TWI420135B - Method for manufacturing anti-reflection layer - Google Patents
Method for manufacturing anti-reflection layer Download PDFInfo
- Publication number
- TWI420135B TWI420135B TW99100543A TW99100543A TWI420135B TW I420135 B TWI420135 B TW I420135B TW 99100543 A TW99100543 A TW 99100543A TW 99100543 A TW99100543 A TW 99100543A TW I420135 B TWI420135 B TW I420135B
- Authority
- TW
- Taiwan
- Prior art keywords
- array
- spherical particles
- substrate
- layer according
- producing
- Prior art date
Links
Landscapes
- Surface Treatment Of Optical Elements (AREA)
- Laminated Bodies (AREA)
Description
本發明是有關於一種抗反射層的製造方法,且特別是有關於一種具有較佳抗反射效果的抗反射層的製造方法。The present invention relates to a method for producing an antireflection layer, and more particularly to a method for producing an antireflection layer having a preferred antireflection effect.
太陽能是一種具有永不耗盡且無污染的能源,因此在解決目前石化能源所面臨的污染與短缺的問題時,一直是最受矚目的焦點。Solar energy is an energy source that never runs out and is non-polluting. Therefore, it has always been the focus of attention when solving the problems of pollution and shortage faced by petrochemical energy.
由於太陽能電池(solar cell)可直接將太陽能轉換為電能,因此已成為目前相當重要的研究課題。一般來說,在太陽能電池中通常具有一層抗反射層,其材料為矽。此抗反射層主要是用於將入射光的反射率降低,以提高光線進入太陽能電池的入射量,進而提高元件效能。Since solar cells can directly convert solar energy into electrical energy, it has become a very important research topic at present. Generally, in solar cells, there is usually an antireflection layer made of ruthenium. The anti-reflection layer is mainly used to reduce the reflectance of incident light to increase the incident amount of light entering the solar cell, thereby improving the component performance.
目前在製造抗反射層時,通常會利用蝕刻製程來蝕刻矽基板,藉由增加矽基板的表面粗糙度與不平整性的方式來形成鈍化表面,以降低反射率。然而,此方式並無法精確地控制鈍化表面的週期性與陣列性,因而無法有效地提高抗反射效果,且無法將入射光作進一步地利用。At present, in the manufacture of the anti-reflection layer, an etching process is usually used to etch the germanium substrate, and the passivation surface is formed by increasing the surface roughness and unevenness of the germanium substrate to reduce the reflectance. However, this method does not accurately control the periodicity and the array property of the passivation surface, so that the antireflection effect cannot be effectively improved, and the incident light cannot be further utilized.
本發明提供一種抗反射層的製造方法,其可以使抗反射層具有較佳的抗反射效果。The present invention provides a method of producing an antireflection layer which can provide an antireflection layer with a better antireflection effect.
本發明提出一種抗反射層的製造方法,其是先提供基板。然後,於基板上形成球狀微粒陣列(spherical particle array)。接著,以球狀微粒陣列為罩幕,進行第一蝕刻製程,以於基板中形成多個凹槽。而後,於球狀微粒陣列上與凹槽中形成材料層。繼之,移除球狀微粒陣列以及位於球狀微粒陣列上的材料層。在移除球狀微粒陣列以及位於球狀微粒陣列上的材料層之後,進行第二蝕刻製程。The present invention provides a method of manufacturing an antireflection layer which first provides a substrate. Then, a spherical particle array is formed on the substrate. Then, using the spherical particle array as a mask, a first etching process is performed to form a plurality of grooves in the substrate. A layer of material is then formed in the array of spherical particles and in the grooves. Following this, the array of spherical particles and the layer of material on the array of spherical particles are removed. After removing the array of spherical particles and the layer of material on the array of spherical particles, a second etching process is performed.
依照本發明實施例所述之抗反射層的製造方法,上述之基板例如為矽基板。According to the method of manufacturing an antireflection layer according to an embodiment of the invention, the substrate is, for example, a germanium substrate.
依照本發明實施例所述之抗反射層的製造方法,上述之球狀微粒陣列中的每一個球狀微粒例如為奈米球狀微粒。According to the method of manufacturing an antireflection layer according to an embodiment of the present invention, each of the spherical particles in the spherical particle array is, for example, a nanospherical particle.
依照本發明實施例所述之抗反射層的製造方法,上述之球狀微粒陣列中的每一個球狀微粒的材料例如為高分子材料或玻璃。According to the method of manufacturing an antireflection layer according to an embodiment of the present invention, the material of each of the spherical particles in the spherical particle array is, for example, a polymer material or glass.
依照本發明實施例所述之抗反射層的製造方法,上述之球狀微粒陣列的形成方法例如是先將多個球狀微粒加入溶劑中。然後,將具有球狀微粒的溶劑塗佈於基板上。接著,藉由球狀微粒的自組裝而形成球狀微粒陣列。之後,移除溶劑。According to the method for producing an antireflection layer according to an embodiment of the invention, the method for forming the spherical particle array described above is, for example, first adding a plurality of spherical microparticles to a solvent. Then, a solvent having spherical particles is coated on the substrate. Next, a spherical particle array is formed by self-assembly of spherical particles. After that, the solvent is removed.
依照本發明實施例所述之抗反射層的製造方法,上述之溶劑例如為水或水與甲醇的混合溶液。According to the method for producing an antireflection layer according to an embodiment of the present invention, the solvent is, for example, water or a mixed solution of water and methanol.
依照本發明實施例所述之抗反射層的製造方法,上述之球狀微粒陣列的結構例如為單層的六角密集堆積結構(monolayer hexagonal close-packaged structure)或雙層的三角密集堆積結構(bilayer triangular close-packaged structure)。According to the manufacturing method of the anti-reflection layer according to the embodiment of the present invention, the structure of the spherical particle array is, for example, a monolayer hexagonal close-packaged structure or a double-layer triangular dense stacked structure (bilayer). Triangular close-packaged structure).
依照本發明實施例所述之抗反射層的製造方法,上述之第一蝕刻製程例如為乾式蝕刻製程。According to the method for fabricating an anti-reflective layer according to an embodiment of the invention, the first etching process is, for example, a dry etching process.
依照本發明實施例所述之抗反射層的製造方法,上述之乾式蝕刻製程例如為反應性離子蝕刻(reactive ion etching,RIE)製程。According to the method for fabricating an antireflection layer according to an embodiment of the invention, the dry etching process is, for example, a reactive ion etching (RIE) process.
依照本發明實施例所述之抗反射層的製造方法,上述之材料層的材料例如與基板的材料不同。According to the method of manufacturing an anti-reflection layer according to an embodiment of the invention, the material of the material layer is different from the material of the substrate, for example.
依照本發明實施例所述之抗反射層的製造方法,上述之材料層的材料例如為金屬。According to the method of manufacturing an antireflection layer according to an embodiment of the invention, the material of the material layer is, for example, a metal.
依照本發明實施例所述之抗反射層的製造方法,上述之材料層的形成方法例如為蒸鍍(evaporation)法。According to the method for producing an antireflection layer according to an embodiment of the present invention, the method for forming the material layer is, for example, an evaporation method.
依照本發明實施例所述之抗反射層的製造方法,上述移除球狀微粒陣列以及位於球狀微粒陣列上的材料層的方法例如是使用有機溶劑來震洗基板。According to the method of manufacturing an antireflection layer according to an embodiment of the present invention, the method of removing the spherical particle array and the material layer on the spherical particle array is, for example, using an organic solvent to shake the substrate.
依照本發明實施例所述之抗反射層的製造方法,上述之第二蝕刻製程例如為濕式蝕刻製程。According to the manufacturing method of the anti-reflection layer according to the embodiment of the invention, the second etching process is, for example, a wet etching process.
依照本發明實施例所述之抗反射層的製造方法,上述之濕式蝕刻製程的蝕刻液例如為硝酸、氫氟酸與去離子水的混合溶液。According to the method for manufacturing an antireflection layer according to the embodiment of the invention, the etching solution of the wet etching process is, for example, a mixed solution of nitric acid, hydrofluoric acid and deionized water.
基於上述,本發明利用球狀微粒陣列作為罩幕並以蒸鍍的方式於基板上形成具有高度週期性與陣列性的錐狀物,因此當光線照射基板時,光線的反射率可以有效地被降低。此外,本發明在形成具有高度週期性與陣列性的錐狀物之後,對錐狀物之外的基板進行蝕刻製程,因此所形成的鈍化表面也同樣可以具有高度週期性與陣列性,進而可以使入射光被進一步地利用。Based on the above, the present invention utilizes a spherical particle array as a mask and forms a highly periodic and arrayed cone on the substrate by evaporation, so that when light is irradiated onto the substrate, the reflectance of the light can be effectively reduce. In addition, after forming a tap having a high periodicity and an array property, the present invention performs an etching process on a substrate other than the taper, so that the formed passivation surface can also have a high degree of periodicity and array property, and thus The incident light is further utilized.
為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.
圖1A至圖1E為依照本發明實施例所繪示的抗反射層之製造流程剖面圖。首先,請參照圖1A,提供基板100。基板例如為矽基板。然後,於基板100上形成球狀微粒陣列102。球狀微粒陣列102例如是由多個球狀微粒104所構成。球狀微粒104的材料可以是高分子材料或玻璃。高分子材料例如為聚苯乙烯(polystyrene)。球狀微粒陣列102的形成方法例如是先將球狀微粒104加入溶劑中。溶劑例如為水。或者,為了在後續製程中能夠使溶劑快速地揮發,溶劑也可以是由水與甲醇所形成的混合溶液。在將球狀微粒104加入溶劑中之後,將溶劑均勻地塗佈於基板100上。此時,溶劑中的球狀微粒104會以具有最低能階狀態的自組裝方式而自由地在基板100上移動、擴散、排序,以形成球狀微粒陣列102。一般來說,由球狀微粒104的自組裝而構成的球狀微粒陣列102會具有熟知的單層的六角密集堆積結構或雙層的三角密集堆積結構,其屬於具有高度週期性與陣列性的結構。之後,藉由加熱、旋轉或自行揮發等方式,將溶劑移除。1A-1E are cross-sectional views showing a manufacturing process of an anti-reflection layer according to an embodiment of the invention. First, referring to FIG. 1A, a substrate 100 is provided. The substrate is, for example, a tantalum substrate. Then, a spherical particle array 102 is formed on the substrate 100. The spherical particle array 102 is composed of, for example, a plurality of spherical particles 104. The material of the spherical particles 104 may be a polymer material or glass. The polymer material is, for example, polystyrene. The method of forming the spherical particle array 102 is, for example, first adding the spherical fine particles 104 to a solvent. The solvent is, for example, water. Alternatively, in order to enable the solvent to be volatilized rapidly in a subsequent process, the solvent may also be a mixed solution of water and methanol. After the spherical fine particles 104 are added to the solvent, the solvent is uniformly coated on the substrate 100. At this time, the spherical fine particles 104 in the solvent are freely moved, diffused, and sorted on the substrate 100 in a self-assembly manner having the lowest energy state to form the spherical particle array 102. In general, the spherical particle array 102 composed of the self-assembly of the spherical particles 104 may have a well-known single-layer hexagonal dense stacked structure or a double-layered triangular dense stacked structure, which is highly periodic and array-like. structure. Thereafter, the solvent is removed by heating, rotating or self-evaporating.
此外,為了進一步提高球狀微粒104的自組裝的效果,球狀微粒104較佳是具有微小尺寸的奈米球狀微粒。Further, in order to further improve the self-assembly effect of the spherical fine particles 104, the spherical fine particles 104 are preferably nano spherical particles having a minute size.
然後,請參照圖1B,以球狀微粒陣列102為罩幕,進行第一蝕刻製程,以於基板100中形成凹槽106。第一蝕刻製程例如為乾式蝕刻製程,其較佳為反應性離子蝕刻製程。特別一提的是,當球狀微粒104為奈米球狀微粒時,經蝕刻而形成的凹槽106也可稱為奈米井(nanowell)。此外,視實際需求,也可以藉由調整球狀微粒104的尺寸來調整球狀微粒104之間的間隙,以形成具有各種尺寸以及排列週期的凹槽106,。Then, referring to FIG. 1B, the first etching process is performed with the spherical particle array 102 as a mask to form the recess 106 in the substrate 100. The first etching process is, for example, a dry etching process, which is preferably a reactive ion etching process. In particular, when the spherical particles 104 are nanospherical particles, the grooves 106 formed by etching may also be referred to as nanowells. Further, depending on actual needs, the gap between the spherical particles 104 can also be adjusted by adjusting the size of the spherical particles 104 to form the grooves 106 having various sizes and arrangement periods.
接著,請參照圖1C,於球狀微粒陣列102上與凹槽106中形成材料層108。材料層108的材料例如與基板100的材料不同,以避免在後續對基板100進行蝕刻製程時導致材料層108受損。材料層108的材料例如為金屬,其可以是金、銀、銅、鋁、鎳、鉻、錫、鉑、鐵、銻、鋅、鉛、鉬、鍺、鎵或其合金。材料層108的形成方法包含蒸鍍、熱蒸鍍(thermal evaporation)、濺鍍(sputter)或電子束蒸鍍(E-beam evaporation),其中以蒸鍍的效果為最佳。詳細地說,在利用上述方式形成材料層108時,材料層108除了會形成於球狀微粒104的表面上,還會穿過球狀微粒104之間規則排列的間隙而形成於凹槽106中,因而使得位於凹槽106中的材料層108能夠穩固於基底100上且不易剝落。Next, referring to FIG. 1C, a material layer 108 is formed on the spherical particle array 102 and the groove 106. The material of the material layer 108 is, for example, different from the material of the substrate 100 to avoid damage to the material layer 108 during subsequent etching processes on the substrate 100. The material of the material layer 108 is, for example, a metal, which may be gold, silver, copper, aluminum, nickel, chromium, tin, platinum, iron, ruthenium, zinc, lead, molybdenum, niobium, gallium or alloys thereof. The method of forming the material layer 108 includes vapor deposition, thermal evaporation, sputtering, or E-beam evaporation, wherein the effect of vapor deposition is optimal. In detail, when the material layer 108 is formed by the above-described manner, the material layer 108 is formed on the surface of the spherical particles 104, and is formed in the groove 106 through a regularly arranged gap between the spherical particles 104. Thus, the layer of material 108 located in the recess 106 can be secured to the substrate 100 and is less prone to flaking.
而後,請參照圖1D,移除球狀微粒陣列102以及位於球狀微粒陣列102上的材料層108,而凹槽106中剩餘的材料層108則形成錐狀物110。移除球狀微粒陣列102以及位於球狀微粒陣列102上的材料層108的方法例如是使用有機溶劑來震洗基板102,以將球狀微粒104自基板100的表面剝離(lift-off)。在一實施例中,可依序使用丙酮與甲醇來震洗基板102。特別一提的是,若球狀微粒陣列102為單層的六角密集堆積結構,則所形成的錐狀物110會構成具有三角週期結構的點陣;若球狀微粒陣列102為雙層的三角密集堆積結構,則所形成的錐狀物110會構成具有六角週期結構的點陣。Then, referring to FIG. 1D, the spherical particle array 102 and the material layer 108 on the spherical particle array 102 are removed, and the remaining material layer 108 in the groove 106 forms the cone 110. The method of removing the spherical particle array 102 and the material layer 108 on the spherical particle array 102 is, for example, shaking the substrate 102 using an organic solvent to lift the spherical particles 104 from the surface of the substrate 100. In one embodiment, the substrate 102 can be shaken using acetone and methanol in sequence. In particular, if the spherical particle array 102 is a single-layer hexagonal dense stacked structure, the formed tapered body 110 will form a lattice having a triangular periodic structure; if the spherical particle array 102 is a double-layered triangular array With a densely packed structure, the formed cone 110 will form a lattice having a hexagonal periodic structure.
之後,請參照圖1E,對基板100進行第二蝕刻製程,使基板100的表面成為鈍化表面來提高表面粗糙度與不平整性,以形成本發明之抗反射層10。第二蝕刻製程例如為濕式蝕刻製程,其所使用的蝕刻液例如為硝酸、氫氟酸與去離子水的混合溶液。藉由調整蝕刻液中的硝酸濃度與蝕刻時間,可以進一步調整入射光照射基板100時的反射率。硝酸濃度越大或蝕刻時間越長,則可以得到越低的反射率。特別一提的是,由於錐狀物110的排列具有高度週期性與陣列性,因此使得對錐狀物110之外的基底100在進行蝕刻後所形成的鈍化表面也具有高度週期性與陣列性。Thereafter, referring to FIG. 1E, a second etching process is performed on the substrate 100 to make the surface of the substrate 100 a passivation surface to improve surface roughness and unevenness to form the anti-reflection layer 10 of the present invention. The second etching process is, for example, a wet etching process, and the etching liquid used is, for example, a mixed solution of nitric acid, hydrofluoric acid, and deionized water. By adjusting the concentration of nitric acid in the etching solution and the etching time, the reflectance when the incident light is irradiated onto the substrate 100 can be further adjusted. The higher the concentration of nitric acid or the longer the etching time, the lower the reflectance can be obtained. In particular, since the arrangement of the cones 110 has a high degree of periodicity and array property, the passivation surface formed by the substrate 100 other than the tapered body 110 after etching is also highly periodic and array-oriented. .
值得一提的是,上述形成抗反射層10的方法可用於形成太陽能電池中的抗反射層,但本發明並不以此為限。上述的方法也可應用於製造其他元件中的抗反射層。It is worth mentioning that the above method of forming the anti-reflection layer 10 can be used to form an anti-reflection layer in a solar cell, but the invention is not limited thereto. The above method can also be applied to the manufacture of an anti-reflection layer in other components.
綜上所述,本發明利用球狀微粒陣列作為罩幕並以蒸鍍的方式於基板上形成具有高度週期性與陣列性的錐狀物,藉由這些錐狀物可以有效地使入射光的反射率降低,進而提高了抗反射層的抗反射功效。In summary, the present invention utilizes a spherical particle array as a mask and forms a highly periodic and arrayed cone on the substrate by evaporation, whereby the cone can effectively make incident light The reflectance is lowered, which in turn improves the antireflection effect of the antireflection layer.
此外,本發明在形成具有高度週期性與陣列性的錐狀物之後,對錐狀物之外的基板進行蝕刻製程,使得所形成的鈍化表面也具有高度週期性與陣列性,因而可以將入射光作進一步地利用。In addition, after forming a cone having a high degree of periodicity and arrayability, the present invention performs an etching process on a substrate other than the tapered body, so that the formed passivation surface also has a high periodicity and an array property, so that the incident can be incident. Light is used further.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.
10‧‧‧抗反射層10‧‧‧Anti-reflective layer
100‧‧‧基板100‧‧‧Substrate
102‧‧‧球狀微粒陣列102‧‧‧Spherical particle array
104‧‧‧球狀微粒104‧‧‧Spherical particles
106‧‧‧凹槽106‧‧‧ Groove
108‧‧‧材料層108‧‧‧Material layer
110‧‧‧錐狀物110‧‧‧ cone
圖1A至圖1E為依照本發明實施例所繪示的抗反射層之製造流程剖面圖。1A-1E are cross-sectional views showing a manufacturing process of an anti-reflection layer according to an embodiment of the invention.
10...抗反射層10. . . Antireflection layer
100...基板100. . . Substrate
106...凹槽106. . . Groove
110...錐狀物110. . . Cone
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW99100543A TWI420135B (en) | 2010-01-11 | 2010-01-11 | Method for manufacturing anti-reflection layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW99100543A TWI420135B (en) | 2010-01-11 | 2010-01-11 | Method for manufacturing anti-reflection layer |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201124748A TW201124748A (en) | 2011-07-16 |
TWI420135B true TWI420135B (en) | 2013-12-21 |
Family
ID=45047199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW99100543A TWI420135B (en) | 2010-01-11 | 2010-01-11 | Method for manufacturing anti-reflection layer |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI420135B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI476144B (en) * | 2012-05-14 | 2015-03-11 | Univ Nat Taiwan | Method for preparing a periodic nanohole structure array and the use thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4359487A (en) * | 1980-07-11 | 1982-11-16 | Exxon Research And Engineering Co. | Method for applying an anti-reflection coating to a solar cell |
CN101479031A (en) * | 2006-06-30 | 2009-07-08 | 王子制纸株式会社 | Monoparticulate-film etching mask and process for producing the same, process for producing fine structure with the monoparticulate-film etching mask, and fine structure obtained by the production pro |
TWM368189U (en) * | 2009-06-30 | 2009-11-01 | Univ Minghsin Sci & Tech | Power saving intelligent board having solar cells |
-
2010
- 2010-01-11 TW TW99100543A patent/TWI420135B/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4359487A (en) * | 1980-07-11 | 1982-11-16 | Exxon Research And Engineering Co. | Method for applying an anti-reflection coating to a solar cell |
CN101479031A (en) * | 2006-06-30 | 2009-07-08 | 王子制纸株式会社 | Monoparticulate-film etching mask and process for producing the same, process for producing fine structure with the monoparticulate-film etching mask, and fine structure obtained by the production pro |
TWM368189U (en) * | 2009-06-30 | 2009-11-01 | Univ Minghsin Sci & Tech | Power saving intelligent board having solar cells |
Also Published As
Publication number | Publication date |
---|---|
TW201124748A (en) | 2011-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5336539B2 (en) | Solar cell and manufacturing method thereof | |
Chen et al. | Difference in anisotropic etching characteristics of alkaline and copper based acid solutions for single-crystalline Si | |
Liu et al. | Hierarchical robust textured structures for large scale self-cleaning black silicon solar cells | |
TWI414646B (en) | Method for manufacturing silicon substrate with periodical structure for solar cell | |
CN102414788B (en) | With nanometer/microballoon photolithographic fabrication nanometer/micro-line solar cell | |
KR100855682B1 (en) | Method for texturing silicon surface in solar cell | |
DE112012002461B4 (en) | Uniformly distributed self-organized conical columns for solar cells with high efficiency | |
US8101522B2 (en) | Silicon substrate having nanostructures and method for producing the same and application thereof | |
JP2017504179A (en) | Surface texture structure of crystalline silicon solar cell and manufacturing method thereof | |
TW201346317A (en) | Optical anti-reflection structure and solar cell including the same, and method for making the optical anti-reflection structure | |
CN102097497A (en) | Solar cell with high conversion efficiency | |
US11527673B2 (en) | Method of texturing semiconductor substrate, semiconductor substrate manufactured using the method, and solar cell including the semiconductor substrate | |
Nichkalo et al. | Silicon nanostructures produced by modified MacEtch method for antireflective Si surface | |
Liu et al. | Micro/nanostructures for light trapping in monocrystalline silicon solar cells | |
WO2010004811A1 (en) | Thin film solar cell and manufacturing method thereof | |
TWI549305B (en) | Opto-electrical conversion structure, solar cell using the same, and manufacturing method thereof | |
CN104124286A (en) | Self-growing noble metal plasma element nano-structure and application thereof to increase of light absorption of GaInP-based solar cell | |
TWI420135B (en) | Method for manufacturing anti-reflection layer | |
CN105576054A (en) | Nanowire intermediate band solar cell structure based on butterfly-shaped plasmon antenna enhancement | |
Abdulkadir et al. | Effects of silver nanoparticles layer thickness towards properties of black silicon fabricated by metal-assisted chemical etching for photovoltaics | |
KR101578813B1 (en) | Scattering metal-nanostructure-layer covered electrode and solar cell using the same, and a methods of manufacturing them | |
KR101667180B1 (en) | Solar cell based on chalcogenide using new conceptional structure and manufacturing method thereof | |
TWI405347B (en) | Cigs solar cell | |
TWI447917B (en) | Thin-film solar cell and method for manufacturing a front electrode layer thereof | |
Dieng et al. | Design and optimization of silicon nanostructures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |