TWI415666B - 自溶液分離出揮發性成分的系統及其製程 - Google Patents

自溶液分離出揮發性成分的系統及其製程 Download PDF

Info

Publication number
TWI415666B
TWI415666B TW098140881A TW98140881A TWI415666B TW I415666 B TWI415666 B TW I415666B TW 098140881 A TW098140881 A TW 098140881A TW 98140881 A TW98140881 A TW 98140881A TW I415666 B TWI415666 B TW I415666B
Authority
TW
Taiwan
Prior art keywords
heat
hollow fiber
separation system
heat source
feed solution
Prior art date
Application number
TW098140881A
Other languages
English (en)
Other versions
TW201023960A (en
Inventor
Tong Zhou
Lai Yee Loke
Ooi Lin Lum
Original Assignee
Hyflux Membrane Mfg S Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyflux Membrane Mfg S Pte Ltd filed Critical Hyflux Membrane Mfg S Pte Ltd
Publication of TW201023960A publication Critical patent/TW201023960A/zh
Application granted granted Critical
Publication of TWI415666B publication Critical patent/TWI415666B/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/364Membrane distillation
    • B01D61/3641Membrane distillation comprising multiple membrane distillation steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/10Temperature control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/22Cooling or heating elements
    • B01D2313/221Heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

自溶液分離出揮發性成分的系統及其製程
本發明是有關於一種自進料溶液分離出揮發性成分的系統、方法與裝置。
薄膜蒸餾為一以薄膜為基礎的製程,其中水蒸氣可藉由溫度、真空度及/或溶質濃度的差異所產生的水蒸氣壓力驅動力,而經由疏水性薄膜的孔洞穿過薄膜。薄膜蒸餾系統中的薄膜的主要特徵為其合乎多孔性的且對處理液是耐潤濕的,以及不會實質改變處理液中不同成分的氣液平衡。在理想的情況下,毛細凝結作用不應該發生在薄膜的孔洞內。對於系統內的每一成分,驅動其通過薄膜的驅動力是存在於薄膜兩側的分壓梯度。
與傳統蒸發製程相對照,薄膜蒸餾製程具有在較低的操作溫度下仍能夠有效率的工作的優點,因此相較於傳統的蒸餾製程亦可節省消耗的能源。使用低等級的能源,像是餘熱與太陽能來驅動薄膜蒸餾系統,使其具有高效節能與環保的功效。然而,使用低等級能源的一大問題是其提供的熱能可能隨時間而變化。舉例來說,一低等級能源如太陽能,其提供的熱能會隨著時間與天氣情況的不同而變化。此外,一低等級能源如廢棄餘熱,舉例來說,一化學生產製程會隨製煉廠在任何特定時間的製程條件而改變。因此,由於低等級能源缺乏能量輸出的穩定性而較難適用於薄膜蒸餾製程。
具有多階單元配置結構的複合薄膜蒸餾系統的目標,是利用冷凝熱來補充產生揮發性成分的蒸氣相所需的熱能,而其面臨一定的侷限性。使用各階 段有限的加熱量(heat duty)來提供下一階段的溫度梯度,在達到一合理的蒸餾液產率前,可能導致大量的最佳階段需求。
各薄膜階段的結構亦限制可用表面與阻礙熱交換的靈活性。由於各階段的薄膜模組與熱交換器是同一個單元,所以加熱量的控制亦被限制。替代的熱交換器結構可將熱流動最優化,但在這種情況下是不容許的。傳統的薄膜蒸餾系統嚴重面臨相同的限制;薄膜與熱交換器的功能皆無法輕易的個別化,導致僅能提供一固定的熱交換表面積。
目前的需求為提供一種自溶液分離出揮發性成分的系統、裝置或製程,其可克服或至少改善前述的缺點。
本發明的第一目的就是在提供一種自進料溶液分離出揮發性成分的分離系統,此系統包括:複數個中空纖維膜,具選擇滲透性且允許揮發相內的揮發性成分通過,而實質上防止進料溶液通過;一熱源,具有加熱中空纖維膜一側上的進料溶液的能力,以產生通過上述中空纖維膜的揮發相;以及一熱交換裝置,可冷凝揮發性成分,且配置以獲得冷凝熱,此熱交換裝置與熱源熱耦合,因而藉由冷凝熱驅動或補充熱源。
有利的是,使用中空纖維膜提供一相較於平板膜更具有較高表面積的緊密配置結構,用以分離進料溶液中的揮發性成分。有利的是,熱交換裝置是運用分離製程中的熱源所提供的冷凝熱來驅動或補充能量,因而能夠節約投入整體系統的能量。有利的是,熱交換裝置是減少用以冷凝揮發性成分的冷卻劑的消耗量。因此,用以回收冷凝熱的中空纖維膜與熱交換器的結 合,提供一有效率的熱能系統以分離溶液中的揮發性成分。
在一實施例中,提供一除鹽系統,其包括:複數個中空纖維膜,具選擇滲透性且允許水蒸氣通過,而實質上防止食鹽水通過;一熱源,具有加熱中空纖維膜一側上的食鹽水的能力,以產生通過中空纖維膜的水蒸氣相;以及一熱交換裝置,用以冷凝水蒸氣相,且配置以獲得冷凝熱,此熱交換裝置與熱源熱耦合,因而藉由冷凝熱驅動或補充熱源。
本發明的第二目的在於提供一種自進料溶液分離出揮發性成分的分離裝置,此裝置包括:複數個中空纖維膜,具選擇滲透性,且允許揮發相內的揮發性成分通過,而實質上防止進料溶液通過;複數個中空纖維模組,每一模組具有一密閉的腔室,以及用以將進料溶液傳送至上述中空纖維膜一側的一進水口(inlet),且此密閉的腔室具有一子集上述的複數個中空纖維膜延伸通過其內;複數個熱交換器,其與揮發性成分的流體相連通,以獲得揮發性成分冷凝為液體時的冷凝熱,此些熱交換裝置具有與熱源熱耦合的能力,因而藉由上述冷凝熱驅動或補充熱源。
