TWI397154B - Trenched power semiconductor structure with schottky diode and fabrication method thereof - Google Patents

Trenched power semiconductor structure with schottky diode and fabrication method thereof Download PDF

Info

Publication number
TWI397154B
TWI397154B TW99101688A TW99101688A TWI397154B TW I397154 B TWI397154 B TW I397154B TW 99101688 A TW99101688 A TW 99101688A TW 99101688 A TW99101688 A TW 99101688A TW I397154 B TWI397154 B TW I397154B
Authority
TW
Taiwan
Prior art keywords
contact window
dielectric
schottky diode
trench
power semiconductor
Prior art date
Application number
TW99101688A
Other languages
Chinese (zh)
Other versions
TW201126652A (en
Inventor
Hsiu Wen Hsu
Chun Ying Yeh
Original Assignee
Great Power Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Great Power Semiconductor Corp filed Critical Great Power Semiconductor Corp
Priority to TW99101688A priority Critical patent/TWI397154B/en
Publication of TW201126652A publication Critical patent/TW201126652A/en
Application granted granted Critical
Publication of TWI397154B publication Critical patent/TWI397154B/en

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Description

具有蕭特基二極體之溝槽式功率半導體結構及其製造方法Trench type power semiconductor structure with Schottky diode and manufacturing method thereof

本發明係關於一種溝槽式功率半導體結構及其製作方法,特別是關於一種具有蕭特基二極體(Schottky Diode)之溝槽式半導體結構及其製作方法。The present invention relates to a trench power semiconductor structure and a method of fabricating the same, and more particularly to a trench semiconductor structure having a Schottky Diode and a method of fabricating the same.

在溝槽式功率半導體的應用領域中,越來越注重切換速度的表現,此特性的改善提升能明顯幫助高頻電路操作中的切換損失。利用蕭特基二極體來改善功率半導體元件之切換損失,是一個常見的解決方法。In the field of application of trench power semiconductors, more and more attention is paid to the performance of the switching speed, and the improvement of this characteristic can significantly contribute to the switching loss in the operation of the high frequency circuit. The use of Schottky diodes to improve the switching losses of power semiconductor components is a common solution.

第1圖係一利用蕭特基二極體SD1改善金氧半電晶體T1之切換損失的電路示意圖。如圖中所示,金氧半電晶體T1之本體二極體(body diode)D1係並聯於蕭特基二極體SD1。由於蕭特基二極體SD之啟動電壓低於本體二極體D1。因此,當金氧半電晶體T1之源汲極存在順向偏壓時,蕭特基二極體SD1可避免本體二極體D1被導通(turn on)。亦即,在此情況下,電流是由源極S經由蕭特基二極體SD1流動至汲極D。Fig. 1 is a circuit diagram showing the improvement of the switching loss of the MOS transistor T1 using the Schottky diode SD1. As shown in the figure, the body diode D1 of the MOS transistor T1 is connected in parallel to the Schottky diode SD1. Since the starting voltage of the Schottky diode SD is lower than that of the body diode D1. Therefore, when the source bungee of the MOS transistor T1 has a forward bias, the Schottky diode SD1 can prevent the body diode D1 from being turned on. That is, in this case, the current flows from the source S to the drain D through the Schottky diode SD1.

值得注意的是,相較於本體二極體D1由導通轉變為不導通(turn off)之過程中,因為少數載子(minority carrier)存在而會造成時間延遲,蕭特基二極體不具有少數載子,因此,可以避免時間延遲,而有助於改善切換損失。It is worth noting that the Schottky diode does not have a time delay due to the presence of a minority carrier in the process of turning the body diode D1 from turn-on to turn-off. A small number of carriers, therefore, can avoid time delays and help improve switching losses.

因此,本發明之主要目的是提供一種溝槽式功率半導體結構及其製作方法,可以利用既有之半導體製程,在製作溝槽式功率電晶體之同時製作蕭特基二極體並聯於此溝槽式功率電晶體。Therefore, the main object of the present invention is to provide a trench power semiconductor structure and a manufacturing method thereof, which can make a Schottky diode parallel to the trench while fabricating a trench power transistor by using an existing semiconductor process. Slotted power transistor.

為達成上述目的,本發明提供一種具有蕭特基二極體(schottky diode)之溝槽式功率半導體結構之製造方法,包括下列步驟:a)形成一汲極區於一基板內;b)形成至少一閘極結構於汲極區之上方,並且,形成一本體與至少一源極區於相鄰二個閘極結構之間;c)形成一第一介電結構覆蓋閘極結構;d)透過第一介電結構,形成至少一接觸窗於本體,此接觸窗之側邊係鄰接於源極區,而使源極區裸露於外;e)形成一第二介電結構於接觸窗內,第二介電結構並具有至少一第二開口曝露接觸窗之部分底面;f)透過第二介電結構蝕刻本體,以形成一窄溝槽延伸至本體下方之汲極區;以及g)於前述接觸窗與窄溝槽內填入一金屬層。To achieve the above object, the present invention provides a method of fabricating a trench power semiconductor structure having a Schottky diode, comprising the steps of: a) forming a drain region in a substrate; b) forming At least one gate structure is above the drain region, and a body and at least one source region are formed between adjacent two gate structures; c) forming a first dielectric structure to cover the gate structure; d) Forming at least one contact window on the body through the first dielectric structure, the side of the contact window is adjacent to the source region, and the source region is exposed outside; e) forming a second dielectric structure in the contact window a second dielectric structure having at least one second opening exposing a portion of the bottom surface of the contact window; f) etching the body through the second dielectric structure to form a narrow trench extending to the drain region below the body; and g) The contact window and the narrow trench are filled with a metal layer.

本發明並提供一種具有蕭特基二極體之溝槽式功率半導體結構。此溝槽式功率半導體結構包括一汲極區、至少二個閘極結構、一本體、至少一源極區、一介電結構、一接觸窗、一窄溝槽與一金屬層。其中,閘極結構係位於汲極區上方。本體係位於汲極區上方,並且位於相鄰二個閘極結構之間。源極區位於本體內,並且鄰接於閘極結構。介電結構係覆蓋閘極結構。接觸窗係位於本體之上部分與介電結構中,並且鄰接於該源極區。窄溝槽係由接觸窗之底面向下延伸至汲極區。此窄溝槽之寬度小於接觸窗之寬度。金屬層係位於接觸窗與窄溝槽內,以電性連接至源極區,並形成蕭特基二極體於金屬層與汲極區之接面處。The present invention also provides a trench power semiconductor structure having a Schottky diode. The trench power semiconductor structure includes a drain region, at least two gate structures, a body, at least one source region, a dielectric structure, a contact window, a narrow trench and a metal layer. Wherein, the gate structure is located above the bungee region. The system is located above the bungee zone and is located between two adjacent gate structures. The source region is located within the body and is adjacent to the gate structure. The dielectric structure covers the gate structure. A contact window is located in the upper portion of the body and the dielectric structure and is adjacent to the source region. The narrow trench extends downward from the bottom surface of the contact window to the drain region. The width of the narrow trench is less than the width of the contact window. The metal layer is located in the contact window and the narrow trench to be electrically connected to the source region and form a Schottky diode at the junction of the metal layer and the drain region.

關於本發明之優點與精神可以藉由以下的發明詳述及所附圖式得到進一步的瞭解。The advantages and spirit of the present invention will be further understood from the following detailed description of the invention.

本發明之精神在於利用半導體製程中既有的間隔層(spacer)製作技術,在形成接觸窗之後,於接觸窗內製作間隔層結構,再以蝕刻方式形成窄溝槽深入本體(body)之底部。此時,填入接觸窗之金屬層可同時接觸到源極、本體與汲極之電位。如此即可在與汲極接觸的接面上形成蕭特基二極體(Schottky Barrier Diode,SBD),此蕭特基二極體係並聯至本體與汲極間之矽接面齊納二極體(Si junction Zener Diode),因而可以避免電晶體元件切換過程之時間遲延,進而可以降低切換損失。The spirit of the present invention is to utilize a spacer manufacturing technique in a semiconductor process, after forming a contact window, forming a spacer layer structure in the contact window, and then forming a narrow trench into the bottom of the body by etching. . At this time, the metal layer filled in the contact window can simultaneously contact the potential of the source, the body and the drain. Thus, a Schottky Barrier Diode (SBD) can be formed on the interface contacting the drain, and the Schottky diode system is connected in parallel to the junction between the body and the drain. (Si junction Zener Diode), thus avoiding the time delay of the switching process of the transistor element, thereby reducing the switching loss.

第2E圖係本發明具有蕭特基二極體之溝槽式功率半導體結構一實施例之剖面示意圖。如圖中所示,此溝槽式功率半導體結構具有一N型基板100、一N型磊晶層110、至少二個閘極結構140、一P型本體(body)120、至少一N型源極區150、一第一介電結構162、一接觸窗170、一窄溝槽172與一金屬層190。其中,N型磊晶層110形成於N型基板100上。N型磊晶層110與N型基板100構成此溝槽式功率半導體結構之一汲極區。2E is a schematic cross-sectional view showing an embodiment of a trench type power semiconductor structure having a Schottky diode of the present invention. As shown in the figure, the trench power semiconductor structure has an N-type substrate 100, an N-type epitaxial layer 110, at least two gate structures 140, a P-type body 120, and at least one N-type source. The pole region 150, a first dielectric structure 162, a contact window 170, a narrow trench 172 and a metal layer 190. The N-type epitaxial layer 110 is formed on the N-type substrate 100. The N-type epitaxial layer 110 and the N-type substrate 100 constitute one of the trench power semiconductor structures.

閘極結構140,例如一閘極多晶矽結構,係形成於N型磊晶層110上方。P型本體亦係形成於N型磊晶層110上方,並且,P型本體120係位於相鄰二個閘極結構140之間。在閘極結構140之周圍並具有一閘極介電層130,用以隔離閘極結構140與P型本體120及N型磊晶層110。N型源極區150位於本體120內,並且鄰接於閘極結構140。第一介電結構162係覆蓋閘極結構140。接觸窗170係位於P型本體120之上部分,且向上延伸至第一介電結構162中。並且,此接觸窗170鄰接於N型源極區150。A gate structure 140, such as a gate polysilicon structure, is formed over the N-type epitaxial layer 110. The P-type body is also formed over the N-type epitaxial layer 110, and the P-type body 120 is located between the adjacent two gate structures 140. A gate dielectric layer 130 is disposed around the gate structure 140 for isolating the gate structure 140 from the P-type body 120 and the N-type epitaxial layer 110. The N-type source region 150 is located within the body 120 and is adjacent to the gate structure 140. The first dielectric structure 162 covers the gate structure 140. The contact window 170 is located above the P-body 120 and extends upward into the first dielectric structure 162. Moreover, the contact window 170 is adjacent to the N-type source region 150.

接觸窗170下方之本體120內具有一重摻雜區180,以降低金屬層190與本體120之接觸電阻。窄溝槽172係由接觸窗170之底面,貫穿重摻雜區180,向下延伸至N型磊晶層110。並且,窄溝槽172之寬度w3小於接觸窗170之寬度w2。金屬層190係位於接觸窗170與窄溝槽172內,電性連接至N型源極區150,並且在金屬層190與N型磊晶層110之接面處形成蕭特基二極體。A body 120 is disposed within the body 120 below the contact window 170 to reduce the contact resistance of the metal layer 190 to the body 120. The narrow trench 172 is formed by the bottom surface of the contact window 170, through the heavily doped region 180, and extends down to the N-type epitaxial layer 110. Also, the width w3 of the narrow trench 172 is smaller than the width w2 of the contact window 170. The metal layer 190 is located in the contact window 170 and the narrow trench 172, electrically connected to the N-type source region 150, and forms a Schottky diode at the junction of the metal layer 190 and the N-type epitaxial layer 110.

第2A至2E圖顯示本發明具有蕭特基二極體之溝槽式功率半導體結構之製作方法之第一實施例。如第2A圖所示,首先,形成一N型磊晶層110於一N型基板100上,以構成一汲極區。隨後,形成至少二個閘極結構140於汲極區之上方,並且,形成一本體120與至少一源極區150於相鄰二個閘極結構140之間。2A to 2E are views showing a first embodiment of a method of fabricating a trench type power semiconductor structure having a Schottky diode of the present invention. As shown in FIG. 2A, first, an N-type epitaxial layer 110 is formed on an N-type substrate 100 to form a drain region. Subsequently, at least two gate structures 140 are formed over the drain regions, and a body 120 and at least one source region 150 are formed between the adjacent two gate structures 140.

前述閘極結構140、本體120與源極區150可採用習知的功率電晶體製程製作。舉例來說,可先在磊晶層110之上部份形成至少二個閘極溝槽,然後,在溝槽內依序製作閘極介電層130與閘極結構140。隨後,以離子佈植方式形成P型本體120於磊晶層110之上部分。接下來,在P型本體120中定義出源極區150的位置,並以離子佈植方式在閘極結構140之側邊形成N型源極區150。The gate structure 140, the body 120 and the source region 150 can be fabricated by a conventional power transistor process. For example, at least two gate trenches may be formed on the upper portion of the epitaxial layer 110, and then the gate dielectric layer 130 and the gate structure 140 are sequentially formed in the trenches. Subsequently, a portion of the P-type body 120 above the epitaxial layer 110 is formed by ion implantation. Next, the position of the source region 150 is defined in the P-type body 120, and the N-type source region 150 is formed on the side of the gate structure 140 by ion implantation.

隨後,如第2A與2B圖所示,全面沉積一第一介電層160,並且在第一介電層160中定義出至少一開口對應於位於相鄰二個閘極結構140間之本體120。然後,以蝕刻方式形成開口於第一介電層160內,並施以平坦化步驟,以形成一第一介電結構162。如圖中所示,此第一介電結構162係覆蓋閘極結構140,並具有至少一開口對應於P型本體120。Subsequently, as shown in FIGS. 2A and 2B, a first dielectric layer 160 is entirely deposited, and at least one opening defined in the first dielectric layer 160 corresponds to the body 120 between the adjacent two gate structures 140. . Then, an opening is formed in the first dielectric layer 160 by etching, and a planarization step is applied to form a first dielectric structure 162. As shown in the figure, the first dielectric structure 162 covers the gate structure 140 and has at least one opening corresponding to the P-type body 120.

接下來,如第2C圖所示,透過第一介電結構162蝕刻P型本體120,以形成一接觸窗170於P型本體120之上部份。此接觸窗170使源極區150裸露於外。前述形成於第一介電結構162中之開口係對應於形成於P型本體120之接觸窗170。然後,以離子佈植方式在接觸窗170底面下方之P型本體120內形成一P型重摻雜區180。Next, as shown in FIG. 2C, the P-type body 120 is etched through the first dielectric structure 162 to form a contact window 170 on the upper portion of the P-type body 120. This contact window 170 exposes the source region 150 to the outside. The opening formed in the first dielectric structure 162 corresponds to the contact window 170 formed on the P-type body 120. Then, a P-type heavily doped region 180 is formed in the P-type body 120 below the bottom surface of the contact window 170 by ion implantation.

隨後,如第2D圖所示,形成一第二介電結構164於接觸窗170內,此第二介電結構164具有至少一開口曝露接觸窗170之部分底面。關於此第二介電結構164之製作步驟,舉例來說,可先沿著第一介電結構162與接觸窗170之表面起伏,全面沉積一第二介電層(未圖示),隨後,再以蝕刻方式去除位於第一介電結構162之上表面與位於接觸窗170之底面上之部分第二介電層,以形成第二介電結構164。值得注意的是,此蝕刻步驟不需要另外使用光罩,即可形成第二介電結構164於接觸窗170內。Subsequently, as shown in FIG. 2D, a second dielectric structure 164 is formed in the contact window 170. The second dielectric structure 164 has at least one opening that exposes a portion of the bottom surface of the contact window 170. For the fabrication steps of the second dielectric structure 164, for example, a second dielectric layer (not shown) may be entirely deposited along the surface of the first dielectric structure 162 and the contact window 170. Subsequently, A portion of the second dielectric layer on the upper surface of the first dielectric structure 162 and the bottom surface of the contact window 170 is removed by etching to form the second dielectric structure 164. It should be noted that this etching step does not require the use of a photomask to form the second dielectric structure 164 within the contact window 170.

如圖中所示,此第二介電結構164包括至少一側壁結構,由接觸窗170之底面向上延伸至第一介電結構162,以覆蓋接觸窗170之側壁。同時,此第二介電結構164具有至少一開口在接觸窗170的底面定義出窄溝槽172的位置。接下來,透過第二介電結構164蝕刻P型本體120,形成一窄溝槽172貫穿P型重摻雜區180與P型本體120,並延伸至P型本體120下方之N型磊晶層110。As shown in the figure, the second dielectric structure 164 includes at least one sidewall structure extending upward from the bottom surface of the contact window 170 to the first dielectric structure 162 to cover the sidewall of the contact window 170. At the same time, the second dielectric structure 164 has at least one opening defining a location of the narrow trench 172 at the bottom surface of the contact window 170. Next, the P-type body 120 is etched through the second dielectric structure 164 to form a narrow trench 172 extending through the P-type heavily doped region 180 and the P-type body 120, and extending to the N-type epitaxial layer below the P-type body 120. 110.

最後,如第2E圖所示,以選擇性蝕刻方式去除第二介電結構164以曝露出接觸窗170,但保留覆蓋閘極結構140之第一介電結構162。舉例來說,第一介電結構162可以是以氧化矽製作,第二介電結構164可以是以氮化矽製作。不過,本發明亦不限於此。只要是可進行選擇性蝕刻之介電材料,都可應用於本發明。隨後,於接觸窗170與窄溝槽172內填入一金屬層190電性連接至源極區150、P型本體120與N型磊晶層110,以完成此具有蕭特基二極體之溝槽式功率半導體結構的製作流程。Finally, as shown in FIG. 2E, the second dielectric structure 164 is removed by selective etching to expose the contact window 170, but retains the first dielectric structure 162 that covers the gate structure 140. For example, the first dielectric structure 162 can be made of tantalum oxide and the second dielectric structure 164 can be made of tantalum nitride. However, the invention is not limited thereto. Any dielectric material that can be selectively etched can be applied to the present invention. Then, a metal layer 190 is electrically connected to the source region 150, the P-type body 120 and the N-type epitaxial layer 110 in the contact window 170 and the narrow trench 172 to complete the Schottky diode. The fabrication process of the trench power semiconductor structure.

第3A與3B圖顯示本發明具有蕭特基二極體之溝槽式功率半導體結構之製作方法之第二實施例。不同於前述第一實施例,如第2B與2C圖所示,先形成第一介電結構162於P型本體120上方,然後再以此第一介電結構162為遮罩蝕刻P型本體120以形成接觸窗170。本實施例在定義出接觸窗170’的位置後,直接蝕刻第一介電層160與其下方之P型本體120,以形成接觸窗170’。後續步驟與本發明之製作方法之第一實施例相同,在此不予贅述。3A and 3B are views showing a second embodiment of a method of fabricating a trench type power semiconductor structure having a Schottky diode of the present invention. Different from the foregoing first embodiment, as shown in FIGS. 2B and 2C, the first dielectric structure 162 is formed over the P-type body 120, and then the P-type body 120 is etched by using the first dielectric structure 162 as a mask. To form the contact window 170. After defining the position of the contact window 170', the first embodiment directly etches the first dielectric layer 160 and the P-body 120 below it to form a contact window 170'. The subsequent steps are the same as the first embodiment of the manufacturing method of the present invention, and are not described herein.

第4I圖係本發明具有蕭特基二極體之溝槽式功率半導體結構另一實施例之剖面示意圖。不同於第2E圖之實施例,本實施例之溝槽式功率半導體結構之閘極結構240係向上突出於P型本體120之上表面,並且,此溝槽式功率半導體結構具有一第一介電結構262與一第二介電結構264’,分別覆蓋閘極結構240之側邊與上表面,以隔絕閘極結構240與金屬層290。在本實施例中,前述第一介電結構262與第二介電結構264’分別是由氧化矽與氮化矽構成。不過,本發明並不限於此。第一介電結構262與第二介電結構264’亦可以其他可進行選擇性蝕刻之介電材料製作。4I is a cross-sectional view showing another embodiment of the trench power semiconductor structure having a Schottky diode of the present invention. Different from the embodiment of FIG. 2E, the gate structure 240 of the trench power semiconductor structure of the embodiment protrudes upwardly from the upper surface of the P-type body 120, and the trench power semiconductor structure has a first interface. The electrical structure 262 and a second dielectric structure 264' respectively cover the side and upper surfaces of the gate structure 240 to isolate the gate structure 240 from the metal layer 290. In this embodiment, the first dielectric structure 262 and the second dielectric structure 264' are made of tantalum oxide and tantalum nitride, respectively. However, the invention is not limited thereto. The first dielectric structure 262 and the second dielectric structure 264' can also be fabricated from other dielectric materials that can be selectively etched.

第4A至4I圖顯示本發明具有蕭特基二極體(schottky diode)之溝槽式功率半導體結構之製作方法之第三實施例。如第4A圖,首先,形成一磊晶層210於一基板200上。然後,形成一圖案層260於磊晶層210之上表面。接下來,透過圖案層260蝕刻磊晶層210,以形成複數個溝槽222於磊晶層210內。接下來,形成一閘極介電層230覆蓋溝槽222之內壁。然後,如第4B圖所示,在不去除圖案層260之情況下,填入多晶矽材料於這些溝槽222與圖案層260之開口內,以形成複數個閘極結構240於溝槽222內。這些閘極結構240係向上突出於磊晶層210之上表面。Figures 4A through 4I show a third embodiment of a method of fabricating a trench power semiconductor structure having a Schottky diode of the present invention. As shown in FIG. 4A, first, an epitaxial layer 210 is formed on a substrate 200. Then, a pattern layer 260 is formed on the upper surface of the epitaxial layer 210. Next, the epitaxial layer 210 is etched through the pattern layer 260 to form a plurality of trenches 222 in the epitaxial layer 210. Next, a gate dielectric layer 230 is formed to cover the inner wall of the trench 222. Then, as shown in FIG. 4B, the polysilicon material is filled in the openings of the trenches 222 and the pattern layer 260 without removing the pattern layer 260 to form a plurality of gate structures 240 in the trenches 222. These gate structures 240 protrude upward from the upper surface of the epitaxial layer 210.

接下來,如第4C圖所示,去除圖案層260。然後,以離子佈植方式植入P型摻雜物於磊晶層210內,以形成P型本體220。接下來,再以離子佈植方式植入N型摻雜物於P型本體220之表面區域,以形成N型摻雜區250於P型本體220之上部份。此N型摻雜區250即用以作為電晶體之源極區。Next, as shown in FIG. 4C, the pattern layer 260 is removed. Then, a P-type dopant is implanted into the epitaxial layer 210 by ion implantation to form a P-type body 220. Next, an N-type dopant is implanted into the surface region of the P-type body 220 by ion implantation to form an N-type doped region 250 on the upper portion of the P-type body 220. The N-doped region 250 is used as a source region of the transistor.

隨後,如第4D圖所示,形成一第一介電結構262至少覆蓋閘極結構240之側壁。關於此第一介電結構262之製作步驟,舉例來說,可先沿著磊晶層210與閘極結構240之表面起伏,全面沉積一第一介電層。然後再以蝕刻方式去除位於磊晶層210上之部分第一介電層,以形成第一介電結構262至少覆蓋閘極結構240之側壁。值得注意的是,經過前述蝕刻步驟後,閘極結構240之上表面係裸露於外。Subsequently, as shown in FIG. 4D, a first dielectric structure 262 is formed to cover at least the sidewalls of the gate structure 240. For the fabrication steps of the first dielectric structure 262, for example, a first dielectric layer may be deposited along the surface of the epitaxial layer 210 and the gate structure 240. Then, a portion of the first dielectric layer on the epitaxial layer 210 is removed by etching to form the first dielectric structure 262 covering at least the sidewall of the gate structure 240. It should be noted that after the foregoing etching step, the upper surface of the gate structure 240 is exposed to the outside.

隨後,如第4E圖所示,透過第一介電結構262蝕刻P型本體220,而在P型本體220之上部分形成一接觸窗270。此接觸窗270將N型摻雜區250區分為兩部份,分別對應於相鄰之二個閘極結構240。接下來,再以離子佈植方式植入P型摻雜物,以形成一重摻雜區280於接觸窗270之底面下方之P型本體220內。值得注意的是,由於閘極結構240之上表面係裸露於外,並且,閘極結構240與P型本體220都是由矽所構成。因此,第4E圖之蝕刻步驟同時會蝕刻閘極結構240的上表面,而在閘極結構240上方之第一介電結構262中形成一凹槽。Subsequently, as shown in FIG. 4E, the P-type body 220 is etched through the first dielectric structure 262, and a contact window 270 is partially formed on the P-type body 220. The contact window 270 divides the N-type doped region 250 into two portions, corresponding to the adjacent two gate structures 240, respectively. Next, the P-type dopant is implanted by ion implantation to form a heavily doped region 280 in the P-type body 220 below the bottom surface of the contact window 270. It should be noted that since the upper surface of the gate structure 240 is exposed, the gate structure 240 and the P-type body 220 are both formed of germanium. Therefore, the etching step of FIG. 4E simultaneously etches the upper surface of the gate structure 240, and a recess is formed in the first dielectric structure 262 over the gate structure 240.

隨後,如第4F與4G圖所示,形成一第二介電結構264於接觸窗270內。在本實施例中,第二介電結構264除了覆蓋接觸窗270之側壁,同時也會覆蓋閘極結構240之上表面。關於第二介電結構264之製作步驟,如第4F圖所示,可先沿著第一介電結構262與接觸窗270表面起伏,全面沉積一第二介電層263。此第二介電層263需大致填滿閘極結構240上方之凹槽。然後,如第4G圖所示,以蝕刻方式去除位於接觸窗270底面之部分第二介電層263,以形成第二介電結構264。值得注意的是,由於覆蓋於閘極結構240上方之第二介電層263的厚度t1大於覆蓋於接觸窗270底面之第二介電層263的厚度t2,因此,透過蝕刻方式去除位於接觸窗270底面之部份第二介電層263後,仍然可以保留部分之第二介電層263覆蓋接觸窗270之側壁與閘極結構240之上表面。Subsequently, as shown in FIGS. 4F and 4G, a second dielectric structure 264 is formed in the contact window 270. In the present embodiment, the second dielectric structure 264 covers the sidewalls of the contact window 270 and also covers the upper surface of the gate structure 240. As for the fabrication steps of the second dielectric structure 264, as shown in FIG. 4F, a second dielectric layer 263 may be entirely deposited along the surface of the first dielectric structure 262 and the contact window 270. The second dielectric layer 263 needs to substantially fill the recess above the gate structure 240. Then, as shown in FIG. 4G, a portion of the second dielectric layer 263 located on the bottom surface of the contact window 270 is removed by etching to form the second dielectric structure 264. It should be noted that since the thickness t1 of the second dielectric layer 263 overlying the gate structure 240 is greater than the thickness t2 of the second dielectric layer 263 covering the bottom surface of the contact window 270, the contact window is removed by etching. After a portion of the second dielectric layer 263 of the bottom surface 270, a portion of the second dielectric layer 263 may remain to cover the sidewalls of the contact window 270 and the upper surface of the gate structure 240.

如第4G圖所示,在完成第二介電結構264之製作後,透過第二介電結構264蝕刻P型本體220,以形成一窄溝槽272貫穿P型重摻雜區280與P型本體220,並延伸至P型本體220下方之N型磊晶層210。As shown in FIG. 4G, after the fabrication of the second dielectric structure 264 is completed, the P-type body 220 is etched through the second dielectric structure 264 to form a narrow trench 272 extending through the P-type heavily doped region 280 and the P-type. The body 220 extends to the N-type epitaxial layer 210 under the P-type body 220.

接下來,如第4H圖所示,以蝕刻方式去除覆蓋接觸窗270之側壁之部份第二介電結構264以曝露源極區250。在本實施例中,接觸窗270的寬度w1大於閘極結構240的寬度w2,並且,在第4F圖之步驟中所沉積的第二介電層263具有足夠的厚度,可以填滿位於閘極結構240上方之開口。因此。經過此蝕刻製程後,會留下部分第二介電結構264’覆蓋閘極結構240之上表面。最後,如第4I圖所示,於接觸窗270與窄溝槽272內填入一金屬層290以完成此具有蕭特基二極體之溝槽式功率半導體結構的製作流程。Next, as shown in FIG. 4H, a portion of the second dielectric structure 264 covering the sidewalls of the contact window 270 is removed by etching to expose the source region 250. In the present embodiment, the width w1 of the contact window 270 is greater than the width w2 of the gate structure 240, and the second dielectric layer 263 deposited in the step of FIG. 4F has a sufficient thickness to fill the gate. An opening above structure 240. therefore. After this etching process, a portion of the second dielectric structure 264' is left overlying the upper surface of the gate structure 240. Finally, as shown in FIG. 4I, a metal layer 290 is filled in the contact window 270 and the narrow trench 272 to complete the fabrication process of the trench power semiconductor structure having the Schottky diode.

在本實施例中,第一介電結構262與第二介電結構264係由不同的介電材料製作,舉例來說,第一介電結構262與第二介電結構264可分別由氧化矽與氮化矽製作。不過,本發明並不限於此。第5A至5D圖即是顯示第一介電結構262與第二介電結構264採用相同介電材料製作之實施例。如第5A圖所示,在形成接觸窗370於P型本體320後,全面沉積一第二介電層363。此第二介電層363與第一介電結構362係以相同材質製作。隨後,如第5B圖,以非等向性蝕刻技術,利用位於接觸窗370側壁處的介電結構364為遮罩,形成一窄溝槽372於凹陷之下方,貫穿重摻雜區380,並延伸至N型磊晶層310。In the present embodiment, the first dielectric structure 262 and the second dielectric structure 264 are made of different dielectric materials. For example, the first dielectric structure 262 and the second dielectric structure 264 may be respectively made of yttrium oxide. Made with tantalum nitride. However, the invention is not limited thereto. 5A to 5D are diagrams showing an embodiment in which the first dielectric structure 262 and the second dielectric structure 264 are made of the same dielectric material. As shown in FIG. 5A, after the contact window 370 is formed on the P-type body 320, a second dielectric layer 363 is entirely deposited. The second dielectric layer 363 and the first dielectric structure 362 are made of the same material. Subsequently, as shown in FIG. 5B, the dielectric structure 364 at the sidewall of the contact window 370 is used as a mask by an anisotropic etching technique to form a narrow trench 372 under the recess, penetrating the heavily doped region 380, and Extending to the N-type epitaxial layer 310.

接下來,如第5C圖所示,去除覆蓋於接觸窗370側壁處的介電結構364,以裸露鄰接於接觸窗370之源極區350。值得注意的是,如同前述本發明之製作方法之第三實施例,由於本實施例所形成之接觸窗370的寬度大於閘極結構340的寬度,且第5A圖所示之步驟中所沉積的第二介電層363具有足夠的厚度以填滿位於閘極結構340上方之開口。因此,在經過第5C圖之蝕刻步驟後,仍然會留下部分之介電結構366覆蓋於閘極結構340之上表面。最後,如第5D圖所示,於接觸窗370與窄溝槽372內填入一金屬層390以完成此具有蕭特基二極體之溝槽式功率半導體結構的製作流程。Next, as shown in FIG. 5C, the dielectric structure 364 overlying the sidewalls of the contact window 370 is removed to expose the source region 350 adjacent the contact window 370. It should be noted that, as in the third embodiment of the manufacturing method of the present invention, the width of the contact window 370 formed in the present embodiment is larger than the width of the gate structure 340, and is deposited in the step shown in FIG. 5A. The second dielectric layer 363 has a sufficient thickness to fill the opening above the gate structure 340. Therefore, after passing through the etching step of FIG. 5C, a portion of the dielectric structure 366 is still left over the upper surface of the gate structure 340. Finally, as shown in FIG. 5D, a metal layer 390 is filled in the contact window 370 and the narrow trench 372 to complete the fabrication process of the trench power semiconductor structure having the Schottky diode.

如前述,本發明之溝槽式功率半導體結構之製作方法,可以搭配既有之溝槽式金氧半功率電晶體元件之製程,尤其可適用於窄線寬之製程。由於相關的製程設備與條件已經成熟使用於溝槽式功率電晶體之製程,因此,本發明之製作方法具有低成本與高可行性的優點。同時,本發明不需要使用額外的微影製程定義蕭特基二極體的位置。更可助於降低製作成本。As described above, the method for fabricating the trench type power semiconductor structure of the present invention can be combined with the process of the existing trench type MOS transistor, and is particularly applicable to a process of narrow line width. Since the related process equipment and conditions have been maturely used in the process of trench power transistors, the fabrication method of the present invention has the advantages of low cost and high feasibility. At the same time, the present invention does not require the use of an additional lithography process to define the location of the Schottky diode. It can help reduce production costs.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。另外本發明的任一實施例或申請專利範圍不須達成本發明所揭露之全部目的或優點或特點。此外,摘要部分和標題僅是用來輔助專利文件搜尋之用,並非用來限制本發明之權利範圍。The above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are All remain within the scope of the invention patent. In addition, any of the objects or advantages or features of the present invention are not required to be achieved by any embodiment or application of the invention. In addition, the abstract sections and headings are only used to assist in the search of patent documents and are not intended to limit the scope of the invention.

SD1‧‧‧蕭特基二極體SD1‧‧‧ Schottky diode

T1‧‧‧金氧半電晶體T1‧‧‧ gold oxide semi-transistor

D1‧‧‧本體二極體D1‧‧‧ body diode

G‧‧‧閘極G‧‧‧ gate

S‧‧‧源極S‧‧‧ source

D‧‧‧汲極D‧‧‧汲

100,200,300‧‧‧N型基板100,200,300‧‧‧N type substrate

110,210,310‧‧‧N型磊晶層110,210,310‧‧‧N type epitaxial layer

120,220,320‧‧‧P型本體120,220,320‧‧‧P type ontology

130,230,330‧‧‧閘極介電層130,230,330‧‧‧gate dielectric layer

140,240,340‧‧‧閘極結構140,240,340‧‧‧ gate structure

150,250,350‧‧‧N型源極區150, 250, 350‧‧‧N-type source area

162,262,362‧‧‧第一介電結構162,262,362‧‧‧First dielectric structure

164,264,264’‧‧‧第二介電結構164,264,264'‧‧‧second dielectric structure

170,170’,270,370‧‧‧接觸窗170,170’,270,370‧‧‧Contact window

172,272,372‧‧‧窄溝槽172,272,372‧‧‧Narrow trench

180,280,380‧‧‧P型重摻雜區180,280,380‧‧‧P type heavily doped area

190,290,390‧‧‧金屬層190,290,390‧‧‧metal layer

260‧‧‧圖案層260‧‧‧pattern layer

222‧‧‧溝槽222‧‧‧ trench

160‧‧‧第一介電層160‧‧‧First dielectric layer

263,363‧‧‧第二介電層263,363‧‧‧second dielectric layer

364,366‧‧‧介電結構364,366‧‧‧ dielectric structure

第1圖係一利用蕭特基二極體改善金氧半電晶體之切換損失的電路示意圖。Figure 1 is a schematic diagram of a circuit for improving the switching loss of a gold-oxide-semiconductor using a Schottky diode.

第2A至2E圖顯示本發明具有蕭特基二極體之溝槽式功率半導體結構之製作方法之第一實施例。2A to 2E are views showing a first embodiment of a method of fabricating a trench type power semiconductor structure having a Schottky diode of the present invention.

第3A與3B圖顯示本發明具有蕭特基二極體之溝槽式功率半導體結構之製作方法之第二實施例。3A and 3B are views showing a second embodiment of a method of fabricating a trench type power semiconductor structure having a Schottky diode of the present invention.

第4A至4I圖顯示本發明具有蕭特基二極體(schottky diode)之溝槽式功率半導體結構之製作方法之第三實施例。Figures 4A through 4I show a third embodiment of a method of fabricating a trench power semiconductor structure having a Schottky diode of the present invention.

第5A至5D圖顯示本發明具有蕭特基二極體(schottky diode)之溝槽式功率半導體結構之製作方法之第四實施例。Figures 5A through 5D show a fourth embodiment of a method of fabricating a trench power semiconductor structure having a Schottky diode of the present invention.

200...N型基板200. . . N-type substrate

210...N型磊晶層210. . . N-type epitaxial layer

220...P型本體220. . . P-type ontology

230...閘極介電層230. . . Gate dielectric layer

240...閘極結構240. . . Gate structure

250...N型源極區250. . . N-type source region

262...第一介電結構262. . . First dielectric structure

264...第二介電結構264. . . Second dielectric structure

270...接觸窗270. . . Contact window

272...窄溝槽272. . . Narrow groove

280...P型重摻雜區280. . . P-type heavily doped region

Claims (15)

一種具有一蕭特基二極體(schottky diode)之溝槽式功率半導體結構之製造方法,包括:形成一汲極區於一基板內;形成至少二個閘極結構於該汲極區之上方,並且,形成一本體與至少一源極區於相鄰二該閘極結構之間;形成一第一介電結構覆蓋該閘極結構;透過該第一介電結構,形成至少一接觸窗於該本體,該接觸窗之側邊係鄰接於該源極區,而使該源極區裸露於外;形成一第二介電結構於該凹陷內,該第二介電結構具有至少一第二開口曝露該接觸窗之部分底面;透過該第二介電結構蝕刻該本體,以形成一窄溝槽延伸至該本體下方之該汲極區,該窄溝槽之寬度小於該接觸窗之寬度;以及於該接觸窗與該窄溝槽內填入一金屬層,該金屬層係電性連接至該源極區,並形成該蕭特基二極體於該金屬層與該汲極區之接面。A method of fabricating a trench power semiconductor structure having a Schottky diode, comprising: forming a drain region in a substrate; forming at least two gate structures above the drain region And forming a body and at least one source region between the adjacent two gate structures; forming a first dielectric structure covering the gate structure; and forming at least one contact window through the first dielectric structure In the body, the side of the contact window is adjacent to the source region, and the source region is exposed; a second dielectric structure is formed in the recess, and the second dielectric structure has at least a second Opening a portion of the bottom surface of the contact window; etching the body through the second dielectric structure to form a narrow trench extending to the drain region below the body, the narrow trench having a width smaller than a width of the contact window; And filling a metal layer in the contact window and the narrow trench, the metal layer is electrically connected to the source region, and forming the Schottky diode in the metal layer and the drain region surface. 如申請專利範圍第1項之具有一蕭特基二極體之溝槽式功率半導體結構之製造方法,其中,形成該第一介電結構之步驟包括:全面沉積一第一介電層;於該第一介電層定義該接觸窗之位置,該接觸窗係對應於相鄰二該閘極結構間之該本體;以及蝕刻該第一介電層以形成至少一第一開口對應於該接觸窗。The method for fabricating a trench type power semiconductor structure having a Schottky diode according to claim 1, wherein the step of forming the first dielectric structure comprises: depositing a first dielectric layer; The first dielectric layer defines a location of the contact window, the contact window corresponding to the body between two adjacent gate structures; and etching the first dielectric layer to form at least one first opening corresponding to the contact window. 如申請專利範圍第1項之具有一蕭特基二極體之溝槽式功率半導體結構之製造方法,其中,形成該接觸窗使該源極區裸露於外之步驟後,更包括形成一重摻雜區於該接觸窗下方之該本體內,並且,該窄溝槽係貫穿該重摻雜區。A method of fabricating a trench type power semiconductor structure having a Schottky diode according to claim 1, wherein the step of forming the contact window to expose the source region to the outside includes forming a heavily doped The impurity region is within the body below the contact window, and the narrow trench extends through the heavily doped region. 如申請專利範圍第1項之具有一蕭特基二極體之溝槽式功率半導體結構之製造方法,其中,該第二介電結構包括至少一側壁結構由該接觸窗之底面向上延伸至該第一介電結構。A method of fabricating a trench type power semiconductor structure having a Schottky diode according to claim 1, wherein the second dielectric structure comprises at least one sidewall structure extending upward from a bottom surface of the contact window to the The first dielectric structure. 如申請專利範圍第1項之具有一蕭特基二極體之溝槽式功率半導體結構之製造方法,其中,形成該第二介電結構之步驟包括:沿著該第一介電結構與該接觸窗之表面起伏,全面沉積一第二介電層;以及以蝕刻方式去除位於該第一介電結構之上表面與位於該接觸窗之底面上的部分該第二介電層,以形成一第二介電結構至少覆蓋該接觸窗之側壁。A method of fabricating a trench type power semiconductor structure having a Schottky diode according to claim 1, wherein the step of forming the second dielectric structure comprises: along the first dielectric structure Forming a second dielectric layer on the surface of the contact window; and removing a portion of the second dielectric layer on the upper surface of the first dielectric structure and the bottom surface of the contact window by etching to form a second dielectric layer The second dielectric structure covers at least a sidewall of the contact window. 如申請專利範圍第1項之具有一蕭特基二極體之溝槽式功率半導體結構之製造方法,其中,形成該閘極結構與該第一介電結構之步驟包括:形成一圖案層於該基板之上表面;透過該圖案層蝕刻該基板,以形成複數個溝槽於該基板內;形成一閘極介電層覆蓋該些溝槽之內壁;填入多晶矽材料於該些溝槽與該圖案層之開口內,以形成複數個閘極結構於該汲極區之上方,並且突出於該基板之該上表面;去除該圖案層;沿著該基板與該閘極結構之表面起伏,全面沉積一第一介電層;以蝕刻方式去除位於該基板上之部分該第一介電層,以形成該第一介電結構至少覆蓋該閘極結構之側壁。A method of fabricating a trench type power semiconductor structure having a Schottky diode according to claim 1, wherein the step of forming the gate structure and the first dielectric structure comprises: forming a pattern layer An upper surface of the substrate; the substrate is etched through the pattern layer to form a plurality of trenches in the substrate; a gate dielectric layer is formed to cover the inner walls of the trenches; and polysilicon material is filled in the trenches And the opening of the pattern layer to form a plurality of gate structures over the drain region and protruding over the upper surface of the substrate; removing the pattern layer; undulating along the surface of the substrate and the gate structure Depositing a first dielectric layer; removing a portion of the first dielectric layer on the substrate by etching to form the first dielectric structure covering at least a sidewall of the gate structure. 如申請專利範圍第6項之具有一蕭特基二極體之溝槽式功率半導體結構之製造方法,其中,以蝕刻方式去除部份該第一介電層以形成該第一介電結構之步驟後,該閘極結構之上表面係裸露於外,並且,在透過該第一介電結構蝕刻該本體之步驟中,同時蝕刻該閘極結構,以形成一凹槽於該閘極結構上方之該第一介電結構中。A method of fabricating a trench type power semiconductor structure having a Schottky diode according to claim 6 wherein a portion of the first dielectric layer is removed by etching to form the first dielectric structure. After the step, the upper surface of the gate structure is exposed, and in the step of etching the body through the first dielectric structure, the gate structure is simultaneously etched to form a recess above the gate structure. In the first dielectric structure. 如申請專利範圍第7項之具有一蕭特基二極體之溝槽式功率半導體結構之製造方法,其中,形成該第二介電結構之步驟包括:沿著該第一介電結構與該接觸窗之表面起伏,全面沉積一第二介電層,該第二介電層大致填滿位於該閘極結構上方之凹槽;以及以蝕刻方式去除位於該接觸窗底面之部分該第二介電層,以形成該第二介電結構至少覆蓋該接觸窗之側壁與該閘極結構之上表面。A method of fabricating a trench type power semiconductor structure having a Schottky diode according to claim 7 wherein the step of forming the second dielectric structure comprises: along the first dielectric structure The surface of the contact window is undulating, and a second dielectric layer is substantially deposited, the second dielectric layer substantially filling the recess above the gate structure; and the second portion of the bottom surface of the contact window is removed by etching The electrical layer forms the second dielectric structure to cover at least a sidewall of the contact window and an upper surface of the gate structure. 如申請專利範圍第8項之具有一蕭特基二極體之溝槽式功率半導體結構之製造方法,其中,在形成該窄溝槽之步驟後,更包括去除覆蓋該接觸窗之側壁之部份該第二介電結構,以曝露該源極區,並且留下覆蓋該閘極結構之部分該第二介電結構。A method of fabricating a trench type power semiconductor structure having a Schottky diode according to claim 8 wherein, after the step of forming the narrow trench, further comprising removing a portion covering a sidewall of the contact window The second dielectric structure is exposed to expose the source region and leave a portion of the second dielectric structure overlying the gate structure. 如申請專利範圍第1項之具有一蕭特基二極體之溝槽式功率半導體結構之製造方法,其中,該接觸窗之寬度大於該閘極結構之寬度。A method of fabricating a trench power semiconductor structure having a Schottky diode according to claim 1 wherein the width of the contact window is greater than the width of the gate structure. 一種具有一蕭特基二極體之溝槽式功率半導體結構,包括:一汲極區;至少二個閘極結構,位於該汲極區上方;一本體,位於該汲極區上方,並且位於相鄰二該閘極結構之間;至少一源極區,位於該本體內,並且鄰接於該閘極結構;一介電結構,覆蓋該閘極結構;一接觸窗,形成於該本體之上部份與該介電結構中,並且鄰接於該源極區;一窄溝槽,由該接觸窗之底面向下延伸至該汲極區,該窄溝槽之寬度小於該接觸窗之寬度;一金屬層,填入該接觸窗與該窄溝槽,以電性連接至該源極區,並形成該蕭特基二極體於該金屬層與該汲極區之接面。A trench power semiconductor structure having a Schottky diode comprising: a drain region; at least two gate structures above the drain region; a body above the drain region and located Between two adjacent gate structures; at least one source region is located in the body and adjacent to the gate structure; a dielectric structure covering the gate structure; a contact window formed on the body And a portion of the dielectric structure adjacent to the source region; a narrow trench extending downward from a bottom surface of the contact window to the drain region, the narrow trench having a width smaller than a width of the contact window; A metal layer is filled in the contact window and the narrow trench to be electrically connected to the source region, and the Schottky diode is formed on the junction of the metal layer and the drain region. 如申請專利範圍第11項之具有一蕭特基二極體之溝槽式功率半導體結構,更包括一重摻雜區,位於該接觸窗下方之該本體內,並且,該窄溝槽係貫穿該重摻雜區。The trench power semiconductor structure having a Schottky diode according to claim 11 further includes a heavily doped region located in the body below the contact window, and the narrow trench is penetrated through the body Heavy doped area. 如申請專利範圍第11項之具有一蕭特基二極體之溝槽式功率半導體結構,其中,該閘極結構係突出該本體之上表面。A trench type power semiconductor structure having a Schottky diode according to claim 11 wherein the gate structure protrudes from an upper surface of the body. 如申請專利範圍第13項之具有一蕭特基二極體之溝槽式功率半導體結構,其中,該介電結構包括一第一部份與一第二部份,該第一部分係由該本體之上表面向上延伸覆蓋該閘極結構之側壁,該第二部份係覆蓋該閘極結構之上表面。A trench type power semiconductor structure having a Schottky diode according to claim 13 wherein the dielectric structure comprises a first portion and a second portion, the first portion being the body The upper surface extends upwardly to cover the sidewall of the gate structure, and the second portion covers the upper surface of the gate structure. 如申請專利範圍第11項之具有一蕭特基二極體之溝槽式功率半導體結構,其中,該接觸窗之寬度大於該閘極結構之寬度。A trench power semiconductor structure having a Schottky diode according to claim 11 wherein the width of the contact window is greater than the width of the gate structure.
TW99101688A 2010-01-21 2010-01-21 Trenched power semiconductor structure with schottky diode and fabrication method thereof TWI397154B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99101688A TWI397154B (en) 2010-01-21 2010-01-21 Trenched power semiconductor structure with schottky diode and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99101688A TWI397154B (en) 2010-01-21 2010-01-21 Trenched power semiconductor structure with schottky diode and fabrication method thereof

Publications (2)

Publication Number Publication Date
TW201126652A TW201126652A (en) 2011-08-01
TWI397154B true TWI397154B (en) 2013-05-21

Family

ID=45024597

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99101688A TWI397154B (en) 2010-01-21 2010-01-21 Trenched power semiconductor structure with schottky diode and fabrication method thereof

Country Status (1)

Country Link
TW (1) TWI397154B (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010041407A1 (en) * 2000-05-13 2001-11-15 Koninklijke Philips Electronics N.V. Trench-gate semiconductor devices
US20020022324A1 (en) * 2000-08-17 2002-02-21 Hueting Raymond J.E. Manufacture of trench-gate semiconductor devices
TWI221033B (en) * 2003-09-01 2004-09-11 Advanced Power Electronics Cor A method for manufacturing a trench power MOSFET with a Schottky diode
US20040232479A1 (en) * 2001-04-11 2004-11-25 Baliga Bantval Jayant Methods of forming vertical power devices having trench-based source electrodes with sidewall source contacts
US20050045969A1 (en) * 2003-08-29 2005-03-03 Wen-Chin Lee Silicide/semiconductor structure and method of fabrication
EP1577952A1 (en) * 2004-03-09 2005-09-21 STMicroelectronics S.r.l. High voltage insulated gate field-effect transistor and method of making the same
TWI246194B (en) * 2004-08-12 2005-12-21 Silicon Based Tech Corp Self-aligned schottky-barrier clamped trench DMOS transistor structure and its manufacturing methods
EP1340263B1 (en) * 2000-11-17 2007-03-07 Koninklijke Philips Electronics N.V. Trench-gate field-effect transistors and their manufacture
US20070075362A1 (en) * 2005-09-30 2007-04-05 Ching-Yuan Wu Self-aligned schottky-barrier clamped trench DMOS transistor structure and its manufacturing methods
US20070215956A1 (en) * 2006-03-15 2007-09-20 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
US20080061321A1 (en) * 2005-06-28 2008-03-13 Chih-Hsin Wang Low power electrically alterable nonvolatile memory cells and arrays

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010041407A1 (en) * 2000-05-13 2001-11-15 Koninklijke Philips Electronics N.V. Trench-gate semiconductor devices
US20020022324A1 (en) * 2000-08-17 2002-02-21 Hueting Raymond J.E. Manufacture of trench-gate semiconductor devices
EP1340263B1 (en) * 2000-11-17 2007-03-07 Koninklijke Philips Electronics N.V. Trench-gate field-effect transistors and their manufacture
US20040232479A1 (en) * 2001-04-11 2004-11-25 Baliga Bantval Jayant Methods of forming vertical power devices having trench-based source electrodes with sidewall source contacts
US20050045969A1 (en) * 2003-08-29 2005-03-03 Wen-Chin Lee Silicide/semiconductor structure and method of fabrication
TWI221033B (en) * 2003-09-01 2004-09-11 Advanced Power Electronics Cor A method for manufacturing a trench power MOSFET with a Schottky diode
EP1577952A1 (en) * 2004-03-09 2005-09-21 STMicroelectronics S.r.l. High voltage insulated gate field-effect transistor and method of making the same
TWI246194B (en) * 2004-08-12 2005-12-21 Silicon Based Tech Corp Self-aligned schottky-barrier clamped trench DMOS transistor structure and its manufacturing methods
US20080061321A1 (en) * 2005-06-28 2008-03-13 Chih-Hsin Wang Low power electrically alterable nonvolatile memory cells and arrays
US20070075362A1 (en) * 2005-09-30 2007-04-05 Ching-Yuan Wu Self-aligned schottky-barrier clamped trench DMOS transistor structure and its manufacturing methods
US20070215956A1 (en) * 2006-03-15 2007-09-20 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same

Also Published As

Publication number Publication date
TW201126652A (en) 2011-08-01

Similar Documents

Publication Publication Date Title
US11133407B2 (en) Super-junction IGBT device and method for manufacturing same
TWI539602B (en) Semiconductor device and method of manufacturing a semiconductor device
TWI464885B (en) New approach to integrate schottky in mosfet
CN103579339B (en) Semiconductor device
US10861965B2 (en) Power MOSFET with an integrated pseudo-Schottky diode in source contact trench
US20050218472A1 (en) Semiconductor device manufacturing method thereof
JP2004511910A (en) Trench double diffused metal oxide semiconductor transistor incorporating trench Schottky rectifier
US7880262B2 (en) Semiconductor device
JP5878331B2 (en) Semiconductor device and manufacturing method thereof
US20160104797A1 (en) Semiconductor Device and Method of Manufacturing a Semiconductor Device
CN110071169A (en) With body contact and the semiconductor devices of dielectric spacer portion and corresponding manufacturing method
CN111223857A (en) Semiconductor device with integrated MOS-gated diode or Schottky diode
CN102201366B (en) Trench type power semiconductor structure with Schottky diode and manufacturing method thereof
US9324817B2 (en) Method for forming a transistor device having a field electrode
TWI418015B (en) Power semiconductor structure with field effect rectifier and fabrication method thereof
US20130001699A1 (en) Trench junction barrier schottky structure with enhanced contact area integrated with a mosfet
US7994001B1 (en) Trenched power semiconductor structure with schottky diode and fabrication method thereof
CN107910268B (en) Power semiconductor device and method of manufacturing the same
JP2006049455A (en) Trench type insulated gate semiconductor device
KR102088181B1 (en) A semiconductor transistor and method for forming the semiconductor transistor
JP2012059931A (en) Semiconductor device
TWI419334B (en) Trenched power mosfet with enhanced breakdown voltage and fabrication method thereof
TWI397154B (en) Trenched power semiconductor structure with schottky diode and fabrication method thereof
JP6555284B2 (en) Semiconductor device
KR20170080510A (en) Transistor device with field electrode

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees