TWM368189U - Power saving intelligent board having solar cells - Google Patents

Power saving intelligent board having solar cells Download PDF

Info

Publication number
TWM368189U
TWM368189U TW098211817U TW98211817U TWM368189U TW M368189 U TWM368189 U TW M368189U TW 098211817 U TW098211817 U TW 098211817U TW 98211817 U TW98211817 U TW 98211817U TW M368189 U TWM368189 U TW M368189U
Authority
TW
Taiwan
Prior art keywords
energy
layer
dye
solar cell
conductive substrate
Prior art date
Application number
TW098211817U
Other languages
Chinese (zh)
Inventor
Hong-Shou Gu
yao-zhong Zhang
Quan-Rong Lin
Original Assignee
Univ Minghsin Sci & Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Minghsin Sci & Tech filed Critical Univ Minghsin Sci & Tech
Priority to TW098211817U priority Critical patent/TWM368189U/en
Publication of TWM368189U publication Critical patent/TWM368189U/en

Links

Classifications

    • Y02E60/521

Landscapes

  • Photovoltaic Devices (AREA)

Description

M368189 五、新型說明: 【新型所屬之技術領域】 本創作係有關-種節能智慧型板,特別是指一種具太陽能電池之節能 智慧型板。 【先前技術】 ; 隨著能源需求的增加與全球暖化問題的浮現,標榜兼具永續性與環保 ^的替代性能源-包含風力、水力 '生質能、地熱、海水潮汐及太陽能等,於 • 最近幾年來備受重視,並積極開發此等能量轉換技術與應用。而太陽能電 池可以直接將太陽光能轉換成電能使用,且不需要額外的機械裝置,因此 最廣受矚目。 若以材料的類型進行分類,太陽能電池可分為單晶矽、多晶矽、非晶 石夕及有機太陽能電池。單晶石夕太陽能電池雖然具有高達2〇%的轉換效率與 尚穩定度,但是鶴的價格成為普及上轉礙,而具較低成本的有機太陽 能電池-㈣綠化太陽能電池逐較到魏。—般的有麵料綠化太陽 _ 能電池10之結構係如第!圖所示之三明治結構,其包含有基板12、電解質 14與基板16。基板12又稱為工作電極,其上形成有一透明導電膜18,透 .明導電膜18表面塗佈有-半導體光敏化層2〇。光源一般都是從上基板12 • 進入,當光源入射量越大,其功率轉換能量越大,所以習知技術會於基板 2上方鑛上抗反射層22 (ar c〇at),以提高光入射量,減少基板12的 散射與折卿的損失,但此結顧_ —面作為人光面,造成結構之另一 面在空間利用上耗費。 再者,建築整合型太陽光電系統(Building Integrated PhQtQvQltaies, 3 M368189 t年心?.避芒 BIPV)是目前相當提倡_色_,但現有陽光電部分係採用 單晶石夕太陽能電池’锻此’如何將具較低成本之有機染料光敏化太陽能電 也、&於此系”4以有效提南綠色建築的普及性,增進永續性與環保的替 代性能源的使用率,也成為一個重要的課題。 有鑑於此,本創作遂針對上述習知技術之缺失,提出一種具太陽能電 池之節能智慧型板,以有效克服上述之該等問題。 【新型内容】 •4 本創作之主要目的在提供一種具太陽能電池之節能智慧型板,其係結 合太陽能電池與可選自於熱致色變、電致色變(EleetroehrQmie)、光致色變丨 之色變層來形成可節能發電又可調節室内日照強度、調控光源穿透性、隔 熱性、色彩選擇性之智慧型窗戶(Smart Wind〇w)。 本創作之再-目的在提供一種具太陽能電池之節能智慧型板,其可利 用太陽能電池所產生的電力來控制色變層的變色,進而達到節能的效果^ 本創作之又-目的在提供一種具太陽能電池之節能智慧型窗戶,其能 降低建築整合型太陽光電彡、统(BIPV)所需的成本。 為達上述之目的’本創作提供一種具太陽能電池之節能智慧型板,其 包含有-雙面導電基板;—上、下透明導電基板,其係將雙面導電基板爽. 持於中間’-设於上透明導電基板與雙面導電基板間的染料光電轉換部;· η 又於雙面導電基板朝向下透明導電基板之側面上的第二觸媒電極層;以 及一位於下透明導電基板與第二觸媒電極層間的色變層。 效為使貴審查委員對本創作之結構特徵及所達成之功效更有進一步 之瞭解與職’謹佐峨佳之實施姻及配合詳細之綱,說明如後: 4M368189 V. New description: [New technical field] This creation is related to a kind of energy-saving smart board, especially an energy-saving smart board with solar battery. [Prior Art] With the increase in energy demand and the emergence of global warming issues, it is an alternative energy source that combines sustainability and environmental protection - including wind, hydropower, geothermal, sea tides and solar energy. In the past few years, it has received much attention and actively developed these energy conversion technologies and applications. Solar cells can directly convert solar energy into electrical energy and do not require additional mechanical devices, so they are the most popular. If classified by type of material, solar cells can be classified into single crystal germanium, polycrystalline germanium, amorphous quartz, and organic solar cells. Although the single crystal solar cell has a conversion efficiency of up to 2%, and the stability is still stable, the price of the crane has become a popular problem, and the organic solar cell with a lower cost - (4) green solar cells are relatively high. The general structure of