本發明的第三目的在於提供一種自進料溶液分離出揮發性成分的製程,此製程包括以下步驟:以一熱源加熱進料溶液; 當複數個中空纖維膜的兩側間存在一壓力差,使進料溶液通過複數個中空纖維膜的一側,而使揮發相內的揮發性成分形成於中空纖維膜的一側上,且揮發性成分是位於進料溶液的對側;冷凝揮發相內的揮發性成分,因而獲得冷凝熱;以及使用此冷凝熱,因而驅動或補充熱至上述熱源。
100‧‧‧節能薄膜蒸餾製程
10A、10B、10C、10n‧‧‧儲存槽
11A、11B、11C、11n‧‧‧進料流
12A、12B、12C、12n‧‧‧熱交換器
13A、13B、13C、13n‧‧‧熱海水流
14A、14B、14C、14n‧‧‧薄膜模組
15A、15B、15C、15n‧‧‧產品流
16A‧‧‧熱流體流
17A、17B、17C、17n‧‧‧蒸氣流
18A‧‧‧冷卻流體流
28A、28B、28C‧‧‧水液體流
100′‧‧‧節能薄膜蒸餾製程
10A′、10B′、10C′、10n′‧‧‧儲存槽
11A′、11B′、11C′、11n′‧‧‧進料流
12A′、12B′、12C′、12n′‧‧‧熱交換器
13A′、13B′、13C′、13n′‧‧‧熱海水流
14A′、14B′、14C′、14n′‧‧‧薄膜模組
15A′、15B′、15C′、15n′‧‧‧產品流
16A′、16B′、16C′、16n′‧‧‧熱流體流
17A′、17B′、17C′、17n′‧‧‧蒸氣流
18A′、18B′、18C′、18n′‧‧‧冷卻流體流
20A′、20B′、20C′、20n′‧‧‧導管
28A′、28B′、28C′‧‧‧水液體流
10A′′‧‧‧儲存槽
11A′′‧‧‧進料流
12A′′、12B′′‧‧‧熱交換器
13A′′‧‧‧熱海水流
14A′′-1、14A′′-2、14A′′-n‧‧‧薄膜模組
15A′′‧‧‧產品流
16A′′‧‧‧熱流體流
17A′′-1、17A′′-2、17A′′-n‧‧‧蒸氣流
18A′′‧‧‧冷卻流體流
24A′′、24A′′-1、24A′′-2、24A′′-(n-1)、24A′′-n‧‧‧導管
26A′′-1、26A′′-2、26A′′-3‧‧‧繞道管
28A′′‧‧‧水液體流
400‧‧‧薄膜蒸餾製程
10A*、10B*、10C*‧‧‧儲存槽
11A*、11B*、11C*‧‧‧進料流
12A*、12B*、12C*‧‧‧熱交換器
13A*、13B*、13C*‧‧‧熱海水流
14A*、14B*、14C*‧‧‧薄膜模組
15A*、15B*、15C*‧‧‧產品流
16A*、16B*、16C*‧‧‧熱流體流
17A*、17B*、17C*‧‧‧蒸氣流
18A*、18B*、18C*‧‧‧冷卻流體流
28C*‧‧‧水液體流
30A、30B‧‧‧可程式邏輯控制器
32A、32B‧‧‧繞道流
38‧‧‧液流
500‧‧‧演算法
600‧‧‧薄膜蒸餾製程
V17A、V32A、V16B、V17B、V32B、V16C‧‧‧閥門
T17A、T17B‧‧‧蒸氣流的溫度
10A**、10B**‧‧‧儲存槽
11A**‧‧‧進料流
12A*、12B*-1、12B*-2、12B*-N‧‧‧熱交換器
13A**、13B**‧‧‧熱海水流
14A**、14B**‧‧‧薄膜模組
15A**、15B**‧‧‧產品流
16A**‧‧‧熱流體流
17A**、17B**‧‧‧蒸氣流
18A**‧‧‧冷卻流體流
40B‧‧‧可程式邏輯控制器
38-1、38-2、38-(N-1)‧‧‧液流
50-1、50-2、50-(N-1)‧‧‧繞道流
T38-1T38-2、T38-(N-1)‧‧‧測量到的溫度
V50-1、V50-2、V50-(N-1)‧‧‧閥門
700‧‧‧演算法
附圖是說明一揭露實施例,且用於解釋此揭露實施例的原理。然而,需了解此些圖式僅設計作為說明目的,並非用以定義限制本發明。
第1圖係為一揭露實施例的薄膜蒸餾製程的示意圖;第2圖係為另一揭露實施例的薄膜蒸餾製程的示意圖;第3圖係為第2圖所示的薄膜蒸餾製程的某一階段的一實施例;第4圖係為用以控制第2圖所示的薄膜蒸餾製程的一控制圖;第5圖係為運作第4圖所示的可程式邏輯控制器(PLC)的一演算圖;第6圖係為用以控制第1圖所示的薄膜蒸餾製程的一控制圖;以及第7圖為運作第6圖所示的可程式邏輯控制器(PLC)的一演算圖。
定義:
以下所使用的字詞與詞語所表示意義應為:此說明書內容中提到的”熱負載(thermal duty)”一詞,指的是在某特定期間下經由一”熱源”或”散熱裝置”(亦即,”散熱裝置”為一利用熱的裝置)所散發出的熱能量。舉例來說,一熱交換器的熱負載,指的是在某特定期間下經熱交換器自一流體交換至另一流體所需要的熱能量。
此說明書提到的”可變熱負載”一詞,指的是此熱負載會隨時間而變化。
此說明書提到的”中空纖維膜”一詞是意指一薄膜,其具有一由密閉的外壁所圍繞的中空內核。雖然一些中空纖維膜可能實質上為圓形管,但此詞不應被解釋為代表所有中空纖維膜皆為圓形管,而可能為任何代表性的形狀。在此揭露內容中,中空纖維膜的外壁至少可供某些化學物種部份滲透。因此,可物理滲透的中空纖維(例如因中空纖維外壁內存在的孔洞所導致),及/或可化學滲透的中空纖維(例如因化學物種的質量輸送而通過中空纖維外壁)皆包含在所定義的意義內。
”實質上”一詞不排除”完全地”,例如”實質上沒有”Y的組成物可能為完全沒有Y。也就是說,”實質上”一詞要解譯為”完全地”或”部分地”。如有必要,本發明的定義可省略”實質上”一字。
除非另外說明,此說明書提到的”包含(comprising)”與”包含(comprise)”及其文法上的變化形,是為了代表”開放式的(open)”或”範圍廣泛的(inclusive)”語言,使其不但包括所引述的元件,更允許包含有額外的與未引述的元件。
於上下文所提到的配方組成濃度中所使用的”大約”一詞,一般意指設定值的正/負五個百分比,一般更可為設定值的正/負四個百分比,一般更可為設定值的正/負三個百分比,一般更可為設定值的正/負兩個百分比,一般甚至可為設定值的正/負一個百分比,以及一般甚至可為設定值的零點五個百分比。
在整個揭露內容中,某些實施例可能以一範圍格式揭露。此應被了解此範圍格式的描述只是為了方便與簡潔,不應被解釋為不可改變的限制所揭露範圍的範疇。因此,一範圍的描述應被認為是明確地揭露所有可能的子範圍及在此範圍內的個別數值。舉例來說,1至6的範圍敘述應被認為已經明確揭露例如1至3、1至4、1至5、2至4、2至6、3至6等子範圍,以及其範圍 內的個別數值,例如1、2、3、4、5和6。此適用於廣泛的範圍。
最佳實施例的揭露:
此處將揭露薄膜模組的典型、非限制的實施例。
在一個實施例中,揭露一種自進料溶液分離出揮發性成分的分離系統,像是自食鹽溶液(例如海水)中分離出水蒸氣。此分離系統包含具選擇滲透性的複數個中空纖維膜,其可允許揮發相內的揮發性成分通過,而實質上防止進料溶液通過。此系統亦包含可加熱中空纖維膜一側上的進料溶液的熱源,以產生可通過中空纖維膜的揮發相。提供的熱交換裝置可冷凝揮發性成分,且其配置可用以獲得冷凝熱。其中,熱交換裝置與熱源熱耦合,因而藉由冷凝熱驅動或補充熱源。
中空纖維膜可能為疏水性高分子。有利的是,當水經由除鹽系統自食鹽水中移出,疏水性高分子可不被食鹽水溶液潤濕,但可允許水蒸氣傳送通過此高分子,因此增加自食鹽水中分離出水蒸氣的效能。典型的疏水性高分子包括聚烷基丙烯酸酯、聚二烯、聚烯烴、聚內酯、聚矽氧烷、聚環氧乙烷、聚吡啶、聚碳酸酯、聚醋酸乙烯酯、聚碸、聚丙烯(PP)、聚四氟乙烯(PTFE)、聚乙烯(PE)、聚偏二氟乙烯(PVDF)、聚甲基戊烯(PMP)、聚二甲基矽氧烷、聚丁二烯、聚苯乙烯、聚甲基丙烯酸甲酯、全氟聚合物、聚二烷基噁唑啉或聚苯基噁唑啉、其衍生物、其鹽類及其組合。
有利的是,中空纖維膜的種類可依據自進料溶液中分離出的揮發性成分來選擇。舉例來說,在另一實施例中,有揭露一自廢油分離出揮發性成分的分離系統。此分離系統包括複數個疏水性的管狀不銹鋼薄膜,具選擇滲透性,且允許揮發相內的揮發性成分通過,而實質上防止進料溶液通過。此不銹鋼薄膜因具親水性特質而可防止廢油的滲透,然而揮發相中所蒸發出 來的揮發性成分則可通過,因而揮發性成分可自廢油中分離出來。
進料溶液指的是任何包含揮發性成分的液體溶液。也就是說,揮發性成分為一可被蒸發的物質,所以能夠自液體溶液中分離出來。舉例來說,進料溶液可為水,且此水包括沸點較水為低的揮發性有機化合物。另一個例子是進料溶液可為一水溶液,其含有一個或一個以上的溶質溶於其內,或是此水溶液實質上不含有一個或一個以上的溶質,而是其溶劑作為揮發性成分。此外,應了解在部分實施例中,自進料溶液移除揮發性成分可能不是為了獲得揮發性成分,而是為了濃縮進料溶液。舉例來說,在一果汁製造過程中,為了濃縮果汁以便於運送,移除果汁中的水分可能是一理想的方式。
在一實施例中,分離系統包括用於根據熱源的加熱量(heat duty)而改變熱交換裝置的熱負載(thermal duty)的裝置。此裝置可能包括可開啟及關閉的閥門系統。可程式邏輯控制器可能用來控制此些閥門的開與關。
熱交換裝置可包含至少一熱交換器。熱交換器可配置為彼此串聯或平行流體流動。在一實施例中,熱交換裝置包括複數個熱交換器,以及用以改變熱交換器熱負載的裝置是包括用於改變可接收揮發性成分的熱交換器數量的裝置。各熱交換器可具有至少一閥門,用於揮發性成分的流動。當閥門開啟,熱交換器可接收揮發性成分。當一特定的熱交換器的閥門關閉,揮發性物質將無法進入此特定的熱交換器,然後此揮發性成分將朝向另一具有開啟閥門的熱交換器。此方式中,可接收揮發性成分的熱交換器數量可受到控制。
有利的是,所使用的熱交換器數量可選擇用來盡可能恢復揮發性物質的潛熱,因而增加分離系統的效率。更有利的是,分離系統可作為動力系統,且可根據製程條件,尤其是熱源的加熱量來訂做,且其特別有利於當熱源 為可變的時候。可定制化的熱交換裝置的使用,可大量減少分離系統的總熱能消耗。
分離系統可包括至少一中空纖維模組。在一實施例中,分離系統包括複數個中空纖維模組,每一纖維模組包括一腔室(chamber),此腔室具有一子集的複數個中空纖維膜設置於其內。此複數個纖維模組可進一步為彼此串連流體流動。
在分離系統中,熱交換裝置可配置於中空纖維模組間。在一實施例中,熱交換裝置包括複數個熱交換器,其中至少一所述的熱交換器設置於彼此串聯流體流動的上游中空纖維模組與下游中空纖維模組之間。
每一個熱交換器可獲得揮發相的冷凝熱,以加熱中空纖維模組中的進料溶液。在一實施例中,設置在上、下游的中空纖維模組間的熱交換器,是配置以獲得為上游中空纖維模組的揮發相的冷凝熱,再使用所獲得的熱來加熱通過下游中空纖維模組的進料溶液。
熱源是配置用以加熱進入複數個中空纖維模組的進料溶液。熱源可同時加熱所有中空纖維模組,或同時加熱中空纖維模組的組合,或個別加熱每一個中空纖維模組。在一實施例中,配置的熱源是用以個別加熱進入每一中空纖維模組的進料溶液。有利的是,每一個中空纖維模組可個別操作,且其操作參數亦可被個別控制。
熱源可能包括任何適合的熱源。熱源可具有固定熱負載或可變熱負載。在一實施例中,熱源具有可變熱負載。舉例來說,具有可變熱負載的熱源可能為一廢棄熱源或一太陽能熱源或一地熱源。
在一實施例中,熱源可能包括廢氣熱源。典型的廢棄熱源包含自發電廠及焚化爐的燃氣鍋輪產生的廢氣、化學及冶金操作產生的製程氣體、及其他 工業製程產生的廢熱。
在氣候溫暖的國家中,太陽能可使用作為熱源。太陽能熱可將進料溶液從40度加熱至95度、從50度加熱至95度、從50度加熱至75度等溫度。在太陽能加熱系統中,太陽能熱被集中到加熱流體,例如水。加熱流體接著被導流至真空管,並經由一熱交換器將其熱能轉移至進料溶液,因此達到加熱進料溶液的效果。
在一實施例中,所揭露是一種自進料溶液分離出揮發性成分的分離裝置,此裝置包括:複數個中空纖維膜,具選擇滲透性且允許揮發相內的揮發性成分通過,而實質上防止進料溶液通過;複數個中空纖維模組,每一模組具有一密閉的腔室(chamber)及一進水口(inlet),此腔室具有一子集的複數個中空纖維膜延伸通過其內,而此進水口是用於將進料溶液傳送至中空纖維膜的一側;一熱源,其與進料溶液熱耦合;以及複數個熱交換器,其與揮發性成分流體耦合,且配置以獲得冷凝熱,其中熱交換器與熱源熱耦合,因而藉由冷凝熱驅動或補充熱源。
複數個中空纖維模組可為彼此串聯、並聯、或串聯與並聯組合流體流動。在一實施例中,複數個中空纖維模組是彼此串聯流體流動。
進料溶液可通過每一個中空纖維模組,或可以繞過至少一個中空纖維模組。在一實施例中,進料溶液可以繞過一個或多個中空纖維模組。
每一個中空纖維模組具有一密閉的腔室,此密閉的腔室具有一子集的複數個中空纖維薄膜延伸通過其內。這些中空纖維膜可為疏水性高分子薄膜, 且可選自由聚偏二氟乙烯、聚丙烯、聚乙烯及聚四氟乙烯所組成的群組中。
分離裝置可進一步包括一與熱源相耦合的監測裝置,用以監測熱源的加熱量。監測裝置可包含例如與一控制器耦合的熱感測器、溫度傳送器、溫度感測器或熱電偶等監測設備中的至少一個或組合。
分離裝置可進一步包括一控制設備,是耦合至監測裝置及複數個熱交換器。控制設備能夠依照監控中的熱負載,來決定所要使用的熱交換器的數量。有利的是,所欲使用的熱交換器使用的數量可以依照可變熱源來訂製。
進一步揭露一種自進料溶液中分離出揮發性成分的製程,其包含以下步驟:以一熱源加熱進料溶液;當複數個中空纖維膜的兩側間存在一壓力差,使進料溶液通過複數個中空纖維膜的一側,而使一揮發相內的揮發性成分形成在中空纖維膜的一側上,且揮發性成分是位於進料溶液的對側;冷凝上述揮發相內的揮發性成分,因而獲得一冷凝熱;以及使用冷凝熱,因而驅動或補充熱至熱源。
此製程亦可包含改變熱源通量的步驟。當熱源通量改變時,此製程可進一步包含利用複數個熱交換器以獲得冷凝熱的步驟。然後,熱交換器的熱負載可隨熱源的加熱量變化而改變。
此製程可進一步包含步驟(i)提供複數個中空纖維模組,每一中空纖維模組包含具有一子集的複數個中空纖維薄膜設置於其內的一腔室,其中中空纖維模組為彼此串聯流體流動,以及(ii)對進入每個中空纖維模組的進料溶 液進行個別加熱。
揮發性成分可藉由於中空纖維薄膜的內腔側與外殼側之間產生壓力差,而自液體中分離出來。上述可藉由連接一負壓源到中空纖維薄膜的出口末端來達到。此負壓可應用於在中空纖維膜的內腔側上形成一真空。此壓力差可幫助揮發性成分自液體中移除,且允許揮發性成分可在低溫條件下蒸發,使得利用低等級熱源進行蒸發作用成為可能。
典型的揮發性成分包含水,以及像是酯類、醚類、醛類、醇類、腈類及不飽和碳水化合物(例如萜烯類)等有機化合物。在一實施例中,進料溶液可為食鹽水,像是淡鹽水或海水,且揮發性成分可為自食鹽水蒸發的水,其實質上為無鹽的水蒸氣。
用來冷凝最後階段已蒸發的揮發性成分的冷卻劑,是可為任何種類的冷卻液。在一實施例中,在室溫條件下(約20℃)的冷卻液為水。有利的是,室溫水在工廠中是易於取得,且可易於回收或處理。
詳細說明:
第1圖為一節能薄膜蒸餾製程100,其包含階段A、B、C、…、n,其中A代表第一個階段,B代表第二個階段,以及n代表第n個階段。每個階段分別包括含有海水的儲存槽(10A、10B、10C、…、10n)、熱交換器(12A、12B、12C、…、12n)、及薄膜模組(14A、14B、14C、…、14n)。每個薄膜模組(14A、14B、14C、…、14n)具有一子集的複數個中空纖維薄膜(圖未示)設置於其內。
參閱薄膜蒸餾製程100的階段A,儲存於儲存槽10A的海水液體經進料流11A流至熱交換器12A。海水進料流11A根據下述方法進行加熱,並經由熱海水流13A離開熱交換器12A。
熱流體的溫度是高於進料流11A中的海水溫度,熱流體是經由熱流體流16A流入熱交換器12A。通過液流16A的熱流體已由太陽能熱源加熱,其中太陽能用以加熱熱流體。熱流體作為一熱源,用以加熱通過熱交換器12A的海水。當存在於熱流體中的熱能轉移到通過熱交換器12A的海水後,則16A中的熱流體冷卻至一較低溫度,並經由冷卻流體流18A離開熱交換器12A。
熱海水13A在通過熱交換器12A後,流入處在負壓狀態(亦即,真空)下的薄膜模組14A。薄膜模組14A和其他薄膜模組(14B、14C、…、14n)一樣包含有一腔室(chamber),此腔室具有用以接收海水的進水導管,以及用以允許將海水自腔室移出的排放管。如上所述,其中模組14A的腔室是由複數個中空纖維薄膜所組成(圖未示),每一中空纖維膜具有一開口端位於管子的一端,及一封閉端位於管子的另一端。中空纖維膜由疏水性高分子(聚丙烯、聚乙烯、聚偏二氟乙烯、或聚四氟乙烯)所製成,可允許水蒸氣通過,但對於水液體通常是不可滲透的。將真空狀態應用於中空纖維薄膜的內腔側或外殼側,亦可於腔室14A中產生真空狀態。
當熱海水流13A進入薄膜模組14A的腔室時,大部分的海水中所含有的水分會蒸發為實質上不含鹽分的水蒸氣。水蒸氣通過中空纖維膜的管壁,而進入配置於薄膜模組14A內的中空纖維薄膜的內腔,接著經由作為蒸氣流17A的中空纖維膜的開口端離開。此刻富含鹽分的大部分海水是餘留在薄膜模組14A的腔室,並經由產品流15A而從薄膜模組14A中移除。將蒸氣流17A絕緣以防止熱損耗,並將其維持在負壓的狀態,以確保在進入下游熱交換器12B前,水能夠維持在蒸氣態,此點將在下文進一步說明。
必須了解的是,其他的薄膜模組(14B、14C、…、14n)是具有如上述薄膜模組14A一樣的運作原理。
在操作的同時,為了將水分實質上自海水液體蒸發出來,海水可能需要進 行上述蒸餾製程一次以上。因此,大部分通過薄膜腔室的海水,可能經由產品流15A被回送至儲存槽10A以進一步進行上述的處理,直到所有的水分實質上已自海水中移除。
當蒸氣流17A中的水蒸氣冷凝為水液體時,在下游熱交換器12B內的冷凝潛熱是給予關閉的。此冷凝熱是與由儲存槽10B經進料流11B進入階段B的海水進行交換。收集自水液體流28A凝結下來的冷凝水,其實質上是不含鹽分的水。
蒸氣流17A的功能是類似於熱流體流16A,即蒸氣流17A提供熱能以加熱通過熱交換器10B的海水。
為了方便起見,藉由加熱海水以使水分蒸發為水蒸氣,而隨後所獲得的複數個重複的冷凝熱,在其他階段B、C、…、n則不再描述。然而,應該明白的是階段B、C、…、n是與上述階段A具有相同的運作原理。
進一步應該明白的是,從上游熱交換模組內獲得冷凝熱,接著將所獲得的冷凝熱加熱進入中空纖維模組的另一下游海水進料的製程,是可重複任何次數直到最後的下游重複是顯示階段n。
在階段n中,蒸氣流17n是本文提及的薄膜蒸餾製程100的副產物,可進一步被加工或利用做為其他用途(此處未描述)。
請參閱第2圖,其是為本發明的第二實施例。第2圖具有與第1圖相同的技術特徵,且以相同的數字表示,但加註一符號(′)。第2圖為一節能薄膜蒸餾製程100′,包含階段A′、B′、C′、…、n′,其中A′代表第一個階段,B′代表第二個階段,以及n′代表第n個階段。每個階段分別包括含有海水的儲存槽(10A′,10B,10C′、…、10n′)、熱交換器(12A′、12B′、12C′、…、12n′)及薄膜模組(14A′、14B′、14C′、…、14n′) 。每個薄膜模組(14A′、14B′、14C、…、14n′)具有一子集的複數個中空纖維薄膜(圖未示)設置於其內。階段A′、B′、C′、…、n′及其各組成構件,是與上述第1圖所示的製程100相同。
在製程100′中,水分自海水液體蒸發,接著以獲得的冷凝熱用以加熱下游階段的海水,上述製程與第1圖中的階段A的描述相同。除了冷凝熱外,還提供補充熱源到各階段(B′、C、…、n′)中的各個熱交換器(12B′、12C′、…、12n),如下所述。
參閱階段B′,熱流體的溫度是高於進料流11B′中的海水溫度,熱流體是經由熱流體流16B′流入熱交換器12B′。熱流體流16B′作為一補充熱源,用以加熱通過熱交換器12B′的海水流11B′。當存在於熱流體流16B′中的熱能轉移到海水流11B′後,則16B′中的熱流體冷卻至一較低溫度,並經由冷卻流體流18B′離開熱交換器12B′。
現在參閱階段A′,在水分蒸發後留在薄膜腔室14A′的海水液體,可能經由產品流15A′回流到儲存槽10A′以進行下一步製程。導管20A′容許儲存槽10A′中的海水連通至儲存槽10B′。以這種方式,位在薄膜蒸餾製程100′的階段A′的海水可在階段B′進行進一步的蒸餾。
同樣地對於階段B′、…、(n-1)′,其各儲存槽(10B′、…、10(n-1)′)是與其各下游儲存槽(10C′、…、10n′)流體耦合,使各階段中的海水可在下游階段進行進一步的蒸餾。
請參閱第3圖,其為本發明的第三實施例,其具有與第1圖相同的技術特徵,且以相同的數字表示,但加註一符號(′′)。第3圖所示的階段A′′,是第2圖中階段A′的一替代實施例。階段A′′包含裝有海水的儲存槽10A′′、熱交換器12A′′與12B′′、以及薄膜模組(14A′′-1、14A′′ -2、…、14A′′-n)。階段A′′中的元件與上述第2圖的階段A′中的元件相同,且此處所用的元件是以相同的參考數字表示,但加註一符號(′′)。
在此實施例中,在單一階段A′′中具有複數個薄膜模組(14A′′-1、14A′′-2、…、14A′′-n)。另外,薄膜模組(14A′′-1、14A′′-2、…、14A′′-n)中的薄膜腔室進一步包含至少一額外的排放管與繞道管(26A′′-1、26A′′-2、26A′′-3、…),用以允許任一薄膜模組(14A′′-1、14A′′-2、…、14A′′-n)中的海水繞過其後的任一個下游模組。此設置的優點在於,假若任一個薄膜模組故障,海水仍能繞過故障模組並繼續進行蒸餾製程。
自熱交換器12A′′離開的海水經由導管24A′′進入第一薄膜模組14A′′-1。必須了解的是,薄膜模組14A′′-1與上述第1圖中的薄膜模組14A具有相同的運作原理。在經過薄膜模組14A′′-1蒸餾後,剩餘的海水經過導管24A′′-1流至薄膜模組14A′′-2以進行進一步的蒸餾。
應該明白的是此製程可被重複任何次數,直到最後的下游模組14A′′-n,其中剩餘海水可經由導管24A′′-n收集,或經由循環流15A′′回流至進料流11A′′以進行進一步的製程。
第4圖為一薄膜蒸餾製程400,是對應到第2圖的薄膜蒸餾製程的階段A′、B′與C′,且進一步包含可程式邏輯控制器(PLCs)(30A、30B)。第4圖的組成構件與第2圖組成構件相同,除了標記有星號(*)的組成構件為例外。
此些可程式邏輯控制器(30A、30B)分別連接到各階段的蒸氣流(17A*、17B*),且測量其內的溫度。蒸氣流(17A*、17B*)的溫度在下文中分別以T17A與T17B表示。
“Tset-30A”是一輸入在可程式邏輯控制器30A的溫度,其中Tset-30A是加熱通過熱交換器12B*的海水所需要的最低溫度。在比較測量到的溫度T17A與設定溫度Tset-30A後,可程式邏輯控制器30A控制分別位在蒸氣流17A*、繞道流32A及熱流體流16B*上的閥門(V17A、V32A與V16B)的開與關。詳細的控制將在下文做進一步的描述。
因為熱源為太陽能,所以熱源每天提供的熱量可能隨著時間而改變。舉例來說,早晨與傍晚的熱能是較中午為少的。因此,由太陽能源提供的熱能是隨著時間變化的,意味著在製程400的各個階段中,其熱負載需根據在任何特定時間下所獲得的特定能源負荷而改變。舉例來說,蒸氣流17A*的溫度越高(亦即,通常在中午期間),越多熱能用在其內水蒸氣的冷凝。因此,假若溫度T17A高於溫度Tset-30A,即不需要經熱流體流16B*提供一補充熱源。於是,當測量到的溫度T17A高於設定溫度Tset-30A時,閥門V17A開啟,而閥門V32A與V16B關閉,所以在蒸氣流17A*的水蒸氣流至階段B′中的熱交換器12B*。
另一方面,當測量到的溫度T17A低於設定溫度Tset-30A時(亦即,通常在早晨或傍晚期間),表示在蒸氣流17A*的熱能是不足夠的。因此,閥門V17A關閉,而閥門V32A開啟,所以在蒸氣流17A*中的水蒸氣不會流至階段B′中的熱交換器12B*。在蒸氣流17A*的水蒸氣是副產物,其經由繞道流32A離開薄膜模組14A*。此外,閥門V16B開啟,以便提供經熱流體流16B*導入的補充熱源至熱交換器12B*中,使其能夠加熱通過進料流11B*中的海水。
同樣地,可程式邏輯控制器30B連接到階段B′的蒸氣流17B*,且在決定蒸氣流17B*的溫度(表示為T17B)後,控制閥門(V17B、V32B與V16C)的開與關。
第5圖為一演算圖,其詳細說明了第4圖的可程式邏輯控制器(30A)的運作。
如上所述,可程式邏輯控制器30A被編程以控制閥門(V17A、V32A與V16B)的開與關。當溫度T17A高於Tset-30A時,可程式邏輯控制器30A傳送開啟閥門V17A及關閉閥門V32A與V16B的電子訊號。另一方面,當溫度T17A低於Tset-30A時,可程式邏輯控制器30A傳送關閉閥門V17A及開啟閥門V32A與V16B的電子訊號。
因此,可程式邏輯控制器30A控制自蒸氣流17A*與補充熱流體16B*流出的水蒸氣流入熱交換器12B*。
第6圖為另一控制薄膜蒸餾製程600,其對應於第1圖所示的薄膜蒸餾製程的階段A與階段B,且進一步包含可程式邏輯控制器(PLC)(40B)及複數個以串聯方式連接的熱交換器(12B*-1、12B*-2、…、12B*-N)。除了標記有雙星號(**)的組成構件外,第6圖中其他所有組成構件皆與第1圖相同。
在操作過程中,一個或多個熱交換器(12B*-1、12B*-2、…、12B*-N)可用於加熱海水進料11B*。可程式邏輯控制器40B測量分別離開熱交換器(12B*-1、12B*-2、…、12B*-N)的液流(38-1、38-2、…、38-(N-1))中的混合物的水蒸氣、液體水的溫度,從而控制海水進料11B*經由開啟的閥門V11B流過這些熱交換器(12B*-1、12B*-2、…、12B*-N),或經由繞道流(50-1、50-2、…、50-(N-1))繞過一個或多個熱交換器(12B*-1、12B*-2、…、12B*-N)。液流(38-1、38-2、…、38-(N-1))的溫度在下文中分別以T38-1、T38-2、…、T38-(N-1)表示。
控制海水進料11B**的流動是依據所測量到的溫度T38-1、T38-2、…、T38-(N-1)。測量到的溫度T38-1、T38-2、…、T38-(N-1)是個別與輸入於可程式邏輯控制器40B內的設定溫度Tset-40B相比較。設定溫度Tset-40B是加熱通過每個熱交換器(12B*-1、12B*-2、…、12B*-N)的海水所需要的最低溫度。
藉由閥門(V11B、V50-1、V50-2、…、V50-(N-1))的開與關可有助於海水進料11B**流過熱交換器(12B*-1、12B*-2、…、12B*-N)的控制,且此些閥門是分別沿著海水進料11B**與繞道流(50-1、50-2、…、50(N-1)),其將於以下進一步說明。除非下文敘述另有指出,所有閥門(V11B、V50-1、V50-2、…、V50-(N-1))是關閉的。
在操作過程中,可程式邏輯控制器40B測量離開熱交換器12B*-1的液流38-1的溫度。如果所測量的溫度T38-1不超過設定溫度Tset-40B,可程式邏輯控制器40B傳送開啟閥門V50-1的電子訊號。這是因為液流38-1內沒有足夠熱能用以運作剩餘的熱交換器(12B*-2、…、12B*-N)。因此進料11B**直接流入熱交換器12B*-1,經由進料流50-1繞過剩餘的熱交換器(12B*-2、…、12B*-N)。
另一方面,假若測量的溫度T38-1高於設定溫度Tset-40B,則可程式邏輯控制器40B傳送開啟閥門V11B的電子訊號,且可程式邏輯控制器40B測量離開下一個熱交換器12B*-2的流體溫度。
同樣地,若測量的溫度T38-2不超過設定溫度Tset-40B時,可程式邏輯控制器40B傳送開啟閥門V50-2的電子訊號。海水進料11B**經由進料流50-2直接流入下一個熱交換器12B*-2,且隨後流入熱交換器12B*-1。
類似地,若測量的溫度T38-2高於設定溫度Tset-40B時,則可程式邏輯控制器40B傳送開啟閥門V11B的電子訊號,且可程式邏輯控制器40B測量離開下一個熱交換器(12B*-3,圖未示)的流體溫度。
如上所述,若進入熱交換器12B*-N的液流38-(N-1)的溫度不高於設定溫度Tset-40B時,可程式邏輯控制器40B傳送開啟閥門V50-(N-1)的電子訊號。這是為了使海水進料11B**經由進料流50-(N-1)直接流入熱交換器 12B*-(N-1)(圖未示),且隨後流入熱交換器(12B*-(N-2)(圖未示)、…、12B*-2、12B*-1),但繞過熱交換器12B*-N。
若測量的溫度T38-(N-1)高於設定溫度Tset-40B時,可程式邏輯控制器40B傳送開啟閥門V11B的電子訊號。也就是說,海水進料11B*連續流過彼此串聯連接的所有的熱交換器(12B*-N、…、12B*-2、12B*-1)。
因此,所使用彼此串聯連接的熱交換器的數量,可根據是否有足夠的熱能(如以溫度做為指標)來加熱海水進料11B**而改變。
第7圖為運作第6圖所示的可程式邏輯控制器40B的演算第7圖00。除非另有說明,當在操作過程中,所有以可程式邏輯控制器40B(如第6圖所示)控制的閥門(V11B、V50-1、V50-2、…、V50-(N-1))皆為關閉。
可程式邏輯控制器40B測量液流38-n的溫度T38-n,其中n為1、2、…、N-1。若測量到的溫度高於設定溫度Tset-40B,可程式邏輯控制器40B傳送開啟閥門V11B的電子訊號。
另一方面,若測量到的溫度低於設定溫度Tset-40B,可程式邏輯控制器40B傳送開啟閥門V50-n的電子訊號,其中n為1、2、…、N-1。
依照以上第6圖與第7圖的說明,可明白的是可程式邏輯控制器40B能夠調整熱交換器的總表面積,此為薄膜蒸餾製程600所需要的。
例子1:
使用上述分離系統,藉由多階段薄膜蒸餾製程濃縮氯化鈉溶液。薄膜蒸餾製程的每個階段包含一薄膜蒸餾模組及一熱交換器單元。進料液體為氯化鈉溶液,欲進行濃縮且初始濃度為6%的氯化鈉溶液的流速為1000公斤/天。
外部熱源僅供予位在薄膜蒸餾模組的第一階段的進料液體。在此例子中,外部熱源是自電力消耗所轉換而來的熱能。由此熱源所提供的熱能為5×108焦耳/天。
濃縮的氯化鈉溶液通過熱交換器,並且以外部熱源進行加熱。此溶液接著進入薄膜蒸餾模組,溶液中的水分經蒸發後形成水蒸氣。薄膜蒸餾模組包含如上述第1圖中所述的薄膜腔室。薄膜是以聚丙烯所製成,其直徑為0.4至0.6mm。每個模組皆安置有大約60,000至80,000個纖維。
自薄膜蒸餾模組的第一階段中蒸發的水蒸氣經由熱交換器單元取出,用以加熱在薄膜蒸餾模組的第二階段的進料液體至約65℃的溫度。
位在第二階段的進料液體是為第一階段中未蒸發的殘留溶液。在加熱進料液體後,水蒸氣冷凝成水液體。自第一階段蒸發的水量為190公斤。
同樣地,自薄膜蒸餾模組的第二階段中蒸發的水蒸氣經由熱交換器組件取出,用以加熱在薄膜蒸餾模組的第三階段的進料液體至約55℃的溫度。自第二階段蒸發的水量為180公斤。
自薄膜蒸餾模組的第三階段中蒸發的水蒸氣被取出後,用以加熱在薄膜蒸餾模組的第四階段的進料液體至約45℃的溫度。自第三階段蒸發的水量為170公斤。
在第四階段蒸發的水蒸氣以室溫水進行冷卻。自第四階段蒸發的水量為160公斤。
氯化鈉溶液的醉後濃度為20%。在單一階段的製程中,每蒸發一噸水分的熱能消耗為2.63×106焦耳,兩階段製程為1.35×106焦耳,三階段製程為0.93×106焦耳,以及四階段製程則為0.71×106焦耳。
因此,相較於單一製程,四階段製程能夠減少分離系統的熱量消耗達73%。
應用性:
將要明白的是,本發明所揭露的系統是藉由薄膜蒸餾製程分離進料溶液中的揮發性成分。有利的是,所使用的中空纖維薄膜相較於高分子板蒸餾,前者可提供大很多的表面積。如此可增加薄膜蒸餾製程的通量,以達到一較佳的製程效率與降低費用。
所揭露的系統是由可個別進行操作的個別階段所組成。每個階段包含至少一薄膜模組與至少一熱交換器單元。有利的是,系統的操作參數可個別控制。
將要明白的是,分離系統的熱交換裝置允許藉由進料溶液回收蒸發製程中消耗的能量。有利的是,可大大的降低分離系統的整體熱能消耗。
將明白的是,熱交換裝置包含至少一熱交換器。有利的是,可選擇使用的熱交換器數量,以盡可能回收蒸發的揮發性成分的潛熱,因而提高分離系統的效率。
更有利的是,所揭露的分離系統的能源效益設計克服了傳統薄膜蒸餾製程的主要問題。
雖然已盡合理的努力描述與本發明等效的實施例,然其對於熟習此技藝者在閱讀上述揭露後將是明顯的。因此任何未脫離本發明的精神與範疇,而對其進行的等效修改或變更,均應包含於後附的申請專利範圍中。
100‧‧‧節能薄膜蒸餾製程
10A、10B、10C、10n‧‧‧儲存槽
11A、11B、11C、11n‧‧‧進料流
12A、12B、12C、12n‧‧‧熱交換器
13A、13B、13C、13n‧‧‧熱海水流
14A、14B、14C、14n‧‧‧薄膜模組
15A、15B、15C、15n‧‧‧產品流
16A‧‧‧熱流體流
17A、17B、17C、17n‧‧‧蒸氣流
18A‧‧‧冷卻流體流
28A、28B、28C‧‧‧水液體流

Claims (19)

  1. 一種自進料溶液分離出揮發性成分的分離系統,其包括:複數個中空纖維膜,其具選擇滲透性,且允許一揮發相內的該揮發性成分通過,而實質上防止該進料溶液通過;一熱源,具有加熱位於該中空纖維膜一側上的該進料溶液的能力,以產生通過該中空纖維膜的該揮發相;一熱交換裝置,其冷凝該揮發性成分,且配置以獲得一冷凝熱,該熱交換裝置與該熱源熱耦合,因而藉由該冷凝熱驅動或補充該熱源;以及根據該熱源的加熱量(heat duty),而用以改變該熱交換裝置的熱負載(thermal duty)的裝置。
  2. 如申請專利範圍第1項所述的分離系統,其中該中空纖維膜為疏水性的。
  3. 如申請專利範圍第2項所述的分離系統,其中該疏水性中空纖維膜是由疏水性高分子所組成。
  4. 如申請專利範圍第1項所述的分離系統,其中該熱交換裝置包括複數個熱交換器,以及該用以改變該熱交換器的熱負載的裝置則包括用以改變該熱交換器的數量的裝置,該熱交換器具有接收該揮發性成分的能力。
  5. 如申請專利範圍第1項所述的分離系統,其更包括複數個中空纖維模組,每一該中空纖維模組包括一腔室(chamber),該腔室具有一子集的該複數個中空纖維膜設置於其內。
  6. 如申請專利範圍第5項所述的分離系統,其中該複數個中空纖維模組為彼此串聯流體流動。
  7. 如申請專利範圍第5項所述的分離系統,其中該熱交換裝置包括複數個熱交換器,其中至少一該熱交換器設置於彼此串聯流體流動的一上游中空 纖維模組與一下游中空纖維模組之間。
  8. 如申請專利範圍第7項所述的分離系統,其中設置於該上游中空纖維模組與該下游中空纖維模組之間的該熱交換器,是配置以獲得該上游中空纖維模組的該揮發相的該冷凝熱,且利用獲得的該冷凝熱加熱進入該下游中空纖維模組的該進料溶液。
  9. 如申請專利範圍第5項所述的分離系統,其中該熱源是配置以個別加熱進入每一該複數個中空纖維模組的該進料溶液。
  10. 如申請專利範圍第1項所述的分離系統,其中該熱源為一可變熱通量。
  11. 如申請專利範圍第1項所述的分離系統,其中該可變熱通量由該熱源所造成,該熱源包括(i)廢棄熱源、(ii)太陽能熱源及(iii)地熱源的其中至少一個。
  12. 一種自進料溶液分離出揮發性成分的分離系統,其包括:複數個中空纖維膜,具選擇滲透性,且允許一揮發相內的該揮發性成分通過,而實質上防止該進料溶液通過;複數個中空纖維模組,每一該模組具有一密閉的腔室及一進水口(inlet),該腔室具有一子集的該複數個中空纖維膜延伸通過其內,該進水口是將該進料溶液傳送至該複數個中空纖維膜的一側;複數個熱交換器,是與該揮發性成分流體連通,以獲得該揮發性成分冷凝為液體時的一冷凝熱,該複數個熱交換器具有與一熱源熱耦合的能力,因而藉由該冷凝熱驅動或補充該熱源;以及一監測裝置與該熱源耦合,以監測該熱源的加熱量(heat duty)。
  13. 如申請專利範圍第12項所述的分離系統,其中該複數個中空纖維模組為彼此串聯流體流動。
  14. 如申請專利範圍第13項所述的分離系統,其中該進料溶液能繞過該複數個中空纖維模組的一個或一個以上。
  15. 如申請專利範圍第12項所述的分離系統,其中該複數個中空纖維膜由一疏水性高分子膜所組成。
  16. 如申請專利範圍第15項所述的分離系統,其中該疏水性高分子膜是選自由聚偏二氯乙烯、聚丙烯、聚四氟乙烯及聚乙烯所組成的群組中。
  17. 如申請專利範圍第12項所述的分離系統,其更包括一控制設備與該監測裝置及該複數個熱交換器耦合,其中該控制設備具有根據監測得的該加熱量,判斷欲使用的該熱交換器的數量的能力。
  18. 一種自進料溶液分離出揮發性成分的製程,其步驟包括:以一熱源加熱該進料溶液;當該複數個中空纖維膜的兩側間存在一壓力差,則使該進料溶液通過複數個中空纖維膜的一側,而使一揮發相內的該揮發性成分形成在該中空纖維膜的一側上,且該揮發性成分是位於該進料溶液的對側;冷凝該揮發相內的該揮發性成分,因而獲得一冷凝熱;使用複數個熱交換器以獲得該冷凝熱,因而驅動或補充熱至該熱源;變化該熱源的通量;以及根據該熱源的可變加熱量,改變該複數個熱交換器的熱負載(thermal duty)。
  19. 如申請專利範圍第18項所述的製程,其更包括下述步驟:提供複數個中空纖維模組,每一該中空纖維模組包括一腔室(chamber),該腔室具有一子集的該複數個中空纖維膜設置於其內,該複數個中空纖維模組為彼此串聯流體流動;以及個別加熱進入每一該複數個中空纖維模組的該進料溶液。
TW098140881A 2008-12-17 2009-11-30 自溶液分離出揮發性成分的系統及其製程 TWI415666B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13840408P 2008-12-17 2008-12-17

