TWI393258B - Field effect transistor with indium aluminum gallium / gallium arsenide hump gate - Google Patents

Field effect transistor with indium aluminum gallium / gallium arsenide hump gate Download PDF

Info

Publication number
TWI393258B
TWI393258B TW98108155A TW98108155A TWI393258B TW I393258 B TWI393258 B TW I393258B TW 98108155 A TW98108155 A TW 98108155A TW 98108155 A TW98108155 A TW 98108155A TW I393258 B TWI393258 B TW I393258B
Authority
TW
Taiwan
Prior art keywords
gallium arsenide
layer
gate
indium
gallium
Prior art date
Application number
TW98108155A
Other languages
Chinese (zh)
Other versions
TW201034187A (en
Original Assignee
Nat Univ Dong Hwa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Dong Hwa filed Critical Nat Univ Dong Hwa
Priority to TW98108155A priority Critical patent/TWI393258B/en
Publication of TW201034187A publication Critical patent/TW201034187A/en
Application granted granted Critical
Publication of TWI393258B publication Critical patent/TWI393258B/en

Links

Description

具有磷化銦鋁鎵/砷化鎵駝峰式閘極之場效電晶體Field effect transistor with indium aluminum gallium phosphide/gallium arsenide gate

本發明係關於一種具有磷化銦鋁鎵/砷化鎵駝峰式閘極之場效電晶體,尤指一種利用InAlGaP/GaAs異質接面構成駝峰式閘極的高電子移動率電晶體。The invention relates to a field effect transistor with an indium aluminum gallium phosphide/gallium arsenide gate, in particular a high electron mobility transistor using a Helium gate of an InAlGaP/GaAs heterojunction.

與矽晶圓比較,砷化鎵材料具有高電子遷移率、較高電子飽和速度及高阻抗特性,故已廣泛的應用於高頻電路及微波通訊電路上。迄今,在研製GaAs系統的異質結構電晶體元件上,仍以AlGaAs/GaAs為主流。但近年來,InGaP/GaAs系列的異質結構場效電晶體逐漸受矚目,並有相當不錯的開發成果,原因在於與AlGaAs材料比較,InGaP具有如下之特性:Compared with germanium wafers, gallium arsenide materials have high electron mobility, high electron saturation speed and high impedance characteristics, so they have been widely used in high frequency circuits and microwave communication circuits. So far, in the development of heterostructure transistor elements of GaAs systems, AlGaAs/GaAs is still the mainstream. However, in recent years, the InGaP/GaAs series of heterostructure field effect transistors have gradually attracted attention, and have quite good development results, because InGaP has the following characteristics compared with AlGaAs materials:

(1)有規則排列的InGaP之能隙是1.85eV,不規則排列的InGaP能隙為1.9eV,其值均大於Al0.3 Ga0.7 As之能隙(1.7eV)。(1) The energy gap of the regularly arranged InGaP is 1.85 eV, and the irregularly arranged InGaP energy gap is 1.9 eV, and the values are all larger than the energy gap of Al 0.3 Ga 0.7 As (1.7 eV).

(2)InGaP無AlGaAs易於氧化及DX center的問題。(2) InGaP-free AlGaAs is susceptible to oxidation and DX center problems.

(3)InGaP具有較低的表面複合速率,導致較低的1/f 雜訊。(3) InGaP has a lower surface recombination rate, resulting in lower 1/f noise.

(4)採用的蝕刻液對GaAs與InGaP具有高度的選擇性,因此可大幅提升其良率及均勻性。(4) The etching solution used has a high selectivity to GaAs and InGaP, so that the yield and uniformity can be greatly improved.

又與異質接面場效電晶體相關的文獻中,最早的是傳統n+ -GaAs/p+ -GaAs/n-GaAs駝峰式閘極同質接面場效電晶體,接著有改良型n+ -GaAs/p+ -InGaP/n-GaAs駝峰式閘極異質接面場效電晶體,即是以異質結構n+ -GaAs/p+ -InGaP以取代異質結構n+ -GaAs/p+ -GaAs。主要原因在於InGaP/GaAs異質接面的導電帶不連續ΔE C ,除能增加閘極位障高度外,且能有效的將電子侷限在通道內。而價電帶的不連續值ΔE V ,可增加對電洞的阻隔作用。因此,n+ -GaAs/p+ -InGaP/n-GaAs駝峰式異質結構場效電晶體可獲得較高的崩潰電壓、高線性轉換特性及汲極輸出電流。In the literature related to heterojunction field effect transistors, the earliest is the traditional n + -GaAs/p + -GaAs/n-GaAs camel-type gate homojunction field-effect transistor, followed by the modified n + - The GaAs/p + -InGaP/n-GaAs camel-type gate heterojunction field effect transistor is a heterostructure n + -GaAs/p + -InGaP to replace the heterostructure n + -GaAs/p + -GaAs. The main reason is that the conduction band of the InGaP/GaAs heterojunction is discontinuous Δ E C , which can increase the gate barrier height and effectively confine the electrons in the channel. The discontinuous value Δ E V of the valence band can increase the barrier effect on the hole. Therefore, the n + -GaAs/p + -InGaP/n-GaAs camel-type heterostructure field effect transistor can obtain a high breakdown voltage, high linearity conversion characteristics, and a drain output current.

在前述基礎下,如進一步在前述異質結構的InGaP中適度的加入鋁,以取代其中的鎵,不僅不會改變其晶格常數,又可將其能隙提升到2.3eV(In0.5 Al0.5 P),而所構成的磷化銦鋁鎵其化學式為In0.5 (AlX Ga1-X )0.5 P,其中x代表鋁取代鎵的比例,當鋁含量增加時,能隙隨著增加,且InAlGaP/GaAs之ΔE C 值亦比InGaP/GaAs的ΔE C 為大。On the basis of the foregoing, if aluminium is appropriately added to the InGaP of the aforementioned heterostructure to replace the gallium therein, not only the lattice constant thereof but also the energy gap can be raised to 2.3 eV (In 0.5 Al 0.5 P). ), and the indium aluminum gallium phosphide has a chemical formula of In 0.5 (Al X Ga 1-X ) 0.5 P, where x represents the proportion of aluminum substituted gallium, and as the aluminum content increases, the energy gap increases, and InAlGaP The Δ E C value of /GaAs is also larger than the Δ E C of InGaP/GaAs.

由於InAlGaP/GaAs異質接面具有前述優點,故可用以改良既有的駝峰式異質結構場效電晶體,以提升其特性。Since the InAlGaP/GaAs heterojunction has the aforementioned advantages, it can be used to improve the existing hump-type heterostructure field effect transistor to enhance its characteristics.

因此本發明主要目的在提供一種磷化銦鋁鎵駝峰式閘極場效電晶體,主要係以異質結構n+ -GaAs/p+ -InAlGaP取代駝峰式閘極場效電晶體中的異質結構n+ -GaAs/p+ -InGaP,藉以得到更大的輸出電流、崩潰電壓及輸出功率。Therefore, the main object of the present invention is to provide an indium phosphide gallium hump-type gate field effect transistor, which mainly replaces the heterostructure in a hump-type gate field effect transistor with a heterostructure n + -GaAs/p + -InAlGaP. + -GaAs/p + -InGaP for greater output current, breakdown voltage and output power.

為達成前述目的採取的主要技術手段之一係令前述駝峰式閘極場效電晶體於一半絕緣砷化鎵基板上依序形成有一無摻雜之砷化鎵緩衝層、一砷化鎵空間層、一高濃度摻雜層及一通道層;並進一步形成一位能障閘極及構成歐姆接觸的一汲極金屬、一源極金屬;其中:One of the main technical means for achieving the above purpose is to form an undoped gallium arsenide buffer layer and a gallium arsenide spatial layer on the half of the insulating gallium arsenide substrate. a high concentration doped layer and a channel layer; and further forming a barrier gate and a gate metal and a source metal forming an ohmic contact; wherein:

該高濃度摻雜層係以Delta摻雜方式形成於砷化鎵空間層上;The high concentration doped layer is formed on the gallium arsenide space layer by Delta doping;

該位能障閘極係由n型砷化鎵/p型磷化銦鋁鎵/n型砷化鎵n+ -GaAs/p+ InAlGaP/n-GaAs之異質接面結構所構成;The potential barrier gate is composed of a heterojunction structure of n-type gallium arsenide/p-type indium phosphide/n-type gallium arsenide n + -GaAs/p + InAlGaP/n-GaAs;

該通道層係由砷化銦鎵(InGaAs)構成;The channel layer is composed of indium gallium arsenide (InGaAs);

前述場效電晶體在閘極設計方面,因以異質結構h+ -GaAs/p+ -InAlGaP取代n+ -GaAs/p+ -InGaP,相較於InGaP具有較大的能隙及位能障,又因異質結構InAlGaP/GaAs的ΔE C 比InGaP/GaAs大,因此可有效的抑制電子注入通道層;另位能障閘極係由n型砷化鎵、p型磷化銦鋁鎵、n型砷化鎵所構成,由於使用具有大ΔE c 值的InAlGaP/GaAs異質接面及Delta摻雜技術,因此可得到更大的輸出電流、崩潰電壓及輸出功率,而大幅提升駝峰式閘極場效電晶體的特性。In the field effect transistor gate design, due to the heterostructure h + -GaAs / p + -InAlGaP substituted n + -GaAs / p + -InGaP, compared to InGaP having a larger energy gap and potential energy barrier, Since the Δ E C of the heterostructure InAlGaP/GaAs is larger than InGaP/GaAs, the electron injection channel layer can be effectively suppressed; the other energy barrier is made of n-type gallium arsenide, p-type indium aluminum gallium arsenide, n GaAs is formed by using InAlGaP/GaAs heterojunction with large Δ E c value and Delta doping technology, so that larger output current, breakdown voltage and output power can be obtained, and the hump-type gate is greatly improved. The characteristics of field effect transistors.

本發明又一目的在提供一種磷化銦鋁鎵駝峰式閘極場效電晶體,其閘極金屬、源極金屬及汲極金屬係位於同一平面上。Another object of the present invention is to provide an indium phosphide gallium hump-type gate field effect transistor in which the gate metal, the source metal and the drain metal are on the same plane.

有關本發明的第一較佳實施例,請參閱第一圖所示,包括有:Regarding the first preferred embodiment of the present invention, please refer to the first figure, including:

一半絕緣的砷化鎵基板(10)(S.I. GaAs Substrate);Half insulated gallium arsenide substrate (10) (S.I. GaAs Substrate);

一砷化鎵緩衝層(11),係形成於前述砷化鎵基板(10)之上,該砷化鎵緩衝層(11)的厚度介於0.5至1.5μm之間;a gallium arsenide buffer layer (11) is formed on the foregoing gallium arsenide substrate (10), the gallium arsenide buffer layer (11) having a thickness of between 0.5 and 1.5 μm;

一高濃度摻雜層(12),係以Delta摻雜方式形成於前述砷化鎵緩衝層(11)上,其摻雜濃度δ(n+ )介於2x1012 至3x1012 cm-2 之間;A high concentration doped layer (12) is formed on the foregoing gallium arsenide buffer layer (11) by a delta doping method, and the doping concentration δ(n + ) is between 2×10 12 and 3×10 12 cm −2 . ;

一砷化鎵空間層(13),係形成於前述砷化鎵緩衝層(11)上,其厚度介於25至55埃之間;a gallium arsenide space layer (13) is formed on the foregoing gallium arsenide buffer layer (11), and has a thickness of between 25 and 55 angstroms;

一通道層(14),形成於砷化鎵空間層(13)上,係由厚度90埃的無摻雜之砷化銦鎵(InX Ga1-X As,0.1x0.25)所構成;A channel layer (14) is formed on the gallium arsenide space layer (13) by an undoped indium gallium arsenide (In X Ga 1-X As, 0.1) having a thickness of 90 Å. x 0.25);

一位能障閘極(15),係位於通道層(14)上,該位能障閘極(15)由上而下依序為一n型砷化鎵層(n+ -GaAs,摻雜濃度介於2.5x1018 至3.5x1018 cm-3 之間),其厚度介於150至250埃之間、一p型磷化銦鋁鎵層(p+ -InAlGaP,摻雜濃度介於2x1018 cm-3 至3x1018 cm-3 之間),厚度介於90至100埃之間、一n型砷化鎵層(n-GaAs,摻雜濃度介於1.5x1017 至2.5x1017 cm-3 之間),厚度介於1800至2200埃之間;藉此,使該位能障閘極(15)構成一n+ -GaAs/p+ -InAlGaP/n-GaAs之異質接面結構;A barrier gate (15) is located on the channel layer (14). The potential barrier (15) is sequentially an n-type gallium arsenide layer (n + -GaAs, doped) from top to bottom. a concentration between 2.5x10 18 and 3.5x10 18 cm -3 ), a thickness between 150 and 250 angstroms, a p-type indium phosphide layer (p + -InAlGaP, doping concentration between 2x10 18 between -3 and 3x10 18 cm -3 cm), a thickness of between 90 to 100 angstroms, a layer of n-type gallium arsenide (n-GaAs, doping concentration from about 1.5x10 17 to 2.5x10 17 cm -3 Between 1800 and 2200 angstroms; thereby, the potential barrier gate (15) constitutes a heterojunction structure of n + -GaAs/p + -InAlGaP/n-GaAs;

一源極金屬(17)、一汲極金屬(18)及一閘極金屬(16),主要是將源極金屬(17)、汲極金屬(18)鍍在位能障閘極(15)最下層的砷化鎵層(n-GaAs)(厚度介於1800至2200之間)上,接著進行退火(annealing),以構成源及汲極;接著在位能障閘極(15)最上面的砷化鎵層(n+ -GaAs)上鍍上閘極金屬(18),並以源極金屬(17)、汲極金屬(18)及閘極金屬(16)為光罩,再用GaAs蝕刻液將n+ -GaAs去除,再利用InAlGaP蝕刻液將n+ -GaAs下層的InAlGaP去除,即形成一閘極;前述源極金屬(17)及汲極金屬(18)係由AuGeNi/Au構成,該閘極金屬(16)則由金(Au)所構成。a source metal (17), a drain metal (18) and a gate metal (16), mainly plating the source metal (17) and the drain metal (18) on the potential barrier (15) The lowermost layer of GaAs (n-GaAs) (thickness between 1800 and 2200) Between, then annealing, to form the source and the drain; then plating the gate metal on the uppermost GaAs layer (n + -GaAs) of the barrier (15) (18) And using the source metal (17), the drain metal (18) and the gate metal (16) as a mask, and then removing the n + -GaAs with a GaAs etching solution, and then using the InAlGaP etching solution to n + -GaAs The lower layer of InAlGaP is removed to form a gate; the source metal (17) and the drain metal (18) are made of AuGeNi/Au, and the gate metal (16) is made of gold (Au).

利用前述構造可構成一駝峰式閘極場效電晶體,由於其位能障閘極(15)係由n+ -GaAs/p+ -InAlGaP/n-GaAs異質接面結構所構成,其中InAlGaP具有較大的能隙與位能障,又InAlGaP/GaAs異質結構上具有較大的ΔE C 值,故除可有效抑制電子注入通道層(14),亦可得到更大的輸出電流、崩潰電壓及輸出功率。A hump-type gate field effect transistor can be constructed by using the foregoing structure, since the potential barrier gate (15) is composed of an n + -GaAs/p + -InAlGaP/n-GaAs heterojunction structure, wherein InAlGaP has Larger energy gap and potential energy barrier, and InAlGaP/GaAs heterostructure has a larger Δ E C value, so in addition to effectively suppressing the electron injection channel layer (14), a larger output current and breakdown voltage can be obtained. And output power.

又如第二圖所示,係本發明第二較佳實施例,主要係一種反向Delta摻雜的n+ -GaAs/p+ -InAlGaP/n-InAlGaP異質接場效電晶體,而該等場效電晶體係包括:Further, as shown in the second figure, a second preferred embodiment of the present invention is mainly an inverse delta-doped n + -GaAs/p + -InAlGaP/n-InAlGaP hetero-connected effect transistor, and these are The field effect electro-crystal system includes:

一半絕緣的砷化鎵基板(20);Half insulated GaAs substrate (20);

一砷化鎵緩衝層(21),係形成於前述砷化鎵基板(20)之上,該砷化鎵緩衝層(21)的厚度介於0.5至1μm之間;a gallium arsenide buffer layer (21) is formed on the foregoing gallium arsenide substrate (20), the gallium arsenide buffer layer (21) having a thickness of between 0.5 and 1 μm;

一無摻雜的第一磷化銦鋁鎵層(22),係形成於前述砷化鎵緩衝層(21)上,該第一磷化銦鋁鎵層(22)厚度為200至900埃;An undoped first indium aluminum gallium phosphide layer (22) is formed on the foregoing gallium arsenide buffer layer (21), and the first indium phosphide layer (22) has a thickness of 200 to 900 angstroms;

一高濃度摻雜層(23A),係以Delta摻雜方式摻雜於前述第一磷化銦鋁鎵層(22)上,其摻雜濃度δ(n+ )介於2×1012 至3.5×1012 cm-2 之間;A high concentration doped layer (23A) is doped on the first indium phosphide layer (22) by a delta doping method, and the doping concentration δ(n + ) is between 2×10 12 and 3.5. ×10 12 cm -2 ;

一無摻雜磷化銦鋁鎵的空間層(23),係形成於前述高濃度摻雜層(23A)上,其厚度為25至50埃;a space layer (23) of undoped indium aluminum gallium is formed on the aforementioned high concentration doped layer (23A) and has a thickness of 25 to 50 angstroms;

一通道層(24),形成於前述空間層(23)上,係由厚度60至100埃的無摻雜之砷化銦鎵(InX Ga1-X As,)所構成;a channel layer (24) formed on the space layer (23) is an undoped indium gallium arsenide (In X Ga 1-X As) having a thickness of 60 to 100 angstroms. Constitute

一位能障閘極(25),係位於通道層(24)上,該位能障閘極(25)由上而下依序為一n型砷化鎵層(n+ -GaAs摻雜濃度介於3x1018 至4x1018 cm-3 之間),其厚度介於150至250埃之間、一p型磷化銦鋁鎵層(p+ -InAlGaP,摻雜濃度介於2x1018 cm-3 至3x1018 cm-3 之間),厚度介於90至110埃之間、一n型磷化銦鋁鎵層(n-InAlGaP,摻雜濃度介於1x1017 至1.5x1017 cm-3 之間),厚度介於500至650埃之間;A barrier gate (25) is located on the channel layer (24). The potential barrier (25) is sequentially an n-type gallium arsenide layer (n + -GaAs doping concentration) from top to bottom. Between 3x10 18 and 4x10 18 cm -3 ), with a thickness between 150 and 250 angstroms, a p-type indium phosphide layer (p + -InAlGaP, doping concentration between 2×10 18 cm -3 ) Between 3x10 18 cm -3 ), between 90 and 110 angstroms thick, an n-type indium phosphide layer (n-InAlGaP, doping concentration between 1x10 17 and 1.5x10 17 cm -3 ) ), the thickness is between 500 and 650 angstroms;

一閘極金屬(26),係形成於位能障閘極(25)的覆蓋層(251)上,該閘極金屬(26)係由金(Au)蒸著形成;a gate metal (26) is formed on the cap layer (251) of the barrier (25), and the gate metal (26) is formed by evaporation of gold (Au);

一源極金屬(27)、一汲極金屬(28)及一閘極金屬(26),主要是將源極金屬(27)、汲極金屬(28)鍍在位能障閘極(25)最上層的砷化鎵層(n+ -GaAs)上,接著進行退火(annealing),以構成源、汲極;接著進行高台(Mesa)製程,接著仍在該n+ -GaAs層上鍍上閘極金屬(28),並以源極金屬(27)、汲極金屬(28)及閘極金屬(26)為光罩,再用GaAs蝕刻液將n+ -GaAs去除,以形成一閘極;藉此可令源極、汲極及閘極位於同一平面上。而前述源極金屬(27)及汲極金屬(28)係由AuGeNi/Au構成,該閘極金屬(26)則由金(Au)所構成。a source metal (27), a drain metal (28) and a gate metal (26), mainly for plating the source metal (27) and the drain metal (28) on the potential barrier (25) The uppermost layer of gallium arsenide (n + -GaAs) is then annealed to form a source and a drain; then a Mesa process is performed, and then the gate is still plated on the n + -GaAs layer. a polar metal (28), and a source metal (27), a drain metal (28) and a gate metal (26) as a mask, and then removing the n + -GaAs with a GaAs etching solution to form a gate; This allows the source, drain and gate to be on the same plane. The source metal (27) and the drain metal (28) are made of AuGeNi/Au, and the gate metal (26) is made of gold (Au).

再者,如第三圖所示,係本發明第三較佳實施例,主要係一種雙Delta摻雜的n+ -GaAs/p+ -InAlGaP/n-InAlGaP異質接場效電晶體,而該等場效電晶體係包括:Furthermore, as shown in the third figure, a third preferred embodiment of the present invention is mainly a double delta doped n + -GaAs/p + -InAlGaP/n-InAlGaP heterojunction field effect transistor, and The equivalent field effect crystal system includes:

一半絕緣的砷化鎵基板(30);Half insulated GaAs substrate (30);

一砷化鎵緩衝層(31),係形成於前述砷化鎵基板(30)之上,該砷化鎵緩衝層(31)的厚度介於0.5至1μm之間;a gallium arsenide buffer layer (31) is formed on the foregoing gallium arsenide substrate (30), the gallium arsenide buffer layer (31) having a thickness of between 0.5 and 1 μm;

一無摻雜的第一磷化銦鋁鎵層(32),係形成於前述砷化鎵緩衝層(31)上,該第一磷化銦鋁鎵層(32)的厚度介於100至300埃之間;An undoped first indium aluminum gallium phosphide layer (32) is formed on the foregoing gallium arsenide buffer layer (31), and the first indium phosphide layer (32) has a thickness of 100 to 300 Between

一第一高濃度摻雜層(33A),係以Delta摻雜方式形成於前述第一磷化銦鋁鎵層(32)上,其摻雜濃度δ(n+ )介於2x1012 至3.5x1012 cm-2 之間;A first high concentration doped layer (33A) is formed on the first indium phosphide layer (32) by a delta doping method, and the doping concentration δ(n + ) is between 2×10 12 and 3.5×10 Between 12 cm -2 ;

一無摻雜的第一空間層(33),係由厚度介於25至50埃之間的磷化銦鋁鎵構成,其形成於前述第一高濃度摻雜層(33A)上;An undoped first space layer (33) is composed of indium aluminum gallium phosphide having a thickness of between 25 and 50 angstroms, which is formed on the first high concentration doped layer (33A);

一通道層(34),形成於前述第一空間層(33)上,係由厚度介於60至100埃之間的無摻雜之砷化銦鎵(InX Ga1-X As,)所構成;a channel layer (34) formed on the first space layer (33) is an undoped indium gallium arsenide (In X Ga 1-X As) having a thickness of between 60 and 100 angstroms. Constitute

一無摻雜的第二空間層(35),係由厚度介於25至55埃之間的磷化銦鋁鎵構成,其形成於前述通道層(34)上;An undoped second space layer (35) is composed of indium aluminum gallium phosphide having a thickness of between 25 and 55 angstroms, which is formed on the channel layer (34);

一第二高濃度摻雜層(33B),係以Delta摻雜方式摻雜於前述第二空間層(35)上,其摻雜濃度δ(n+ )介於2x1012 至3.5x1012 cm-2 之間;a second high concentration doped layer (33B) is doped on the second space layer (35) by a delta doping method, and the doping concentration δ(n + ) is between 2×10 12 and 3.5× 10 12 cm Between 2 ;

一無摻雜的第二磷化銦鋁鎵層(36),係形成於前述第二高濃度摻雜層(33B)上;An undoped second indium aluminum gallium phosphide layer (36) is formed on the second high concentration doped layer (33B);

二位能障閘極(37),係位於前述第二磷化銦鋁鎵層(36)上,該位能障閘極(37)由上而下依序為一n型砷化鎵層(n+ -GaAs,摻雜濃度介於3x1018 至4x1018 cm-3 之間),其厚度介於150至250埃之間、一p型磷化銦鋁鎵層(p+ -InAlGaP,摻雜濃度介於1x1018 cm-3 至3x1018 cm-3 之間),厚度介於90至110埃之間、一n型磷化銦鋁鎵層(n-InAlGaP,摻雜濃度介於1x1017 至1.5x1017 cm-3 之間),厚度介於500至650埃之間;The two-position barrier gate (37) is located on the second indium aluminum gallium phosphide layer (36), and the potential barrier gate (37) is sequentially an n-type gallium arsenide layer from top to bottom ( n + -GaAs, doping concentration between 3x10 18 and 4x10 18 cm -3 ), thickness between 150 and 250 angstroms, a p-type indium phosphide layer (p + -InAlGaP, doped a concentration of between 1x10 18 cm -3 and 3x10 18 cm -3 ), between 90 and 110 angstroms thick, an n-type indium phosphide layer (n-InAlGaP, doping concentration between 1x10 17 and 1.5x10 17 cm -3 ), thickness between 500 and 650 angstroms;

一閘極金屬(381),係形成於位能障閘極(37)的覆蓋層上,該閘極金屬(381)係由金(Au)蒸著形成;a gate metal (381) is formed on the cap layer of the barrier (37), and the gate metal (381) is formed by evaporation of gold (Au);

一源極金屬(382)、一汲極金屬(383)及一閘極金屬(381),主要是將源極金屬(382)、汲極金屬(383)鍍在位能障閘極(37)最上層的砷化鎵層(n+ -GaAs)上,接著進行退火(annealing),以構成源極和汲極;接著進行高台(Mesa)製程,接著仍在該n+ -GaAs層上鍍上閘極金屬(381),並以源極金屬(382)、汲極金屬(383)及閘極金屬(381)為光罩,再用GaAs蝕刻液將n+ -GaAs去除,以形成一閘極;藉以令源極汲極及閘極位於同一平面上。而與前一實施例相同,前述源極金屬(382)及汲極金屬(383)係由AuGeNi/Au構成,該閘極金屬(381)則由金(Au)所構成。a source metal (382), a drain metal (383) and a gate metal (381) mainly plate the source metal (382) and the drain metal (383) on the potential barrier (37) The uppermost layer of gallium arsenide (n + -GaAs) is then annealed to form the source and drain; followed by a Mesa process followed by plating on the n + -GaAs layer a gate metal (381) with a source metal (382), a gate metal (383), and a gate metal (381) as a mask, and a GaAs etchant to remove n + -GaAs to form a gate So that the source bungee and the gate are on the same plane. As in the previous embodiment, the source metal (382) and the drain metal (383) are made of AuGeNi/Au, and the gate metal (381) is made of gold (Au).

(10)...砷化鎵基板(10). . . Gallium arsenide substrate

(11)...砷化鎵緩衝層(11). . . Gallium arsenide buffer layer

(12)...Delta摻雜層(12). . . Delta doped layer

(13)...砷化鎵空間層(13). . . Gallium arsenide space layer

(14)...通道層(14). . . Channel layer

(15)...位能障閘極(15). . . Potential barrier

(16)...閘極金屬(16). . . Gate metal

(17)...源極金屬(17). . . Source metal

(18)...汲極金屬(18). . . Bungee metal

(20)(30)...砷化鎵基板(20) (30). . . Gallium arsenide substrate

(21)...砷化鎵緩衝層(twenty one). . . Gallium arsenide buffer layer

(22)...第一磷化銦鋁鎵層(twenty two). . . First indium aluminum gallium phosphide layer

(23)...第二磷化銦鋁鎵層(twenty three). . . Second indium aluminum gallium phosphide layer

(23A)...Delta摻雜層(23A). . . Delta doped layer

(24)...通道層(twenty four). . . Channel layer

(25)...位能障閘極(25). . . Potential barrier

(26)...閘極金屬(26). . . Gate metal

(27)...源極金屬(27). . . Source metal

(28)...汲極金屬(28). . . Bungee metal

(31)...砷化鎵緩衝層(31). . . Gallium arsenide buffer layer

(32)...第一磷化銦鋁鎵層(32). . . First indium aluminum gallium phosphide layer

(33)...第一空間層(33). . . First space layer

(33A)...第一Delta摻雜層(33A). . . First delta doped layer

(33B)...第二Delta摻雜層(33B). . . Second delta doped layer

(34)...通道層(34). . . Channel layer

(35)...第二空間層(35). . . Second space layer

(36)...第二磷化銦鋁鎵層(36). . . Second indium aluminum gallium phosphide layer

(37)...位能障閘極(37). . . Potential barrier

(381)...閘極金屬(381). . . Gate metal

(382)...源極金屬(382). . . Source metal

(383)...汲極金屬(383). . . Bungee metal

第一圖:係本發明第一較佳實施例的結構示意圖。First Figure: A schematic view of the structure of a first preferred embodiment of the present invention.

第二圖:係本發明第二較佳實施例的結構示意圖。Figure 2 is a schematic view showing the structure of a second preferred embodiment of the present invention.

第三圖:係本發咀第三較佳實施例的結構示意圖。Figure 3 is a schematic view showing the structure of a third preferred embodiment of the present invention.

(10)...砷化鎵基板(10). . . Gallium arsenide substrate

(11)...砷化鎵緩衝層(11). . . Gallium arsenide buffer layer

(12)...Delta摻雜層(12). . . Delta doped layer

(13)...砷化鎵空間層(13). . . Gallium arsenide space layer

(14)...通道層(14). . . Channel layer

(15)...位能障閘極(15). . . Potential barrier

(16)...閘極金屬(16). . . Gate metal

(17)...源極金屬(17). . . Source metal

(18)...汲極金屬(18). . . Bungee metal

Claims (21)

一種具有磷化銦鋁鎵/砷化鎵駝峰式閘極之場效電晶體,包括有:一半絕緣的砷化鎵基板;一砷化鎵緩衝層,形成於前述砷化鎵基板上;一砷化鎵空間層,係形成於前述砷化鎵緩衝層上;一高濃度摻雜層,係以Delta摻雜方式摻雜於前述砷化鎵緩衝層與砷化鎵空間層間;一通道層,由無摻雜之砷化銦鎵形成於前述砷化鎵空間層上;一位能障閘極,係位於通道層上,該位能障閘極係由n+ -GaAs/p+ -InAlGaP/n-GaAs之異質接面結構所構成;一源極金屬、一汲極金屬及一閘極金屬,該源極金屬、汲極金屬係位在位能障閘極最下層的n-GaAs層上,該閘極係位在位能障閘極最上面的n+ -GaAs層上。A field effect transistor having an indium aluminum gallium phosphide/gallium arsenide gate comprising: a semi-insulating gallium arsenide substrate; a gallium arsenide buffer layer formed on the gallium arsenide substrate; an arsenic a gallium space layer is formed on the foregoing gallium arsenide buffer layer; a high concentration doped layer is doped in the delta doping manner between the gallium arsenide buffer layer and the gallium arsenide space layer; An undoped indium gallium arsenide is formed on the aforementioned gallium arsenide space layer; a single barrier gate is located on the channel layer, and the potential barrier is made of n + -GaAs/p + -InAlGaP/n a heterojunction structure of GaAs; a source metal, a drain metal, and a gate metal, the source metal and the gate metal being on the n-GaAs layer of the lowermost layer of the potential barrier gate, The gate is on the n + -GaAs layer at the top of the potential barrier. 如申請專利範圍第1項所述具有磷化銦鋁鎵/砷化鎵駝峰式閘極之場效電晶體,該位能障閘極由上而下依序為:一n型砷化鎵摻雜層,其濃度介於2.5 x 1018 至3.5 x 1018 cm-3 之間,厚度介於150至250埃之間;一p型磷化銦鋁鎵層,其摻雜濃度介於2x1018 cm-3 至3x 1018 cm-3 之間,厚度介於90至110埃之間;一n型砷化鎵層,其摻雜濃度介於1.5x1017 至2.5x1017 cm-3 之間,厚度介於1800至2200埃之間。For example, in the field effect transistor of the indium phosphide-gallium gallium arsenide/gallium arsenide gate type described in claim 1, the potential barrier gate is sequentially from top to bottom: an n-type gallium arsenide doped a hetero-layer having a concentration between 2.5 x 10 18 and 3.5 x 10 18 cm -3 and a thickness between 150 and 250 angstroms; a p-type indium phosphide layer with a doping concentration of 2 x 10 18 Between -3 to 3x 10 18 cm -3 and between 90 and 110 angstroms thick; an n-type gallium arsenide layer having a doping concentration between 1.5 x 10 17 and 2.5 x 10 17 cm -3 , The thickness is between 1800 and 2200 angstroms. 如申請專利範圍第2項所述具有磷化銦鋁鎵/砷化鎵駝峰式閘極之場效電晶體,該砷化鎵緩衝層的厚度介於0.5至1.5 μ m之間。The field effect transistor having an indium phosphide gallium arsenide/gallium arsenide gate electrode as described in claim 2, the gallium arsenide buffer layer having a thickness of between 0.5 and 1.5 μm . 如申請專利範圍第3項所述具有磷化銦鋁鎵/砷化鎵駝峰式閘極之場效電晶體,該砷化鎵空間層的厚度介於25至50埃之間。 The field effect transistor having an indium phosphide gallium arsenide/gallium arsenide gate type as described in claim 3, wherein the gallium arsenide space layer has a thickness of between 25 and 50 angstroms. 如申請專利範圍第2項所述具有磷化銦鋁鎵/砷化鎵駝峰式閘極之場效電晶體,該高濃度摻雜層之摻雜濃度δ (n+ )介於2x1012 至3x1012 cm-2 之間。The field effect transistor having an indium phosphide/gallium arsenide gate electrode as described in claim 2, the doping concentration δ (n + ) of the high concentration doping layer is between 2×10 12 and 3×10 Between 12 cm -2 . 如申請專利範圍第5項所述具有磷化銦鋁鎵/砷化鎵駝峰式閘極之場效電晶體,該通道層之砷化銦鎵化學式為InX Ga1-X As,0.1x0.25,其厚度介於60至100埃之間。The field effect transistor having an indium phosphide gallium arsenide/gallium arsenide gate electrode as described in claim 5, the indium gallium arsenide chemical formula of the channel layer is In X Ga 1-X As, 0.1 x 0.25, its thickness is between 60 and 100 angstroms. 如申請專利範圍第6項所述具有磷化銦鋁鎵/砷化鎵駝峰式閘極之場效電晶體,該閘極金屬係由金(Au)蒸著形成,該源極金屬及汲極金屬由AuGeNi/Au構成。 The field effect transistor having an indium phosphide gallium arsenide/gallium arsenide gate electrode as described in claim 6 of the patent application scope, wherein the gate metal is formed by evaporation of gold (Au), the source metal and the drain electrode The metal is composed of AuGeNi/Au. 一種具有磷化銦鋁鎵/砷化鎵駝峰式閘極之場效電晶體,包括有:一半絕緣的砷化鎵基板;一砷化鎵緩衝層,形成於前述砷化鎵基板上;一無摻雜的第一磷化銦鋁鎵層,係形成於前述砷化鎵緩衝層上;一高濃度摻雜層,係以Delta摻雜方式摻雜於前述第一磷化銦鋁鎵層上; 一無摻雜的磷化銦鋁鎵空間層,係形成於前述高濃度摻雜層上;一通道層,由無摻雜之砷化銦鎵形成於前述第一磷化銦鋁鎵層上;一位能障閘極,係位於通道層上,該位能障閘極係由n+ -GaAs/p+ -InAlGaP/n-InAlGaP之異質接面結構所構成;一源極金屬、一汲極金屬及一閘極金屬,該源極金屬、汲極金屬鍍在位能障閘極最上層的n+ -GaAs層上;該閘極金屬亦位在該n+ -GaAs層上。A field effect transistor having an indium gallium phosphide/gallium arsenide gate comprising: a semi-insulating gallium arsenide substrate; a gallium arsenide buffer layer formed on the gallium arsenide substrate; The doped first indium aluminum gallium phosphide layer is formed on the foregoing gallium arsenide buffer layer; a high concentration doped layer is doped on the first indium phosphide layer by a delta doping method; An undoped indium aluminum gallium arsenide spatial layer is formed on the high concentration doped layer; a channel layer is formed on the first indium phosphide layer by undoped indium gallium arsenide; A barrier gate is located on the channel layer, and the barrier is composed of a heterojunction structure of n + -GaAs/p + -InAlGaP/n-InAlGaP; a source metal and a drain a metal and a gate metal, the source metal and the gate metal are plated on the n + -GaAs layer of the uppermost layer of the barrier layer; the gate metal is also on the n + -GaAs layer. 如申請專利範圍第8項所述具有磷化銦鋁鎵/砷化鎵駝峰式閘極之場效電晶體,該位能障閘極由上而下依序為:一n型砷化鎵摻雜層,其濃度介於3x1018 至4x1018 cm-3 之間,厚度介於150至250埃之間;一p型磷化銦鋁鎵層,其摻雜濃度介於2x1018 cm-3 至3x1018 cm-2 之間,厚度介於90至110埃之間;一n型砷化鎵層,其摻雜濃介於1x1017 至1.5x1017 cm-3 之間,厚度介於500至650埃之間。For example, in the field effect transistor of the indium phosphide-gallium gallium arsenide/gallium arsenide gate type described in claim 8 of the patent application, the potential barrier gate is sequentially from top to bottom: an n-type gallium arsenide doped heteroaryl layer, a concentration of between 3x10 18 to 4x10 18 cm -3, thickness is between 150 to 250 angstroms; a p-type aluminum gallium indium phosphide layer having a doping concentration of between 2x10 18 cm -3 to Between 3x10 18 cm -2 and a thickness between 90 and 110 angstroms; an n-type GaAs layer with a doping concentration between 1x10 17 and 1.5x10 17 cm -3 and a thickness between 500 and 650 Between the ang. 如申請專利範圍第9項所述具有磷化銦鋁鎵/砷化鎵駝峰式閘極之場效電晶體,該砷化鎵緩衝層的厚度介於0.5至1 μ m之間,該第一磷化銦鋁鎵層的厚度介於200至900埃之間,該磷化銦鋁鎵空間層的厚度介於25至50埃之間。The field effect transistor having an indium phosphide gallium arsenide/gallium arsenide hump type gate according to claim 9 of the patent application scope, wherein the thickness of the gallium arsenide buffer layer is between 0.5 and 1 μm , the first The thickness of the indium phosphide layer is between 200 and 900 angstroms, and the thickness of the indium phosphide layer is between 25 and 50 angstroms. 如申請專利範圍第10項所述具有磷化銦鋁鎵/砷 化鎵駝峰式閘極之場效電晶體,該高濃度摻雜層之摻雜濃度δ (n+ )介於2x1012 至3.5x1012 cm-2 之間。The field effect transistor having an indium phosphide gallium arsenide/gallium arsenide gate electrode as described in claim 10, the doping concentration δ (n + ) of the high concentration doping layer is between 2×10 12 and 3.5 Between x10 12 cm -2 . 如申請專利範圍第11項所述具有磷化銦鋁鎵/砷化鎵駝峰式閘極之場效電晶體,該通道層之砷化銦鎵化學式為InX Ga1-X As,0.1x0.25,其厚度介於60至100埃之間。The field effect transistor having an indium phosphide gallium arsenide/gallium arsenide gate electrode as described in claim 11 of the patent application, the indium gallium arsenide chemical formula of the channel layer is In X Ga 1-X As, 0.1 x 0.25, its thickness is between 60 and 100 angstroms. 如申請專利範圍第12項所述具有磷化銦鋁鎵/砷化鎵駝峰式閘極之場效電晶體,該閘極金屬係由金(Au)蒸著形成,該源極金屬及汲極金屬由AuGeNi/Au構成。 The field effect transistor having an indium aluminum gallium phosphide/gallium arsenide gate type as described in claim 12, wherein the gate metal is formed by evaporation of gold (Au), the source metal and the drain electrode The metal is composed of AuGeNi/Au. 如申請專利範圍第8至13項中任一項所述具有磷化銦鋁鎵/砷化鎵駝峰式閘極之場效電晶體,該閘極金屬與源極金屬、汲極金屬位於同一平面上。 The field effect transistor having an indium gallium phosphide/gallium arsenide-type gate electrode according to any one of claims 8 to 13, wherein the gate metal is in the same plane as the source metal and the drain metal. on. 一種具有磷化銦鋁鎵/砷化鎵駝峰式閘極之場效電晶體,包括有:一半絕緣的砷化鎵基板;一砷化鎵緩衝層,形成於前述砷化鎵基板上;一無摻雜的第一磷化銦鋁鎵層(厚度介於100至300埃之間),係形成於前述砷化鎵緩衝層上;一第一高濃度摻雜層,係以Delta摻雜方式摻雜於前述第一磷化銦鋁鎵層上;一第一空間層(厚度介於25至50埃之間),係以無摻雜的磷化銦鋁鎵形成於前述第一高濃度摻雜層上;一通道層,由無摻雜之砷化銦鎵形成於前述第一空間層上; 一第二空間層(厚度介於25至50埃之間),係以無摻雜的磷化銦鋁鎵形成於前述通道層上;一第二高濃度摻雜層,係以Delta摻雜方式形成於前述第二空間層上;一無摻雜的第二磷化銦鋁鎵層(厚度介於100至300埃之間),係形成於前述第二高濃度摻雜層上;一位能障閘極,係位於通道層上,主要係由n+ -GaAs/p+ -InAlGaP/n-InAlGaP之異質接面結構所構成;一源極金屬、一汲極金屬及一閘極金屬,該源極金屬、汲極金屬鍍在位能障閘極最上層的n+ -GaAs層上;該閘極金屬亦位在該n+ -GaAs層上。A field effect transistor having an indium gallium phosphide/gallium arsenide gate comprising: a semi-insulating gallium arsenide substrate; a gallium arsenide buffer layer formed on the gallium arsenide substrate; The doped first indium aluminum gallium phosphide layer (having a thickness between 100 and 300 angstroms) is formed on the foregoing gallium arsenide buffer layer; a first high concentration doped layer is doped by a delta doping method Mixed with the first indium aluminum phosphide layer; a first space layer (having a thickness between 25 and 50 angstroms) formed by the undoped indium phosphide in the first high concentration doping a channel layer formed of undoped indium gallium arsenide on the first space layer; a second space layer (having a thickness between 25 and 50 angstroms) with undoped phosphating Indium aluminum gallium is formed on the channel layer; a second high concentration doped layer is formed on the second space layer by Delta doping; and an undoped second indium aluminum gallium nitride layer (thickness Between 100 and 300 angstroms, formed on the second high-concentration doped layer; a single-barrier gate is located on the channel layer, mainly by n + -GaAs/p + -InA lGaP/n-InAlGaP heterojunction structure; a source metal, a drain metal and a gate metal, the source metal and the drain metal are plated on the uppermost layer of n + -GaAs On the layer; the gate metal is also on the n + -GaAs layer. 如申請專利範圍第15項所述具有磷化銦鋁鎵/砷化鎵駝峰式閘極之場效電晶體,該位能障閘極由上而下依序為:一n型砷化鎵摻雜層,其濃度介於3x1018 至4x1018 cm-3 之間,厚度介於150至250埃之間;一p型磷化銦鋁鎵層,其摻雜濃度介於1x1018 cm-3 至3x 1018 cm-3 之間,厚度介於90至110埃之間;一n型砷化鎵層,其摻雜濃度介於1x1017 至1.5x1017 cm-3 之間,厚度介於500至650埃之間。For example, in the field effect transistor of the indium phosphide-gallium gallium arsenide/gallium arsenide-type gate as described in claim 15 of the patent application, the potential barrier gate is sequentially from top to bottom: an n-type gallium arsenide doped heteroaryl layer, a concentration of between 3x10 18 to 4x10 18 cm -3, thickness is between 150 to 250 angstroms; a p-type aluminum gallium indium phosphide layer having a doping concentration of between 1x10 18 cm -3 to Between 3x 10 18 cm -3 and a thickness between 90 and 110 angstroms; an n-type GaAs layer with a doping concentration between 1 x 10 17 and 1.5 x 10 17 cm -3 and a thickness between 500 and Between 650 angstroms. 如申請專利範圍第16項所述具有磷化銦鋁鎵/砷化鎵駝峰式閘極之場效電晶體,該砷化鎵緩衝層的厚度介於0.5至1 μ m之間,第一及第二空間層的厚度介於25至50埃之間,第二磷化銦鋁鎵層的厚度介於100至300埃之 間。The field effect transistor having an indium phosphide gallium arsenide/gallium arsenide hump type gate according to claim 16 of the patent application scope, wherein the thickness of the gallium arsenide buffer layer is between 0.5 and 1 μm , The second space layer has a thickness of between 25 and 50 angstroms and the second indium phosphide layer has a thickness of between 100 and 300 angstroms. 如申請專利範圍第17項所述具有磷化銦鋁鎵/砷化鎵駝峰式閘極之場效電晶體,該第一、第二高濃度摻雜層之摻雜濃度δ (n+ )介於2x1012 至3.5x1012 cm-2 之間。The doping concentration δ (n + ) of the first and second high-concentration doped layers is the field effect transistor having the indium aluminum gallium phosphide/gallium arsenide-type gate as described in claim 17 Between 2x10 12 and 3.5x10 12 cm -2 . 如申請專利範圍第18項所述具有磷化銦鋁鎵/砷化鎵駝峰式閘極之場效電晶體,該通道層之砷化銦鎵化學式為InX Ga1-X As,0.1x0.25,其厚度介於60至100埃之間。The field effect transistor having an indium phosphide gallium arsenide/gallium arsenide gate type as described in claim 18, the indium gallium arsenide chemical formula of the channel layer is In X Ga 1-X As, 0.1 x 0.25, its thickness is between 60 and 100 angstroms. 如申請專利範圍第15項所述具有磷化銦鋁鎵/砷化鎵駝峰式閘極之場效電晶體,該閘極金屬係由金(Au)蒸著形成,該源極金屬及汲極金屬由AuGeNi/Au構成。 The field effect transistor having an indium phosphide gallium arsenide/gallium arsenide gate type as described in claim 15 of the patent application, wherein the gate metal is formed by evaporation of gold (Au), the source metal and the drain electrode The metal is composed of AuGeNi/Au. 如申請專利範圍第15至20項中任一項所述具有磷化銦鋁鎵/砷化鎵駝峰式閘極之場效電晶體,該閘極金屬與源極金屬、汲極金屬位於同一平面上。 The field effect transistor having an indium aluminum gallium phosphide/gallium arsenide gate electrode according to any one of claims 15 to 20, wherein the gate metal is in the same plane as the source metal and the drain metal. on.
TW98108155A 2009-03-13 2009-03-13 Field effect transistor with indium aluminum gallium / gallium arsenide hump gate TWI393258B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98108155A TWI393258B (en) 2009-03-13 2009-03-13 Field effect transistor with indium aluminum gallium / gallium arsenide hump gate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98108155A TWI393258B (en) 2009-03-13 2009-03-13 Field effect transistor with indium aluminum gallium / gallium arsenide hump gate

Publications (2)

Publication Number Publication Date
TW201034187A TW201034187A (en) 2010-09-16
TWI393258B true TWI393258B (en) 2013-04-11

Family

ID=44855427

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98108155A TWI393258B (en) 2009-03-13 2009-03-13 Field effect transistor with indium aluminum gallium / gallium arsenide hump gate

Country Status (1)

Country Link
TW (1) TWI393258B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5466955A (en) * 1992-12-17 1995-11-14 Nec Corporation Field effect transistor having an improved transistor characteristic
TW296481B (en) * 1996-08-27 1997-01-21 Nat Science Council Process of hump-type field effect transistor with multi-layer modulation doped channel and structure thereof
US5844261A (en) * 1997-06-03 1998-12-01 Lucent Technologies Inc. InAlGaP devices
TW441042B (en) * 2000-01-06 2001-06-16 Nat Science Council A GaAs/GaAlInP heterostructure field effect transistor and the method of fabricating the same
TW468229B (en) * 1998-08-05 2001-12-11 Nat Science Council High barrier gate field effect transistor structure
TWI237393B (en) * 2002-12-10 2005-08-01 Toshiba Corp Hetero-junction composite semiconductor field effect transistor and the manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5466955A (en) * 1992-12-17 1995-11-14 Nec Corporation Field effect transistor having an improved transistor characteristic
TW296481B (en) * 1996-08-27 1997-01-21 Nat Science Council Process of hump-type field effect transistor with multi-layer modulation doped channel and structure thereof
US5844261A (en) * 1997-06-03 1998-12-01 Lucent Technologies Inc. InAlGaP devices
TW468229B (en) * 1998-08-05 2001-12-11 Nat Science Council High barrier gate field effect transistor structure
TW441042B (en) * 2000-01-06 2001-06-16 Nat Science Council A GaAs/GaAlInP heterostructure field effect transistor and the method of fabricating the same
TWI237393B (en) * 2002-12-10 2005-08-01 Toshiba Corp Hetero-junction composite semiconductor field effect transistor and the manufacturing method thereof

Also Published As

Publication number Publication date
TW201034187A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
JP5469098B2 (en) Field effect transistor and manufacturing method thereof
JP5468768B2 (en) Field effect transistor and manufacturing method thereof
TWI515874B (en) Semiconductor device, method for manufacturing the same, power supply, and high-frequency amplifier
WO2010109566A1 (en) Semiconductor device and method for manufacturing same
JP2014179546A (en) Semiconductor device
WO2016141762A1 (en) Iii-nitride enhancement hemt and preparation method therefor
JP2008211089A (en) Compound semiconductor device and doherty amplifier using it
CN111403480A (en) High-voltage AlGaN/GaN HEMT device and preparation method thereof
CN111653617B (en) Enhanced nitride power device and manufacturing method
CN109950323B (en) Polarized superjunction III-nitride diode device and manufacturing method thereof
TW201351508A (en) pHEMT HBT integrated epitaxial structure and a fabrication method thereof
JP6242678B2 (en) Nitride semiconductor device and manufacturing method thereof
CN114899227A (en) Enhanced gallium nitride-based transistor and preparation method thereof
CN111799326B (en) Novel transistor structure for regulating and controlling two-dimensional electron gas concentration and manufacturing method
CN113851522A (en) Gallium nitride enhancement device and preparation method thereof
TW201314887A (en) An improved structure of a high electron mobility transistor and a fabrication method thereof
CN117219676A (en) Enhancement mode HEMT device of heterogeneous pn junction grid
TWI222750B (en) Voltage adjustable multi-stage extrinsic transconductance amplification HEMT
CN109742144B (en) Groove gate enhanced MISHEMT device and manufacturing method thereof
TWI393258B (en) Field effect transistor with indium aluminum gallium / gallium arsenide hump gate
CN109830540B (en) Schottky diode based on hollow anode structure and preparation method thereof
CN110676166B (en) FinFET enhanced device with P-GaN cap layer and manufacturing method thereof
CN103560146A (en) Epitaxy structure for manufacturing GaN hetero-junction filed-effect transistor and growing method thereof
CN204289458U (en) A kind of GaAs based pseudomorphic high electron mobility transistor material structure suppressing back-gate effect
CN113363320B (en) P-GaN gate enhanced GaN-HEMT device capable of reducing grid leakage and manufacturing method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees