TWI421214B - Ibiiiavia族非晶相化合物及應用於薄膜太陽能電池之ibiiiavia族非晶相前驅物的製造方法 - Google Patents

Ibiiiavia族非晶相化合物及應用於薄膜太陽能電池之ibiiiavia族非晶相前驅物的製造方法 Download PDF

Info

Publication number
TWI421214B
TWI421214B TW97146883A TW97146883A TWI421214B TW I421214 B TWI421214 B TW I421214B TW 97146883 A TW97146883 A TW 97146883A TW 97146883 A TW97146883 A TW 97146883A TW I421214 B TWI421214 B TW I421214B
Authority
TW
Taiwan
Prior art keywords
ibiiiavia
amorphous phase
group
producing
mixed solution
Prior art date
Application number
TW97146883A
Other languages
English (en)
Other versions
TW201022151A (en
Inventor
Yu Huang
Chiou Yen Chiou
Bing Joe Hwang
Hsuan Fu Wang
Shih Hong Chang
Chih Lung Lin
Chih Chung Wu
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW97146883A priority Critical patent/TWI421214B/zh
Priority to US12/418,591 priority patent/US8815123B2/en
Publication of TW201022151A publication Critical patent/TW201022151A/zh
Application granted granted Critical
Publication of TWI421214B publication Critical patent/TWI421214B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/002Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/008Salts of oxyacids of selenium or tellurium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49355Solar energy device making

Description

IBIIIAVIA族非晶相化合物及應用於薄膜太陽能電池之IBIIIAVIA族非晶相前驅物的製造方法
本發明係有關於一種IBIIIAVIA族非晶相化合物的製造方法,特別有關於應用於薄膜太陽能電池之IBIIIAVIA族非晶相前驅物的製造方法。
薄膜太陽能電池是目前許多研究團隊所積極發展的先進技術。經過先前世界性的能源危機之後,各國無不積極尋找可利用的能源,而目前需求量最大的能源尤以電力為首當其衝。電力的發電系統以火力發電、水力發電和核能發電為主流,其中火力發電以石化原料作為燃料,對環境會造成相當程度的污染,如空氣污染、酸雨及溫室效應等相關的影響,更有存量上的顧慮。水力發電受限於地理位置,其實用性並不高,而核能發電過程中所產生的核廢料,對環境上的衝擊更是嚴重。因此如何尋找出無污染、實用性高且源源不絕的能源來源,一直是各個研究單位所投入的課題。太陽能是目前最具潛力的能源,它具有取之不盡、用之不竭的特性之外,對環境更不會造成威脅,也無特殊地理位置上的限制,應用範圍廣,可說是相當潔淨且實用的再生能源。
在薄膜太陽能電池的研究中,各研究團隊之目的主要製造出具低成本、製程簡單及大量生產的太陽能電池元件,其中以薄膜太陽能電池(Thin Film Solar Cell)最為適 當,其種類依材料可分為非晶矽(amorphous silicon)、碲化鎘(CdTe)及硒化銅銦鎵(CIGS)。由於以硒化銅銦鎵(CIGS)作為吸收層之薄膜太陽能電池擁有相當高的轉換效率19.9%、藉由不同成分的組成可調整吸收層的能隙寬和p-n型半導體之間的改變,以及直接能帶半導體材料中最佳的光學吸收係數等優點外,穩定度佳的硒化銅銦鎵,並無非晶矽材料的斯德柏勒-隆斯基效應及無碲化鎘中所含劇毒的鎘,因此許多研究團隊致力於開發此材料。
硒化銅銦鎵太陽能電池吸收層薄膜的合成技術上,目前常見的有電化學沉積(Electro-deposition)、噴霧裂解法(Spray Pyrolysis)、濺鍍(Sputtering)與共蒸鍍法(Co-evaporation)等。由於雜質的分佈會影響硒化銅銦鎵太陽能電池材料的品質進而影響薄膜太陽能電池的轉換效率,因此在合成製備Cu(In,Ga)Se2 材料的同時,一般都選擇在高真空(10-4 torr~10-7 torr)的環境中進行,以降低外來雜質的濃度,提高材料本質的純度。由於真空製程所需耗費的成本相對較高,目前許多研究團隊朝向低成本的非真空製程進行開發與研究。
目前溼式塗佈所用漿料之粉末合成方法有固態法(Solid State method)、水熱/溶熱法(Hydrothermal/Solvothermal method)、溶膠-凝膠法(Sol-gel method)、多元醇還原法(Polyol Reduction method)等一般常見的粉體製備方法。例如Bhattacharya(美國專利案號5,731,031)等人以化學水浴法(chemical bath)製備用以製造 太陽能電池的結晶相粉體前驅物,如Cux Sen (x=1-2,n=1-3)、Cux Gay Sen (x=1-2,y=0-1、n=1-3)、Cux Iny Sen (x=1-2.27,y=0.72-2、n=1-3)、Cux (InGa)y Sen (x=1-2.17,y=0.96-2、n=1-3)及Iny Sen (y=1-2.3、n=1-3)等。然而,目前合成溼式塗佈所用漿料粉末均為結晶相,在粉末組成與粒徑大小分佈均勻性之控制相當困難,如何合成易控制粉末組成與粒徑大小分佈均勻性為目前許多研究團隊正積極發展之製程。
本發明提供一種IBIIIAVIA族非晶相化合物的製造方法,包括:提供一混合溶液,其包含化學元素週期表之IB、IIIA、VIA族元素及上述組成元素之任意群組的溶液;加熱該混合溶液;過濾該混合溶液;以及乾燥該混合溶液以獲得一IBIIIAVIA族非晶相粉體。
本發明也提供一種應用於薄膜太陽能電池之IBIIIAVIA族非晶相前驅物的製造方法,包括:提供一混合溶液,其包含化學元素週期表之IB、IIIA、VIA族元素及上述組成元素之任意群組的溶液,其中該混合溶液的溶劑包括水;加熱該混合溶液;洗滌並過濾該混合溶液;以及乾燥該混合溶液以獲得一奈米IBIIIAVIA族非晶相粉體,其中該非晶相粉體是用以作為一IBIIIAVIA族黃銅礦結構的前驅物。
有關各實施例之製造和使用方式係如以下所詳述。然而,值得注意的是,本發明所提供之各種可應用的發明概念係依具體內文的各種變化據以實施,且在此所討論的具體實施例僅是用來顯示具體使用和製造本發明的方法,而不用以限制本發明的範圍。
第1圖顯示根據本發明實施例以水熱法製造IBIIIAVIA族非晶相粉體的流程圖。首先,提供一混合溶液,其包含化學元素週期表之IB、IIIA、VIA族元素及上述組成元素之任意群組的溶液(步驟S10)。上述混合溶液的溶劑可包括水且不含有機溶劑。利用水為溶劑以取代有機溶劑,可降低環境污染的問題。此外,水為易於取得之原料,且成本低,因此可大幅降低製程之生產成本。IB族元素可包括銅及銀,且其可以是來自於氯化物、硝酸鹽或硫酸鹽的離子化合物。IIIA族元素可包括鋁、銦及鎵,且其可以是來自於氯化物、硝酸鹽或硫酸鹽的離子化合物。VIA族元素可包括硫、硒及碲,且其可以是來自亞硒酸鹽、亞硫酸鹽或亞碲酸鹽的離子化合物。例如,將CuCl2 .2H2 O(或CuCl2 )、InCl3 及/或GaCl3 、以及Na2 SeO3 秤重,將之溶於水中並置於一容器中。接著,在配置完成的混合溶液中放入磁石攪拌子,利用磁石震盪機均勻攪拌。於攪拌完成後,將此容器緊鎖密閉於一微波反應器內。
接著,加熱該混合溶液(步驟S20)。可直接加熱該混合溶液,或較佳以一微波源加熱該混合溶液。當使用微波源 進行加熱能大幅縮短製程反應時間。微波源的功率範圍介於1瓦至200瓦,較佳介於10瓦至100瓦。微波源加熱的溫度範圍介於10℃至400℃,較佳介於100℃至300℃,更加介於130℃至190℃。微波源加熱的時間介於1秒鐘至3小時,較佳介於1分鐘至1小時。
待反應完成後,過濾該混合溶液(步驟S30)。例如將混合溶液置於漏斗中進行分離,並可同時選擇性的以乙醇或水洗淨。
接著,乾燥混合溶液以獲得IBIIIAVIA族非晶相粉體(步驟S40)。例如將由過濾後的混合溶液放入真空高溫烘箱乾燥。乾燥溫度範圍介於30℃至150℃,較佳介於50℃至80℃。乾燥時間範圍介於1小時至100小時,較佳介於3小時至8小時。即可得到本發明所需之非晶相粉體。
接著,鍛燒非晶相粉體以轉換成IBIIIAVIA族晶相結構(步驟S50)。例如將所合成之均勻奈米粉體置於高溫爐中鍛燒,鍛燒溫度範圍介於30℃至1000℃,較佳範圍介於300℃至600℃,並通入氫氣及/或惰性氣體,鍛燒時間介於1分鐘至1天,較佳介於10分鐘至10小時,即可得到晶相結構。於實施例中,可在非晶相粉體沉積且覆蓋在一基板上後進行鍛燒,所得的晶相結構為一層膜。上述晶相結構較佳為IBIIIAVIA族黃銅礦結構。IBIIIAVIA族黃銅礦結構可應用作為薄膜太陽能電池中的光電轉換層。上述薄膜太陽能電池包括IBIIIAVIA族薄膜太陽能電池或高分子薄膜太陽能電池。
在高分子薄膜太陽能電池中,奈米黃銅礦結構粉體可混合導電高分子。上述導電高分子可選自於由聚(3,4伸乙基二氧噻吩)(polyethylene-dioxythiophene doped with polystyrene sulphonic acid,PEDOT)、聚噻吩、聚吡咯、以及聚苯胺所組成的群組。
為了讓本發明之上述和其他目的、特徵,及優點能更明顯易懂,下文特舉較佳實施例,做詳細說明如下:
【實施例1】
將CuCl2 .2H2 O、InCl3 、以及Na2 SeO3 粉末秤重,使化合物配製成莫耳比大抵約Cu:In:Se=1:1:2,將之溶於水中並置於一容器中。接著,在配置完成的混合溶液中放入磁石攪拌子,利用磁石震盪機,均勻攪拌約10分鐘。於攪拌完成後,將此容器緊鎖密閉於一微波反應器內。
接著,以一微波源加熱該混合溶液。微波源的功率係約200瓦,加熱溫度係約180℃,加熱時間係約30分鐘。待反應完成後,將混合溶液置於漏斗中進行分離,並同時以乙醇或水洗淨,以得到一膠狀混合物。
將由過濾步驟所得到的產物放入真空高溫烘箱乾燥,乾燥溫度約80℃,乾燥時間約1小時,以得到非晶相亞硒酸鹽銅銦化合物(CuIn(SeO3 )2 )粉體。
利用電泳沉積的方式將非晶相亞硒酸鹽銅銦化合物粉體沉積至一基板上後,置於通入含有2%體積百分比之氫氣 的氬氣的高溫爐中進行鍛燒。鍛燒溫度約500℃,鍛燒時間約1小時,即可得到硒化銅銦黃銅礦結構。
第2A圖及第2B圖分別係非晶相亞硒酸鹽銅銦化合物粉體及硒化銅銦黃銅礦結構的X射線繞射頻譜圖。第3A圖及第3B圖分別係非晶相亞硒酸鹽銅銦化合物粉體及硒化銅銦黃銅礦結構的X射線能譜(EDX)分析頻譜圖。表1及表2分別係非晶相亞硒酸鹽銅銦化合物粉體及硒化銅銦黃銅礦結構,其X射線能譜(EDX)分析各元素含量表。第4A圖及第4B圖分別係非晶相亞硒酸鹽銅銦化合物粉體及硒化銅銦黃銅礦結構的掃描式電子顯微鏡照片。
第2A圖及第2B圖顯示非晶相亞硒酸銅銦化合物粉體在鍛鐃迴火後可得純相之硒化銅銦黃銅礦結構,其X光繞射之結果(第2B圖)與JCPDS編號87-2265相符,主要峰為(112)、(220)/(204)、(116)/(312)面,並無其它雜相出現。請參考第3A圖、第3B圖、表1及表2,藉由EDX之鑑定得知非晶相亞硒酸銅銦化合物粉體在鍛燒前後的成分組成比例,鍛燒前後的銅:銦:硒原子數比大抵約為1:1:2,符合理論之計量比。第4A圖及第4B圖顯示非晶相亞硒酸銅銦化合物粉體及硒化銅銦黃銅礦結構具有非常均勻的尺寸分佈。
【實施例2】
相同於實施例1的步驟,其中是將CuCl2 .2H2 O、InCl3 、GaCl3 以及Na2 SeO3 粉末秤重,使化合物配製成莫耳比大抵約Cu:In:Ga:Se=1:0.7:0.3:2。此實施例得到非晶相亞硒酸銅銦鎵化合物(CuInGa(SeO3 )2 )粉體。將硒酸銅銦鎵化合物粉體鍛燒後得到硒化銅銦鎵黃銅礦結構。
第5A圖及第5B圖分別係非晶相亞硒酸銅銦鎵化合物粉體及硒化銅銦鎵黃銅礦結構的X射線繞射頻譜圖。第6A圖及第6B圖分別係非晶相亞硒酸銅銦鎵化合物粉體及硒化銅銦鎵黃銅礦結構的X射線能譜(EDX)分析頻譜圖。表3及表4分別係非晶相亞硒酸銅銦鎵化合物粉體及硒化銅 銦鎵黃銅礦結構,其X射線能譜(EDX)分析各元素含量表。第7A圖及第7B圖分別係非晶相亞硒酸銅銦鎵化合物粉體及硒化銅銦鎵黃銅礦結構的掃描式電子顯微鏡照片。
第5A圖及第5B圖顯示非晶相亞硒酸銅銦鎵化合物粉體在鍛鐃迴火後可得純相之硒化銅銦鎵黃銅礦結構,其X光繞射之結果(第5B圖)與JCPDS編號35-1102相符,主要峰為(112)、(220)、(312)面,並無其它雜相出現。請參考第6A圖、第6B圖、表3及表4,藉由EDX之鑑定得知非晶相亞硒酸銅銦鎵化合物粉體在鍛燒前後的成分組成比例,鍛燒前後的銅:銦:硒:鎵原子數比大抵約為1:0.7:0.3:2,符合理論之計量比。第7A圖及第7B圖顯示非晶相亞硒酸銅銦鎵化合物粉體及硒化銅銦鎵黃銅礦結構具有非常均勻的尺寸分佈。
本發明之實施例包括以水熱法製造應用於太陽能電池之IBIIIAVIA族非晶相粉體前驅物。混合溶液係以水作為溶劑以取代有機溶劑,可降低環境污染的問題並降低生產成本。以微波源進行加熱,能大幅縮短製程反應時間。所得到的非晶相粉體其粒徑大小分佈之均勻性極佳。IBIIIAVIA族非晶相物粉體在鍛鐃後可得純相之IBIIIAVIA族黃銅礦結構,且黃銅礦結構具有非常均勻的尺寸分佈。因此,IBIIIAVIA族非晶相粉體可應用於製備溼式塗佈製程或電泳之漿料,以製備相對應材料之薄膜。由於非晶相粉體的組成與粒徑大小分佈之均勻性極佳,對於漿料製備及粉體沉積之鍍液沒有結晶方向性的問題,因此非晶相粉體可均勻且不具方向性地分布於基材上。此有利於製備薄膜太陽能電池之黃銅礦結構薄膜其方向性及均勻性的控制。
本發明雖以實施例揭露如上,然其並非用以限定本發明的範圍,任何本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可做些許的更動與潤 飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
S10-S50‧‧‧本發明實施例之IBIIIAVIA族非晶相化合物的流程步驟
第1圖顯示本發明實施例之製造IBIIIAVIA族非晶相化合物的流程圖。
第2A圖及第2B圖分別係非晶相亞硒酸鹽銅銦化合物粉體及硒化銅銦黃銅礦結構的X射線繞射頻譜圖。
第3A圖及第3B圖分別係非晶相亞硒酸鹽銅銦化合物粉體及硒化銅銦黃銅礦結構的X射線能譜(EDX)分析頻譜圖。
第4A圖及第4B圖分別係非晶相亞硒酸鹽銅銦化合物粉體及硒化銅銦黃銅礦結構的掃描式電子顯微鏡照片。
第5A圖及第5B圖分別係非晶相亞硒酸銅銦鎵化合物粉體及硒化銅銦鎵黃銅礦結構的X射線繞射頻譜圖。
第6A圖及第6B圖分別係非晶相亞硒酸銅銦鎵化合物粉體及硒化銅銦鎵黃銅礦結構的X射線能譜(EDX)分析頻譜圖。
第7A圖及第7B圖分別係非晶相亞硒酸銅銦鎵化合物粉體及硒化銅銦鎵黃銅礦結構的掃描式電子顯微鏡照片。
S10-S50‧‧‧本發明實施例之製造IBIIIAVIA族非晶相化合物的流程步驟

Claims (17)

  1. 一種IBIIIAVIA族非晶相化合物的製造方法,包括:提供一混合溶液,其由化學元素週期表之IB、IIIA、VIA族元素各自的鹽類和水組成,其中該IB族元素的鹽類為銅的氯化物、硝酸鹽或硫酸鹽,該IIIA族元素的鹽類為銦及/或鎵的氯化物、硝酸鹽或硫酸鹽,該VIA族元素的前驅物為亞硒酸鹽;加熱該混合溶液至100℃至300℃之間;過濾該混合溶液;以及乾燥該混合溶液以獲得一IBIIIAVIA族非晶相粉體。
  2. 如申請專利範圍第1項所述之IBIIIAVIA族非晶相化合物的製造方法,其中該混合溶液不含有機溶劑。
  3. 如申請專利範圍第1項所述之IBIIIAVIA族非晶相化合物的製造方法,更包括在乾燥該混合溶液前,以一洗滌劑洗滌該混合溶液,該洗滌劑包括去離子水或乙醇。
  4. 如申請專利範圍第1項所述之IBIIIAVIA族非晶相化合物的製造方法,其中該IBIIIAVIA族非晶相粉體是應用於薄膜太陽能電池。
  5. 如申請專利範圍第4項所述之IBIIIAVIA族非晶相化合物的製造方法,其中該薄膜太陽能電池包括IBIIIAVIA族薄膜太陽能電池或高分子薄膜太陽能電池。
  6. 如申請專利範圍第1項所述之IBIIIAVIA族非晶相化合物的製造方法,其中該IBIIIAVIA族非晶相粉體是用以作為一IBIIIAVIA族晶相結構的前驅物。
  7. 如申請專利範圍第6項所述之IBIIIAVIA族非晶相化合物的製造方法,其中該IBIIIAVIA族晶相結構具有黃銅礦結構。
  8. 如申請專利範圍第6項所述之IBIIIAVIA族非晶相化合物的製造方法,其中應用於一高分子薄膜太陽能電池的該IBIIIAVIA族晶相結構與一導電高分子混合。
  9. 如申請專利範圍第8項所述之IBIIIAVIA族非晶相化合物的製造方法,其中該導電高分子係選自於由聚(3,4伸乙基二氧噻吩)、聚噻吩、聚吡咯、以及聚苯胺所組成的群組。
  10. 如申請專利範圍第6項所述之IBIIIAVIA族非晶相化合物的製造方法,其中是利用鍛燒該IBIIIAVIA族非晶相粉體的方式將該非晶相粉體轉換成該IBIIIAVIA族晶相結構。
  11. 一種應用於薄膜太陽能電池之IBIIIAVIA族非晶相前驅物的製造方法,包括:提供一混合溶液,其由化學元素週期表之IB、IIIA、VIA族元素各自的鹽類和水組成,其中該IB族元素的鹽類為銅的氯化物、硝酸鹽或硫酸鹽,該IIIA族元素的鹽類為銦及/或鎵的氯化物、硝酸鹽或硫酸鹽,該VIA族元素的前驅物為亞硒酸鹽;加熱該混合溶液至100℃至300℃之間;洗滌並過濾該混合溶液;以及乾燥該混合溶液以獲得一奈米IBIIIAVIA族非晶相粉 體,其中該非晶相粉體是用以作為一IBIIIAVIA族黃銅礦結構的前驅物。
  12. 如申請專利範圍第11項所述之IBIIIAVIA族非晶相前驅物的製造方法,其中該IBIIIAVIA族黃銅礦結構是用作一薄膜太陽能電池中的光電轉換元件。
  13. 如申請專利範圍第11項所述之IBIIIAVIA族非晶相前驅物的製造方法,其中該混合溶液不含有機溶劑。
  14. 如申請專利範圍第11項所述之IBIIIAVIA族非晶相前驅物的製造方法,更包括在乾燥該混合溶液前,以一洗滌劑洗滌該混合溶液,該洗滌劑包括去離子水或乙醇。
  15. 如申請專利範圍第11項所述之IBIIIAVIA族非晶相前驅物的製造方法,其中應用於高分子薄膜太陽能電池的該IBIIIAVIA族黃銅礦結構與一導電高分子混合。
  16. 如申請專利範圍第15項所述之IBIIIAVIA族非晶相前驅物的製造方法,其中該導電高分子係選自於由聚(3,4伸乙基二氧噻吩)、聚噻吩、聚吡咯、以及聚苯胺所組成的群組。
  17. 如申請專利範圍第11項所述之IBIIIAVIA族非晶相前驅物的製造方法,其中是利用鍛燒該IBIIIAVIA族非晶相粉體的方式將該非晶相粉體轉換成該IBIIIAVIA族晶相粉體。
TW97146883A 2008-12-03 2008-12-03 Ibiiiavia族非晶相化合物及應用於薄膜太陽能電池之ibiiiavia族非晶相前驅物的製造方法 TWI421214B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW97146883A TWI421214B (zh) 2008-12-03 2008-12-03 Ibiiiavia族非晶相化合物及應用於薄膜太陽能電池之ibiiiavia族非晶相前驅物的製造方法
US12/418,591 US8815123B2 (en) 2008-12-03 2009-04-04 Fabrication method for ibiiiavia-group amorphous compound and ibiiiavia-group amorphous precursor for thin-film solar cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97146883A TWI421214B (zh) 2008-12-03 2008-12-03 Ibiiiavia族非晶相化合物及應用於薄膜太陽能電池之ibiiiavia族非晶相前驅物的製造方法

Publications (2)

Publication Number Publication Date
TW201022151A TW201022151A (en) 2010-06-16
TWI421214B true TWI421214B (zh) 2014-01-01

Family

ID=42221927

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97146883A TWI421214B (zh) 2008-12-03 2008-12-03 Ibiiiavia族非晶相化合物及應用於薄膜太陽能電池之ibiiiavia族非晶相前驅物的製造方法

Country Status (2)

Country Link
US (1) US8815123B2 (zh)
TW (1) TWI421214B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7914762B2 (en) * 2007-09-28 2011-03-29 Korea Research Institute Of Chemical Technology Preparation method of chalcopyrite-type compounds with microwave irradiation
TWI373148B (en) * 2007-12-20 2012-09-21 Ind Tech Res Inst Fabrication methods for nano-scale chalcopyritic powders and polymeric thin-film solar cells
TWI495114B (zh) * 2009-03-19 2015-08-01 Univ Nat Taiwan 光吸收層之製備方法及前驅物溶液
TW201100330A (en) * 2009-06-24 2011-01-01 Univ Nat Taiwan Fabrication method for chalcopyrite powder
WO2011108685A1 (ja) * 2010-03-05 2011-09-09 株式会社 東芝 化合物薄膜太陽電池とその製造方法
WO2012001094A1 (en) * 2010-07-02 2012-01-05 Umicore Selenide powders and manufacturing process
US8748216B2 (en) * 2010-10-25 2014-06-10 Imra America, Inc. Non-vacuum method for fabrication of a photovoltaic absorber layer
US8409906B2 (en) 2010-10-25 2013-04-02 Imra America, Inc. Non-vacuum method for fabrication of a photovoltaic absorber layer
WO2013164248A1 (en) 2012-05-02 2013-11-07 Umicore Selenite precursor and ink for the manufacture of cigs photovoltaic cells

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7026258B2 (en) * 2002-04-29 2006-04-11 Electricite De France Service National Method for making thin-film semiconductors based on I-III-VI2 compounds, for photovoltaic applications
US20070186971A1 (en) * 2005-01-20 2007-08-16 Nanosolar, Inc. High-efficiency solar cell with insulated vias

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5674325A (en) * 1995-06-07 1997-10-07 Photon Energy, Inc. Thin film photovoltaic device and process of manufacture
US6126740A (en) * 1995-09-29 2000-10-03 Midwest Research Institute Solution synthesis of mixed-metal chalcogenide nanoparticles and spray deposition of precursor films
US6849334B2 (en) * 2001-08-17 2005-02-01 Neophotonics Corporation Optical materials and optical devices
US6788866B2 (en) * 2001-08-17 2004-09-07 Nanogram Corporation Layer materials and planar optical devices
US6193936B1 (en) * 1998-11-09 2001-02-27 Nanogram Corporation Reactant delivery apparatuses
US6952504B2 (en) * 2001-12-21 2005-10-04 Neophotonics Corporation Three dimensional engineering of planar optical structures
AU2002224399A1 (en) * 2000-10-17 2002-04-29 Neophotonics Corporation Coating formation by reactive deposition
JP2005520701A (ja) * 2002-03-19 2005-07-14 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア 半導体‐ナノ結晶/複合ポリマー薄膜
KR20080109778A (ko) * 2006-03-13 2008-12-17 나노그램 코포레이션 얇은 실리콘 또는 게르마늄 시트 및 얇은 시트로 형성된 광전지

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7026258B2 (en) * 2002-04-29 2006-04-11 Electricite De France Service National Method for making thin-film semiconductors based on I-III-VI2 compounds, for photovoltaic applications
US20070186971A1 (en) * 2005-01-20 2007-08-16 Nanosolar, Inc. High-efficiency solar cell with insulated vias

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
R.C. Valderrama, P.J. Sebastian, J. Pantoja Enriquez, S.A. Gamboa.,(2005/02/01)"Photoelectrochemical characterization of CIGS thin films for hydrogen production" Solar Energy Materials and Solar Cells, Vol. 88, Issue 2, pp.145-155 *

Also Published As

Publication number Publication date
TW201022151A (en) 2010-06-16
US20100133479A1 (en) 2010-06-03
US8815123B2 (en) 2014-08-26

Similar Documents

Publication Publication Date Title
TWI421214B (zh) Ibiiiavia族非晶相化合物及應用於薄膜太陽能電池之ibiiiavia族非晶相前驅物的製造方法
Minnam Reddy et al. Perspectives on SnSe-based thin film solar cells: a comprehensive review
Yuan et al. Efficient planar antimony sulfide thin film photovoltaics with large grain and preferential growth
Parize et al. ZnO/TiO2/Sb2S3 core–shell nanowire heterostructure for extremely thin absorber solar cells
US9735297B2 (en) Method for preparing light absorption layer of copper-indium-gallium-sulfur-selenium thin film solar cells
KR100989077B1 (ko) 페이스트를 이용한 태양전지용 박막의 제조방법 및 이에의해 수득된 태양전지용 박막
CN102034898B (zh) 一种太阳电池用铜铟硫光电薄膜材料的制备方法
KR101129194B1 (ko) 고밀도를 갖는 태양전지용 cis계 화합물 박막의 제조방법 및 상기 cis계 화합물 박막을 이용한 박막 태양전지의 제조방법
KR101149474B1 (ko) 용액상 볼밀법을 이용한 cis계 또는 czts계 콜로이드 용액 및 이를 이용한 태양전지 광흡수층 cis계 또는 czts계 화합물 박막의 제조방법
CN102502788B (zh) 一种铜铟硫三元半导体纳米颗粒的简单可控的制备方法
Bhosale et al. Influence of copper concentration on sprayed CZTS thin films deposited at high temperature
Liu et al. Fabrication of ZnO/CuS core/shell nanoarrays for inorganic–organic heterojunction solar cells
CN113372012A (zh) 一种掺杂金属元素提高无机无铅CsSnI3钙钛矿稳定性的方法
JP5874645B2 (ja) 化合物半導体薄膜太陽電池及びその製造方法
CN102153288A (zh) 一种择尤取向硫化二铜薄膜的制备方法
WO2012161402A1 (en) Method of manufacturing cis-based thin film having high density
Shilpa et al. Recent advances in the development of high efficiency quantum dot sensitized solar cells (QDSSCs): A review
Gapanovich et al. New absorbers for third-generation thin-film solar cells based on Cu–A–B–S–Se (A= Ba, Sr, Fe, Ni, or Mn; B= Si, Ge, or Sn) quaternary copper compounds
Ullah et al. A modified hybrid chemical vapor deposition method for the fabrication of efficient CsPbBr3 perovskite solar cells
Liu et al. A non-vacuum solution route to prepare amorphous metal oxides thin films for Cu2ZnSn (S, Se) 4 solar cells
JP2009290202A (ja) 光エネルギー変換触媒及びその作製方法
Peng et al. Controllable (hk 1) preferred orientation of Sb2S3 thin films fabricated by pulse electrodeposition
Xue et al. Fabrication of Cu2ZnSn (SxSe1− x) 4 solar cells by ethanol-ammonium solution process
Zhao et al. Solution-based synthesis of dense, large grained CuIn (S, Se) 2 thin films using elemental precursor
Li et al. Novel Ag-based thin film solar cells: concept, materials, and challenges