the green grass _ can be the structure of the battery 10 as the first! The sandwich structure shown in the figure includes a substrate 12, an electrolyte 14 and a substrate 16. The substrate 12 is also referred to as a working electrode, and a transparent conductive film 18 is formed thereon, and the surface of the transparent conductive film 18 is coated with a semiconductor photosensitive layer 2〇. The light source generally enters from the upper substrate 12. When the amount of light source incident is larger, the power conversion energy is larger. Therefore, the conventional technique may deposit an anti-reflection layer 22 (ar c〇at) on the substrate 2 to enhance the light. The incident amount reduces the scattering of the substrate 12 and the loss of the folding, but this is considered as a human surface, causing the other side of the structure to be used in space utilization. Furthermore, the building integrated solar photovoltaic system (Building Integrated PhQtQvQltaies, 3 M368189 t??? awning BIPV) is currently quite advocating _ color _, but the existing solar power part is using single crystal eve solar cell 'forging this' How to use a low-cost organic dye to lighten solar energy, and to use this system to effectively promote the popularity of green buildings and increase the use of alternative energy sources for sustainability and environmental protection. In view of this, the author proposes an energy-saving smart board with solar cells to effectively overcome the above problems in response to the above-mentioned shortcomings of the prior art. [New content] • 4 The main purpose of this creation is Providing an energy-saving intelligent board with a solar cell, which is combined with a solar cell and a color change layer which can be selected from the group consisting of a thermochromic change, an electrochromic change (Eleetroehr Qmie), and a photochromic change to form an energy-saving power generation. A smart window that adjusts indoor daylight intensity, regulates light source penetration, heat insulation, and color selectivity. The second goal of this creation is to provide a Energy-saving smart board with solar battery, which can control the discoloration of the color change layer by using the power generated by the solar battery, thereby achieving the effect of energy saving. The purpose of the present invention is to provide an energy-saving intelligent window with a solar battery. It can reduce the cost of building integrated solar photovoltaic system (BIPV). For the above purpose, the present invention provides an energy-saving smart board with solar cells, which comprises a double-sided conductive substrate; a transparent conductive substrate, which is a double-sided conductive substrate that is held in the middle of the dye-photoelectric conversion portion between the upper transparent conductive substrate and the double-sided conductive substrate; and η is on the double-sided conductive substrate toward the lower transparent conductive substrate a second catalyst electrode layer on the side; and a color change layer between the lower transparent conductive substrate and the second catalyst electrode layer. The effect is to further enhance the structural features and the achieved effects of the creation by the review panel. Understand the implementation of the job of 'Jiao Zuojia' and the detailed outline of the cooperation, explain as follows: 4

M368189 【實施方式】 請參閱第2 BI ’其係本創作之具太陽能電池之節能智慧型板的具體實 施例示意圖。如圖所示,本創作之具太陽能電池之節能智慧型板3〇包含有 -雙面導電基板32 ; -上、下透明導電基板乂、%,其係將雙面導電基板 32夾持於中間’上、下透明導電基板34、%之外側各設置有一抗反射層 .36與-截止滤光層37;-設於上透明導電基板%與雙面導電基板32間的 .-染料光電轉換部38; -第二觸媒電極層4〇,其係設於雙面導電基板32朝 # 向下透明導電基板34’之側面上;以及—色變層42,其係位於下透明導電基 板34與第一觸媒電極層40間,其中色變層42是選自於電致色變層、熱致 色變層或光致色變層。 上述之染料光電轉換部38包含有一半導體光敏化層44,其係設於上透 明導電基板34朝向雙面導電基板32之側面上’其中半導體光敏化層44包 含有數個表面具有數個多孔性質之半導體奈米粒子46與數個與半導體奈米 粒子形成化學鍵結的染料分子48,其可具有不同的吸收光波段;一第一觸 # 媒電極層50’其係設於雙面導電基板32朝向上透明導電基板34之側面上; 以及一夹持於半導體光敏化層44與第一觸媒電極層50間的電解質52 » 上述之上、下透明導電基板34、34,係各由一透明基板54、54,;以及 一位於透明基板54、54’内側表面上的導電薄膜層56、56’所構成,其中透 明基板54、54’之厚度為10微米(μηι)〜10釐米(mm)且材質為聚對苯 二甲酸乙二醇酯(Polyethylene Terephthalate,PET)、聚蔡二曱酸乙二醇酯 (Polyethylene Naphthalate,PEN)、聚碳酸酯(Polycarbonate,PC)、聚丙烯 (Polypropylene, PP)、聚亞醯胺(Polyimide,PI)、三醋酸纖維素(Tri-acetyl M368189 cellulose’TAC)或聚環稀烴高分子(Cycloolefin Polymer, COP) $者透明玻 璃或石英的材質。而導電薄膜層56、56’之厚度為10奈米(nm)至1〇〇微 米(μπι),材質為銦錫氧化物(Indium Tin 〇xide,IT〇 )、氟錫氧化物(Fiu〇rine Tin Oxide,FTO) '氧化辞-三氧化二鎵(Zn〇_Ga2〇3)、氧化鋅氧化鋁 (ΖηΟ-Α12〇3)或氧化錫-氧化銻(Sn〇2_Sb2〇3),或是電傳導高分子聚合物, 如聚 3,4 乙稀基一氧嘆吩(p〇iy (sj-ethyienedioxyfhiophene),PEDT)。 而先前所述之轉奸48可岐釕(Ruthenium)金屬錯合物染劑或 者有機系列,例如香豆素染料或㈤丨)(口朵)縣(Inddine)染料、葉 綠素染料、花青素染料、紫質染料或天然植物萃取染劑等祕。電解質% 之選擇可以祕、·^、概^、帛三了基魏(TBp)、離子液體(ι〇η Liquid)、乙醇(Ethanol)、戊晴(VN)、乙晴(Acet〇nitrUe,can)或甲基 晴(Methyi Cyanide)、f氧基丙晴(MpN)之難電解液,傾也可以是 膠態電解液或者固態電解液。 此外,雙面導電基板32與透明導綠板%、从上形成有電極結構%、 58’ ’以進行電性連接。 請參閱第3圖’如圖所示本創作之具太陽能電池之節能智慧型板如與 窗戶之框架6G組合’以裝設於建築物上構成綠色建築。 在此實施财,色變層變色所需的電力可由設置於窗戶上的染料光敏 化太陽能電池來提供。 综上所述,本創作提出-種_的具太陽能電池之雜智慧型板 能兼具利用太陽光發電、省電、 隔熱性以及色彩選擇性等功效。 ,其 調節至内的日照強度、調控光源穿透性、 6 修正 M368189 唯以上所述者,僅為本創作之較佳實施例而已,並非用來U補充 實施之範圍。故即凡依本創作申請範圍所述之特徵及精神所為之均等變化 或修飾,均應包括於本創作之申請專利範圍内。 【圖式簡單說明】 第1圖係習知染料光敏化太陽能電池之結構示意圖。 .第2圖係本創作之具太陽能電池之節能智慧型板的示意圖。 .-第3圖係本創作之具太陽能電池之節能智慧型板與窗戶之框架組合成節能 • 智慧型窗戶的具體實施例示意圖。 【主要元件符號說明】 10 有機染料光敏化太陽能電池 12 基板 14 電解質 16 基板 18 透明導電膜 Φ 20半導體光敏化層 22 抗反射層 30節能智慧型板 :32雙面導電基板 34 上透明導電基板 34’下透明導電基板 36 抗反射層 37截止濾光層M368189 [Embodiment] Please refer to the 2nd BI's schematic diagram of a specific embodiment of the energy-saving smart board with solar cells. As shown in the figure, the energy-saving smart board 3 〇 of the present invention includes a double-sided conductive substrate 32; an upper and a lower transparent conductive substrate 乂, %, which sandwiches the double-sided conductive substrate 32 in the middle 'The upper and lower transparent conductive substrates 34, % are provided with an anti-reflection layer .36 and a cut-off filter layer 37 on the outer side; - a dye photoelectric conversion portion disposed between the upper transparent conductive substrate % and the double-sided conductive substrate 32 a second catalyst electrode layer 4〇 disposed on a side of the double-sided conductive substrate 32 facing the downward transparent conductive substrate 34'; and a color change layer 42 disposed on the lower transparent conductive substrate 34 Between the first catalyst electrode layers 40, wherein the color change layer 42 is selected from an electrochromic layer, a thermochromic layer or a photochromic layer. The dye photoelectric conversion portion 38 includes a semiconductor photosensitive layer 44 disposed on the side of the upper transparent conductive substrate 34 facing the double-sided conductive substrate 32. The semiconductor photosensitive layer 44 includes a plurality of surfaces having a plurality of porous properties. The semiconductor nanoparticle 46 and the plurality of dye molecules 48 chemically bonded to the semiconductor nanoparticles may have different absorption light bands; a first contact dielectric electrode layer 50' is disposed on the double-sided conductive substrate 32 On the side of the upward transparent conductive substrate 34; and an electrolyte 52 sandwiched between the semiconductor photosensitive layer 44 and the first catalyst electrode layer 50. The upper and lower transparent conductive substrates 34, 34 are each made of a transparent substrate. 54, 54, and a conductive film layer 56, 56' on the inner surface of the transparent substrate 54, 54', wherein the thickness of the transparent substrate 54, 54' is 10 micrometers (μηι) to 10 centimeters (mm) and Material is Polyethylene Terephthalate (PET), Polyethylene Naphthalate (PEN), Polycarbonate (PC), Polypropylene (Polyp) Rpylene, PP), Polyimide (PI), Tri-acetyl M368189 cellulose'TAC or Cycloolefin Polymer (COP) $ transparent glass or quartz. The conductive thin film layers 56, 56' have a thickness of 10 nanometers (nm) to 1 micrometer (μm), and are made of indium tin oxide (IT) and fluorine tin oxide (Fiu〇rine). Tin Oxide, FTO) 'Oxidation words - gallium trioxide (Zn〇_Ga2〇3), zinc oxide alumina (ΖηΟ-Α12〇3) or tin oxide-yttrium oxide (Sn〇2_Sb2〇3), or electricity Conductive polymer, such as p〇iy (sj-ethyienedioxyfhiophene, PEDT). The previously described Ruthenium metal complex dye or organic series, such as coumarin dye or (5) 丨) (Kou Duo) County (Inddine) dye, chlorophyll dye, anthocyanin dye , purple dye or natural plant extract dyes and other secrets. The choice of electrolyte % can be secret, ^^, ^^, 帛 了 了 TB (TBp), ionic liquid (ι〇η Liquid), ethanol (Ethanol), pentyl (VN), acetyl (Acet〇nitrUe, can ) or a difficult electrolyte of Methyi Cyanide or f-oxypropylidene (MpN), which may also be a colloidal electrolyte or a solid electrolyte. Further, the double-sided conductive substrate 32 and the transparent green plate % are formed with the electrode structures %, 58'' from above for electrical connection. Please refer to Figure 3. As shown in the figure, the energy-saving smart board with solar battery is combined with the frame 6G of the window to be installed on the building to form a green building. In this case, the power required for discoloration of the color change layer can be provided by a dye-sensitized solar cell disposed on the window. In summary, this creation proposes a kind of hybrid solar panel with solar cells that can combine solar power generation, power saving, heat insulation and color selectivity. The adjustment of the intensity of the sunlight to the inside, the regulation of the light source penetration, 6 correction M368189 Only the above description is only the preferred embodiment of the present invention, and is not used to supplement the scope of implementation. Therefore, any changes or modifications to the characteristics and spirits described in the scope of this application shall be included in the scope of the patent application for this creation. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the structure of a conventional dye-sensitized solar cell. Figure 2 is a schematic diagram of the energy-saving smart board with solar cells. .- Figure 3 is a combination of the energy-saving smart board with solar panels and the frame of the window to save energy. • A schematic diagram of a specific embodiment of a smart window. [Main component symbol description] 10 Organic dye photosensitized solar cell 12 Substrate 14 Electrolyte 16 Substrate 18 Transparent conductive film Φ 20 Semiconductor photosensitizing layer 22 Anti-reflective layer 30 Energy-saving smart board: 32 double-sided conductive substrate 34 Upper transparent conductive substrate 34 'Lower transparent conductive substrate 36 anti-reflective layer 37 cut-off filter layer

M368189 38 染料光電轉換部 40 第二觸媒電極層 42 色變層 44 半導體光敏化層 46 半導體奈米粒子 48 染料分子 50 第一觸媒電極層 52 電解質 54、54’ 透明基板 56、56’導電薄膜層 58、58’ 電極結構 60 框架M368189 38 Dye photoelectric conversion portion 40 Second catalyst electrode layer 42 Color change layer 44 Semiconductor photosensitization layer 46 Semiconductor nanoparticle 48 Dye molecule 50 First catalyst electrode layer 52 Electrolyte 54, 54' Transparent substrate 56, 56' conductive Film layer 58, 58' electrode structure 60 frame

Claims (1)

M368189 六、申請專利範圍: 1. 一種具太陽能電池之節能智慧型板,其包含有: 一雙面導電基板; -上、下透明導電基板,其係㈣雙面導電基板絲於中間; -染料光電轉換部’其做於該上透明導電基板與該雙面導電基板間; -第二觸媒電極層’其係設於該雙面導電基板躺該下透明導電基板之 側面上;以及 一色變層,其係位於該下透明導電基板與該第二觸媒電極層間。 * 2. 如申請專利範圍第1項所述之具太陽能電池之節能智慧型板,其中該 上、下透明導電基板之外側各設置有一抗反射層與一截止濾光層。 3. 如申請專利範圍第1項所述之具太陽能電池之節能智慧型板,其中該 上、下透明導電基板更包含有: 一透明基板;以及 一位於該透明基板外側上的導電薄膜層。 春 4.如申請專利範圍第3項所述之具太陽能電池之節能智慧型板,其中該透 明基板之材質為聚對笨二甲酸乙二醇酯(Polyethylene Terephthalate, * PET)、聚萘二甲酸乙二醇醋(p〇iyethyiene Naphthalate,PEN )、聚碳酸 • 醋(Polycarbonate,PC)、聚丙烯(Polypropylene, PP)、聚亞酿胺(Polyimide, PI )、三醋酸纖維素(Tri-acetyl cellulose,TAC )或聚環烯烴高分子 (Cycloolefm Polymer,COP )。 5.如申請專利範圍第3項所述之具太陽能電池之節能智慧型板,其中該透 明基板之厚度為10微米(μπι)〜10釐米(mm)。 9M368189 VI. Patent application scope: 1. An energy-saving smart board with solar cells, comprising: a double-sided conductive substrate; - upper and lower transparent conductive substrates, wherein (4) double-sided conductive substrate wires are in the middle; - dye a photoelectric conversion portion is disposed between the upper transparent conductive substrate and the double-sided conductive substrate; a second catalyst electrode layer is disposed on a side of the double-sided conductive substrate lying on the lower transparent conductive substrate; and a color change a layer between the lower transparent conductive substrate and the second catalyst electrode layer. 2. The energy-saving smart board with a solar cell according to claim 1, wherein an anti-reflection layer and a cut-off filter layer are disposed on the outer sides of the upper and lower transparent conductive substrates. 3. The energy-saving smart board with solar cell according to claim 1, wherein the upper and lower transparent conductive substrates further comprise: a transparent substrate; and a conductive film layer on the outer side of the transparent substrate. Spring 4. An energy-saving smart board with a solar cell according to claim 3, wherein the transparent substrate is made of polyethylene terephthalate (PET) or polynaphthalene dicarboxylate. Ethylene glycol vinegar (P〇iyethyiene Naphthalate, PEN), Polycarbonate (Polycarbonate, PC), Polypropylene (PP), Polyimide (PI), Triacetyl acetate , TAC) or Cycloolefm Polymer (COP). 5. The energy-saving smart board with a solar cell according to claim 3, wherein the transparent substrate has a thickness of 10 micrometers (μm) to 10 centimeters (mm). 9 M368189 背年7月 6. 如申请專利範圍第3項所述之具太陽能電池之節能智慧型板,其中該透 明基板為透明玻璃且厚度為0*1〜10爱米(mm)。 7. 如申請專利範圍第3項所述之具太陽能電池之節能智慧型板,其中該導 電邊膜層之材質為姻錫氧化物(Indium Tin Oxide,ΠΌ)、氟錫氧化物 (FluorineTin Oxide, FTO)、氧化鋅-三氧化二鎵(Zn〇_Ga2〇3)、氧化鋅 -氧化鋁(ΖηΟ-Α12〇3)或氧化錫-氧化銻(Sn〇rSb2〇3)、電傳導高分子聚 合物’如聚 3,4 乙稀基二氧》^吩(p〇iy (3,4-ethylenedioxythiophene), PEDT)。 Λ 8. 如申請專利範圍第3項所述之具太陽能電池之節能智慧型板,其中該導 電薄膜層之厚度為1奈米(nm)至1〇〇微米(哗)。 9. 如申請專利範圍第1項所述之具太陽能電池之節能智慧型板,真中該色 變層是電致色變層、熱致色變層或光致色變層。 10. 如申請專職圍第i賴述之具太陽能電池之節能智慧魏,其係與窗 戶之框架組合,以裝設於建築物上。 11. 如申請專利範@第i項所述之具太陽能電池之節能智慧型板其中該染 料光電轉換部包含有: 半導體光敏化層’其係塗設於該上透明導電基板朝向該中間雙面導電 基板之側面上; 一第—_電極層,其係餘該雙面導電基板朝向該上透明導電基板之 側面上;以及 一電解質,其絲持於辭導體綠化層與該第—娜電極層間。 12. 如申请專利範圍第u項所述之具太陽能電池之節能智慧型板其中該半 M368189 ㈣外補充 導體光敏鋪包含魏録面具核個導體奈絲一 個與半導體奈米粒子形成化學鍵結的染料分子。 如申明專利細第12項所述之具太陽能電池之節能智慧魏,其中該染 料分子是纟了(Ruthenium)金屬錯合物㈣或者有機㈣,例如香豆素染 料或(口引)(口朵)引朵(Ind〇une)染料、葉綠素染料、花青素染料、 紫質染料或天然植物萃取染劑等染料。 M.如申睛專利翻第u項所述之具太陽能電池之節能智慧型板,其中該電 ® 解質可以為液態電解液,如碘、碘化鉀、碘化鋰、第三丁基砒啶、離子 液體、乙醇、乙晴(Acetonitrile ’ CAN)或曱基晴(Methyl Cyanide)、 甲氧基丙晴,也可以成為膠態電解液、固態電解液。M368189 July of the following year 6. The energy-saving smart board with solar cell as described in claim 3, wherein the transparent substrate is transparent glass and has a thickness of 0*1 to 10 meters (mm). 7. The energy-saving smart board with solar cell according to claim 3, wherein the conductive edge layer is made of Indium Tin Oxide (Fluorine Tin Oxide) or Fluorine Tin Oxide (Fluorine Tin Oxide, FTO), zinc oxide-digallium trioxide (Zn〇_Ga2〇3), zinc oxide-alumina (ΖηΟ-Α12〇3) or tin oxide-yttrium oxide (Sn〇rSb2〇3), electrically conductive polymer polymerization The object 'such as poly 3,4 ethylene dioxythiophene' (P〇iy (3,4-ethylenedioxythiophene), PEDT). Λ 8. The energy-saving smart board with solar cell according to claim 3, wherein the conductive film layer has a thickness of 1 nanometer (nm) to 1 〇〇 micrometer (哗). 9. The energy-saving smart board with solar cell according to claim 1, wherein the color change layer is an electrochromic layer, a thermochromic layer or a photochromic layer. 10. If you apply for the energy-saving wisdom of solar cells in the full-scale, the system is combined with the window frame to be installed on the building. 11. The energy-saving smart board with a solar cell according to the application of the invention, wherein the dye photoelectric conversion portion comprises: a semiconductor photosensitive layer disposed on the upper transparent conductive substrate facing the middle double-sided a side surface of the conductive substrate; a first electrode layer on the side of the double-sided conductive substrate facing the upper transparent conductive substrate; and an electrolyte held between the green layer of the conductor and the layer of the first electrode . 12. The energy-saving smart board with solar cell as described in the scope of claim 5, wherein the half M368189 (four) external supplementary conductor photosensitive shop contains Weilu mask nuclear conductor nanowire a dye that forms a chemical bond with the semiconductor nanoparticle molecule. For example, the energy-saving wisdom of the solar cell described in Item 12 of the patent, wherein the dye molecule is Ruthenium metal complex (4) or organic (4), such as coumarin dye or (mouth) (mouth) A dye such as Ind〇une dye, chlorophyll dye, anthocyanin dye, purple dye or natural plant extract dye. M. For example, the energy-saving smart board with solar battery according to the application of the patent, wherein the electric solution can be a liquid electrolyte such as iodine, potassium iodide, lithium iodide, t-butyl acridine, Ionic liquid, ethanol, Acetonitrile 'CAN or Methyl Cyanide, methoxypropyl chloride can also be a colloidal electrolyte or a solid electrolyte.
TW098211817U 2009-06-30 2009-06-30 Power saving intelligent board having solar cells TWM368189U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098211817U TWM368189U (en) 2009-06-30 2009-06-30 Power saving intelligent board having solar cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098211817U TWM368189U (en) 2009-06-30 2009-06-30 Power saving intelligent board having solar cells

Publications (1)

Publication Number Publication Date
TWM368189U true TWM368189U (en) 2009-11-01

Family

ID=44389921

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098211817U TWM368189U (en) 2009-06-30 2009-06-30 Power saving intelligent board having solar cells

Country Status (1)

Country Link
TW (1) TWM368189U (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI420135B (en) * 2010-01-11 2013-12-21 Univ Nat Taiwan Ocean Method for manufacturing anti-reflection layer
TWI467303B (en) * 2011-12-08 2015-01-01 Innolux Corpration Display device and method of manufacturing the same
US11320713B2 (en) 2017-02-16 2022-05-03 View, Inc. Solar power dynamic glass for heating and cooling buildings
US11384596B2 (en) 2015-09-18 2022-07-12 View, Inc. Trunk line window controllers
TWI781670B (en) * 2014-05-09 2022-10-21 美商唯景公司 Control methods and controllers for tintable windows
US11520207B2 (en) 2011-03-16 2022-12-06 View, Inc. Controlling transitions in optically switchable devices
US11543723B2 (en) 2014-06-30 2023-01-03 View, Inc. Power management for electrochromic window networks
US11566468B2 (en) 2015-09-18 2023-01-31 View, Inc. Power distribution and communications systems for electrochromic devices
US11631493B2 (en) 2020-05-27 2023-04-18 View Operating Corporation Systems and methods for managing building wellness
US11635666B2 (en) 2012-03-13 2023-04-25 View, Inc Methods of controlling multi-zone tintable windows
US11674843B2 (en) 2015-10-06 2023-06-13 View, Inc. Infrared cloud detector systems and methods
US11719990B2 (en) 2013-02-21 2023-08-08 View, Inc. Control method for tintable windows
US11733579B2 (en) 2012-08-23 2023-08-22 View, Inc. Photonic-powered EC devices
US11750594B2 (en) 2020-03-26 2023-09-05 View, Inc. Access and messaging in a multi client network
US11754902B2 (en) 2009-12-22 2023-09-12 View, Inc. Self-contained EC IGU
US11892737B2 (en) 2014-06-30 2024-02-06 View, Inc. Control methods and systems for networks of optically switchable windows during reduced power availability
US11899331B2 (en) 2013-02-21 2024-02-13 View, Inc. Control method for tintable windows
US11940705B2 (en) 2013-02-21 2024-03-26 View, Inc. Control method for tintable windows
US11950340B2 (en) 2012-03-13 2024-04-02 View, Inc. Adjusting interior lighting based on dynamic glass tinting
US11960190B2 (en) 2013-02-21 2024-04-16 View, Inc. Control methods and systems using external 3D modeling and schedule-based computing
US11966142B2 (en) 2013-02-21 2024-04-23 View, Inc. Control methods and systems using outside temperature as a driver for changing window tint states
US12055834B2 (en) 2015-09-18 2024-08-06 View, Inc. Power distribution networks for electrochromic devices
US12078906B2 (en) 2011-03-16 2024-09-03 View, Inc. Onboard controller for multistate windows

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11754902B2 (en) 2009-12-22 2023-09-12 View, Inc. Self-contained EC IGU
TWI420135B (en) * 2010-01-11 2013-12-21 Univ Nat Taiwan Ocean Method for manufacturing anti-reflection layer
US12078906B2 (en) 2011-03-16 2024-09-03 View, Inc. Onboard controller for multistate windows
US11520207B2 (en) 2011-03-16 2022-12-06 View, Inc. Controlling transitions in optically switchable devices
TWI467303B (en) * 2011-12-08 2015-01-01 Innolux Corpration Display device and method of manufacturing the same
US11635666B2 (en) 2012-03-13 2023-04-25 View, Inc Methods of controlling multi-zone tintable windows
US11950340B2 (en) 2012-03-13 2024-04-02 View, Inc. Adjusting interior lighting based on dynamic glass tinting
US11733579B2 (en) 2012-08-23 2023-08-22 View, Inc. Photonic-powered EC devices
US11940705B2 (en) 2013-02-21 2024-03-26 View, Inc. Control method for tintable windows
US11719990B2 (en) 2013-02-21 2023-08-08 View, Inc. Control method for tintable windows
US11966142B2 (en) 2013-02-21 2024-04-23 View, Inc. Control methods and systems using outside temperature as a driver for changing window tint states
US11960190B2 (en) 2013-02-21 2024-04-16 View, Inc. Control methods and systems using external 3D modeling and schedule-based computing
US11899331B2 (en) 2013-02-21 2024-02-13 View, Inc. Control method for tintable windows
TWI781670B (en) * 2014-05-09 2022-10-21 美商唯景公司 Control methods and controllers for tintable windows
US11829046B2 (en) 2014-06-30 2023-11-28 View, Inc. Power management for electrochromic window networks
US11543723B2 (en) 2014-06-30 2023-01-03 View, Inc. Power management for electrochromic window networks
US11892737B2 (en) 2014-06-30 2024-02-06 View, Inc. Control methods and systems for networks of optically switchable windows during reduced power availability
US11384596B2 (en) 2015-09-18 2022-07-12 View, Inc. Trunk line window controllers
US11566468B2 (en) 2015-09-18 2023-01-31 View, Inc. Power distribution and communications systems for electrochromic devices
US12055834B2 (en) 2015-09-18 2024-08-06 View, Inc. Power distribution networks for electrochromic devices
US11674843B2 (en) 2015-10-06 2023-06-13 View, Inc. Infrared cloud detector systems and methods
TWI788326B (en) * 2017-02-16 2023-01-01 美商唯景公司 Solar power dynamic glass for heating and cooling buildings
US11947234B2 (en) 2017-02-16 2024-04-02 View, Inc. Solar power dynamic glass for heating and cooling buildings
US11656521B2 (en) 2017-02-16 2023-05-23 View, Inc. Solar power dynamic glass for heating and cooling buildings
US11320713B2 (en) 2017-02-16 2022-05-03 View, Inc. Solar power dynamic glass for heating and cooling buildings
US11882111B2 (en) 2020-03-26 2024-01-23 View, Inc. Access and messaging in a multi client network
US11750594B2 (en) 2020-03-26 2023-09-05 View, Inc. Access and messaging in a multi client network
US11631493B2 (en) 2020-05-27 2023-04-18 View Operating Corporation Systems and methods for managing building wellness

Similar Documents

Publication Publication Date Title
TWM368189U (en) Power saving intelligent board having solar cells
Shi et al. Semitransparent perovskite solar cells: from materials and devices to applications
Wang et al. Bifacial, color-tunable semitransparent perovskite solar cells for building-integrated photovoltaics
Cao et al. Direct contact of selective charge extraction layers enables high-efficiency molecular photovoltaics
Zhang et al. High‐performance, transparent, dye‐sensitized solar cells for see‐through photovoltaic windows
Dai et al. Dye-sensitized solar cells, from cell to module
Ha et al. Upconversion-assisted dual-band luminescent solar concentrator coupled for high power conversion efficiency photovoltaic systems
Giuliano et al. Semitransparent perovskite solar cells for building integration and tandem photovoltaics: design strategies and challenges
Leftheriotis et al. Development of photoelectrochromic devices for dynamic solar control in buildings
JP2007335222A (en) Photoelectrode, dye-sensitized solar cell using it, and its manufacturing method
Pugliese et al. Highly efficient all-solid-state WO3-perovskite photovoltachromic cells for single-glass smart windows
Zhou et al. Semi-transparent Cl-doped perovskite solar cells with graphene electrodes for tandem application
Wang et al. Increases in solar conversion efficiencies of the ZrO 2 nanofiber-doped TiO 2 photoelectrode for dye-sensitized solar cells
CN101462768A (en) Titania mesoporous ball, preparation and use in solar cell
Lee et al. Enhanced light harvesting in dye-sensitized solar cells with highly reflective TCO-and Pt-less counter electrodes
Ren et al. A comparative study on indoline dye-and ruthenium complex-sensitized hierarchically structured ZnO solar cells
Seo et al. The fabrication of efficiency-improved W-series interconnect type of module by balancing the performance of single cells
CN105551834B (en) Low-temperature and low-pressure preparation method of flexible dye-sensitized solar cell
Hosseinnezhad et al. A review on flexible dye-sensitized solar cells as new sustainable energy resources
JP2002324590A (en) Nano-particle oxide solar cell, manufacturing method therefor, solar cell module using it, and transparent cell window
CN101777574B (en) Laminated composite solar battery
CN101509306B (en) Photoelectric integration construction material based on dye sensitization solar energy cell
CN104241529A (en) Laminated organic solar battery and manufacturing method thereof
CN102486970A (en) Dye-sensitized solar cell and preparation method thereof
Mourtzikou et al. Semi-transparent dye-sensitized solar panels for energy autonomous greenhouses

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees