TW201023960A - System for separation of volatile components from solution and process thereof - Google Patents

System for separation of volatile components from solution and process thereof Download PDF

Info

Publication number
TW201023960A
TW201023960A TW098140881A TW98140881A TW201023960A TW 201023960 A TW201023960 A TW 201023960A TW 098140881 A TW098140881 A TW 098140881A TW 98140881 A TW98140881 A TW 98140881A TW 201023960 A TW201023960 A TW 201023960A
Authority
TW
Taiwan
Prior art keywords
heat
hollow fiber
separation system
feed solution
heat source
Prior art date
Application number
TW098140881A
Other languages
Chinese (zh)
Other versions
TWI415666B (en
Inventor
Tong Zhou
Lai Yee Loke
Ooi Lin Lum
Original Assignee
Hyflux Membrane Mfg S Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyflux Membrane Mfg S Pte Ltd filed Critical Hyflux Membrane Mfg S Pte Ltd
Publication of TW201023960A publication Critical patent/TW201023960A/en
Application granted granted Critical
Publication of TWI415666B publication Critical patent/TWI415666B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/364Membrane distillation
    • B01D61/3641Membrane distillation comprising multiple membrane distillation steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/364Membrane distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/10Temperature control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/22Cooling or heating elements
    • B01D2313/221Heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

There is disclosed a separation system for separation of a volatile component from a feed solution such as the separation of water vapor from a saline solution, such as seawater. The separation system includes a plurality of hollow fiber membranes being selectively permeable to allow the volatile component in a volatile phase to pass therethrough while substantially preventing passage of the feed solution. The system also includes a heat source capable of heating the feed solution on one side of the hollow fiber membranes to create the volatile phase that passes through the hollow fiber membranes. A heat exchange means is provided to condense the volatile component and which is configured to capture the heat of condensation, and wherein the heat exchange means are thermally coupled to the heat source to thereby drive or supplement the heat source with the heat of condensation.

Description

201023960 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種自進料溶液分離出揮發性 成分的的系統、方法與裝置。 【先前技術】 薄膜蒸餾為一以薄膜為基礎的製程,其中水蒸 氣可藉由溫度、真空度及/或溶質濃度的差異所產^ 的水蒸氣壓力驅動力,而經由疏水性薄臈的孔洞穿 過薄膜。薄膜蒸餾系統中的薄膜的主要特徵為其合 乎多孔性的且對處理液是耐潤濕的,以及不會實^ 改變處理液中不同成分的氣液平衡。在理想的情況 下,毛細凝結作用不應該發生在薄膜的孔洞内。對 於系統内的每一成分,驅動其通過薄膜的驅動力是 存在於薄膜兩側的分壓梯度。 與傳統蒸發製程相對照,薄膜蒸餾製程具有在 較低的操作溫度下仍能夠有效率的工作的優點,因 此相較於傳統的蒸餾製程亦可節省消耗的能源。使 用低等級的能源’像是餘熱與太陽能來驅動薄膜蒸 館系統’使其具有高效節能與環保的功效。然而, ^低#級能源的―大問題是其提供的熱能可能隨 甘=而變化。舉例來說,一低等級能源如太陽能, 、提供的熱能會隨著時間與天氣情況的不同而變 201023960 化。此外,一低等級能源如廢棄餘熱,舉例來說, 一化學生產製程會隨製煉廠在任何特定時間的製程 條件而改變。因此,由於低等級能源缺乏能量輸出 的穩定性而較難適用於薄膜蒸餾製程。201023960 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a system, method and apparatus for separating volatile components from a feed solution. [Prior Art] Thin film distillation is a film-based process in which water vapor can be driven by a water vapor pressure driven by a difference in temperature, vacuum, and/or solute concentration, and through a pore of a hydrophobic thin crucible. Pass through the film. The main features of the film in a thin film distillation system are that it is porous and resistant to wetting of the treatment liquid, and does not alter the gas-liquid equilibrium of the different components of the treatment liquid. In the ideal case, capillary condensation should not occur in the pores of the film. For each component in the system, the driving force that drives it through the film is the partial pressure gradient present on both sides of the film. In contrast to conventional evaporation processes, thin film distillation processes have the advantage of being able to operate efficiently at lower operating temperatures, thereby saving energy consumption compared to conventional distillation processes. The use of low-grade energy, such as waste heat and solar energy to drive the membrane steaming system, makes it energy efficient and environmentally friendly. However, the big problem with low-level energy is that the heat it provides may change with the Gan. For example, a low-level energy source such as solar energy will provide thermal energy that will change over time and weather conditions. In addition, a low-grade energy source such as waste heat, for example, a chemical production process will vary with the process conditions of the refinery at any given time. Therefore, it is difficult to apply to the thin film distillation process due to the lack of energy output stability of low-grade energy sources.

具有多階單元配置結構的複合薄膜蒸餾系統的 目標,是利用冷凝熱來補充產生揮發性成分的蒸氣 相所需的熱能’而其面臨一定的侷限性。使用各階 段有限的加熱量(heat duty)來提供下一階段的溫度 梯度,在達到一合理的蒸顧液產率前,可能導致大 量的最佳階段需求。 各溥膜階段的結構亦限制可用表面與阻礙熱交 換的靈活性。由於各階段的薄膜模組與熱交換器是 同二個單元,所以加熱量的控制亦被限制。替代的 熱交換器結構可將熱流動最優化,但在這種情況下 是不容許的。傳統的薄膜蒸館系統嚴重面臨相同的 限制;薄膜與熱交換器的功能皆無法輕易的個別 化,導致僅能提供一固定的熱交換表面積。 ,前的需求為提供一種自溶液分離出揮發 分的系統、裝置或贺盘,装·^古 的缺點。置戍製"可克服或至少改善前述 【發明内容】 目的就是在提供一種自進料溶液 本發明的第一 5 201023960 分離出揮發性成分的分離系統,此系統包括: 複數個中空纖維膜,具選擇滲透性且允許揮發 相内的揮發性成分通過,而實質上防止進料溶液通 過; 一熱源,具有加熱中空纖維膜一侧上的進料溶 液的能力,以產生通過上述中空纖維膜的揮發相; 以及 一熱交換裝置,可冷凝揮發性成分,且配置以 獲得冷凝熱,此熱交換裝置與熱源熱耦合,因而藉 由冷凝熱驅動或補充熱源。 有利的是,使用中空纖維膜提供一相較於平板 膜更具有較高表面積的緊密配置結構,用以分離進 料溶液中的揮發性成分。有利的是,熱交換裝置是 運用分離製程中的熱源所提供的冷凝熱來驅動或補 充能量,因而能夠節約投入整體系統的能量。有利 的是,熱交換裝置是減少用以冷凝揮發性成分的冷 卻劑的消耗量。因此,用以回收冷凝熱的中空纖維 膜與熱交換器的結合,提供一有效率的熱能系統以 分離溶液中的揮發性成分。 在一實施例中,提供一除鹽系統,其包括: 複數個中空纖維膜,具選擇滲透性且允許水蒸 氣通過,而實質上防止食鹽水通過; 201023960 一熱源,具有加熱中空纖維膜一侧上的食鹽水 的能力,以產生通過中空纖維膜的水蒸氣相;以及 一熱交換裝置,用以冷凝水蒸氣相,且配置以 獲得冷凝熱,此熱交換裝置與熱源熱耦合,因而藉 由冷凝熱驅動或補充熱源。 本發明的第二目的在於提供一種自進料溶液分 離出揮發性成分的分離裝置,此裝置包括: ® 複數個中空纖維膜,具選擇滲透性,且允許揮 發相内的揮發性成分通過,而實質上防止進料溶液 通過; 複數個中空纖維模組,每一模組具有一密閉的 腔室,以及用以將進料溶液傳送至上述中空纖維膜 一侧的一進水口(inlet),且此密閉的腔室具有一子 集上述的複數個中空纖維膜延伸通過其内; φ 複數個熱交換器,其與揮發性成分的流體相連 通,以獲得揮發性成分冷凝為液體時的冷凝熱,此 些熱交換裝置具有與熱源熱耦合的能力,因而藉由 上述冷凝熱驅動或補充熱源。 本發明的第三目的在於提供一種自進料溶液分 離出揮發性成分的製程,此製程包括以下步驟: 以一熱源加熱進料溶液; 當複數個中空纖維膜的兩側間存在一壓力差, 7 201023960 使進料溶料過複數辦使揮 發相内的揮發性成分形成於中空纖維膜的 一側上, 且揮發性成分是位於進料溶液的對侧,· .冷凝揮發相内的揮發性成分,因而獲得冷凝 熱,以及 使用此冷凝熱,因而驅動或補充熱至上述熱源。 【實施方式】 定義: 以下所使用的字詞與詞語所表示意義應為: 一此說明書内容中提到的”熱負載(thermal duty),, 一詞,指的是在某特定期間下經由一,,熱源,,或,,散熱 裝置亦即,,,散熱裝置’,為一利用熱的裝置)所散發 出的熱能量。舉例來說,一熱交換器的熱負載,指 的是在某特定期間下經熱交換器自一流體交換至另 一流體所需要的熱能量。 此說明書提到的,,可變熱負載”一詞,指的是此 熱負載會隨時間而變化。 此說明書提到的,,中空纖維膜,,一詞是意指一薄 膜’其具有一由密閉的外壁所圍繞的中空内核。雖 然一些中空纖維膜可能實質上為圓形管,但此詞不 應被解釋為代表所有中空纖維膜皆為圓形管,而可 201023960 忐為任何代表性的形狀。在此揭露内容中,中空纖 維膜的外壁至少可供某些化學物種部份滲透。因 此,可物理滲透的中空纖維(例如因中空纖維外壁内 存在的孔洞所導致),及/或可化學滲透的中空纖維 (例如因化學物種的質量輸送而通過中空纖維外壁) 皆包含在所定義的意義内。 實質上一詞不排除”完全地”’例如’,實質上沒 有’’Y的組成物可能為完全沒有γ。也就是說,”實 質上” 一詞要解譯為,,完全地,,或,,部分地,,。如有必 要’本發明的定義可省略,,實質上”一字。 除非另外說明’此說明書提到的,,包含 (comprising)’,與”包含(c〇mprise)”及其文法上的變化 形,是為了代表,,開放式的(〇pen) ’’或,,範圍廣泛的 (inclusive)”語言,使其不但包括所引述的元件,更 允許包含有額外的與未引述的元件。 於上下文所提到的配方組成濃度中所使用的” 大約”一詞,一般意指設定值的正/負五個百分比, 一般更可為設定值的正/負四個百分比,一般更可為 設定值的正/負三個百分比,一般更可為設定值的正 /負兩個百分比,一般甚至可為設定值的正/負一個 百分比,以及一般甚至可為設定值的零點五個百分 比。 在整個揭露内容中,某些實施例可能以一範圍 9 201023960 格式揭露。此應被了解此範圍格式的描述只是為了 方便與簡潔,不應被解釋為不可改變的限制所揭露 範圍的範疇。因此,一範圍的描述應被認為是明確 地揭露所有可能的子範圍及在此範圍内的個別數 值。舉例來說,1至6的範圍敘述應被認為已經明 確揭露例如1至3、〗至4、丨至5、2至4、2至6、 3至6等子範圍,以及其範圍内的個別數值,例如工、 2、3、4、5和6。此適用於廣泛的範圍。 最佳實施例的揭露: 此處將揭露薄膜模組的典型、非限制的實施例。 在-個實施例中,揭露一種自進料溶液分離出 揮=性成分的分離线,像是自食鹽溶液(例如海水 中刀離出水蒸氣。此分離系統包含具選擇滲透性的 複數個中工纖維膜,其可允許揮發相内的揮發性成 =,而實質上防止進料溶液通過。此系統亦包 “ 口熱中空纖維膜一侧上的進料溶液的熱源,以 空纖維膜的揮發相。提供的熱交換裝 二揮發性成分’且其配置可用以獲得冷凝 凝熱驅動或補充熱源。 錯由ν 。有利的是, 疏水性高分子 中空纖維膜可能為疏水性高分子 菖水;由除鹽系統自食鹽水中移出, 201023960 可不被食鹽水溶液潤濕,但可允許水蒸氣傳送通過 此高分子,因此增加自食鹽水中分離出水蒸氣的效 能。典型的疏水性高分子包括聚烷基丙烯酸酯、聚 二烯、聚烯烴、聚内酯、聚矽氧烷、聚環氧乙烷、 聚吡啶、聚碳酸酯、聚醋酸乙烯酯、聚砜、聚丙烯 (PP)、聚四氟乙烯(PTFE)、聚乙烯(PE)、聚偏二氟 乙烯(PVDF)、聚曱基戊烯(PMP)、聚二曱基矽氧烷、 聚丁二烯、聚苯乙烯、聚曱基丙烯酸曱酯、全氟聚 合物、聚二烷基噁唑啉或聚苯基噁唑啉、其衍生物、 其鹽類及其組合。 有利的是,中空纖維膜的種類可依據自進料溶 液中分離出的揮發性成分來選擇。舉例來說,在另 一實施例中,有揭露一自廢油分離出揮發性成分的 分離系統。此分離系統包括複數個疏水性的管狀不 銹鋼薄膜,具選擇滲透性,且允許揮發相内的揮發 性成分通過,而實質上防止進料溶液通過。此不錄 鋼薄膜因具親水性特質而可防止廢油的滲透,然而 揮發相中所蒸發出來的揮發性成分則可通過,因而 揮發性成分可自廢油中分離出來。 進料溶液指的是任何包含揮發性成分的液體溶 液。也就是說,揮發性成分為一可被蒸發的物質, 所以能夠自液體溶液中分離出來。舉例來說,進料 溶液可為水,且此水包括沸點較水為低的揮發性有 機化合物。另一個例子是進料溶液可為一水溶液, 11 201023960 其含有一個或一個以上的溶質溶於其内,或是此水 溶液實質上不含有一個或一個以上的溶質,而是其 溶劑作為揮發性成分。此外,應了解在部分實施例 中,自進料溶液移除揮發性成分可能不是為了獲得 揮發性成分,而是為了濃縮進料溶液。舉例來說, 在一果汁製造過程中,為了濃縮果汁以便於運送, 移除果汁中的水分可能是一理想的方式。 在一實施例中,分離系統包括用於根據熱源的 加熱量(heat duty)而改變熱交換裝置的熱負載 (thermal duty)的裝置。此裝置可能包括可開啟及關 閉的閥門系統。可程式邏輯控制器可能用來控制此 些閥門的開與關。 熱交換裝置可包含至少一熱交換器。熱交換器 可配置為彼此串聯或平行流體流動。在一實施例 中,熱交換裝置包括複數個熱交換器,以及用以改 變熱交換器熱負載的裝置是包括用於改變可接收揮 發性成分的熱交換器數量的裝置。各熱交換器可具 有至少一閥門,用於揮發性成分的流動。當閥門開 啟,熱交換器可接收揮發性成分。當一特定的熱交 換器的閥門關閉,揮發性物質將無法進入此特定的 熱交換器,然後此揮發性成分將朝向另一具有開啟 閥門的熱交換器。此方式中,可接收揮發性成分的 熱交換器數量可受到控制。 201023960 有利的是,所使用的熱交換器數量可選擇用來 盡可能恢復揮發性物質的潛熱,因而增加分離系統 的效率。更有利的是,分離系統可作為動力系統, 且可根據製程條件,尤其是熱源的加熱量來訂做, 且其特別有利於當熱源為可變的時候。可定制化的 熱交換裝置的使用,可大量減少分離系統的總熱能 消耗。 • 分離系統可包括至少一中空纖維模組。在一實 施例中,分離系統包括複數個中空纖維模組,每一 纖維模組包括一腔室(chamber),此腔室具有一子集 的複數個中空纖維膜設置於其内。此複數個纖維模 組可進一步為彼此串連流體流動。 在分離系統中,熱交換裝置可配置於中空纖維 模組間。在一實施例中,熱交換裝置包括複數個熱 交換器,其中至少一所述的熱交換器設置於彼此串 φ 聯流體流動的上游中空纖維模組與下游中空纖維模 組之間。 每一個熱交換器可獲得揮發相的冷凝熱,以加 熱中空纖維模組中的進料溶液。在一實施例中,設 置在上、下游的中空纖維模組間的熱交換器,是配 置以獲得為上游中空纖維模組的揮發相的冷凝熱, 再使用所獲得的熱來加熱通過下游中空纖維模組的 進料溶液。 13 201023960 熱源是配置用以加熱進入複數個中空纖維模組 的進料溶液。熱源可同時加熱所有中空纖維模組, 或同時加熱中空纖維模組的組合,或個別加熱每一 個中空纖維模組。在一實施例中,配置的熱源是用 以個別加熱進入每一中空纖維模組的進料溶液。有 利的是,每一個中空纖維模組可個別操作,且其操 作參數亦可被個別控制。 熱源可能包括任何適合的熱源。熱源可具有固 定熱負載或可變熱負載。在一實施例中,熱源具有 可變熱負載。舉例來說,具有可變熱負載的熱源可 能為一廢棄熱源或一太陽能熱源或一地熱源。 在一實施例中,熱源可能包括廢氣熱源。典型 的廢棄熱源包含自發電廠及焚化爐的燃氣鍋輪產生 的廢氣、化學及冶金操作產生的製程氣體、及其他 工業製程產生的廢熱。 在氣候溫暖的國家中,太陽能可使用作為熱 源。太陽能熱可將進料溶液從40度加熱至95度、 從50度加熱至95度、從50度加熱至75度等溫度。 在太陽能加熱系統中,太陽能熱被集中到加熱流 體,例如水。加熱流體接著被導流至真空管,並經 由一熱交換器將其熱能轉移至進料溶液,因此達到 加熱進料溶液的效果。 在一實施例中,所揭露是一種自進料溶液分離 14 201023960 出揮發性成分的分離裝置,此裝置包括: 複數個中空纖維膜,具選擇滲透性且允許揮發 相内的揮發性成分通過,而實質上防止進料溶液通 過; 複數個中空纖維模組,每一模組具有一密閉的 腔室(chamber)及一進水口(inlet),此腔室具有一子 集的複數個中空纖維膜延伸通過其内,而此進水口 • 是用於將進料溶液傳送至中空纖維膜的一侧; 一熱源,其與進料溶液熱耦合;以及 複數個熱交換器,其與揮發性成分流體耦合, 且配置以獲得冷凝熱,其中熱交換器與熱源熱耦 合,因而藉由冷凝熱驅動或補充熱源。 複數個中空纖維模組可為彼此串聯、並聯、或 串聯與並聯組合流體流動。在一實施例中,複數個 φ 中空纖維模組是彼此串聯流體流動。 進料溶液可通過每一個中空纖維模組,或可以 繞過至少一個中空纖維模組。在一實施例中,進料 溶液可以繞過一個或多個中空纖維模組。 每一個中空纖維模組具有一密閉的腔室,此密 閉的腔室具有一子集的複數個中空纖維薄膜延伸通 過其内。這些中空纖維膜可為疏水性高分子薄膜, 且可選自由聚偏二氟乙烯、聚丙烯、聚乙烯及聚四 15 201023960 氟乙烯所組成的群組中。 分離裝置可進一步包括一與熱源相耦合的監測 裝置,用以監測熱源的加熱量。監測裝置可包含例 如與一控制器耦合的熱感測器、溫度傳送器、溫度 感測器或熱電偶等監測設備中的至少一個或組合。 分離裝置可進一步包括一控制設備,是耦合至 監測裝置及複數個熱交換器。控制設備能夠依照監 控中的熱負載,來決定所要使用的熱交換器的數 量。有利的是,所欲使用的熱交換器使用的數量可 以依照可變熱源來訂製。 進一步揭露一種自進料溶液中分離出揮發性成 分的製程,其包含以下步驟: 以一熱源加熱進料溶液; 當複數個中空纖維膜的兩侧間存在一壓力差, 使進料溶液通過複數個中空纖維膜的一侧,而使一 揮發相内的揮發性成分形成在中空纖維膜的一侧 上,且揮發性成分是位於進料溶液的對侧; 冷凝上述揮發相内的揮發性成分,因而獲得一 冷凝熱;以及 使用冷凝熱,因而驅動或補充熱至熱源。 此製程亦可包含改變熱源通量的步驟。當熱源 通量改變時,此製程可進一步包含利用複數個熱交 16 201023960 換器以獲得冷凝熱的步驟。然後,熱交換器的熱負 載可隨熱源的加熱量變化而改變。 此製程可進一步包含步驟⑴提供複數個中空纖 維模組,每一中空纖維模組包含具有一子集的複數 個中空纖維薄膜設置於其内的一腔室,其中中空纖 維模組為彼此串聯流體流動,以及(ii)對進入每個中 空纖維模組的進料溶液進行個別加熱。 • 揮發性成分可藉由於中空纖維薄膜的内腔侧與 外殼侧之間產生壓力差,而自液體中分離出來。上 述可藉由連接一負壓源到中空纖維薄膜的出口末端 來達到。此負壓可應用於在中空纖維膜的内腔侧上 形成一真空。此壓力差可幫助揮發性成分自液體中 移除,且允許揮發性成分可在低溫條件下蒸發,使 得利用低等級熱源進行蒸發作用成為可能。 典型的揮發性成分包含水,以及像是酯類、醚 ® 類、醛類、醇類、腈類及不飽和碳水化合物(例如萜 烯類)等有機化合物。在一實施例中,進料溶液可為 食鹽水,像是淡鹽水或海水,且揮發性成分可為自 食鹽水蒸發的水,其實質上為無鹽的水蒸氣。 用來冷凝最後階段已蒸發的揮發性成分的冷卻 劑,是可為任何種類的冷卻液。在一實施例中,在 室溫條件下(約20°C)的冷卻液為水。有利的是,室 溫水在工廠中是易於取得,且可易於回收或處理。 17 201023960 詳細說明: 第1圖為一節能薄膜蒸餾製程100,其包含階 段A、B、C、…、η,其中A代表第一個階段,B 代表第二個階段,以及η代表第η個階段。每個階 段分別包括含有海水的儲存槽(1〇Α、10Β、10C、…、 1〇η)、熱交換器(12Α、12Β、12C、...、12η)、及薄 膜模組(14Α、14Β、14C、…、14η)。每個薄膜模組 (14Α、14Β、14C、...、14η)具有一子集的複數個中 空纖維薄膜(圖未示)設置於其内。 參閱薄膜蒸餾製程1〇〇的階段A,儲存於儲存 槽10A的海水液體經進料流11A流至熱交換器 12A。海水進料流11A根據下述方法進行加熱,並 經由熱海水流13A離開熱交換器12A。 熱流體的溫度是高於進料流11A中的海水溫 度,熱流體是經由熱流體流16 A流入熱交換器 12 A。通過液流16 A的熱流體已由太陽能熱源加 熱,其中太陽能用以加熱熱流體。熱流體作為一熱 源,用以加熱通過熱交換器12 A的海水。當存在於 熱流體中的熱能轉移到通過熱交換器12A的海水 後,則16A中的熱流體冷卻至一較低溫度,並經由 冷卻流體流18A離開熱交換器12A。 熱海水13A在通過熱交換器12A後,流入處在 201023960 負壓狀態(亦即,真空)下的薄膜模組14A。薄膜模 組14A和其他薄膜模組(14B、14C、…、14η)—樣 包含有一腔室(chamber),此腔室具有用以接收海水 的進水導管,以及用以允許將海水自腔室移出的排 放管。如上所述,其中模組14A的腔室是由複數個 中空纖維薄膜所組成(圖未示),每一中空纖維膜具 有一開口端位於管子的一端,及一封閉端位於管子 的另一端。中空纖維膜由疏水性高分子(聚丙烯、聚 乙烯、聚偏二氟乙烯、或聚四氟乙烯)所製成,可允 許水蒸氣通過,但對於水液體通常是不可滲透的。 將真空狀態應用於中空纖維薄膜的内腔侧或外殼 侧,亦可於腔室14A中產生真空狀態。 當熱海水流13A進入薄膜模組14A的腔室時, 大部分的海水中所含有的水分會蒸發為實質上不含 鹽分的水蒸氣。水蒸氣通過中空纖維膜的管壁,而 進入配置於薄膜模組14A内的中空纖維薄膜的内 腔,接著經由作為蒸氣流17A的中空纖維膜的開口 端離開。此刻富含鹽分的大部分海水是餘留在薄膜 模組14A的腔室,並經由產品流15A而從薄膜模組 14A中移除。將蒸氣流17A絕緣以防止熱損耗,並 將其維持在負壓的狀態,以確保在進入下游熱交換 器12B前,水能夠維持在蒸氣態,此點將在下文進 一步說明。 必須了解的是,其他的薄膜模組(14B、14C、...、 19 201023960 14η)是具有如上述薄膜模組14A —樣的運作原理。 在操作的同時,為了將水分實質上自海水液體 蒸發出來,海水可能需要進行上述蒸餾製程一次以 上。因此,大部分通過薄膜腔室的海水,可能經由 產品流15Α被回送至儲存槽10Α以進一步進行上述 的處理,直到所有的水分實質上已自海水中移除。 當蒸氣流17Α中的水蒸氣冷凝為水液體時,在 下游熱交換器12Β内的冷凝潛熱是給予關閉的。此 © 冷凝熱是與由儲存槽10Β經進料流11Β進入階段Β 的海水進行交換。收集自水液體流28Α凝結下來的 冷凝水,其實質上是不含鹽分的水。 蒸氣流17Α的功能是類似於熱流體流16Α,即 蒸氣流17Α提供熱能以加熱通過熱交換器10Β的海 水。 為了方便起見,藉由加熱海水以使水分蒸發為 g 水蒸氣,而隨後所獲得的複數個重複的冷凝熱,在 其他階段B、C、...、η則不再描述。然而,應該明 白的是階段Β、C、…、η是與上述階段Α具有相同 的運作原理。 進一步應該明白的是,從上游熱交換模組内獲 得冷凝熱,接著將所獲得的冷凝熱加熱進入中空纖 維模組的另一下游海水進料的製程,是可重複任何 次數直到最後的下游重複是顯示階段η。 20 201023960 在階段η中,蒸氣流17n是本文提及的薄膜蒸 館製程100的副產物,可進一步被加工或利用做為 其他用途(此處未描述)。 請參閱第2圖,其是為本發明的第二實施例。 第2圖具有與第1圖相同的技術特徵,且以相同的 數字表示,但加註一符號。第2圖為一節能薄膜 蒸館製程100’,包含階段A,、B,、C,、…、n,,其 ❹ 中Α>代表第一個階段,Β,代表第二個階段,以及η, 代表第η個階段。每個階段分別包括含有海水的儲 存槽(10Α’,10Β’’ 10C’、...、ι〇η,)、熱交換器(12Α,、 12Bf、12Cf、…、12η’)及薄膜模組(14α,、14Β,、 14C’、…、14η’)。每個薄膜模組(ΐ4Α,、14Β,、14C,、…、 14η。具有一子集的複數個中空纖維薄膜(圖未示)設 置於其内。階段A’、Β,、C,、…、η,及其各組成構 件,是與上述第1圖所示的製程100相同。 _ 在製程100'中,水分自海水液體蒸發,接著以 獲得的冷凝熱用以加熱下游階段的海水,上述製程 與第1圖中的階段Α的描述相同。除了冷凝熱外, 還提供補充熱源到各階段(B、C7、...、ι〇中的各個 熱交換器(12Β、12CT、…、12ι〇,如下所述。 參閱階段Β、熱流體的溫度是高於進料流11Β' 中的海水溫度,熱流體是經由熱流體流16Β4流入熱 交換器12Β,。熱流體流16Β,作為一補充熱源’用以 21 201023960 加熱通過熱交換器12B<的海水流11B〜當存在於熱 流體流16Bf中的熱能轉移到海水流11B4灸,則16B< 中的熱流體冷卻至一較低溫度,並經由冷卻流體流 18B'離開熱交換器12B% 現在參閱階段在水分蒸發後留在薄膜腔室 14A'的海水液體,可能經由產品流15A'回流到儲存 槽10A'以進行下一步製程。導管20A'容許儲存槽 10A'中的海水連通至儲存槽10B^以這種方式,位 ❿ 在薄膜蒸餾製程1〇(Τ的階段A'的海水可在階段K 進行進一步的蒸镏。 同樣地對於階段Β、…、(n-iy,其各儲存槽 (10B、...、10(n-iy)是與其各下游儲存槽(10CT、…、 1〇1〇流體耦合,使各階段中的海水可在下游階段進 行進一步的蒸餾。 請參閱第3圖,其為本發明的第三實施例,其 具有與第1圖相同的技術特徵,且以相同的數字表 © 示,但加註一符號(〃)。第3圖所示的階段A”,是 第2圖中階段V的一替代實施例。階段A〃包含裝 有海水的儲存槽10A〃、熱交換器12A〃與12B〃、以 及薄膜模組(14A”-1、14A”-2、…、14A”-n)。階段 A〃中的元件與上述第2圖的階段V中的元件相同, 且此處所用的元件是以相同的參考數字表示,但加 註一符號Γ)。 22 201023960 在此實施例中,在單一階段A〃中具有複數個薄 膜模組(14A”-1、14A"-2、…、14A"-n)。另外’薄 膜模組(14A”-1、14A,,-2、…、14A,'-n)中的薄膜腔 室進一步包含至少一額外的排放管與繞道管 (26Α”-1、26Α,'·2、26A,,,3、…)’用以允許任一薄 膜模組(14A”-1、14A”-2、…、14A'f-n)中的海水繞 過其後的任一個下游模組。此設置的優點在於,假 若任一個薄膜模組故障,海水仍能繞過故障模組並 ^ 繼續進行蒸顧製程。 自熱交換器12A〃離開的海水經由導管24A〃進 入第一薄膜模組14A〃-卜必須了解的是,薄膜模組 14A〃-1與上述第1圖中的薄膜模組14A具有相同的 運作原理。在經過薄膜模組14A〃-1蒸餾後,剩餘的 海水經過導管24A〃-1流至薄膜模組14A〃-2以進行 進一步的蒸德。 Q 應該明白的是此製程可被重複任何次數,直到 最後的下游模組14A 〃-η,其中剩餘海水可經由導管 24Α〃-η收集,或經由循環流15Α〃回流至進料流 11Α 〃以進行進一步的製程。 第4圖為一薄膜蒸餾製程400,是對應到第2 圖的薄膜蒸餾製程的階段Α、Β'與C',且進一步包 含可程式邏輯控制器(PLCs) (30Α、30Β)。第4圖的 組成構件與第2圖組成構件相同,除了標記有星號 23 201023960 (*)的組成構件為例外。 此些可程式邏輯控制器(30A、30B)分別連接到 各階段的蒸氣流(17A*、17B*),且測量其内的溫度。 蒸氣流(17A*、17B*)的溫度在下文中分別以T17A與 Ti7B表示。The goal of a composite thin film distillation system having a multi-stage cell configuration is to use condensation heat to supplement the thermal energy required to produce a vapor phase of volatile components, which faces certain limitations. Using a limited heat duty at each stage to provide the next stage of the temperature gradient may result in a large number of optimal stage requirements before a reasonable steam liquid yield is achieved. The structure of each ruthenium stage also limits the flexibility of available surfaces and hinders heat exchange. Since the membrane modules and heat exchangers in each stage are the same two units, the control of the heating amount is also limited. An alternative heat exchanger structure optimizes heat flow, but is not acceptable in this case. Traditional thin film steaming systems face the same limitations; the function of the film and heat exchanger cannot be easily individualized, resulting in only a fixed heat exchange surface area. The former requirement is to provide a system, device or device that separates volatile matter from the solution, and has the disadvantage of being installed. The invention is directed to providing a separation system for separating volatile components from the first 5 201023960 of the present invention, the system comprising: a plurality of hollow fiber membranes, Selectively permeable and allowing the passage of volatile components in the volatile phase to substantially prevent the passage of the feed solution; a heat source having the ability to heat the feed solution on one side of the hollow fiber membrane to produce a passage through the hollow fiber membrane a volatile phase; and a heat exchange device condensing the volatile components and configured to obtain heat of condensation, the heat exchange device being thermally coupled to the heat source to thereby drive or supplement the heat source by the heat of condensation. Advantageously, the hollow fiber membrane is used to provide a tightly disposed structure having a relatively high surface area compared to the flat membrane for separating volatile components from the feed solution. Advantageously, the heat exchange device uses the heat of condensation provided by the heat source in the separation process to drive or replenish energy, thereby saving energy input to the overall system. Advantageously, the heat exchange means is a reduction in the consumption of cooling agent to condense volatile constituents. Therefore, the combination of the hollow fiber membrane for recovering heat of condensation and the heat exchanger provides an efficient thermal energy system for separating volatile components from the solution. In one embodiment, a desalination system is provided, comprising: a plurality of hollow fiber membranes that are selectively permeable and allow water vapor to pass therethrough to substantially prevent passage of brine; 201023960 a heat source having a side that heats the hollow fiber membrane The ability of the saline solution to produce a water vapor phase through the hollow fiber membrane; and a heat exchange device for condensing the water vapor phase and configured to obtain heat of condensation, the heat exchange device being thermally coupled to the heat source, thereby Condensation heat drives or supplements the heat source. A second object of the present invention is to provide a separation apparatus for separating volatile components from a feed solution, the apparatus comprising: ® a plurality of hollow fiber membranes having permselectivity and allowing passage of volatile components in the volatile phase, and Substantially preventing the passage of the feed solution; a plurality of hollow fiber modules each having a closed chamber and an inlet for conveying the feed solution to one side of the hollow fiber membrane, and The sealed chamber has a subset of the plurality of hollow fiber membranes extending therethrough; φ a plurality of heat exchangers in communication with the fluid of the volatile component to obtain condensation heat when the volatile components are condensed into a liquid These heat exchange devices have the ability to be thermally coupled to a heat source, thereby driving or supplementing the heat source by the condensation heat described above. A third object of the present invention is to provide a process for separating volatile components from a feed solution, the process comprising the steps of: heating a feed solution with a heat source; when there is a pressure difference between the two sides of the plurality of hollow fiber membranes, 7 201023960 The feed solution is made up of multiple components so that the volatile components in the volatile phase are formed on one side of the hollow fiber membrane, and the volatile components are located on the opposite side of the feed solution, and the volatility in the condensed volatile phase The composition, thus obtaining the heat of condensation, and the use of this heat of condensation, thereby driving or supplementing the heat to the heat source described above. [Embodiment] Definition: The meanings of the words and words used below shall be: "The term "thermal duty" as used in the contents of this manual refers to the passage of a certain period of time. , the heat source, or, the heat sink, ie, the heat sink ', is a heat device that emits heat. For example, the heat load of a heat exchanger refers to a certain The amount of thermal energy required to exchange a heat exchanger from one fluid to another during a particular period. As used herein, the term "variable heat load" means that the heat load will change over time. As referred to in this specification, the term "hollow fiber membrane" means a thin film which has a hollow core surrounded by a closed outer wall. Although some hollow fiber membranes may be substantially circular tubes, the term should not be interpreted to mean that all hollow fiber membranes are circular tubes, and 201023960 is any representative shape. In the present disclosure, the outer wall of the hollow fiber membrane is at least partially permeable to certain chemical species. Thus, physically permeable hollow fibers (eg, due to voids present in the outer wall of the hollow fiber), and/or chemically permeable hollow fibers (eg, through the outer wall of the hollow fiber due to mass transport of chemical species) are included in the definition Within the meaning of. The term "substantially" does not exclude "completely" 'for example', and substantially no composition of ''Y may be completely devoid of gamma. That is to say, the term "substantially" is to be interpreted as, completely, or, or, in part, . If necessary, 'the definition of the invention may be omitted, substantially.' Unless otherwise stated, 'comprising', and 'including (c〇mprise)' and its grammatical changes are mentioned. Shape, is meant to represent, open-ended, or inclusive language that includes not only the recited elements but also additional and unquoted elements. The term "about" as used in the compositional concentrations mentioned in the context generally means the positive/negative five percentages of the set value, and generally more than four percentages of the positive/negative value of the set value, generally more The positive/negative three percentages of the set value are generally more than two percentages of the positive/negative value of the set value. Generally, it can even be a positive/negative percentage of the set value, and generally can even be the zero percentage of the set value. . Throughout the disclosure, certain embodiments may be disclosed in a format 9 201023960. The description of this range format should be understood only for convenience and brevity and should not be construed as limiting the scope of the scope of the unchangeable limitations. Therefore, a range of descriptions should be considered to explicitly disclose all possible sub-ranges and individual values within the scope. For example, a range of 1 to 6 statements should be considered to have explicitly disclosed sub-ranges such as 1 to 3, 〖 to 4, 丨 to 5, 2 to 4, 2 to 6, 3 to 6, etc., and individual ranges within the range Values, such as work, 2, 3, 4, 5, and 6. This applies to a wide range. Disclosure of the Best Embodiment: A typical, non-limiting embodiment of a film module will be disclosed herein. In one embodiment, a separation line for separating a volatile component from a feed solution, such as a self-salt salt solution (eg, a knife exiting water vapor in seawater) is disclosed. The separation system includes a plurality of medium-sized workers with selective permeability. a fibrous membrane that allows the volatility in the volatilized phase to be substantially reduced while substantially preventing the passage of the feed solution. The system also includes a "heat source of the feed solution on one side of the hot hollow fiber membrane to volatilize the empty fibrous membrane. The heat exchange provided is provided with two volatile components' and its configuration can be used to obtain a condensation heat transfer drive or a supplemental heat source. The error is ν. Advantageously, the hydrophobic polymer hollow fiber membrane may be a hydrophobic polymer hydrophobic; Removed from the salt water removal system, 201023960 can not be wetted by the saline solution, but allows water vapor to pass through the polymer, thus increasing the effectiveness of separating water vapor from the brine. Typical hydrophobic polymers include polyalkylacrylic acid. Esters, polydienes, polyolefins, polylactones, polyoxyalkylenes, polyethylene oxides, polypyridines, polycarbonates, polyvinyl acetates, polysulfones, polypropylenes PP), polytetrafluoroethylene (PTFE), polyethylene (PE), polyvinylidene fluoride (PVDF), polydecylpentene (PMP), polydidecyloxane, polybutadiene, polyphenylene Ethylene, polydecyl methacrylate, perfluoropolymer, polydialkyloxazoline or polyphenyloxazoline, derivatives thereof, salts thereof, and combinations thereof. Advantageously, the type of hollow fiber membrane can be Depending on the volatile components separated from the feed solution. For example, in another embodiment, there is disclosed a separation system that separates volatile components from waste oil. The separation system includes a plurality of hydrophobic ones. The tubular stainless steel film has selective permeability and allows the passage of volatile components in the volatile phase to substantially prevent the passage of the feed solution. This non-recording steel film can prevent the penetration of waste oil due to its hydrophilic nature, however, the volatile phase The volatile components evaporated in the medium can pass, and thus the volatile components can be separated from the waste oil. The feed solution refers to any liquid solution containing volatile components. That is, the volatile component is one Evaporated matter, so Separated from the liquid solution. For example, the feed solution may be water, and the water includes a volatile organic compound having a lower boiling point than water. Another example is that the feed solution may be an aqueous solution, 11 201023960 which contains One or more solutes are dissolved therein, or the aqueous solution does not substantially contain one or more solutes, but rather a solvent thereof as a volatile component. Further, it should be understood that in some embodiments, the self-feed solution is removed. In addition to volatile components, it may not be to obtain volatile components, but to concentrate the feed solution. For example, in a juice manufacturing process, in order to concentrate juice for transport, it may be an ideal way to remove moisture from the juice. In an embodiment, the separation system includes means for varying the thermal duty of the heat exchange device depending on the heat duty of the heat source. This unit may include a valve system that can be opened and closed. Programmable logic controllers may be used to control the opening and closing of these valves. The heat exchange device can comprise at least one heat exchanger. The heat exchangers can be configured to flow in series or parallel to each other. In one embodiment, the heat exchange device includes a plurality of heat exchangers, and the means for varying the heat load of the heat exchanger is a device that includes a number of heat exchangers for varying the receivable volatile components. Each heat exchanger can have at least one valve for the flow of volatile constituents. When the valve is opened, the heat exchanger can receive volatile components. When the valve of a particular heat exchanger is closed, volatile materials will not enter this particular heat exchanger and the volatile component will then face another heat exchanger with the open valve. In this manner, the number of heat exchangers that can receive volatile components can be controlled. 201023960 Advantageously, the number of heat exchangers used can be chosen to recover as much as possible the latent heat of volatile materials, thus increasing the efficiency of the separation system. More advantageously, the separation system can be used as a power system and can be tailored to process conditions, particularly the amount of heat source heating, and is particularly advantageous when the heat source is variable. The use of customizable heat exchange devices can significantly reduce the total thermal energy consumption of the separation system. • The separation system can include at least one hollow fiber module. In one embodiment, the separation system includes a plurality of hollow fiber modules, each fiber module including a chamber having a subset of a plurality of hollow fiber membranes disposed therein. The plurality of fiber molds can further flow fluidly in series with one another. In the separation system, the heat exchange unit can be disposed between the hollow fiber modules. In one embodiment, the heat exchange device includes a plurality of heat exchangers, wherein at least one of the heat exchangers is disposed between the upstream hollow fiber module and the downstream hollow fiber module that are in fluid communication with each other. Each heat exchanger obtains the heat of condensation of the volatile phase to heat the feed solution in the hollow fiber module. In one embodiment, the heat exchanger disposed between the upper and lower hollow fiber modules is configured to obtain the condensation heat of the volatile phase of the upstream hollow fiber module, and then the heat obtained is used to heat through the downstream hollow. The feed solution of the fiber module. 13 201023960 The heat source is a feed solution configured to heat into a plurality of hollow fiber modules. The heat source can simultaneously heat all of the hollow fiber modules, or simultaneously heat the combination of hollow fiber modules, or individually heat each hollow fiber module. In one embodiment, the configured heat source is a feed solution for individually heating into each hollow fiber module. Advantageously, each hollow fiber module can be operated individually and its operating parameters can be individually controlled. The heat source may include any suitable heat source. The heat source can have a fixed heat load or a variable heat load. In an embodiment, the heat source has a variable thermal load. For example, a heat source having a variable thermal load may be a waste heat source or a solar heat source or a geothermal source. In an embodiment, the heat source may include an exhaust heat source. Typical waste heat sources include waste gas from gas boilers in power plants and incinerators, process gases from chemical and metallurgical operations, and waste heat from other industrial processes. In countries with warm climates, solar energy can be used as a heat source. Solar heat can heat the feed solution from 40 degrees to 95 degrees, from 50 degrees to 95 degrees, from 50 degrees to 75 degrees. In solar heating systems, solar heat is concentrated into a heated fluid, such as water. The heated fluid is then directed to a vacuum tube and its thermal energy is transferred to the feed solution via a heat exchanger, thereby achieving the effect of heating the feed solution. In one embodiment, disclosed is a separation device for separating volatile components from a feed solution 14 201023960, the device comprising: a plurality of hollow fiber membranes having permselectivity and allowing passage of volatile components in the volatile phase, And substantially preventing the passage of the feed solution; a plurality of hollow fiber modules, each module having a closed chamber and an inlet having a subset of a plurality of hollow fiber membranes Extending therethrough, the water inlet is a side for transporting the feed solution to the hollow fiber membrane; a heat source thermally coupled to the feed solution; and a plurality of heat exchangers fluid with the volatile component Coupling, and configured to obtain heat of condensation, wherein the heat exchanger is thermally coupled to the heat source, thereby driving or supplementing the heat source by condensation heat. The plurality of hollow fiber modules may be fluidly connected in series, in parallel, or in series and in parallel with each other. In one embodiment, the plurality of φ hollow fiber modules are fluidly flowing in series with each other. The feed solution can pass through each hollow fiber module or can bypass at least one hollow fiber module. In one embodiment, the feed solution can bypass one or more hollow fiber modules. Each of the hollow fiber modules has a closed chamber having a subset of a plurality of hollow fiber membranes extending therethrough. These hollow fiber membranes may be hydrophobic polymer membranes, and may be selected from the group consisting of polyvinylidene fluoride, polypropylene, polyethylene, and polytetrafluoroethylene 15 201023960 vinyl fluoride. The separation device can further include a monitoring device coupled to the heat source for monitoring the amount of heating of the heat source. The monitoring device can include, for example, at least one or a combination of a thermal sensor coupled to a controller, a temperature transmitter, a temperature sensor, or a thermocouple. The separation device can further include a control device coupled to the monitoring device and the plurality of heat exchangers. The control device is able to determine the number of heat exchangers to be used in accordance with the thermal load in the monitoring. Advantageously, the number of heat exchangers to be used can be customized in accordance with a variable heat source. Further disclosed is a process for separating volatile components from a feed solution, comprising the steps of: heating a feed solution with a heat source; and having a pressure difference between the two sides of the plurality of hollow fiber membranes, allowing the feed solution to pass through the plurality One side of the hollow fiber membrane, the volatile component in a volatile phase is formed on one side of the hollow fiber membrane, and the volatile component is located on the opposite side of the feed solution; the volatile component in the volatile phase is condensed Thereby obtaining a heat of condensation; and using heat of condensation to thereby drive or supplement the heat to the heat source. This process can also include the step of varying the heat source flux. When the heat source flux changes, the process may further comprise the step of utilizing a plurality of heat exchangers to obtain heat of condensation. Then, the heat load of the heat exchanger can be changed as the amount of heating of the heat source changes. The process may further comprise the step (1) of providing a plurality of hollow fiber modules, each hollow fiber module comprising a chamber having a subset of a plurality of hollow fiber membranes disposed therein, wherein the hollow fiber modules are in series with each other Flow, and (ii) individual heating of the feed solution entering each hollow fiber module. • Volatile components can be separated from the liquid by a pressure difference between the lumen side and the shell side of the hollow fiber membrane. This can be achieved by attaching a source of negative pressure to the exit end of the hollow fiber membrane. This negative pressure can be applied to form a vacuum on the lumen side of the hollow fiber membrane. This pressure differential helps to remove volatile components from the liquid and allows volatile components to evaporate at low temperatures, making it possible to use low-grade heat sources for evaporation. Typical volatile components include water, as well as organic compounds such as esters, ethers, aldehydes, alcohols, nitriles, and unsaturated carbohydrates such as terpenes. In one embodiment, the feed solution can be saline, such as brackish water or seawater, and the volatile component can be water evaporated from the brine, which is substantially salt-free water vapor. The coolant used to condense the volatile components that have evaporated in the final stage can be any type of coolant. In one embodiment, the cooling liquid at room temperature (about 20 ° C) is water. Advantageously, room temperature water is readily available in the factory and can be easily recycled or disposed of. 17 201023960 Detailed description: Figure 1 is an energy-saving thin film distillation process 100 comprising stages A, B, C, ..., η, where A represents the first stage, B represents the second stage, and η represents the nth stage. Each stage includes a storage tank containing seawater (1〇Α, 10Β, 10C, ..., 1〇η), heat exchangers (12Α, 12Β, 12C, ..., 12η), and a membrane module (14Α, 14Β, 14C, ..., 14η). A plurality of hollow fiber films (not shown) having a subset of each of the film modules (14, 14, 14, C, ..., 14n) are disposed therein. Referring to the stage A of the thin film distillation process, the seawater liquid stored in the storage tank 10A flows to the heat exchanger 12A via the feed stream 11A. The seawater feed stream 11A is heated by the following method and exits the heat exchanger 12A via the hot seawater stream 13A. The temperature of the hot fluid is higher than the temperature of the seawater in feed stream 11A, and the hot fluid flows into heat exchanger 12A via hot fluid stream 16A. The hot fluid passing through stream 16 A has been heated by a solar heat source, wherein the solar energy is used to heat the hot fluid. The hot fluid acts as a heat source for heating the seawater passing through the heat exchanger 12A. When the thermal energy present in the hot fluid is transferred to the seawater passing through the heat exchanger 12A, the hot fluid in 16A is cooled to a lower temperature and exits the heat exchanger 12A via the cooling fluid stream 18A. After passing through the heat exchanger 12A, the hot seawater 13A flows into the membrane module 14A under a negative pressure state (i.e., vacuum) at 201023960. The membrane module 14A and the other membrane modules (14B, 14C, ..., 14n) include a chamber having a water inlet conduit for receiving seawater and for allowing seawater to be self-contained Remove the discharge pipe. As described above, the chamber of the module 14A is composed of a plurality of hollow fiber membranes (not shown), each hollow fiber membrane having an open end at one end of the tube and a closed end at the other end of the tube. The hollow fiber membrane is made of a hydrophobic polymer (polypropylene, polyethylene, polyvinylidene fluoride, or polytetrafluoroethylene) that allows water vapor to pass through but is generally impermeable to aqueous liquids. Applying a vacuum state to the inner cavity side or the outer casing side of the hollow fiber membrane can also create a vacuum state in the chamber 14A. When the hot seawater stream 13A enters the chamber of the membrane module 14A, most of the water contained in the seawater evaporates into water vapor substantially free of salt. The water vapor passes through the wall of the hollow fiber membrane, enters the inner cavity of the hollow fiber membrane disposed in the membrane module 14A, and then exits through the open end of the hollow fiber membrane as the vapor stream 17A. Most of the seawater rich in salt at this point remains in the chamber of membrane module 14A and is removed from membrane module 14A via product stream 15A. The vapor stream 17A is insulated to prevent heat loss and maintained in a negative pressure state to ensure that water can be maintained in a vapor state prior to entering the downstream heat exchanger 12B, as will be described further below. It must be understood that other film modules (14B, 14C, ..., 19 201023960 14n) have the same operational principle as the film module 14A described above. At the same time as the operation, in order to evaporate the water substantially from the seawater liquid, the seawater may need to be subjected to the above distillation process more than once. Therefore, most of the seawater passing through the membrane chamber may be returned to the storage tank 10 via the product stream 15 to further perform the above treatment until all of the moisture has been substantially removed from the seawater. When the water vapor in the vapor stream 17 is condensed into a water liquid, the latent heat of condensation in the downstream heat exchanger 12 is given off. This © heat of condensation is exchanged with the seawater entering the stage 由 from the storage tank 10 through the feed stream 11Β. The condensed water, which is condensed from the water liquid stream 28, is substantially water-free. The function of the vapor stream 17 is similar to the hot fluid stream 16 Α, i.e., the vapor stream 17 Α provides thermal energy to heat the seawater passing through the heat exchanger 10. For the sake of convenience, by heating seawater to evaporate water to g water vapor, and subsequently obtaining a plurality of repeated condensation heats, the other stages B, C, ..., η are not described. However, it should be understood that the stages C, C, ..., η have the same operational principles as the above stages. It should further be understood that the process of obtaining condensing heat from the upstream heat exchange module and then heating the obtained condensing heat into another downstream seawater feed of the hollow fiber module can be repeated any number of times until the last downstream repeat Is the display phase η. 20 201023960 In stage η, vapor stream 17n is a by-product of the thin film steaming process 100 referred to herein and may be further processed or utilized for other uses (not depicted herein). Please refer to Fig. 2, which is a second embodiment of the present invention. Fig. 2 has the same technical features as those of Fig. 1, and is denoted by the same numeral, but with a symbol. Figure 2 is an energy-saving film steaming process 100', including stages A, B, C, ..., n, and then ❹ Α > represents the first stage, Β, represents the second stage, and η , representing the nth stage. Each stage includes a storage tank containing seawater (10Α', 10Β'' 10C', ..., ι〇η,), heat exchangers (12Α, 12Bf, 12Cf, ..., 12η') and membrane modules. (14α, 14Β, 14C', ..., 14η'). Each of the film modules (ΐ4Α, 14Β, 14C, ..., 14n) has a subset of a plurality of hollow fiber membranes (not shown) disposed therein. Stages A', Β, C, ... , η, and its constituent members are the same as the process 100 shown in Fig. 1. _ In the process 100', water is evaporated from the seawater liquid, and then the obtained heat of condensation is used to heat the seawater in the downstream stage, The process is the same as described in Stage 第 in Figure 1. In addition to the heat of condensation, additional heat sources are provided to each stage (B, C7, ..., ι〇) (12Β, 12CT,...,12ι 〇, as described below. Referring to the stage, the temperature of the hot fluid is higher than the temperature of the seawater in the feed stream 11Β', and the hot fluid flows into the heat exchanger 12 via the hot fluid stream 16Β4. The hot fluid stream is 16 Β, as a supplement The heat source 'is used for 21 201023960 to heat the seawater flow 11B through the heat exchanger 12B<~ When the thermal energy present in the hot fluid stream 16Bf is transferred to the seawater flow 11B4, the hot fluid in 16B< is cooled to a lower temperature, and Leaving the heat exchanger via cooling fluid stream 18B' 12B% Referring now to the seawater liquid remaining in the membrane chamber 14A' after evaporation of the water, it may be returned to the storage tank 10A' via the product stream 15A' for the next process. The conduit 20A' allows the seawater in the storage tank 10A' to communicate. To the storage tank 10B^ in this way, the seawater in the thin film distillation process 1〇 (the stage A' of the seawater can be further distilled in the stage K. Similarly for the stage Β, ..., (n-iy, Each storage tank (10B, ..., 10 (n-iy) is fluidly coupled to its downstream storage tanks (10CT, ..., 1〇1〇) so that the seawater in each stage can be further distilled in the downstream stage. Referring to Fig. 3, which is a third embodiment of the present invention, which has the same technical features as those of Fig. 1, and is shown by the same numeral table, but with a symbol (〃). Stage A" is an alternative embodiment of Stage V in Figure 2. Stage A includes a storage tank 10A containing seawater, heat exchangers 12A and 12B, and membrane modules (14A"-1, 14A "-2, ..., 14A"-n). The elements in stage A are the same as those in stage V of Figure 2 above. The components used herein are denoted by the same reference numerals, but with a symbol Γ). 22 201023960 In this embodiment, a plurality of thin film modules (14A"-1, 14A";-2,...,14A"-n). In addition, the film chamber in the thin film module (14A"-1, 14A, -2, ..., 14A, '-n) further comprises at least one additional discharge tube With the bypass tube (26Α"-1, 26Α, '·2, 26A,,, 3,...)' to allow any of the film modules (14A"-1, 14A"-2,...,14A'fn) The seawater bypasses any of the downstream modules. The advantage of this setup is that if any of the membrane modules fails, the seawater can still bypass the faulty module and continue the steaming process. The seawater leaving from the heat exchanger 12A enters the first film module 14A via the conduit 24A. It must be understood that the film module 14A〃-1 has the same operation as the film module 14A in Fig. 1 above. principle. After distillation through the membrane module 14A〃-1, the remaining seawater flows through the conduit 24A〃-1 to the membrane module 14A〃-2 for further steaming. Q It should be understood that this process can be repeated any number of times until the last downstream module 14A 〃-η, where the remaining seawater can be collected via conduit 24Α〃-η or via a recycle stream 15Α〃 to the feed stream 11Α Carry out further processes. Figure 4 is a thin film distillation process 400, which corresponds to the stages Α, Β' and C' of the thin film distillation process of Figure 2, and further includes programmable logic controllers (PLCs) (30 Å, 30 Å). The components of Fig. 4 are the same as those of Fig. 2 except for the components marked with the asterisk 23 201023960 (*). These programmable logic controllers (30A, 30B) are respectively connected to the vapor streams (17A*, 17B*) of the respective stages, and the temperature inside them is measured. The temperatures of the vapor streams (17A*, 17B*) are indicated below by T17A and Ti7B, respectively.

Tset-30A 是一輸入在可程式邏輯控制器30A的 溫度,其中Tset_30A是加熱通過熱交換器12B*的海 水所需要的最低溫度。在比較測量到的溫度T17A與 © 設定溫度T set-3QA 後, 可程式邏輯控制器30A控制分 別位在蒸氣流17A*、繞道流32A及熱流體流16B* 上的閥門(V17A、V32A與V16B)的開與關。詳細的控 制將在下文做進一步的描述。 因為熱源為太陽能,所以熱源每天提供的熱量 可能隨著時間而改變。舉例來說,早晨與傍晚的熱 能是較中午為少的。因此,由太陽能源提供的熱能 是隨著時間變化的,意味著在製程400的各個階段 € 中,其熱負載需根據在任何特定時間下所獲得的特 定能源負荷而改變。舉例來說,蒸氣流17A*的溫度 越高(亦即,通常在中午期間),越多熱能用在其内 水蒸氣的冷凝。因此,假若溫度T17A高於溫度 Tset-30A ’ 即不需要經熱流體流16B*提供一補充熱 源。於是,當測量到的溫度T17A高於設定溫度Tset_30A 時,閥門V〗7A開啟,而閥門V32A與V16B關閉,所 24 201023960 以在蒸氣流17A*的水蒸氣流至階段中的熱交換 器 12B*。 另一方面,當測量到的溫度T17A低於設定溫度 Tset-3〇A時(亦即,通常在早晨或傍晚期間),表示在 蒸氣流17A*的熱能是不足夠的。因此,閥門ν17Α 關閉,而閥門V32A開啟,所以在蒸氣流17A*中的 水蒸氣不會流至階段K中的熱交換器12B*。在蒸氣 φ 流17Α*的水蒸氣是副產物,其經由繞道流32Α離 開薄膜模組14Α*。此外,閥門V16B開啟,以便提 供經熱流體流16B*導入的補充熱源至熱交換器 12B*中,使其能夠加熱通過進料流11B*中的海水。 同樣地,可程式邏輯控制器30B連接到階段K 的蒸氣流17Β*,且在決定蒸氣流17Β*的溫度(表示 為Τΐ7Β)後’控制閥門(V17B、V32B與Vi6C)的開與關。 第5圖為一演算圖,其詳細說明了第4圖的可 ® 程式邏輯控制器(30A)的運作。Tset-30A is the temperature input to the programmable logic controller 30A, where Tset_30A is the minimum temperature required to heat the seawater passing through the heat exchanger 12B*. After comparing the measured temperature T17A with the © set temperature Tset-3QA, the programmable logic controller 30A controls the valves (V17A, V32A, and V16B) located in the vapor stream 17A*, the bypass stream 32A, and the hot fluid stream 16B*, respectively. ) on and off. Detailed control will be further described below. Because the heat source is solar, the heat that the heat source provides every day may change over time. For example, the heat in the morning and evening is less than at noon. Thus, the thermal energy provided by the solar source varies over time, meaning that during each stage of process 400, its thermal load needs to be varied depending on the particular energy load obtained at any particular time. For example, the higher the temperature of the vapor stream 17A* (i.e., typically during noon), the more heat energy is used to condense the water vapor therein. Therefore, if the temperature T17A is higher than the temperature Tset-30A', it is not necessary to provide a supplemental heat source via the hot fluid stream 16B*. Thus, when the measured temperature T17A is higher than the set temperature Tset_30A, the valve V 7A is opened, and the valves V32A and V16B are closed, and 24 201023960 flows to the heat exchanger 12B* in the stage with the water vapor in the vapor stream 17A*. . On the other hand, when the measured temperature T17A is lower than the set temperature Tset-3〇A (i.e., usually during morning or evening), it is indicated that the heat energy in the vapor stream 17A* is insufficient. Therefore, the valve ν17 Α is closed and the valve V32A is opened, so the water vapor in the vapor stream 17A* does not flow to the heat exchanger 12B* in the stage K. The water vapor at the vapor φ flow of 17 Α* is a by-product which leaves the membrane module 14 Α* via the bypass flow 32 。. In addition, valve V16B is opened to provide a supplemental heat source introduced through hot fluid stream 16B* into heat exchanger 12B* to enable it to heat the seawater passing through feed stream 11B*. Similarly, the programmable logic controller 30B is connected to the vapor stream 17Β* of stage K and controls the opening and closing of the valves (V17B, V32B and Vi6C) after determining the temperature of the vapor stream 17Β* (denoted as Τΐ7Β). Figure 5 is a calculus diagram detailing the operation of the programmable logic controller (30A) of Figure 4.

如上所述,可程式邏輯控制器30A被編程以控 制閥門(V! 7A ' V32A 與V16B)的開與關。當溫度TAs described above, the programmable logic controller 30A is programmed to control the opening and closing of the valves (V! 7A 'V32A and V16B). When temperature T

17A 高於Tset_3〇A時,可程式邏輯控制器30A傳送開啟閥 門Vi7A及關閉閥門V32A與Vi6B的電子訊號。另一 方面,當溫度T17A低於Tset_3〇A時,可程式邏輯控制 器30A傳送關閉閥門V 17A 及開啟閥門 V32A 與 Vi6B 的電子訊號。 25 201023960 ,6 ® —控制薄膜蒸館製程刪,其對應 於第1圖所示的_蒸㈣程的階段A與階段B, 且進步包含可程式邏輯控制器(pLc)(棚)及複 數個以串聯方式連接的熱交換器(12B*-1、 12B _2、··· ' 12B*-N)。除了標記有雙星號(**)的組 成構件外,第6圖中其他所有組成構件皆與第i圖 相同。 在操作過程中,一個或多個熱交換器、 12B -2、…、12B*-N)可用於加熱海水進料UB*。 可程式邏輯控制器40B測量分別離開熱交換器 (12BM、l2B*-2、…、12B*-N)的液流(38-1、 38-2、 液體水When 17A is higher than Tset_3〇A, the programmable logic controller 30A transmits an electronic signal that opens the valve Vi7A and closes the valves V32A and Vi6B. On the other hand, when the temperature T17A is lower than Tset_3〇A, the programmable logic controller 30A transmits an electronic signal for closing the valve V 17A and opening the valves V32A and Vi6B. 25 201023960 , 6 ® — Controlled film evaporation process, which corresponds to phase A and phase B of the steaming process shown in Figure 1, and the progress includes a programmable logic controller (pLc) (shed) and a plurality of Heat exchangers connected in series (12B*-1, 12B_2, ··· ' 12B*-N). Except for the components marked with a double asterisk (**), all other components in Figure 6 are identical to the i-th image. During operation, one or more heat exchangers, 12B-2, ..., 12B*-N) may be used to heat the seawater feed UB*. The programmable logic controller 40B measures the flow (38-1, 38-2, liquid water) leaving the heat exchanger (12BM, l2B*-2, ..., 12B*-N), respectively.

···、38-(N-l))中的混合物的水蒸氣Water vapor of the mixture in ···, 38-(N-l))

的溫度’從而控制海水進料11B*經由開啟的閥門 v11B流過這些熱交換器(12BSIM、12B*_2、...、 12B*_N) ’ 或經由繞道流(5(M、50-2、...、50·(Ν·1)) 繞過一個或多個熱交換器(12Β*-1、12Β*-2、…、 12Β、Ν)。液流(38-卜 38-2、…、38-(Ν-1))的溫度在 下文中刀別以丁38-1、Τ38-2、…、Τ38-(Ν-1)表示。 控制海水進料11Β**的流動是依據所測量到的 溫度y ...、T38_(n i)。測量到的溫度T3W、 26 201023960 Τ38-2、…、丁爪⑺-〗)是個別與輸入於可程式邏輯控制 器40B内的設定溫度Tset_4〇B相比較。設定溫度 Tset-40B 是加熱通過每個熱交換器(12B*-1、 12B*_2、...、12B*-N)的海水所需要的最低溫度。 藉由閥門(Viib、V50-I、V50-2、…、V5〇-(N-l))的 開與關可有助於海水進料11B**流過熱交換器 (12Β*·1、12Β*·2、...、12B*-N)的控制,且此些閥 φ 門是分別沿著海水進料11B**與繞道流(50-1、 50-2、…、50(N-1)),其將於以下進一步說明。除非 下文敘述另有指出,所有閥門(V11B、V5M、 V5O-2、…、V5〇-(N-l))是關閉的。 在操作過程中,可程式邏輯控制器40B測量離 開熱交換器12B*-1的液流38-1的溫度。如果所測 量的溫度不超過設定溫度Tset_4GB,可程式邏輯 控制器40B傳送開啟閥門V5(M的電子訊號。這是因 φ 為液流38-1内沒有足夠熱能用以運作剩餘的熱交 換器(12Β*·2、...、12B*-N)。因此進料 11B**直接 流入熱交換器12B*-1,經由進料流50-1繞過剩餘 的熱交換器(12B*-2、…、12B*-N)。 另一方面,假若測量的溫度T3H高於設定溫度 Tset-4〇B,則可程式邏輯控制器40B傳送開啟閥門 V11B的電子訊號,且可程式邏輯控制器40B測量離 開下一個熱交換器12B*-2的流體溫度。 27 201023960 同樣地,若測量的溫度Τ38_2不超過設定溫度 Tset-4〇B時,可程式邏輯控制器40Β傳送開啟閥門 V50-2的電子訊號。海水進料11B**經由進料流50-2 直接流入下一個熱交換器12B*-2,且隨後流入熱交 換器 。 類似地,若測量的溫度T38_2高於設定溫度 Tset-40B 時,則可程式邏輯控制器40B傳送開啟閥門 V11B的電子訊號,且可程式邏輯控制器40B測量離 開下一個熱交換器(12B*-3,圖未示)的流體溫度。 如上所述,若進入熱交換器12B*-N的液流 38-(Ν-1)的溫度不高於設定溫度Tset_4〇B時,可程式 邏輯控制器40B傳送開啟閥門V 50-(Ν-1) 的電子訊 號。這是為了使海水進料11B**經由進料流50-(Ν-1) 直接流入熱交換器12B*-(N-1)(圖未示),且隨後流 入熱交換器(12B*-(N-2)(圖未示)、…、12B*-2、 12B*-1),但繞過熱交換器12B*-N。 若測量的溫度T 38-(Ν-1)高於設定溫度Tset_4〇B 時,可程式邏輯控制器40B傳送開啟閥門V11B的電 子訊號。也就是說,海水進料11B*連續流過彼此串 聯連接的所有的熱交換器(12B*-N、…、12B*-2、 12Β*·1)。 因此,所使用彼此串聯連接的熱交換器的數 量,可根據是否有足夠的熱能(如以溫度做為指標) 201023960 來加熱海水進料而改變。 第7圖為運作第6圖所示的 _的演算第7圖00。除非另有說明式制器 財,所相可程式_控㈣ 胃#所作過 控制的閥Μν11Β、ν5_ν5……乂圖 關閉。 50-(Ν_υ)杳為 ❹ 可:式邏輯控制器娜測量液流3“的溫度 :38:二1!η為卜2、..·…。若測量到的溫度 回;。又疋狐度Tset_4〇B,可程式邏輯控制器4〇β傳送 開啟閥門V11B的電子訊號。 另一方面,若測量到的溫度低於設定溫度 Tset_4⑽,可程式邏輯控制器40B傳送開啟閥門V5“ 的電子訊號,其中η為1、2、...、Nd。 依照以上第6圖與第7圖的說明,可明白的是 可程式邏輯控制器40B能夠調整熱交換器的總表面 積’此為薄膜蒸餾製程600所需要的。 例子1 : 使用上述分離系統,藉由多階段薄膜蒸餾製程 濃縮氯化鈉溶液。薄膜蒸餾製程的每個階段包含一 薄膜蒸顧模組及一熱交換器單元。進料液體為氯化 鈉溶液’欲進行濃縮且初始濃度為6%的氣化鈉溶液 的流速為1000公斤/天。 29 201023960 外部熱源僅供予位在薄膜蒸餾模組的第一階段 的進料液體。在此例子中,外部熱源是自電力消耗 所轉換而來的熱能。由此熱源所提供的熱能為 5x108 焦耳/天。 ........ 漠縮的氯化鈉溶液通過熱交換器,並且以外部 熱源進行加熱。此溶液接著進入薄膜蒸餾模組,溶 液中的水分經蒸發後形成水蒸氣。薄膜蒸餾模組包 含如上述第1圖中所述的薄膜腔室。薄膜是以聚丙 稀所製成’其直徑為0.4至0.6 mm。每個模組皆安 ® 置有大約60,000至80,000個纖維。 自薄膜蒸德模組的第一階段中蒸發的水蒸氣經 由熱交換器單元取出,用以加熱在薄膜蒸餾模組的 第二階段的進料液體至約65°C的溫度。 位在第二階段的進料液體是為第一階段中未蒸 發的殘留溶液。在加熱進料液體後,水蒸氣冷凝成 水液體。自第一階段蒸發的水量為19〇公斤。 ❹ 同樣地’自薄膜蒸餾模組的第二階段中蒸發的 水蒸氣經由熱交換器組件取出,用以加熱在薄膜蒸 館模組的第三階段的進料液體至約55艺的溫度。自 第二階段蒸發的水量為18〇公斤。 自薄膜蒸餾模組的第三階段中蒸發的水蒸氣被 取出後’用以加熱在薄膜蒸餾模組的第四階段的進 料液體至約45°C的溫度。自第三階段蒸發的水量為 30 201023960 170公斤。 在第四階段蒸發的水蒸氣以室溫水進行冷卻。 自第四階段蒸發的水量為160公斤。 氣化納溶液的醉後濃度為20%。在單一階段的 製程中’每蒸發一噸水分的熱能消耗為2.63x106焦 耳,兩階段製程為135xl〇6焦耳,三階段製程為 〇.93X106焦耳’以及四階段製程則為0.71x106焦耳。 因此’相較於單一製程,四階段製程能夠減少 分離系統的熱量消耗達73%。 應用性: 將要明白的是,本發明所揭露的系統是藉由薄 f?、、、館製程分離進料溶液中的揮發性成分。有利的 :去2用的中空纖維薄臈相較於高分子板蒸餾, :程二诵:大很多的表面積。如此可增加薄膜蒸餾 製通量,以達到-較佳的製程效率與降低費用。 所組個別進行操作的個別階段 #換器^有利的是,线的操作參數可個別控 將要明白的是’分離 由進料溶液回收蒸發製::、叉換裝置允許藉 '發裏程中沩耗的能量。有利的 31 201023960 是’可大大的降低分離系統的整體熱能消耗。 將明白的是,熱交換裝置包含至少一熱交換 器。有利的是,可選擇使用的熱交換器數量,以盡 可能回收蒸發的揮發性成分的潛熱,因而提高分離 系統的效率。 更有利的是,所揭露的分離系統的能源效益設 计克服了傳統薄膜蒸餾製程的主要問題。 雖然已盡合理的努力描述與本發明等效的實施 © 例’然其對於熟習此技藝者在閱讀上述揭露後將是 明顯的。因此任何未脫離本發明的精神與範疇,而 對其進行的等效修改或變更,均應包含於後附的申 請專利範圍中。 【圖式簡單說明】 圖是說明一揭露實施例,且用於解釋此揭露實施 卜原理。然而,需了解此些圖式僅設計作為說明目的,Ό 並寻用以疋義限制本發明。 係為揭露實施例的薄膜蒸館製程的示意圖; 第2®係、為另一揭露實施例的薄膜蒸餾製程的示意圖; 第圖係為第2圖所示的薄膜蒸顧製程的某-階段的-實施例; 第4圖係炎m '、馬用以控制第2圖所示的薄膜蒸餾製程的一控 32 201023960 制圖, 第5圖係為運作第4圖所示的可程式邏輯控制器(PLC) 的一演算圖; 第6圖係為用以控制第1圖所示的薄膜蒸餾製程的一控 制圖;以及 第7圖為運作第6圖所示的可程式邏輯控制器(PLC)的 一演算圖。 【主要元件符號說明】 100 :節能薄膜蒸餾製程; 10A、10B、10C、10η :儲存槽; 11A、11B、11C、lln :進料流; 12A、12B、12C、12η :熱交換器; 13Α、13Β、13C、13η :熱海水流; 14Α、14Β、14C、14η :薄膜模組; 15Α、15Β、15C、15η :產品流; 16Α :熱流體流; 17Α、17Β、17C、17η :蒸氣流; 18Α :冷卻流體流; 28Α、28Β、28C :水液體流; 1〇(Τ :節能薄膜蒸餾製程; 10Α'、10Bf、10CT、10nf :儲存槽; llAf、11B'、llCf、llnf :進料流; 12Af、12Bf、12CT、:熱交換器; 33 201023960 13A,、13B,、13C,、 14A,、14B,、14C,、 15A,、15B,、15C,、 16A,、16B,、16C,、 17A,、17B,、17C,、 18A,、18B,、18C,、 20A,、20B,、20C,、 28A,、28B,、28C,: 10A 〃:儲存槽; 11A":進料流;The temperature ' thus controls the seawater feed 11B* to flow through these heat exchangers (12BSIM, 12B*_2, ..., 12B*_N) via the open valve v11B' or via a bypass flow (5 (M, 50-2, ..., 50·(Ν·1)) Bypassing one or more heat exchangers (12Β*-1, 12Β*-2,..., 12Β,Ν). Liquid flow (38-b 38-2,... The temperature of 38-(Ν-1)) is represented by Ding 38-1, Τ38-2, ..., Τ38-(Ν-1) in the following. Controlling the flow of seawater feed 11Β** is based on the measured The temperature y ..., T38_(ni). The measured temperature T3W, 26 201023960 Τ 38-2, ..., the paw (7) - is the individual set temperature Tset_4 〇 B input into the programmable logic controller 40B. Compared. The set temperature Tset-40B is the minimum temperature required to heat the seawater passing through each heat exchanger (12B*-1, 12B*_2, ..., 12B*-N). The opening and closing of the valves (Viib, V50-I, V50-2, ..., V5〇-(Nl)) can help the seawater feed 11B** flow through the heat exchanger (12Β*·1, 12Β*· Control of 2,..., 12B*-N), and the valves φ are respectively fed along the seawater 11B** and the bypass flow (50-1, 50-2, ..., 50(N-1) ), which will be further explained below. All valves (V11B, V5M, V5O-2, ..., V5〇-(N-1)) are closed unless otherwise stated below. During operation, the programmable logic controller 40B measures the temperature of the liquid stream 38-1 exiting the heat exchanger 12B*-1. If the measured temperature does not exceed the set temperature Tset_4GB, the programmable logic controller 40B transmits an electronic signal that opens the valve V5 (M) because φ is that there is not enough heat in the flow 38-1 to operate the remaining heat exchanger ( 12Β*·2,...,12B*-N). Therefore, the feed 11B** flows directly into the heat exchanger 12B*-1, bypassing the remaining heat exchanger via the feed stream 50-1 (12B*-2) On the other hand, if the measured temperature T3H is higher than the set temperature Tset-4〇B, the programmable logic controller 40B transmits an electronic signal that opens the valve V11B, and the programmable logic controller 40B The temperature of the fluid leaving the next heat exchanger 12B*-2 is measured. 27 201023960 Similarly, if the measured temperature Τ38_2 does not exceed the set temperature Tset-4〇B, the programmable logic controller 40 transmits the electrons that open the valve V50-2. The seawater feed 11B** flows directly into the next heat exchanger 12B*-2 via the feed stream 50-2 and then flows into the heat exchanger. Similarly, if the measured temperature T38_2 is higher than the set temperature Tset-40B , the programmable logic controller 40B transmits an electronic signal that opens the valve V11B. And the programmable logic controller 40B measures the temperature of the fluid leaving the next heat exchanger (12B*-3, not shown). As described above, if the flow enters the heat exchanger 12B*-N 38-(Ν-1 When the temperature is not higher than the set temperature Tset_4〇B, the programmable logic controller 40B transmits an electronic signal that opens the valve V 50-(Ν-1). This is to make the seawater feed 11B** via the feed stream 50- (Ν-1) flows directly into the heat exchanger 12B*-(N-1) (not shown), and then flows into the heat exchanger (12B*-(N-2) (not shown), ..., 12B*- 2, 12B*-1), but bypassing the heat exchanger 12B*-N. If the measured temperature T 38-(Ν-1) is higher than the set temperature Tset_4〇B, the programmable logic controller 40B transmits the opening valve V11B. The electronic signal, that is, the seawater feed 11B* continuously flows through all the heat exchangers (12B*-N, ..., 12B*-2, 12Β*·1) connected in series to each other. Therefore, the series are connected in series with each other. The number of heat exchangers can be changed according to whether there is enough heat energy (such as temperature as an indicator) 201023960 to heat the seawater feed. Figure 7 is the calculation of Figure 7 of Figure 7 in Figure 6. Unless otherwise stated, the valve Μν11Β, ν5_ν5... 乂 关闭 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 3" temperature: 38: two 1! η is Bu 2, ........ If the measured temperature is back; Also, the floppy Tset_4〇B, the programmable logic controller 4〇β transmits the electronic signal of the valve V11B. On the other hand, if the measured temperature is lower than the set temperature Tset_4 (10), the programmable logic controller 40B transmits an electronic signal that turns on the valve V5", where η is 1, 2, ..., Nd. According to the above figure 6 and In the description of Figure 7, it is understood that the programmable logic controller 40B is capable of adjusting the total surface area of the heat exchanger 'this is required for the thin film distillation process 600. Example 1: Concentration by a multi-stage thin film distillation process using the above separation system Sodium chloride solution. Each stage of the thin film distillation process comprises a film evaporation module and a heat exchanger unit. The feed liquid is a sodium chloride solution 'the sodium carbonate solution to be concentrated and initially 6% concentrated The flow rate is 1000 kg / day. 29 201023960 The external heat source is only for the feed liquid in the first stage of the thin film distillation module. In this example, the external heat source is the heat energy converted from the power consumption. The thermal energy provided is 5x108 Joules/day. . . . The deserted sodium chloride solution passes through the heat exchanger and is heated by an external heat source. This solution then enters the thin film distillation module, the solution. The water in the form is evaporated to form water vapor. The thin film distillation module comprises the film chamber as described in Fig. 1 above. The film is made of polypropylene, which has a diameter of 0.4 to 0.6 mm. An® is provided with approximately 60,000 to 80,000 fibers. The vapor evaporated from the first stage of the membrane steam module is removed via a heat exchanger unit for heating the feed liquid in the second stage of the membrane distillation module to A temperature of about 65 ° C. The feed liquid in the second stage is the residual solution that has not evaporated in the first stage. After heating the feed liquid, the water vapor is condensed into a water liquid. The amount of water evaporated from the first stage is 19〇kg. ❹ Similarly, the water vapor evaporated from the second stage of the thin film distillation module is taken out via the heat exchanger assembly to heat the feed liquid in the third stage of the film evaporation module to about 55 art. The temperature of the water evaporating from the second stage is 18 〇 kg. The water vapor evaporated from the third stage of the thin film distillation module is taken out to 'heat the feed liquid in the fourth stage of the thin film distillation module to Temperature of about 45 ° C The amount of water evaporated from the third stage is 30 201023960 170 kg. The water vapor evaporated in the fourth stage is cooled by room temperature water. The amount of water evaporated from the fourth stage is 160 kg. The post-drunk concentration of the gasified sodium solution is 20 %. In a single-stage process, the thermal energy consumption per ton of moisture is 2.63x106 joules, the two-stage process is 135xl 〇6 joules, the three-stage process is 〇.93X106 joules, and the four-stage process is 0.71x106 joules. Therefore, the four-stage process can reduce the heat consumption of the separation system by 73% compared to a single process. Applicability: It will be understood that the system disclosed in the present invention separates the feed by thin f?, Volatile components in solution. Advantageous: The hollow fiber thinner used for degassing is compared to the polymer plate, and the surface area is much larger. This increases the throughput of the thin film distillation to achieve - better process efficiency and lower cost. The individual stages of the operation of the group are different. It is advantageous that the operating parameters of the line can be individually controlled. It is to be understood that the 'separation of the evaporation system from the feed solution is::, the fork-changing device allows the borrowing of the mileage. energy. The advantageous 31 201023960 is 'to greatly reduce the overall thermal energy consumption of the separation system. It will be appreciated that the heat exchange device comprises at least one heat exchanger. Advantageously, the number of heat exchangers can be selected to recover as much as possible the latent heat of the vaporized volatile constituents, thereby increasing the efficiency of the separation system. More advantageously, the energy efficiency design of the disclosed separation system overcomes the major problems of conventional thin film distillation processes. While a reasonable effort has been made to describe an equivalent embodiment of the present invention, it will be apparent to those skilled in the art after reading the above disclosure. Therefore, any equivalent modifications or alterations to the spirit and scope of the invention are intended to be included in the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings illustrate a disclosed embodiment and are intended to explain the principles of the disclosure. However, it is to be understood that the drawings are only intended to be illustrative, and are intended to limit the invention. A schematic diagram of a thin film evaporation process for exposing the embodiment; a second schematic diagram of a thin film distillation process of another disclosed embodiment; the first figure is a stage of the film evaporation process shown in FIG. - Example; Fig. 4 is a diagram of the control of the thin film distillation process shown in Fig. 2, 201023960, and Fig. 5 is the programmable logic controller shown in Fig. 4. (calculation diagram of (PLC); Figure 6 is a control diagram for controlling the thin film distillation process shown in Fig. 1; and Fig. 7 is a programmable logic controller (PLC) shown in Fig. 6 A calculation chart. [Main component symbol description] 100: Energy-saving thin film distillation process; 10A, 10B, 10C, 10n: storage tank; 11A, 11B, 11C, 11n: feed stream; 12A, 12B, 12C, 12n: heat exchanger; 13Β, 13C, 13η: hot sea water flow; 14Α, 14Β, 14C, 14η: thin film module; 15Α, 15Β, 15C, 15η: product flow; 16Α: hot fluid flow; 17Α, 17Β, 17C, 17η: vapor flow; : cooling fluid flow; 28Α, 28Β, 28C: water liquid flow; 1〇 (Τ: energy-saving thin film distillation process; 10Α', 10Bf, 10CT, 10nf: storage tank; llAf, 11B', llCf, llnf: feed stream; 12Af, 12Bf, 12CT, heat exchanger; 33 201023960 13A, 13B, 13C, 14A, 14B, 14C, 15A, 15B, 15C, 16A, 16B, 16C, 17A , 17B, 17C, 18A, 18B, 18C, 20A, 20B, 20C, 28A, 28B, 28C,: 10A 〃: storage tank; 11A": feed stream;

13η, 熱海水流; 14η, 薄膜模組; 15η, 產品流, 16nf 熱流體流; 17η, 蒸氣流; 18η, 冷卻流體流 20η, 導管 水液體流; 12A”、12B” :熱交換器; 13A〃:熱海水流; 14A”-1、14A”-2、14A,,-n :薄膜模組; 15 A〃:產品流; Ιό A":熱流體流; 17A"-1、17A"-2、17A”-n :蒸氣流;13η, hot sea water flow; 14η, thin film module; 15η, product flow, 16nf hot fluid flow; 17η, vapor flow; 18η, cooling fluid flow 20η, conduit water liquid flow; 12A", 12B": heat exchanger; 13A〃 : hot sea water flow; 14A"-1, 14A"-2, 14A,, -n: thin film module; 15 A〃: product flow; Ιό A": hot fluid flow; 17A"-1, 17A"-2, 17A "-n: vapor flow;

18A〃:冷卻流體流; 24A"、24A"·卜 24Α”·2、24Α"-(η-1)、24Α”·η :導管; 26Α"-1、26Α”-2、26Α"-3 :繞道管; 28Α〃:水液體流; 400 :薄膜蒸餾製程; 儲存槽; 進料流; 熱交換器; 熱海水流; 10Α*、10Β*、10C* : 11Α*、11Β*、11C* : 12Α*、12Β*、12C* : 13Α* ' 13Β* > 13C* : 34 201023960 薄膜模組; 產品流, 熱流體流, 蒸氣流; 冷卻流體流; 14A*、14B*、14C* 15A*、15B*、15C* 16A*、16B*、16C* 17A*、17B*、17C* 18A*、18B*、18C* 28C* :水液體流; 30A、30B :可程式邏輯控制器; 32A、32B :繞道流;18A〃: cooling fluid flow; 24A", 24A"·24Α”·2, 24Α"-(η-1), 24Α”·η: conduit; 26Α"-1,26Α”-2,26Α"-3 : Bypass tube; 28Α〃: water liquid flow; 400: thin film distillation process; storage tank; feed stream; heat exchanger; hot sea water flow; 10Α*, 10Β*, 10C*: 11Α*, 11Β*, 11C*: 12Α* , 12Β*, 12C* : 13Α* ' 13Β* > 13C* : 34 201023960 Thin film module; product flow, hot fluid flow, vapor flow; cooling fluid flow; 14A*, 14B*, 14C* 15A*, 15B* , 15C* 16A*, 16B*, 16C* 17A*, 17B*, 17C* 18A*, 18B*, 18C* 28C*: water liquid flow; 30A, 30B: programmable logic controller; 32A, 32B: bypass flow ;

38 :液流; 500 :演算法; 600 :薄膜蒸餾製程;38: liquid flow; 500: algorithm; 600: thin film distillation process;

Vl7A、V32A、Vi6B、V17B、V32B、Vi6C :閥門;Vl7A, V32A, Vi6B, V17B, V32B, Vi6C: valve;

Tl7A、Ti7B :蒸氣流的溫度; 10A**、10B** :儲存槽; 11A** :進料流; 12A*、、12B*-2、12B*-N :熱交換器; 13A**、13B** :熱海水流; 14A**、14B** :薄膜模組; 15A**、15B** :產品流; 16A** :熱流體流; 17A**、17B** :蒸氣流; 18 A** :冷卻流體流; 40B :可程式邏輯控制器; 38-1、38-2、38-(Ν-1):液流; 50-1、50_2、50_(N_1):繞道流; 35 201023960 Τ38_ι、T38-2、T38-(n-1): 測量到的溫度; V50-I、V50-2、V5〇-(N-l) :閥門;以及 700 :演算法。Tl7A, Ti7B: temperature of the vapor stream; 10A**, 10B**: storage tank; 11A**: feed stream; 12A*, 12B*-2, 12B*-N: heat exchanger; 13A**, 13B**: hot sea water flow; 14A**, 14B**: thin film module; 15A**, 15B**: product flow; 16A**: hot fluid flow; 17A**, 17B**: vapor flow; A**: cooling fluid flow; 40B: programmable logic controller; 38-1, 38-2, 38-(Ν-1): liquid flow; 50-1, 50_2, 50_(N_1): bypass flow; 201023960 Τ38_ι, T38-2, T38-(n-1): measured temperature; V50-I, V50-2, V5〇-(Nl): valve; and 700: algorithm.

3636

Claims (1)

201023960 七、申請專利範圍: 1. 一種自進料溶液分離出揮發性成分的分離系統,其 包括: 複數個中空纖維膜,其具選擇滲透性,且允許一 揮發相内的該揮發性成分通過,而實質上防止該進 料溶液通過; 一熱源,具有加熱位於該中空纖維膜一侧上的該 進料溶液的能力,以產生通過該中空纖維膜的該揮 發相;以及 一熱交換裝置,其冷凝該揮發性成分,且配置以 獲得一冷凝熱,該熱交換裝置與該熱源熱耦合,因 而藉由該冷凝熱驅動或補充該熱源。 2. 如申請專利範圍第1項所述的分離系統,其中該中 空纖維膜為疏水性的。 3. 如申請專利範圍第2項所述的分離系統,其中該疏 〇 水性中空纖維膜是由疏水性高分子所組成。 4. 如申請專利範圍第1項所述的分離系統,其更包括 根據該熱源的加熱量(heat duty),而用以改變該熱 交換裝置的熱負載(thermal duty)的裝置。 5. 如申請專利範圍第4項所述的分離系統,其中該熱 交換裝置包括複數個熱交換器,以及該用以改變該 熱交換器的熱負載的裝置則包括用以改變該熱交 換器的數量的裝置,該熱交換器具有接收該揮發性 37 201023960 成分的能力。 6. 如申請專利範圍第1項所述的分離系統,其更包括 複數個中空纖維模組,每一該中空纖維模組包括一 腔室(chamber)’該腔室具有一子集的該複數個中空 纖維膜設置於其内。 工 7. 如申請專利範圍第6項所述的分離系統,其中該複 數個中空纖維模組為彼此串聯流體流動。201023960 VII. Patent application scope: 1. A separation system for separating volatile components from a feed solution, comprising: a plurality of hollow fiber membranes having selective permeability and allowing the volatile components in a volatile phase to pass And substantially preventing the passage of the feed solution; a heat source having the ability to heat the feed solution on one side of the hollow fiber membrane to produce the volatile phase through the hollow fiber membrane; and a heat exchange device, It condenses the volatile component and is configured to obtain a heat of condensation that is thermally coupled to the heat source, thereby driving or supplementing the heat source by the heat of condensation. 2. The separation system of claim 1, wherein the hollow fiber membrane is hydrophobic. 3. The separation system according to claim 2, wherein the hydrophobic aqueous hollow fiber membrane is composed of a hydrophobic polymer. 4. The separation system of claim 1, further comprising means for varying the thermal duty of the heat exchange device based on the heat duty of the heat source. 5. The separation system of claim 4, wherein the heat exchange device comprises a plurality of heat exchangers, and wherein the means for varying the heat load of the heat exchanger comprises changing the heat exchanger The number of devices that have the ability to receive this volatile 37 201023960 component. 6. The separation system of claim 1, further comprising a plurality of hollow fiber modules, each of the hollow fiber modules including a chamber having a subset of the plurality A hollow fiber membrane is disposed therein. 7. The separation system of claim 6, wherein the plurality of hollow fiber modules are in fluid flow in series with one another. 8·=申請專利範圍第6項所述的分離系統,其中該熱 乂換裝置包括複數個熱交換器,其中至少一該熱交 換器設置於彼此串聯流體流動的一上游中空^維 模組與一下游中空纖維模組之間。 , 9.如申請專利範圍第8項所述的分離系統,其中設置 於該上游中空纖維模組與該下游中空纖維模組之 間的該熱交換器’是配置以獲得該上游中空纖維模 組的該揮發相的該冷凝熱且利用獲得的該冷凝熱 加熱進入該下游中空纖維模組的該進料溶液。‘、、、 10.如:請專利範圍帛6項所述的分離系统,其中該 源是配置以個別加熱進入每一該複數個中空 模組的該進料溶液。8. The separation system of claim 6, wherein the thermal switching device comprises a plurality of heat exchangers, wherein at least one of the heat exchangers is disposed in an upstream hollow cavity module in fluid flow in series with each other A downstream hollow fiber module. 9. The separation system of claim 8, wherein the heat exchanger disposed between the upstream hollow fiber module and the downstream hollow fiber module is configured to obtain the upstream hollow fiber module. The heat of condensation of the volatile phase and the resulting heat of condensation are used to heat the feed solution into the downstream hollow fiber module. </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> <RTIgt; 1項所述的分離系統,其中該熱 11.如申請專利範圍第 源為一可變熱通量 12.Ϊ2ΓΓ圍第1項所述的分離系統,其中該 5熱通量由該熱源所造成,該熱源包括⑴廢棄 源、⑻太陽能熱源及(iii)地熱源的其中至少一個 38 201023960 π. —種自進料溶液分離出揮發性成分的分離系統,其 包括: 複數個中空纖維膜,具選擇滲透性,且允許一揮 發相内的該揮發性成分通過,而實質上防止該進料 溶液通過; 複數個中空纖維模組,每一該模組具有一密閉的 腔室及一進水口(inlet),該腔室具有一子集的該複 數個中空纖維膜延伸通過其内,該進水口是將該進 ® 料溶液傳送至該複數個中空纖維膜的一侧;以及 複數個熱交換器,是與該揮發性成分流體連通, 以獲得該揮發性成分冷凝為液體時的一冷凝熱,該 複數個熱交換器具有與一熱源熱耦合的能力,因而 藉由該冷凝熱驅動或補充該熱源。 14.如申請專利範圍第13項所述的分離系統,其中該 複數個中空纖維模組為彼此串聯流體流動。 φ I5.如申請專利範圍第14項所述的分離系統,其中該 進料溶液能繞過該複數個中空纖維模組的一個或 一個以上。 16. 如申請專利範圍第13項所述的分離系統,其中該 複數個中空纖維膜由一疏水性高分子膜所組成。 17. 如申請專利範圍第16項所述的分離系統,其中該 疏水性高分子膜是選自由聚偏二氯乙烯、聚丙烯、 聚四氟乙烯及聚乙烯所組成的群組中。 39 201023960 18.:申請專利_ 13項所述的分離系統更包 ::監測裝置與該熱源轉合,以監測的 量(heat duty)。 … 19.如申請專利範圍第18項所述的分離系統其更包 括-控制設備與該監測裝置及該複數個献交換器 2合’其中該控制設備具有根據監測得的該加熱 量,判斷欲使用的該熱交換器的數量的能力。 2〇. 一種自進料溶液分離出揮發性成分的製程,其步驟 以一熱源加熱該進料溶液; 當該複數個中空纖維膜的兩侧間存在一壓力 差,則使該進料溶液通過複數個中空纖維膜的一 侧,而使一揮發相内的該揮發性成分形成在該中空 纖維膜的一侧上,且該揮發性成分是位於該進料溶 液的對侧; 冷凝該揮發相内的該揮發性成分,因而獲得一冷 凝熱;以及 使用該冷凝熱,因而驅動或補充熱至該熱源。 21. 如申請專利範圍第20項所述的製程,其更包括一 步驟,是變化該熱源的通量。 22. 如申請專利範圍第21項所述的製程,其更包括下 述步驟: 使用複數個熱交換器,以獲得該冷凝熱;以及 201023960 根據該熱源的可變加熱量,改變該複數個熱交換 器的熱負載(thermal duty)。 23.如申請專利範圍第20項所述的製程,其更包括下 述步驟: 提供複數個中空纖維模組,每一該中空纖維模組 包括一腔室(chamber),該腔室具有一子集的該複數 個中空纖維膜設置於其内,該複數個中空纖維模組 為彼此串聯流體流動;以及 個別加熱進入每一該複數個中空纖維模組的該 進料溶液。 41The separation system of claim 1, wherein the heat source is the separation system described in item 1, wherein the source of heat is caused by the heat source. The heat source comprises at least one of (1) a waste source, (8) a solar heat source, and (iii) a geothermal source. A separation system for separating volatile components from the feed solution, comprising: a plurality of hollow fiber membranes, Selecting permeability and allowing passage of the volatile component in a volatile phase to substantially prevent passage of the feed solution; a plurality of hollow fiber modules each having a closed chamber and a water inlet ( Inlet), the chamber has a subset of the plurality of hollow fiber membranes extending therethrough, the water inlet is a side of the feed solution to the plurality of hollow fiber membranes; and a plurality of heat exchangers a condensing heat in fluid communication with the volatile component to obtain a condensed heat of the volatile component, the plurality of heat exchangers having the ability to be thermally coupled to a heat source, thereby utilizing the cold Driving the heat source or supplement. 14. The separation system of claim 13, wherein the plurality of hollow fiber modules are in fluid flow in series with one another. The separation system of claim 14, wherein the feed solution is capable of bypassing one or more of the plurality of hollow fiber modules. 16. The separation system of claim 13, wherein the plurality of hollow fiber membranes consist of a hydrophobic polymer membrane. 17. The separation system of claim 16, wherein the hydrophobic polymer membrane is selected from the group consisting of polyvinylidene chloride, polypropylene, polytetrafluoroethylene, and polyethylene. 39 201023960 18. The separation system described in the patent application _13 further includes a monitoring device that is coupled with the heat source to monitor the heat duty. 19. The separation system of claim 18, further comprising: a control device in combination with the monitoring device and the plurality of exchangers 2 wherein the control device has a determination based on the monitored amount of heating The ability to use the number of heat exchangers. 2〇. A process for separating volatile components from a feed solution, the step of heating the feed solution by a heat source; and when there is a pressure difference between the two sides of the plurality of hollow fiber membranes, passing the feed solution One side of the plurality of hollow fiber membranes, wherein the volatile component in a volatile phase is formed on one side of the hollow fiber membrane, and the volatile component is located on the opposite side of the feed solution; condensing the volatile phase The volatile component therein, thereby obtaining a heat of condensation; and using the heat of condensation, thereby driving or supplementing the heat to the heat source. 21. The process of claim 20, further comprising a step of varying the flux of the heat source. 22. The process of claim 21, further comprising the steps of: using a plurality of heat exchangers to obtain the heat of condensation; and 201023960 changing the plurality of heats according to a variable amount of heat of the heat source The thermal duty of the exchanger. 23. The process of claim 20, further comprising the steps of: providing a plurality of hollow fiber modules, each of the hollow fiber modules including a chamber having a sub-chamber The plurality of hollow fiber membranes are disposed therein, the plurality of hollow fiber modules are fluidly flowing in series with each other; and the feed solution is heated individually into each of the plurality of hollow fiber modules. 41
TW098140881A 2008-12-17 2009-11-30 System for separation of volatile components from solution and process thereof TWI415666B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13840408P 2008-12-17 2008-12-17

Publications (2)

Publication Number Publication Date
TW201023960A true TW201023960A (en) 2010-07-01
TWI415666B TWI415666B (en) 2013-11-21

Family

ID=42269058

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098140881A TWI415666B (en) 2008-12-17 2009-11-30 System for separation of volatile components from solution and process thereof

Country Status (3)

Country Link
GB (1) GB2478467B (en)
TW (1) TWI415666B (en)
WO (1) WO2010071605A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2680955B1 (en) 2011-03-03 2019-10-23 Victoria University A heat exchange system
US9403102B2 (en) 2012-02-13 2016-08-02 United Technologies Corporation Heat exchange system configured with a membrane contactor
NL2010576C2 (en) 2013-04-05 2014-10-08 Aquaver B V A system of membrane distillation and use therof.
CN105301149B (en) * 2015-12-06 2018-11-27 杭州飞山浩科技有限公司 The analytical equipment and method of trace fluorine ion in a kind of on-line determination blood sample

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4545862A (en) * 1981-03-17 1985-10-08 W. L. Gore & Associates, Inc. Desalination device and process
JPS60222108A (en) * 1984-04-20 1985-11-06 Komatsu Ltd Separating device by permeation and evaporation
JPH06121902A (en) * 1992-10-09 1994-05-06 Daicel Chem Ind Ltd Deaerating device and deaerating method
CA2351272C (en) * 2001-06-22 2009-09-15 Petro Sep International Ltd. Membrane-assisted fluid separation apparatus and method
EP1925355A1 (en) * 2006-10-31 2008-05-28 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Membrane distillation method for the purification of a liquid
US8128826B2 (en) * 2007-02-28 2012-03-06 Parker Filtration Bv Ethanol processing with vapour separation membranes

Also Published As

Publication number Publication date
WO2010071605A1 (en) 2010-06-24
TWI415666B (en) 2013-11-21
GB201109866D0 (en) 2011-07-27
GB2478467A (en) 2011-09-07
GB2478467B (en) 2013-08-28

Similar Documents

Publication Publication Date Title
Ullah et al. Energy efficiency of direct contact membrane distillation
JP5036822B2 (en) Membrane distillation method for liquid purification
Abu-Zeid et al. A comprehensive review of vacuum membrane distillation technique
US9630862B2 (en) Desalination system and method for desalination
CN107614440B (en) Method and apparatus for advanced vacuum membrane distillation
AU2011328535B2 (en) Forward osmosis system having solvent separation by means of membrane distillation
US8460551B2 (en) Solar membrane distillation system and method of use
Li et al. Study on concentration of aqueous sulfuric acid solution by multiple-effect membrane distillation
JP5264108B2 (en) Fresh water generator and fresh water generation method
JP6333573B2 (en) Fresh water generator and fresh water generation method
US20170361277A1 (en) Vacuumed gap membrane distillation (vagmed) module, multi-stage vagmed systems, and vagmed processes
US20230065608A1 (en) Crystallization of salts from high pressure reverse osmosis concentrate
KR101675417B1 (en) Multi-stage vacuum membrane distillation system for producing desalinated water for maritime ship, and method for the same
TW201023960A (en) System for separation of volatile components from solution and process thereof
JP2016190220A (en) Membrane distillation system and operation method thereof
CN103221118A (en) Osmotically driven membrane processes and systems and methods for draw solute recovery
Park et al. Analysis of thermal energy efficiency for hollow fiber membranes in direct contact membrane distillation
JP5150785B2 (en) Pure liquid production equipment
Kim et al. Membrane-based desalination technology for energy efficiency and cost reduction
KR101298724B1 (en) Forward osmotic desalination device using membrane distillation method in which a part of draw solution is directly fed to a forward osmotic type separator
Janajreh et al. Numerical simulation of Direct Contact Membrane Desalination in conjugate heat transfer configuration: Role of Membrane Conductivity
US20240058760A1 (en) Multi-stage vacuum membrane distillation system and process
CN108779005B (en) Hot water purification system and method for operating said system
US20240058758A1 (en) Multi-stage direct contact membrane distillation system and process
US20240058757A1 (en) Multi-stage sweeping gas membrane distillation system and process

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees