿(第一圖中以標號P表示。) 之處理等。處理氣體經由氣體導入管18而被導入處理室11內。此外,在真空槽10之外部或內部設置有未圖示的電漿產生源(高頻線圈、磁控管、微波振盪器等)。
在真空處理的例子方面,除上述以外,亦可以是使用電子束的曝光、分析、表面觀察等。以本實施形態而言,可適用在處理室11內生成臭氧的各種處理。
在泵室12的內部配置冷凍泵19的冷阱(極低溫部)161。真空槽10內的氣體係在冷阱161吸附或被凝結。藉此,真空槽10內部係排氣而維持於既定的高真空。所捕集的廢氣(處理氣體)係成為凝結固體被累積於冷凍泵19內,於冷凍泵19操作時暫時液化後,最後氣化、蒸發。
冷凍泵19係由屬冷凍泵的殼、屬真空槽10的一部分之泵室12、使被嵌入設置於泵室12的GM(Gifford-McMahon)冷凍機等之低溫產生的機械式冷凍機162、屬機械式冷凍機162的一部分、屬低溫生成部位的低溫部(cold head)163、以及在熱性方面是與低溫部163保持良好接觸地作設置並用以將廢氣凝結或吸附之冷阱161所構成。
冷阱161係透過機械式冷凍機162而被保持成極低溫。冷阱161可採用平面狀、線圈狀及其他的形狀。
閥室14內部收容有閥體17。閥體17係建構成可在開放排氣通路13A的開位置與遮蔽排氣通路13A的閉位置之間移動自如。閥體17係使通過排氣通路13A的氣體之氣導(conductance)變化。此外,閥體17亦可如同閘閥或縱切閥等具有可將處理室11和泵室12之間進行氣密隔絶的閥構造。
真空處理裝置1更具備加熱單元20,用以對存在於真空槽10內的臭氧分子進行熱分解。本實施形態中顯示加熱單元20被配置在排氣通路13A內的構成例。
加熱單元20係具有單數或複數個加熱器21和加熱用電源(省略圖示)。在本實施形態中,加熱器21係在與排氣通路13A的軸向交叉的方向取間隔而配置複數個。加熱器21具有發熱面211和支撐體212。發熱面211可由電阻發熱體、內建加熱源的金屬板等所構成。支撐體212係板狀構件,在其與處理室11側對向的面支撐發熱面211。支撐體212係經由軸部m而被安裝於第一管構件131。有關從上述加熱用電源對發熱面211之電力供給,例如可將軸部m作為配線的一部分來使用,或在軸部m的內部裝入纜線亦可。
發熱面211係被加熱至足以讓臭氧熱分解的溫度。從處理室11排放之氣體的一部分係在排氣通路13A和發熱面211接觸。與發熱面211接觸的氣體中之臭氧分子係經過以下第(1)式所示的熱分解反應而還元成無害的氧。
2O3 →3O2 …(1)
在臭氧濃度是一定的情況下,臭氧的熱分解反應為加熱溫度越高所進行的時間越短。因此,發熱面211的溫度越高,越能有效率地分解臭氧。又,透過提高發熱面211的加熱溫度,可有效率地減低廢氣中之臭氧濃度。發熱面211的溫度可設為例如300℃以上。
發熱面211的加熱溫度可設定成適宜的值。依據熱活性之分子的分解,係發熱體的溫度越高,與分解反應所要的發熱體表面之近接時間越短就可完成,可提高臭氧分解 效率。若將鎢(W)或錸(Re)等之高熔點金屬作為發熱體使用,則甚至可保持3000℃以上的溫度。但是,對發熱體供給電流的導體,在工業上通常是使用銅(Cu),其熔點,純銅大概是1080℃。又,以超過1000℃的溫度而言,由於來自發熱體的輻射熱係每1cm2 超過10W,所以就算是採用表面積小的發熱體,亦有朝向冷凍泵之輻射熱會成為問題的情形。一方面,在發熱體是銅的情況,可知在加熱成300℃的狀態能以數秒的等級將空氣中的臭氧濃度減半。依以上那樣的理由,發熱面211之加熱溫度的上限可設為1000℃,特別是在發熱面211是由銅所構成的情況,其加熱溫度的下限可設為300℃。
加熱器21之配置間隔係能以排氣通路13A所要求之氣體的排氣速度和臭氧的分解效率為基準來作設定。亦即,配置間隔越大氣導變越高,故能減低廢氣之流阻,另一方面,由於臭氧分子與發熱體之接觸機率降低,故臭氧的分解效率降低。反之,配置間隔越小,臭氧的分解效率越是提升,但因為氣導變低故排氣阻力變高。因此,係因應在處理室11所實施之真空處理條件(臭氧的生成量、排氣速度)而設定加熱器21之配置間隔。
在上述構成之加熱器21中,發熱面211係配置在支撐體212之處理室11側的面。藉此,可使來自處理室11的廢氣與發熱面211有效率地接觸。且能將加熱單元21的發熱面遠離冷阱161,故能將冷阱161維持成任意的極低溫以確保所期望的排氣作用。
支撐體212亦可因應需要而含有遮熱層。藉此,可遮斷從發熱面211朝冷阱161放射的輻射熱。上述遮熱層為, 可在支撐體212疊層絕熱材,或支撐體212的整體以絕熱材來構成亦可。
支撐加熱器21的軸部m亦可建構成旋動軸。此情況可將發熱面211設定在與排氣通路13A的軸向相關之任意的角度位置。藉此,可任意地調整廢氣中之臭氧與發熱面211之接觸機率。
加熱器21之旋動位置的調整為,可將各加熱器21設定在共通的角度位置,亦可設定成各個獨立的角度位置。透過調整各個加熱器21的角度位置,可控制通過排氣通路13A之廢氣的排氣速度。又,加熱器21係成為可作為調整排氣通路13A的開度之閥來發揮功能。
按以上那樣,構成本實施形態的真空處理裝置1。又,利用泵室12、配管13(排氣通路13A)及冷阱161(冷凍泵19)來構成本發明之一實施形態的泵單元。再者,利用上述泵單元及加熱單元20來構成本發明之一實施形態的真空排氣裝置。
在上述構成之真空處理裝置1中,存在於真空槽10內部的水分及氣體係在冷阱161被凝結或吸附。藉此,真空槽10的內部被維持成與中間流領域(intermediate flow region)或分子流領域(molecular flow region)相當之高真空或超高真空。因此,在處理室11被生成或導入之含臭氧的廢氣係從處理室11經由排氣通路13A被導入泵室12。在此排氣過程中,廢氣所含之臭氧係透過與被加熱成高溫(例如300℃~1000℃)的發熱面211接觸或衝撞而作熱分解。藉此,除去廢氣中的臭氧或減低廢氣中的臭氧濃度。
依據本實施形態,可效率地減低累積於冷凍泵19之廢 氣的凝結固體中的臭氧濃度。因此,在伴隨著凝結固體之液化及氣化、蒸發之冷凍泵的操作步驟中,可防止對人體有害的高濃度臭氧氣體被放出於大氣中。又能防止因為濃縮液態臭氧之分解反應引起著火的原因所造成的冷凍泵燒損。
又,依據本實施形態,臭氧並非利用觸媒作用而是作成僅利用加熱作用進行分解、除去,故能將真空槽10的內部維持清淨的高真空狀態。
再者,構成加熱單元20的複數個加熱器21係取適度的間隔作配置,故能在無損及氣體的排氣效率之下有效率地除去氣體中的臭氧。
如同上述,臭氧之除去效率係按配置在排氣通路13A上之發熱面211的大小、數量、設置角度等而變化。此等發熱面211之配置條件可任意地調整,因而可依對應基板W之真空處理的種類、條件等而作適宜設定,同時能抑制裝置構成的複雜化。
(第二實施形態)
第二圖係概略顯示本發明第二實施形態的真空處理裝置2之構成的側剖視圖。此外,就圖中與上述的真空處理裝置1(第一圖)對應的部分係賦予同一符號且省略其詳細的說明。
本實施形態的真空處理裝置2,在有關用以熱分解廢氣中的臭氧之加熱單元20是配置在排氣通路13A這點上是與上述真空處理裝置1共通,但在有關此加熱單元20是配置在閥室14內部這點上,不同於上述真空處理裝置1。
加熱單元20係具備在有關與排氣通路13A的軸向交叉 的方向上取間隔作配置的複數個加熱器21。加熱器21(發熱面211)的大小、數量、位置未特別限定,乃依閥室14的容積、排氣通路13A的流路面積等作適宜設定。
真空處理裝置2中,閥體17係配置在比加熱單元20還靠處理室11側。亦即,限定在處理室11排氣時,利用加熱單元20熱分解廢氣中的臭氧。因此,在以閥體7遮斷排氣通路13A,並對處理室11導入定量的臭氧以處理基板等的情況,可執行臭氧量不變動之穩定的基板處理。
閥體17亦可不受上述例子所限而配置在比加熱單元20還靠泵室12側。此情況,由於就算是排氣通路13A被閥體17遮斷的狀態,還是可獲得處理室11內之臭氧的熱分解作用,故亦適合於無可避免產生臭氧那樣的基板處理。
又,加熱單元20亦可分別配置在排氣通路13A(第一管構件131)及閥室14。藉此,在處理室11排氣時,由於加熱器21順著排氣通路13A的軸向作多段配置,故能有效率地除去廢氣中的臭氧。在此情況,藉由將位在上游側的加熱器21和位在下游側的加熱器21,各自配置在從處理室11側看為相互分離的位置,可提升廢氣與發熱面211之接觸機率。
(第三實施形態)
第三圖係概略顯示本發明第三實施形態的真空處理裝置3之構成的側剖視圖。此外,就圖中與上述真空處理裝置1(第一圖)對應的部分係賦予同一符號且省略其詳細的說明。
本實施形態的真空處理裝置3,在有關用以熱分解廢氣中的臭氧之加熱單元20是配置在排氣通路13A這點上是與 上述真空處理裝置1共通,但在此加熱單元20是配置在第二管構件132內部這點上,不同於上述真空處理裝置1。
加熱單元20係具備在有關與排氣通路13A之軸向交叉的方向上取間隔作配置的複數個加熱器21。加熱器21(發熱面211)的大小、數量、位置未特別限定,乃依第二管構件132的容積、流路剖面等作適宜設定。
在真空處理裝置3中,與上述真空處理裝置1、2相較之下,加熱單元20係配置在最接近泵室12的位置。因此,廢氣中的臭氧係在快被冷阱161捕集之前就被加熱器21除去。此情況亦同樣地,在比該加熱單元20還靠處理室11側(第一管構件131及/或閥室14)可再配置加熱單元20。藉此,能有效率地除去廢氣中的臭氧。
此外,如同上述,透過使支撐發熱面211的支撐體212具有遮熱性,可保護冷阱161免受來自於發熱面211之輻射熱的影響。
(第四實施形態)
第四圖係概略顯示本發明第四實施形態的真空處理裝置4之構成的側剖視圖。此外,就圖中與上述真空處理裝置1(第一圖)對應的部分係賦予同一符號且省略其詳細的說明。
本實施形態的真空處理裝置4,在有關用以熱分解廢氣中的臭氧之加熱單元是配置在排氣通路13A這點上是與上述真空處理裝置1共通,但在此加熱單元22是由複數個格子狀(條紋狀)或網目狀的發熱體所構成這點上,不同於上述真空處理裝置1。
在第四圖所示的真空處理裝置4中,加熱單元22係由 多段地配置於第一管構件131的內部之兩個網目狀的發熱體22A、22B所構成。各發熱體22A、22B,典型的是可由電阻發熱體所構成。
透過使此等發熱體22A、22B發熱至臭氧的熱分解溫度以上,除去通過排氣通路13A之廢氣所含的臭氧。依此,減低到達冷阱161之廢氣的臭氧濃度而可獲得與上述第一實施形態同樣的效果。
發熱體22A、22B係發熱面形成格子狀或網目狀,藉此可在不阻害排氣通路13A中之廢氣的流阻之下有效率地使廢氣與發熱面接觸。藉以提高廢氣中之臭氧的分解效率。
發熱體22A,22B的發熱面不限於是平坦面,曲面亦可。亦即,發熱體22A、22B不限於是將板狀發熱體加壓加工而形成者,亦包含將線編織成格子狀、網目狀、甚至是折彎成線圈狀、漩渦狀者。
發熱體22A、22B的設置數量不限為像上述例子中的兩個,一個亦可,三個以上亦可。又,發熱體22A、22B的設置場所不限為第一管構件131的內部,亦可在第二管構件132的內部,可能的話亦可在閥室14。又,亦可在此等複數個場所同時設置發熱體。
(第五實施形態)
第五圖係概略顯示本發明第五實施形態的真空處理裝置5之構成的側剖視圖。此外,就圖中與上述真空處理裝置1(第一圖)對應的部分係賦予同一符號且省略其詳細的說明。
本實施形態的真空處理裝置5,在有關用以熱分解廢氣中的臭氧之加熱單元是配置在排氣通路13A這點上是與上 述真空處理裝置1共通,但本實施形態中,在加熱單元23是建構成筒狀這點上,不同於上述真空處理裝置1。
在第五圖所示的真空處理裝置5中,加熱單元23係在具有圓筒形狀的支撐體之周面安裝發熱體所構成。第六圖係詳細顯示加熱單元23之放大上視圖。
如第六圖所示,加熱單元23具有位在內周側的第一圓筒狀支撐體231及位在外周側的第二圓筒狀支撐體234。在第一及第二圓筒狀支撐體231、234的外周面,分別固定有發熱體232、235。發熱體232、235係以複數個環狀的發熱材料構成,而在支撐體231、234的軸向取間隔作配置。第一圓筒狀支撐體231及第二圓筒狀支撐體234,係藉由複數個平板狀的中繼構件233而相互同心地形成一體。
上述那樣構成的加熱單元23乃如第五圖所示沿排氣通路13A(第一管構件131)的軸向配置。因此,來自處理室11的廢氣係通過加熱單元23的內周部及外周部而到達泵室12。此時,使各發熱體232、235分別發熱至300℃以上的溫度,藉以熱分解與發熱體232、235接觸的廢氣中之臭氧並予以除去。藉此,減低到達冷阱161之廢氣的臭氧濃度,而可獲得與上述第一實施形態同樣的效果。
加熱單元23亦可配置在第二管構件132側。又,支撐發熱體的支撐體不限為圓筒狀,亦可為角筒形狀,亦可組合複數種形狀。又,支撐發熱體的支撐體不限是兩層的例子,一層亦可,三層以上亦可。再者,亦可將第一圖所示之加熱單元20及第四圖所示之加熱單元22組合來使用。此外,在第六圖中顯示了發熱體232、235是配置在圓筒狀支撐體231、234外周部的例子,但同一發熱體亦可配置在 同圓筒狀支撐體的內周側。
(第六實施形態)
第七圖係概略顯示本發明第六實施形態的真空處理裝置6之構成的側剖視圖。此外,就圖中與上述真空處理裝置1(第一圖)對應的部分係賦予同一符號且省略其詳細的說明。
本實施形態的真空處理裝置6,在有關用以熱分解廢氣中的臭氧之加熱單元不配置在排氣通路13A而是配置在處理室11內部這點上,不同於上述真空處理裝置1。本實施形態的真空處理裝置6係建構成作為產生臭氧(O3 )的電漿以對基板(圖示略)進行處理的電漿處理裝置。
熱分解臭氧用的加熱器(加熱單元)30係設置在處理室11的內部。在此顯示了加熱器30分別配置在處理室11內周面的近旁及朝向排氣通路13A連絡的排氣口之近旁的例子。
處理室11之內周面近旁所配置的加熱器30,亦可與處理室11內周面對向地作單數或複數個配置,亦可形成為包圍電漿(第七圖中以標號P表示)的形成空間之連續筒狀。加熱器30的形狀可為平面,亦可為曲面,亦可為組合此等之形狀。加熱器30之設置場所不限定是上述例子,亦可為處理室11的上方部或上述排氣口的周圍。又,亦可將支撐基板的支撐台(圖式略)作為加熱面來利用。
各個加熱器30係具有發熱面,該發熱面被加熱到足以熱分解處理室11所生成的臭氧之高溫(例如,300℃~1000℃)。因此,在處理室11所生成之臭氧分子(O3 )係透過與加熱器30之衝撞(接觸)而熱分解並被還原成氧(O2 )。依此, 經由排氣通路13A被導入泵室12之廢氣的臭氧濃度係被減低。
依據本實施形態之真空處理裝置6,可有效率地減低累積於冷凍泵19之廢氣的凝結固體中之臭氧濃度。因此,在伴隨著凝結固體之液化及氣化、蒸發之冷凍泵的操作步驟中,可防止對人體有害的高濃度臭氧氣體被放出大氣中。又能防止因濃縮液態臭氧之分解反應引起著火的原因所造成之冷凍泵燒損。
又,依據本實施形態,由於作成非以觸媒作用而是僅以加熱作用來分解、除去臭氧,故能將真空槽10的內部維持清淨的高真空狀態。
第八圖(A)至(D)顯示加熱器30之典型的構成例。
第八圖(A)顯示由發熱體311和支撐發熱體的支撐體312所構成的加熱器31。發熱體311係以臨近處理室之內方側的方式配置在支撐體312。支撐體312係能以固定在真空槽10的單數或複數個平板或曲板來形成。在構成加熱器31方面,支撐體312非必須,當然亦可將發熱體311單獨設置於處理室11的既定位置。這與上述的真空處理裝置1(第一圖)相同。
第八圖(B)顯示由線狀發熱體所構成的加熱器32。作為線狀發熱體,可使用由鎢等之高熔點金屬材料構成的線材或鞘式加熱器等之棒狀發熱體,將其拉掛於處理室11而構成加熱器32。此種加熱器32之設置自由度較高,不僅是處理室11,亦可設置於排氣通路13A。又,亦可附加未具有發熱作用的支撐體用作線狀發熱體的支撐。
第八圖(C)顯示以網狀發熱體構成的加熱器33。相較於 線狀發熱體,係具有所謂可加大有效面積的優點。作為網狀發熱體,不限於網目狀者,格子狀發熱體或沖孔金屬等亦可適用。加熱器33不僅是處理室11,亦可設置於排氣通路13A。又,亦可附加未具發熱作用的支撐體用作網狀發熱體之支撐,。
第八圖(D)顯示由多孔狀發熱體所構成的加熱器34。多孔性物質因表面積大,能提高臭氧的分解效率。作為多孔狀發熱體的典型例,可舉出多孔質SiC發熱體。除此之外,亦可適用毛狀的發熱體。加熱器34不僅是處理室11,亦可設置於排氣通路13A。又,多孔狀發熱體亦可由非發熱性的多孔性物質及對其加熱的發熱體所構成。
如第九圖所示,在處理室111(真空槽)內僅設置一根銅線120。將處理室111內維持在既定壓(0.1Pa),將銅線120加熱成高溫(900℃)。然後,將臭氧產生機140生成的臭氧朝處理室111導入,利用四極質譜儀150測定了處理室111內的殘存臭氧。由臭氧產生機140生成之臭氧的濃度(O3 /O2 )係設為7000ppm。
第十圖顯示在使銅線120發熱的情況(ON)和不使之發熱的情況(OFF)下之四極質譜儀150的臭氧檢測輸出。可理解使銅線120發熱並在其表面溫度為900℃處,臭氧的檢測輸出有顯著的減少。反之,當停止銅線120之發熱時,臭氧的檢測輸出係回復到初期值。
從第十圖可明白,臭氧係依高溫的銅線120而確實地被熱分解。又,從導入臭氧而由分析器150所檢測輸出之增加量(a)、及銅線120發熱時由分析器150所檢測輸出的減少量(b)之比值(b/a),了解到臭氧的分解效率是82%。
在以與臭氧分子之衝撞機率較小的線狀發熱體來構成加熱器的上述實驗例中,亦能獲得高效率的臭氧分解作用,因而透過設置複數支該線狀發熱體或使用面狀發熱體,可預料臭氧分解效率係更加提升。由以上的結果可知,本發明作為真空中之臭氧分解機構係非常地有效。
在上述實驗例中,熱線係使用鐵線及銦線取代銅線120,進行了同樣的實驗。其結果,在鐵線的情況,於970℃的表面溫度可獲得68%的臭氧分解效率,在銦線的情況,於1000℃可獲得55%的臭氧分解效率。由此等結果可了解,與線的材質無關,透過將表面溫度保持在適切的高溫度(在上述兩種材質的情況約1000℃),可達成與銅線同程度的臭氧分解效率。這暗示臭氧分解效率未與高溫表面的材質相依存而僅與表面溫度強烈地相依存。又,由於高溫表面所使用的材質未限制為特定材質,故意味著可選定適合於真空處理的諸條件及真空裝置之要求的材質。
其次,由於要確認上述的實驗結果之妥當性,故利用模擬氣體分子的運動和衝撞之計算機模擬來求得第九圖之實驗模式中的臭氧分子朝熱線之衝撞機率。其結果顯示於第十一圖。
如第十一圖實線所示,得到臭氧分子朝熱線之衝撞機率係與真空排氣系統的主排氣閥之開度相依存這樣的結果。相對地,由上述實驗之結果可獲得之臭氧分解效率,落在第十一圖的黑正方形的點附近,可了解與模擬結果非常接近。
因為能以依據模擬的分子衝撞來說明實驗值,故可說是臭氧分子的分解效率等於臭氧分子朝向高溫表面之衝撞 機率。這顯示本發明的原理亦即臭氧分子會因為與高溫表面之衝撞而直接熱分解之原理實際上是正確的。
又,在模擬中透過縮小主排氣閥的開度可獲得接近100%的臭氧分解效率。這表示可將臭氧分解效率設定並維持在目的值。高溫表面的形態、面積、設置部位等雖依真空裝置的構造而受到很多限制,但透過調整主排氣閥的開度可實現高的臭氧分解效率。這可說是本發明之一大便利性。
本發明群就主排氣閥的開度與臭氧分解效率之關係,係使用第十二圖概略顯示的構成之排氣系統作了單純的考察。此外,就第十二圖中與第一圖對應的部分係賦予同一符號且省略其詳細的說明。
第十二圖所示的排氣系統為,在真空槽10與冷凍泵19之間所配置的配管13之內部,以從真空槽10側來看依序配置加熱器21及閥體17的構成,與第一圖是同樣的。此構成係透過縮小主排氣閥(閥體17)的開度而能獲得較高臭氧分解效率之構成中的一種。在此排氣系統的內部,臭氧分子係由吸入側交界面入射(ni ),而在加熱器21之周圍的空間無秩序地運動。臭氧分子不久與加熱器21衝撞而隨即被分解(nh ),或者是在壁面散亂(nw ),或者從排出側交界面逃出(ne ),抑或從吸入側交界面逃出(nb )。在此,nh 、nw 、ne 及nb 係表示經驗了上述的過程之時間附近之臭氧分子數。
若臭氧分子的入射(ni )及臭氧的分解是規律狀態,則在吸入側交界面與排出側交界面之間的空間,由於臭氧分子數始終一定,所以第(2)式成立。
ni =nh +ne +nb …(2)
(由於nw 只不過是在壁面之散亂,故未含於第(2)式。)臭氧分解效率(γ)係如第(3)式。
γ=nh /ni …(3)
故將第(2)式代入第(3)式而成為第(4)式。
γ=1/{1+(ne /nh )+(nb /nh )}…(4)
在此,氣體分子朝向表面之入射頻度係與入射表面的面積成比例,故若設排出側交界面的面積為Ae 、所有加熱器21的發熱面之合計面積為Ah (第一面積)時,即成為第(5)式。
ne /nh =Ae /Ah …(5)
因此,第(4)式成為次式之第(6)式。
γ=1{1+(Ae /Ah )+C}…(6)
此外,從吸入側交界面逃出的分子(nb )係強烈地與加熱器21之形狀與配置、及配管13的形狀相依存,由於無法以第(5)式那樣單純的面積比來表示,故設成(nb /nh )=C(常數)。
由第(6)式可知,當縮小主排氣閥(閥體17)的開度時,Ae 變小,臭氧分解效率(γ)係漸近最大值1/(1+C)。反之,可知透過開啟主排氣閥17,使Ae 接近配管132的剖面積(Ac ,第二面積),臭氧分解效率係漸近最小值1/{1+(Ac /Ah )+C}。以理想的設計而言,由於常數C小,故第(6)式也可設成第(7)式。
γ=1{1+(Ae /Ah )}…(7)。
迄至操作冷凍泵為止的生命期(τ),係依容許冷凍泵排出之臭氧的容許量(M)、及真空槽中每小時產生之臭氧的量(G)所決定,而成為第(8)式。
τ=(M/G)/(1-γ)…(8)。
由此式可說,相較於例如臭氧完全未分解的情況(γ =0),在欲將生命期延長成兩倍的情況,係期望臭氧的分解效率為至少50%以上(γ≧0.5)。
與臭氧分解效率50%相對應之主排氣閥的開度(Ae )係由第(7)式而成為第(9)式。
Ae =Ah …(9)。
亦即,透過縮小主排氣閥的開度(Ae )迄至與發熱面211的合計面積(Ah )相同程度為止,而可達成50%之臭氧分解效率。Ah 係與設計相依存,但為了不明顯損及排氣系統的氣導,限制成配管剖面積(Ac )的1/2程度較為妥當。由此條件,第(9)式成為第(10)式。
0<Ae ≦Ac /2…(10)。
亦即,透過將主排氣閥的開度縮小(在Ah 小的情況縮更小)成配管剖面積(Ac )的50%以下,以達成50%以上的臭氧分解效率。
以上,係就本發明的實施形態作了說明,但本發明不受此所限定,可依據本發明之技術思想作各種變形。
例如在以上的實施形態中,係以透過電漿之形成而在處理室內產生臭氧的真空處理為例所作的說明。但不受此所限,即使是在用以形成運用於試料的表面分析、表面加工的電子束、或廣泛利用於離子佈植製程之離子束等的荷電粒子線之各種真空處理裝置上,本發明仍可適用。
又,在以上的實施形態中,說明了各種形態之熱分解臭氧用的加熱器(發熱體),但發熱體的形態不限定為上述的例子,又,此等發熱體的設置部位不限定為參考圖式所示的位置,可因應所使用之真空裝置的規格而適宜變更。
又,本發明亦可適用於以吸附劑將氣體低溫吸附之低 溫吸附泵(Cryosorption pump)中,用於防止其操作時濃縮液態臭氧著火及以此為原因之吸附劑的燃燒等上。
1、2、3、4、5、6‧‧‧真空處理裝置
10‧‧‧真空槽
11‧‧‧處理室
12‧‧‧泵室
13‧‧‧配管
131‧‧‧第一管構件
132‧‧‧第二管構件
13A‧‧‧排氣通路
14‧‧‧閥室
15‧‧‧支撐台
17‧‧‧閥體
18‧‧‧氣體導入管
19‧‧‧冷凍泵
20‧‧‧加熱單元
21‧‧‧加熱器
211‧‧‧發熱面
212‧‧‧支撐體
22‧‧‧加熱單元
22A、22B‧‧‧發熱體
23‧‧‧加熱單元
231‧‧‧第一圓筒狀支撐體
234‧‧‧第二圓筒狀支撐體
232、235‧‧‧發熱體
233‧‧‧中繼構件
31、32、33、34‧‧‧加熱器
311‧‧‧發熱體
312‧‧‧支撐體
111‧‧‧處理室
120‧‧‧銅線
140‧‧‧臭氧產生機
150‧‧‧四極質譜儀
161‧‧‧冷阱
162‧‧‧機械式冷凍機
163‧‧‧低溫部
M‧‧‧軸部
P‧‧‧電漿
W‧‧‧基板
第一圖係概略顯示本發明第一實施形態的真空處理裝置之構成的側剖視圖。
第二圖係概略顯示本發明第二實施形態的真空處理裝置之構成的側剖視圖。
第三圖係概略顯示本發明第三實施形態的真空處理裝置之構成的側剖視圖。
第四圖係概略顯示本發明第四實施形態的真空處理裝置之構成的側剖視圖。
第五圖係概略顯示本發明第五實施形態的真空處理裝置之構成的側剖視圖。
第六圖係第五圖所示之真空處理裝置的要部之放大上視圖。
第七圖係概略顯示本發明第六實施形態的真空處理裝置之構成的側剖視圖。
第八圖係顯示第七圖所示之真空處理裝置的要部之構成例的側剖視圖。
第九圖係顯示確認本發明實施形態之效果用的實驗模式之要部的側剖視圖。
第十圖係顯示第九圖所示之實驗模式的一實驗結果例。
第十一圖係顯示依據第九圖所示實驗模式之模擬結果。
第十二圖係說明本發明一實施形態中,閥體的開度與臭氧分解效率之關係的模式圖。
1‧‧‧真空處理裝置
10‧‧‧真空槽
11‧‧‧處理室
12‧‧‧泵室
13A‧‧‧排氣通路
14‧‧‧閥室
15‧‧‧支撐台
17‧‧‧閥體
18‧‧‧氣體導入管
19‧‧‧冷凍泵
20‧‧‧加熱單元
21‧‧‧加熱器
211‧‧‧發熱面
212‧‧‧支撐體
131‧‧‧第一管構件
132‧‧‧第二管構件
161‧‧‧冷阱
162‧‧‧機械式冷凍機
163‧‧‧低溫部
m‧‧‧軸部
W‧‧‧基板
P‧‧‧電漿

Claims (7)

  1. 一種真空排氣裝置,係用以對真空處理用的處理室進行排氣者,具備有:一泵單元,具有:一冷阱,可捕集廢氣;一泵室,係容置前述冷阱;及一排氣通路,前述排氣通路含有一第一管構件,係連接於前述處理室以及一第二管構件,係連接於前述泵室,用以將前述廢氣由前述處理室朝前述冷阱導引;一加熱單元,具有:一發熱面,其形成第一面積,並以可與前述廢氣接觸之方式與前述處理室相向配置;及一支撐體,係用以支撐前述發熱面;前述加熱單元配置於前述第一管構件,係於前述發熱面將前述廢氣中所含之臭氧熱分解;以及一閥體,係配置在前述第一及第二管構件之間,在前述臭氧分解時使前述排氣通路開放成前述第一面積以下。
  2. 如申請專利範圍第1項所述之真空排氣裝置,其中前述排氣通路之剖面積形成第二面積,前述第二面積為前述第一面積的二倍。
  3. 如申請專利範圍第1或2項所述之真空排氣裝置,其中前述發熱面係在與前述排氣通路的軸向交叉的方向取間隔配置複數個。
  4. 如申請專利範圍第3項所述之真空排氣裝置,其中前述加熱單元更具有一旋動機構部,前述旋動機構部用以使前述支撐體旋動於和前述配管的軸向交叉之方向的周圍。
  5. 如申請專利範圍第1或2項所述之真空排氣裝 置,其中前述支撐體包含一遮熱層。
  6. 一種真空處理裝置,具備有:一真空處理用的處理室;一泵單元,具有:一冷阱,可捕集廢氣;一泵室,係容置前述冷阱;及一排氣通路,前述排氣通路含有一第一管構件,係連接於前述處理室以及一第二管構件,係連接於前述泵室,用以將前述廢氣由前述處理室朝前述冷阱導引;一加熱單元,具有:一發熱面,其形成第一面積,並以可與前述廢氣接觸之方式與前述處理室相向配置;及一支撐體,係用以支撐前述發熱面;前述加熱單元配置於前述第一管構件,係於前述發熱面將前述廢氣中所含之臭氧熱分解;以及一閥體,係配置在前述第一及第二管構件之間,在前述臭氧分解時使前述排氣通路開放成為前述第一面積以下。
  7. 一種真空排氣方法,係利用冷凍泵對臭氧所存在的處理室透過配置有閥體的排氣通路進行排氣者,其係使前述排氣通路藉由前述閥體而開放成前述第一面積以下,並配置在前述處理室與前述閥體之間,使廢氣中的臭氧接觸形成前述第一面積的發熱面而進行熱分解,並在前述冷凍泵的冷阱將前述廢氣凝結。
TW098138638A 2008-11-14 2009-11-13 Vacuum evacuation device, vacuum processing device and vacuum treatment method TWI421411B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008291818 2008-11-14

Publications (2)

Publication Number Publication Date
TW201030234A TW201030234A (en) 2010-08-16
TWI421411B true TWI421411B (zh) 2014-01-01

Family

ID=42169810

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098138638A TWI421411B (zh) 2008-11-14 2009-11-13 Vacuum evacuation device, vacuum processing device and vacuum treatment method

Country Status (5)

Country Link
JP (1) JP5207417B2 (zh)
KR (1) KR101231528B1 (zh)
CN (1) CN102171455B (zh)
TW (1) TWI421411B (zh)
WO (1) WO2010055665A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5669659B2 (ja) * 2011-04-14 2015-02-12 住友重機械工業株式会社 クライオポンプ及び真空排気方法
WO2014141421A1 (ja) * 2013-03-14 2014-09-18 株式会社シンクロン 油拡散ポンプ及び真空成膜装置
CN104696189B (zh) * 2015-02-12 2017-04-12 江苏苏盐阀门机械有限公司 环保真空发生装置
KR101713977B1 (ko) * 2016-11-22 2017-03-09 주식회사 삼흥에너지 콜드트랩

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10184541A (ja) * 1996-12-27 1998-07-14 Anelva Corp 真空排気装置
JP2000024456A (ja) * 1998-07-07 2000-01-25 Tokyo Electron Ltd 熱分解性ガスの除去装置及び除去方法
JP2004136215A (ja) * 2002-10-18 2004-05-13 Meidensha Corp オゾン分解装置
TWI267581B (en) * 2001-09-06 2006-12-01 Ulvac Inc Vacuum exhaust device and method for operating such vacuum exhaust device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2191260A1 (en) * 1996-11-26 1998-05-26 Luc Ouellet Stabilization of the interface between tin and a1 alloys
JP4046407B2 (ja) * 1998-04-01 2008-02-13 ヤマハ株式会社 スパッタ法及び配線形成法
FR2783883B1 (fr) * 1998-09-10 2000-11-10 Cit Alcatel Procede et dispositif pour eviter les depots dans une pompe turbomoleculaire a palier magnetique ou gazeux

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10184541A (ja) * 1996-12-27 1998-07-14 Anelva Corp 真空排気装置
JP2000024456A (ja) * 1998-07-07 2000-01-25 Tokyo Electron Ltd 熱分解性ガスの除去装置及び除去方法
TWI267581B (en) * 2001-09-06 2006-12-01 Ulvac Inc Vacuum exhaust device and method for operating such vacuum exhaust device
JP2004136215A (ja) * 2002-10-18 2004-05-13 Meidensha Corp オゾン分解装置

Also Published As

Publication number Publication date
KR101231528B1 (ko) 2013-02-07
CN102171455B (zh) 2014-06-25
CN102171455A (zh) 2011-08-31
TW201030234A (en) 2010-08-16
JP5207417B2 (ja) 2013-06-12
KR20110040982A (ko) 2011-04-20
JPWO2010055665A1 (ja) 2012-04-12
WO2010055665A1 (ja) 2010-05-20

Similar Documents

Publication Publication Date Title
TWI421411B (zh) Vacuum evacuation device, vacuum processing device and vacuum treatment method
RU2366494C2 (ru) Способ технологической обработки летучего органического соединения, устройство для адсорбции и десорбции и установка для технологической обработки летучего органического соединения
US8953145B2 (en) Detection of contaminating substances in an EUV lithography apparatus
JP2012501072A5 (ja) Euvリソグラフィ装置およびeuvリソグラフィ装置における汚染物質の検出方法
KR20140132617A (ko) 이동형 방사성 불활성가스 제거장치
US3095494A (en) Ultra high vacuum device
WO2021256274A1 (ja) メタンガス分解方法、メタンガス分解装置
Popkov et al. Interaction of Li-D films with water vapor
Nizamani et al. Versatile ultra high vacuum system for ion trap experiments: Design and implementation
US20130008189A1 (en) Cryopump and Method of Manufacturing the Same
JP2005353604A (ja) 質量分析装置における気体導入装置
US20060228272A1 (en) Purifier
JP2003040804A (ja) 有機ハロゲン化合物の分解処理装置および分解処理方法
JP6259739B2 (ja) 有害物質分解装置、燃焼ガス分解システム及び気化ガス分解システム
JP2011034741A (ja) 気体分析装置及びそれを用いた検査装置
RU2409877C2 (ru) Устройство для подготовки образца
RU2123620C1 (ru) Вакуумная ловушка
Xiaotian et al. CSRm ultra-high vacuum system
JP2002186853A (ja) Pcb吸着活性炭からのpcb脱着処理法ならびにその装置
KR20040070610A (ko) 트랩장치
KR100470199B1 (ko) 트랩장치의 배기관
JPS63199070A (ja) 真空ロウ付け装置
JP2023113175A (ja) 排オゾン処理装置
KR101410446B1 (ko) HxOy 가스 플라즈마 반응로를 활용한 폴리염화비페닐류 처리 시스템 및 그 방법
JP2024012056A (ja) 有機物処理装置