Publications (2)

Publication Number Publication Date
TW201023960A TW201023960A (en) 2010-07-01
TWI415666B true TWI415666B (zh) 2013-11-21

Family

ID=42269058

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098140881A TWI415666B (zh) 2008-12-17 2009-11-30 自溶液分離出揮發性成分的系統及其製程

Country Status (3)

Country Link
GB (1) GB2478467B (zh)
TW (1) TWI415666B (zh)
WO (1) WO2010071605A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2680955B1 (en) 2011-03-03 2019-10-23 Victoria University A heat exchange system
US9403102B2 (en) 2012-02-13 2016-08-02 United Technologies Corporation Heat exchange system configured with a membrane contactor
NL2010576C2 (en) 2013-04-05 2014-10-08 Aquaver B V A system of membrane distillation and use therof.
CN105301149B (zh) * 2015-12-06 2018-11-27 杭州飞山浩科技有限公司 一种在线测定血样中痕量氟离子的分析装置和方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040211726A1 (en) * 2001-06-22 2004-10-28 Baig Fakhir U. Membrane-assisted fluid separation apparatus and method
EP1925355A1 (en) * 2006-10-31 2008-05-28 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Membrane distillation method for the purification of a liquid

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4545862A (en) * 1981-03-17 1985-10-08 W. L. Gore & Associates, Inc. Desalination device and process
JPS60222108A (ja) * 1984-04-20 1985-11-06 Komatsu Ltd 透過蒸発分離装置
JPH06121902A (ja) * 1992-10-09 1994-05-06 Daicel Chem Ind Ltd 脱気装置および脱気方法
US8128826B2 (en) * 2007-02-28 2012-03-06 Parker Filtration Bv Ethanol processing with vapour separation membranes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040211726A1 (en) * 2001-06-22 2004-10-28 Baig Fakhir U. Membrane-assisted fluid separation apparatus and method
EP1925355A1 (en) * 2006-10-31 2008-05-28 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Membrane distillation method for the purification of a liquid

Also Published As

Publication number Publication date
GB2478467B (en) 2013-08-28
GB201109866D0 (en) 2011-07-27
GB2478467A (en) 2011-09-07
TW201023960A (en) 2010-07-01
WO2010071605A1 (en) 2010-06-24

Similar Documents

Publication Publication Date Title
Abu-Zeid et al. A comprehensive review of vacuum membrane distillation technique
KR101020316B1 (ko) 막증류 방식을 이용한 정삼투 담수화 장치
CN107614440B (zh) 用于高级真空隔膜蒸馏的方法和设备
US9656883B2 (en) Forward osmosis system comprising solvent separation by means of membrane distillation
SI2939981T1 (en) Sea water desalination apparatus and process using solar energy for continuous heat supply
JP2011525147A (ja) 正浸透分離法
TWI415666B (zh) 自溶液分離出揮發性成分的系統及其製程
US10688439B2 (en) Osmotically and thermally isolated forward osmosis-membrane distillation (FO-MD) integrated module for water treatment applications
WO2020056847A1 (zh) 一种集成半导体热泵的多级膜组件及其在膜蒸馏中的应用
JP5943924B2 (ja) 浸透圧駆動膜プロセス及びシステム、並びに引出溶質回収方法
JP5988032B2 (ja) 淡水製造装置およびその運転方法
US20170369337A1 (en) Enhanced brine concentration with osmotically driven membrane systems and processes
US20130319924A1 (en) ASYMMETRIC ePTFE MEMBRANE
CN102861512A (zh) 一种耦合式膜蒸馏组件装置及方法
KR102190050B1 (ko) 정삼투 시스템의 성능을 개선하기 위한 시스템 및 방법
JP2016190220A (ja) 膜蒸留システムおよびその運転方法
Essalhi et al. Membrane distillation (MD)
CN102949936A (zh) 一种高效耦合式膜蒸馏组件装置及方法
KR101298724B1 (ko) 유도용액의 일부가 정삼투 분리기로 직접 재공급되는 막증류 방식의 정삼투 담수화 장치
WO2019163420A1 (ja) 液体有機物と水の分離システム及び分離方法
Janajreh et al. Numerical simulation of Direct Contact Membrane Desalination in conjugate heat transfer configuration: Role of Membrane Conductivity
US20240058760A1 (en) Multi-stage vacuum membrane distillation system and process
US20240058758A1 (en) Multi-stage direct contact membrane distillation system and process
US20240058757A1 (en) Multi-stage sweeping gas membrane distillation system and process
US20240058761A1 (en) Multi-stage permeate gap membrane distillation system and process

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees