TWI386483B - 含β及Y沸石之氫裂解催化劑及使用其製造噴射機燃料及餾份之方法 - Google Patents

含β及Y沸石之氫裂解催化劑及使用其製造噴射機燃料及餾份之方法 Download PDF

Info

Publication number
TWI386483B
TWI386483B TW095140885A TW95140885A TWI386483B TW I386483 B TWI386483 B TW I386483B TW 095140885 A TW095140885 A TW 095140885A TW 95140885 A TW95140885 A TW 95140885A TW I386483 B TWI386483 B TW I386483B
Authority
TW
Taiwan
Prior art keywords
zeolite
catalyst
beta
alumina
zeolites
Prior art date
Application number
TW095140885A
Other languages
English (en)
Other versions
TW200736376A (en
Inventor
Li Wang
Original Assignee
Uop Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uop Llc filed Critical Uop Llc
Publication of TW200736376A publication Critical patent/TW200736376A/zh
Application granted granted Critical
Publication of TWI386483B publication Critical patent/TWI386483B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/22Halogenating
    • B01J37/26Fluorinating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/20Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/32Reaction with silicon compounds, e.g. TEOS, siliconfluoride
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/08Jet fuel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

含β及Y沸石之氫裂解催化劑及使用其製造噴射機燃料及餾份之方法
本發明係關於催化劑組合物及其在烴轉化方法,尤其是氫裂解中之用途。更特定言之,本發明係關於包含Y沸石及β沸石作為活性裂解組份之催化劑組合物。本發明尤其係關於產生中間餾份及噴射機燃料之氫裂解方法。
石油煉製者常藉由氫裂解自原油獲得之烴原料來生產所需產品,諸如渦輪機燃料、柴油機燃料及其他稱為中間餾份之烴液體以及低沸點液體(諸如石腦油及汽油)。氫裂解亦具有其他有益結果,諸如藉由氫化處理自原料移除硫及氮。最常經歷氫裂解之原料為藉由蒸餾自原油中回收之柴油及重柴油。
一般而言,藉由在適合反應容器中使柴油或其他烴原料與適合氫裂解催化劑在適合條件(包括高溫及高壓及氫存在)下接觸來進行氫裂解以產生含有煉製者所需之烴產品分佈的總平均沸點較低之產品。雖然氫裂解反應器內之操作條件對產品之產量有一定影響,但氫裂解催化劑係決定該等產量之主要因素。
基於催化劑之主要裂解組份的性質,將氫裂解催化劑進行初次分類。此分類將氫裂解催化劑分成基於非晶形裂解組份(諸如二氧化矽-氧化鋁)之氫裂解催化劑及基於沸石裂解組份(諸如β或Y沸石)之氫裂解催化劑。亦基於目標主要產品將氫裂解催化劑進行分類,其中兩種主要產品為石腦油及"餾份"(其為在氫裂解精煉技術中係指沸點範圍在石腦油沸點範圍以上之可蒸餾石油衍生部分之術語)。餾份通常包括在精煉廠作為煤油及柴油機燃料回收之產品。渦輪機燃料通常在一定範圍內沸騰且包括在精煉廠回收之作為噴射機燃料之產品。渦輪機燃料通常含有在石腦油沸騰範圍內沸騰之組份以及在餾份沸騰範圍內沸騰之其他組份。目前,非常需要餾份及噴射機燃料。由於此原因,精煉者已致力於選擇性生產餾份部分或噴射機燃料部分之氫裂解催化劑。
評估用於製造噴射機燃料或餾份之氫裂解催化劑之效能的三種主要催化特性為活性、選擇性及穩定性。活性可藉由比較溫度來測定,在此溫度下在其他氫裂解條件恆定下以相同原料必須利用各種催化劑以便生產既定百分比(通常65%)的在所需範圍內(例如,對於餾份而言在371℃(700℉)以下,或對於噴射機燃料而言在288℃(550℉)以下)沸騰之產品。對於既定催化劑所需溫度愈低,該催化劑相對於需要更高溫度之催化劑更具活性。氫裂解催化劑之選擇性可在前述活性測試期間測定且以在所需餾份或噴射機燃料產品範圍(例如對於餾份而言149℃(300℉)至371℃(700℉),或對於噴射機燃料而言127℃(260℉)至288℃(550℉))內沸騰之產品部分的百分比來量測。穩定性係催化劑在活性測試條件下處理既定烴原料時在延長時間段內保持其活性至何種程度的量度。穩定性一般根據為保持65%或其他既定轉化率每天所需溫度改變來量測。
雖然用於生產餾份或噴射機燃料之裂解催化劑係已知的且已用於商業環境中,但一直需要用於生產餾份或噴射機燃料之具有優良總活性、選擇性及穩定性的新型氫裂解催化劑。
已發現與目前市售之用於生產噴射機燃料或餾份之氫裂解方法中的其他氫裂解催化劑相比,含有具有低於30之總二氧化矽與氧化鋁(SiO2 與Al2 O3 )之莫耳比率及至少28重量百分比(下文為wt-%)之SF6 吸附能力的β沸石且亦含有具有24.37至24.44埃之單位晶胞大小或尺寸a0 的Y沸石之氫裂解催化劑(其中該催化劑具有以乾重計4至7之Y沸石與β沸石的重量比率)具有實質改良的活性及選擇性。該催化劑亦含有諸如鎳、鈷、鎢、鉬或任何彼等之組合之金屬氫化組份。
據信含有該Y沸石及該β沸石之氫裂解催化劑對此項技術而言係新穎的。
在典型氫裂解條件(包括高溫及高壓及氫存在)下,該等催化劑將製氣油(gas oil)及其他烴原料高效轉化為具有較低的平均沸點及較低的分子量之產品。在一實施例中,該產品含有相當大比例之組份在噴射機燃料範圍(本文將其定義為127℃(260℉)至288℃(550℉))內沸騰。在另一實施例中,產品含有相當大比例之組份在餾份範圍(本文將其定義為149℃(300℉)至371℃(700℉))內沸騰。
已提出將β與Y沸石組合用作數種不同催化劑(包括用於氫裂解之催化劑)之組份。舉例而言,US 5,275,720描述一種氫裂解方法,其使用包含β沸石及脫鋁Y沸石(具有大於6.0之總二氧化矽與氧化鋁之莫耳比率及24.40與24.65埃之間的單位晶胞大小)的催化劑。脫鋁Y沸石與β沸石的重量比率可在0.25至4之範圍內。較佳Y沸石包括LZ-210沸石。
US 5,279,726描述一種氫裂解方法,其使用包含β沸石及Y沸石(具有大於24.40埃之單位晶胞大小及通常在25℃(77℉)及0.10之p/p0 值下大於15重量%之水蒸氣吸附能力)之催化劑。雖然經改良之Y沸石可能具有6.0以上(例如6與20之間)之二氧化矽與氧化鋁之莫耳比率,但經改良之Y沸石的總二氧化矽與氧化鋁之莫耳比率一般在5.1與6.0之間之範圍內。較佳Y沸石包括LZY-84或Y-84沸石。Y沸石與β沸石之重量比率可在0.33至3之範圍內。
US 5,350,501描述一種氫裂解方法,其使用包含載體之催化劑,該載體包含β沸石及Y沸石(具有(1)小於24.45埃之單位晶胞大小或(2)在25℃(77℉)及0.10之p/p0 值下小於10.00重量%之水吸附能力)。LZ-10為較佳Y沸石。Y沸石與β沸石之重量比率可在0.33至3之範圍內。
本文所揭示之方法及組合物可用以(尤其藉由酸催化)將含有有機化合物之原料轉化成產品,諸如將有機化合物(特別是烴)氫裂解以轉化成具有較低平均沸點及較低平均分子量之產品。可作為催化劑及/或催化劑載體之組合物包含β沸石及Y沸石。該組合物亦可包含耐火無機氧化物。當作為用於氫裂解之催化劑時,該組合物含有β沸石、Y沸石、耐火無機氧化物及氫化組份。
本文所揭示之氫裂解方法及組合物著重於使用含有特定β沸石及特定Y沸石之催化劑,其具有相對較高Y沸石與β沸石重量比率。在某些實施例中,β沸石具有相對較低之二氧化矽與氧化鋁之莫耳比率及相對較高之SF6 吸附能力。Y沸石具有相對較低之二氧化矽與氧化鋁之莫耳比率及相對較高之單位晶胞大小。已發現當將該β沸石及該Y沸石以此方式併入氫裂解催化劑中時產生不同之效能。不僅在餾份或噴射機燃料範圍內沸騰之產品的產量比含有Y沸石之催化劑之產品的產量高,而且氫裂解催化劑之活性亦較高。
在此項技術中熟知β沸石可作為氫裂解催化劑之組份。β沸石描述於US 3,308,069及Re No.28,341中。在一實施例中,用於本文所揭示之方法及組合物中的β沸石具有低於30之二氧化矽與氧化鋁之莫耳比率,在另一實施例中低於25,在另一實施例中大於9且低於30,在另一實施例中大於9且低於25,在另一實施例中大於20且低於30,或在另一實施例中大於15且低於25。除非另外提及,否則本文所用之沸石的二氧化矽與氧化鋁(SiO2 與Al2 O3 )之莫耳比率係以沸石中存在之鋁及矽(構架及非構架)之總量或全部量計所測定之莫耳比率,且有時在本文中稱作總二氧化矽與氧化鋁(SiO2 與Al2 O3 )之莫耳比率。
β沸石通常自含有模板劑之反應混合物合成。模板劑用於合成β沸石之用途在此項技術中係熟知的。舉例而言,US 3,308,069及Re No.28,341描述使用四乙基氫氧化銨,且US 5,139,759描述使用自相應四乙基鹵化銨衍生之四乙基銨離子。另一製備β沸石之標準方法描述於名為Verified Synthesis of Zeolitic Materials,H.Robson(編輯)及K.P.Lillerud(XRD模式),第2修訂版,ISBN 0-444-50703-5,Elsevier,2001之書籍中。據信對於本文所揭示之方法之成功而言,特定模板劑之選擇並非關鍵的。在一實施例中,將β沸石在500至700℃(932至1292℉)之溫度下於空氣中煅燒足夠時間以自β沸石中移除模板劑。可在將β沸石與載體及/或氫化組份組合之前或之後進行煅燒來移除模板劑。雖然據信模板劑可在700℃(1292℉)以上之煅燒溫度下移除,但極高煅燒溫度可顯著降低β沸石之SF6 吸附能力。由於此原因,據信在製備用於本文所揭示之方法中之β沸石時應避免用於移除模板劑之750℃(1382℉)以上的煅燒溫度。對本文所揭示之方法而言β沸石之SF6 吸附能力為至少28 wt-%係關鍵的。
雖然已知汽蒸沸石(諸如β沸石)可導致沸石實際晶體結構之改變,但目前分析技術之能力尚未能在沸石之重要結構細節方面準確監測及/或表徵此等改變。實情為使用沸石各種物理物性(諸如表面積)的量測值作為已發生之改變及改變程度之指示。舉例而言,據信汽蒸後沸石吸附六氟化硫(SF6 )能力之降低係由沸石結晶性或沸石微孔之大小或可接近性的降低所引起。然而,其係與非吾人所要之與沸石改變間接相關的,因為用於本文所揭示之方法及組合物中之催化劑的SF6 吸附能力相對較高。在本文所揭示之方法及組合物之實施例中,不管是否經蒸汽處理,β沸石之SF6 吸附能力應為至少28 wt-%。
因此,本文所揭示之方法及組合物之β沸石可根據SF6 吸附表徵。此係用於表徵諸如沸石之微孔材料的公認技術。其類似於其他吸附能力量測(諸如容水量),因為其使用重量差量測樣品(已經預先處理而實質上不含吸附物)所吸附SF6 之量。在此測試中使用SF6 ,因為其大小及形狀阻礙其進入直徑小於6埃之孔中。因此,可將其用作可進入之孔口及孔徑收縮之一種量測值。此繼而作為汽蒸對沸石之影響之量測值。在此量測方法之簡單描述中,較佳將樣品首先在真空中於300℃(572℉)下預先乾燥1小時,接著在大氣壓下在空氣中於650℃(1202℉)下加熱兩小時,且最終稱重。接著將其暴露於SF6 歷經1小時,同時將樣品保持在20℃(68℉)之溫度下。SF6 之蒸氣壓保持在由液體SF6 所提供之400托(Torr)(53.3 kPa(7.7 psi))下。再次稱重樣品以量測所吸附SF6 之量。在此等步驟期間可將樣品按比例懸浮以有助於此等步驟之實施。
在涉及諸如汽蒸及加熱之技術的任何大規模生產程序中,存在個別粒子經歷不同程度處理之可能性。舉例而言,沿帶子移動之堆底部的粒子可能經歷與覆蓋堆頂部之粒子不同之氣氛或溫度。在製造期間以及在最終產品之分析及測試期間必須考慮此因素。因此,建議對催化劑所進行之任何測試量測應在全部量成品之代表性複合樣品上進行以避免受對個別粒子或在非代表性樣品所進行之量測誤導。舉例而言,吸附能力量測在代表性複合樣品上進行。
雖然本文所揭示之方法及組合物可使用未經歷汽蒸處理之β沸石,但本文所揭示之方法及組合物亦可使用經歷汽蒸之β沸石,其限制條件在於與文獻中之β沸石汽蒸相比該汽蒸相對溫和。在適合條件下且歷經適當時間,汽蒸β沸石可產生可用於本文所揭示之方法及組合物中之催化劑。
用於氫裂解催化劑中之熱液處理之沸石為相對較鈍之工具。對任何既定沸石而言,汽蒸降低沸石之酸性。當將經汽蒸之沸石用作氫裂解催化劑時,明顯結果為總餾份或噴射機燃料產量增加但催化劑活性降低。此產量與活性之間的明顯取捨意謂為達成高活性意謂不汽蒸β沸石,但卻以較低產物產量為代價。此產量與活性之間的明顯取捨必須予以考慮且其限制似乎可藉由汽蒸β沸石而獲得之改良。當將經汽蒸之β沸石用於本文所揭示之催化劑中時,超越僅含有Y沸石之催化劑之活性提高似乎有限而超越該等催化劑之產量提高似乎更加增強。
若對β沸石進行汽蒸,則該汽蒸可以不同方式成功進行,其中商業上實際使用之方法常很大程度上受可用設備之類型及能力之影響且可能由其規定。汽蒸進行中,β沸石可保持為固定塊狀物或β沸石限制在容器中或翻轉同時限制在回轉爐中。重要因素為所有β沸石粒子在時間、溫度及蒸汽濃度之適合條件下經均一處理。舉例而言,β沸石不應置放成在接觸β沸石塊表面及內部之蒸汽量上存在顯著差異。β沸石可在具有經過提供低蒸汽濃度之設備的流通蒸汽之氣氛中經蒸汽處理。此可描述為在少於50 mol-%正量之蒸汽濃度下。蒸汽濃度可在1至20 mol-%或5至10 mol-%之範圍內,其中小規模實驗室操作可向更高濃度延伸。汽蒸可在低於或等於600℃(1112℉)之溫度下在大氣壓及低於或等於5 mol-%之蒸汽正含量下進行少於或等於1或2小時之正時間或進行歷時1至2小時。汽蒸可在低於或等於650℃(1202℉)之溫度下在大氣壓及低於或等於10 mol-%之蒸汽正含量下進行少於或等於2小時之正時間。蒸汽含量係以接觸β沸石之水蒸氣之重量計。在650℃(1202℉)以上之溫度下汽蒸似乎產生不可用於本文所揭示之方法中之β沸石,因為所得β沸石之SF6 吸附能力過低。可使用在650℃(1202℉)以下之溫度,且汽蒸溫度可為600℃(1112℉)至650℃(1202℉)或低於600℃(1112℉)。此項技術中已教示在汽蒸時間與溫度之間通常存在相互影響,其中溫度增加降低所需時間。然而,若進行汽蒸,為達成良好結果,似乎可使用至2小時或1至1小時之時間。在商業規模上進行汽蒸之方法可藉助於回轉爐,其具有以保持10 mol-%蒸汽之氣氛之速率注射的蒸汽。
例示性實驗室規模汽蒸程序進行中,沸石保持在貝殼式爐(clam shell furnace)中之6.4 cm(2-1/2吋)石英管中。爐溫藉由控制器緩慢斜線上升。在沸石溫度達到150℃(302℉)後,使自保持於燒瓶中之去離子水產生之蒸汽進入石英管底部且向上傳遞。可使其他氣體經過管以達成所要蒸汽含量。如需要可將燒瓶再次填充。在例示性程序中,切斷蒸汽與沸石達到600℃(1112℉)之間的溫度為1小時。在設定汽蒸時期結束時,爐中溫度藉由將控制器重新設定至20℃(68℉)來降低。使爐冷卻至400℃(752℉)(約2小時)且停止蒸汽流入石英管。將樣品在100℃(212℉)下移除且置放於保持在110℃(230℉)下經空氣淨化隔夜之實驗室烘箱中。
本文所揭示之方法及組合物之β沸石未經酸溶液處理用以實現脫鋁。在此方面,應注意將基本上所有原料(如合成)β沸石暴露於酸以降低合成中殘留之鹼金屬(例如鈉)濃度。並不認為在β沸石製造程序中的此步驟為處理如本文所述製造之β沸石的一部分。在一實施例中,在處理及催化劑製造程序期間,僅將β沸石在附帶加工生產(諸如形成期間或金屬浸漬期間之膠溶)期間暴露於酸。在另一實施例中,在為自孔中移除鋁"碎片"之汽蒸程序後不對β沸石進行酸洗滌。
本文所揭示之方法及組合物中亦包括具有24.37至24.44埃之單位晶胞大小之Y沸石。在一實施例中,Y沸石具有5.0至12.0之總二氧化矽與氧化鋁之莫耳比率,且在另一實施例中為5.0至11.0。如本文所用之術語"Y沸石"意謂涵蓋具有US 3,130,007中所述之基本X光粉末繞射圖之所有結晶沸石或具有類似於US 3,130,007之X光粉末繞射圖但d間距略微移動(如熟習此項技術者所知,其係歸因於將Y沸石轉化成催化活性及穩定形式通常所必須之陽離子交換、煅燒等)的改質Y沸石。本文所揭示之方法及組合物需要具有任一或兩種以上所提及之特性的Y沸石,該等Y沸石與US 3,130,007中所教示之Y沸石相比為經改質之Y沸石。如本文所用之單位晶胞大小意謂如藉由X光粉末繞射所測定之單位晶胞大小。
用於本文所揭示之方法及組合物中之Y沸石為具有大於7.0埃之有效孔徑的大孔沸石。由於Y沸石之一些孔相對較大,因此Y沸石允許分子相對自由進入其內部結構。Y沸石孔允許苯分子及較大分子進入其中及反應產物自其經過。
可用於本文所揭示之方法及組合物中之一組Y沸石包括有時稱為超穩定Y沸石之沸石。此組Y沸石之組合物及特性基本上藉由四步程序來製備。首先,將鹼金屬形式(通常鈉)且通常具有24.65埃單位晶胞大小的Y沸石與銨離子進行陽離子交換。銨交換步驟通常將起始鈉Y沸石之鈉含量自通常大於8 wt-%,通常10至13 wt-%之值(根據Na2 O計算)降低至0.6至5 wt-%範圍內之值(根據Na2 O計算)。進行離子交換之方法係此項技術中所熟知的。
第二步,將來自第一步之Y沸石在水蒸氣存在下煅燒。舉例而言,在三個實施例中,將Y沸石在至少1.4 KPa(絕對)(下文為kPa(a))(0.2 psi(絕對)(下文為psi(a))),至少6.9 kPa(a)(1.0 psi(a))或至少69 kPa(a)(10 psi(a))水蒸氣存在下煅燒。在另外兩個實施例中,將Y沸石在基本上由蒸汽組成或由蒸汽組成之氣氛中煅燒。煅燒Y沸石用以產生在24.40至24.64埃之範圍內的單位晶胞大小。
第三步,將來自第二步之Y沸石再次進行銨交換。第二次銨交換進一步將鈉含量降低至低於0.5 wt-%,通常低於0.3 wt-%(根據Na2 O計算)。
第四步,將來自第三步之Y沸石進一步處理以產生具有24.37至24.44埃或較佳24.40至24.44埃之單位晶胞大小的Y沸石。在一實施例中,自第四步獲得之沸石Y具有5.0至12.0之總二氧化矽與氧化鋁之莫耳比率,且在另一實施例中為5.0至11.0。第四步之處理可包含用於將一般沸石且尤其是超穩定Y沸石脫鋁以產生所要單位晶胞大小及總二氧化矽與氧化鋁之莫耳比率的任何熟知技術。第四步處理步驟可在改變或不改變總二氧化矽與氧化鋁之莫耳比率的情況下改變單位晶胞大小及/或構架二氧化矽與氧化鋁之莫耳比率。一般而言,沸石脫鋁藉由化學方法來完成,諸如用酸(例如HCl)處理,用揮發性鹵化物(例如SiCl4 )處理,或用螯合劑(諸如乙二胺四乙酸(EDTA))處理。另一常用技術為在純蒸汽或空氣/蒸汽混合物中熱液處理沸石,較佳諸如在足夠水蒸氣存在下(例如在基本上由蒸汽組成且最佳由蒸汽組成之氣氛中)煅燒以產生所要單位細胞大小及總二氧化矽與氧化鋁之莫耳比率。
以上所討論之用於本文所揭示之方法及組合物中之Y沸石的製備程序與US 3,929,672中所教示之製備Y沸石之程序的不同之處於添加了第四步處理步驟。US 3,929,672揭示一種用於將超穩定Y沸石脫鋁之方法。US 3,929,672教示一種製備程序,其中將鈉Y沸石與銨離子進行部分交換,隨後在控制溫度及蒸汽分壓下進行蒸汽煅燒,隨後進行另一次氨交換且接著在乾燥氣氛中進行可選煅燒步驟。可重複交換及蒸汽煅燒步驟以達到所要之脫鋁及單位晶胞大小降低程度。已知US 3,929,672之沸石可自UOP LLC,Des Plaines,Illinois,U.S.A以Y-84或LZY-84之名稱購得。Y-84或LZY-84沸石可藉由剛剛所述之前三個步驟製得,但視情況可包括在乾燥氣氛進一步煅燒之步驟,例如在無水及蒸汽之空氣中於482℃(900℉)或更高溫度下煅燒。
以上所討論之用於本文所揭示之方法及組合物中之Y沸石的製備程序亦因第四步處理步驟中之差異而不同於US 5,350,501中所教示之製備Y沸石之程序。US 5,350,501揭示涉及將自第三步處理步驟獲得之沸石在足夠水蒸氣存在下(在基本上由蒸汽組成或由蒸汽組成之氣氛中)煅燒以產生在24.40埃以下且最佳不超過24.35埃之單位晶胞大小且具有對水蒸氣之相對低吸附能力的第四步驟。藉由US 5,350,501中之四步程序製得之Y沸石為UHP-Y沸石,一種如US 5,350,501中所定義之超疏水性Y沸石。US 5,350,501中最佳之UHP-Y沸石為LZ-10沸石。
可用於本文所揭示之方法及組合物中之另一組Y沸石可藉由將總二氧化矽與氧化鋁之莫耳比率低於5之Y沸石脫鋁來製備且其詳細描述於US 4,503,023,US 4,597,956及US 4,735,928中。US 4,503,023揭示另一用於將Y沸石脫鋁之程序,其涉及使用避免在無矽取代下提取鋁之控制比例、溫度及pH值條件使Y沸石與氟矽酸鹽水溶液接觸。US 4,503,023提出使用氟矽酸鹽作為鋁提取劑以及作為外來矽(其插入Y沸石結構中以代替經提取之鋁)之來源。該等鹽具有以下通式:(A)2 / b SiF6 ,其中A為除H 外之具有價數"b"之金屬或非金屬陽離子。"A"所代表之陽離子為烷基銨、NH4 、Mg 、Li 、Na 、K 、Ba 、Cd 、Cu 、H 、Ca 、Cs 、Fe 、Co 、Pb 、Mn 、Rb 、Ag 、Sr 、Ti 及Zn
此組之較佳成員稱為LZ-210,其為自UOP LLC,Des Plaines,Illinois,U.S.A購得之沸石鋁矽酸鹽分子篩。LZ-210沸石及此組之其他沸石可便利地自Y沸石起始材料來製備。在一實施例中,LZ-210沸石具有5.0至12.0之總二氧化矽與氧化鋁之莫耳比率,且在另一實施例中為5.0至11.0。單位晶胞大小為24.37至24.44埃,較佳為24.40至24.44埃。用於本文所揭示之方法及組合物中之LZ-210類沸石具有如下式之根據氧化物之莫耳比率表示之組成:(0.85-1.1)M2 / n O:Al2 O3 :xSiO2 ,其中"M"為具有價數"n"之陽離子,且"x"具有5.0至12.0之值。
一般而言,LZ-210沸石可藉由使用氟矽酸鹽水溶液,較佳為六氟矽酸銨溶液將Y型沸石脫鋁來製備。脫鋁可藉由將Y沸石,通常(但非必須)經銨交換之Y沸石置放於水性反應介質(諸如乙酸銨水溶液)中且緩慢添加氟矽酸銨水溶液來完成。反應進行後,產生總二氧化矽與氧化鋁之莫耳比率增加之沸石。增加數量至少部分上視與沸石接觸之氟矽酸鹽溶液之量及所允許之反應時間而定。通常,10與24小時之間的反應時間足以達成平衡。所得固體產物為LZ-210沸石之形式,可將其藉由習知過濾技術自水性反應介質中分離。在一些狀況下,可藉由此項技術中熟知之方法使此產物經歷蒸汽煅燒。舉例而言,可使產物與水蒸氣在至少1.4 kPa(a)(0.2 psi(a))之分壓下於482℃(900℉)與816℃(1500℉)之間的溫度下接觸歷經1/4至3小時之間的時期以提供較大結晶穩定性。在一些狀況下,可藉由此項技術中熟知之方法使蒸汽煅燒產物經歷銨交換。舉例而言,可將產物用水調成漿料,此後將銨鹽添加至該漿料中。通常將所得混合物加熱數小時之時期,過濾且用水洗滌。汽蒸及銨交換LZ-210沸石之方法描述於US 4,503,023、US 4,735,928及US 5,275,720中。
藉由以上所討論之製備程序製備且用於本文所揭示之方法及組合物中的Y沸石具有沸石Y之基本X光粉末繞射圖及24.37至24.44埃,較佳24.40至24.43埃之單位晶胞大小或尺寸a0 。在一實施例中,此等Y沸石具有5.0至12.0之總二氧化矽與氧化鋁之莫耳比率,且在另一實施例中為5.0至11.0。此等Y沸石可具有至少500 m2 /g,至多700 m2 /g且通常500至650 m2 /g之表面積(BET)。如本文所用之表面積意謂藉由標準測試方法UOP874-88,使用Quantachrome分析儀根據氮吸附之多孔物質之孔徑大小分佈(Pore Size Distribution of Porous Substances by Nitrogen Adsorption Using a Quantachrome Analyzer)(該方法可自ASTM International,100 Barr Harbor Drive,P.O.Box C700,West Conshohocken,Pennsylvania,U.S.A獲得)測定之20點表面積。
增加Y沸石之穩定性及/或酸性之另一方法係藉由將Y沸石與多價金屬陽離子(諸如含稀土金屬之陽離子、鎂離子或鈣離子)或銨離子與多價金屬陽離子之組合進行交換,藉此降低鈉含量直至其低至以上所述之第一次或第二次銨交換步驟後之值。進行離子交換之方法係此項技術中所熟知的。
用於本文所揭示之方法中的催化劑主要意欲用作目前商業氫裂解裝置中之替代催化劑。因此,其大小及形狀較佳類似於習知商業催化劑之大小及形狀。較佳將其製成具有0.8-3.2 mm(1/32-1/8 in)之直徑的圓柱形擠出物之形式。然而,亦可將催化劑製成任何其他所要形式,諸如球形或粒狀。擠出物可為除圓柱形外之形式,諸如熟知之三葉形或在降低擴散距離或壓降方面具有優點之其他形狀之形式。
商業氫裂解催化劑含有大量非沸石材料。此係由於諸如粒子強度、成本、多孔性及效能之數種原因。因此,即使其他催化劑組份不作為活性裂解組份,其亦對總催化劑起積極促進作用。此等其他組份在本文稱為載體。一些傳統載體組份(諸如二氧化矽-氧化鋁)通常對催化劑之裂解能力起一定程度的促進作用。在本文所揭示之方法及組合物之實施例中,催化劑含有以β沸石、Y沸石及載體之組合重量計(均以乾重計)少於7 wt-%,較佳少於5 wt-%之正量的β沸石。認為如本文所用之以乾重計之重量為在乾燥空氣中於500℃(932℉)下加熱6小時後之重量。該催化劑含有以β沸石、Y沸石及載體之組合重量計(均以乾重計)少於30 wt-%,較佳少於25 wt-%且更佳15 wt-%至25 wt-%之正量的Y沸石。以β沸石、Y沸石及載體之組合重量計(均以乾重計),用於本文所揭示之方法中之催化劑的Y沸石及β沸石含量為少於35 wt-%,較佳少於25 wt-%,更佳少於20 wt-%之正量,其中剩餘之至少50 wt-%,較佳至少75 wt-%,更佳至少90 wt-%且最佳100 wt-%為載體。
除沸石材料外剩餘之催化劑粒子可主要由習知氫裂解材料(諸如氧化鋁及/或二氧化矽-氧化鋁)構成。二氧化矽-氧化鋁之存在有助於達成催化劑之所要效能特徵。在一實施例中,該催化劑含有至少25 wt-%之氧化鋁及至少25 wt-%之二氧化矽-氧化鋁,兩者均以沸石及載體之組合重量計(均以乾重計)。在另一實施例中,催化劑之二氧化矽-氧化鋁含量在40 wt-%以上且催化劑之氧化鋁含量在35 wt-%以上,兩者均以沸石及載體之組合重量計(均以乾重計)。然而,據信氧化鋁僅充當黏合劑且不為活性裂解組份。催化劑載體可含有以載體重量計(以乾重計)超過50 wt-%之二氧化矽-氧化鋁或超過50 wt-%之氧化鋁。在一實施例中,使用近似相等量之二氧化矽-氧化鋁及氧化鋁。除二氧化矽-氧化鋁及氧化鋁外,可用作載體之其他無機難熔材料包括(例如)二氧化矽、氧化鋯、氧化鈦、氧化硼及氧化鋯-氧化鋁。此等上述載體材料可單獨使用或以任何組合來使用。
除β沸石、Y沸石及其他載體材料外,本發明之催化劑亦含有金屬氫化組份。氫化組份較佳以一或多種均勻分佈於催化劑粒子中之卑金屬之形式來提供。氫化組份為一或多種元素週期表6、9及10族之元素組份。可應用貴金屬(諸如鉑及鈀),但使用兩種卑金屬之組合獲得最好結果。特定言之,將鎳或鈷分別與鎢或鉬配對。金屬氫化組份之較佳組成為鎳與鉬或鎳與鎢。鎳或鈷之量較佳在2與8 wt-%之完成催化劑之間。鎢或鉬之量較佳在8與22 wt-%成品催化劑之間。卑金屬氫化組份之總量為10至30 wt-%之成品催化劑。
本發明方法之催化劑可使用工業標準技術來調配。一般而言,此可概述為將β沸石及Y沸石與其他無機氧化物組份及液體(諸如水或弱酸)混合以形成可擠壓之麵團,隨後經由多孔模板擠壓。收集擠出物且較佳在高溫下煅燒以使擠出物硬化。接著針對大小篩選經擠壓之粒子,且如藉由浸漬或熟知之微濕技術添加氫化組份。若催化劑之氫化組份中含有兩種金屬,則可將此等金屬相繼或同時添加。可將催化劑粒子在金屬添加步驟之間及再在金屬添加之後煅燒。
在另一實施例中,可便利或較佳地將多孔無機難熔氧化物、β沸石、Y沸石及含有金屬之化合物組合,接著共研磨經組合之材料,隨後擠壓經共研磨之材料且最終煅燒經擠壓之材料。在一較佳實施例中,共研磨以七鉬酸銨作為鉬來源且以硝酸鎳作為鎳來源來實現,其中一般將兩種化合物以水溶液之形式引入經組合之材料中。可類似將其他金屬以溶解水溶液形式或以鹽形式引入。同樣,可藉由在使用時將諸如磷酸之可溶性組份併入水溶液中來引入例如磷之非金屬元素。
其他製備他方法描述於US 5,279,726及US 5,350,501中。
藉由以上所討論之程序製備之催化劑含有氧化物形式之氫化金屬。通常將氧化物形式轉化成用於氫裂解之硫化物形式。此可藉由用於硫化之任何熟知技術來完成,包括在氫裂解反應器中載入催化劑前的離地預硫化,在氫裂解反應器中載入催化劑之後並在高溫下使用之前的預硫化,及就地硫化--亦即在氫裂解條件(包括高溫及高壓及氫存在)下藉由使用氧化物形式之催化劑氫裂解含有硫化合物之烴原料。
本文所揭示之氫裂解方法可在目前商業上用於氫裂解方法之條件的通用範圍內操作。在多種情況下,操作條件為精煉廠或特定處理裝置。亦即,其在很大程度上係由現有氫裂解裝置之結構及限制(在無相當花費之情況下其通常不可改變)、進料組合物及所要產物來規定。催化劑床之入口溫度應為232℃(450℉)至454℃(850℉),且入口壓力應為5171 kPa(g)(750 psi(g))至24132 kPa(g)(3500 psi(g)),且通常為6895 kPa(g)(1000 psi(g))至24132 kPa(g)(3500 psi(g))。將進料流與足夠氫混合以提供在0℃(32℉)及101.3 kPa(a)(14.7 psi(a))下所量測之168至1684標準ltr/ltr(在15.6℃(60℉)及101.3 kPa(a)(14.7 psi(a))下所量測之1000至10000標準立方呎/桶(SCFB))之體積氫循環速率/單位進料體積,且使其進入一或多個含有催化劑固定床之反應器。氫可主要自可經過用以移除酸性氣體之純化設施之再循環氣流獲得,但並非必須如此。將富含氫之氣體與進料混合,且在一實施例中,任何再循環烴均含有至少90 mol-%之氫。為進行氫裂解以產生餾份或噴射機燃料,根據LHSV之進料速率通常在0.3至3.0 hr 1 之較寬範圍內。如本文所用之LHSV意謂液體每小時空間速度,其定義為每小時液體體積流動速率除以催化劑體積,其中液體體積及催化劑體積均以相同體積單位計。
本文所揭示之方法的典型進料為自原油藉由分餾回收的多種不同烴與共沸化合物之混合物。其通常具有在高於生產餾份時149℃(300℉)至371℃(700℉)沸騰範圍之上限的溫度下沸騰,或高於生產噴射機燃料時127℃(260℉)至288℃(550℉)沸騰範圍之上限的溫度下沸騰之組份。其通常具有在340℃(644℉)以上起始且在一實施例中在482℃(900℉)以下結束,在另一實施例中在540℃(1004℉)以下結束及在第三實施例中在565℃(1049℉)以下結束之沸點範圍。該石油衍生進料可為在精煉廠中生產之諸如常壓柴油、焦化柴油、直餾柴油、脫瀝青柴油、真空柴油及FCC循環油之物流的摻合物。典型柴油包含在166℃(330℉)至566℃(1050℉)之範圍內沸騰的組份。或者,本文所揭示之方法的進料可為單一部分,諸如重真空柴油。典型重柴油部分具有實質比例(通常至少80重量%)的在371℃(700℉)至566℃(1050℉)沸騰之烴組份。諸如自葉岩油或煤中回收之合成烴混合物亦可以本發明之方法進行處理。可使進料在進入本發明之方法前經歷氫化處理或如藉由溶劑萃取進行處理以移除總量的硫、氮或其他污染物(諸如瀝青烯)。
本發明之方法預期將大部分進料轉化成更具揮發性之烴,諸如餾份或噴射機燃料沸騰範圍之烴。典型轉化率係在50至100體積-%(下文為vol-%)間變化,其在很大程度上視進料組合物而定。在本文所揭示之方法之一實施例中,轉化率在60至90 vol-%之間,在另一實施例中在70至90 vol-%之間,在另一實施例中在80至90 vol-%之間,且在另一實施例中在65至75 vol-%之間。本發明之方法之排出物實際上將含有自甲烷至基本上未改變之進料烴(其在任何所要產品之沸騰範圍以上的溫度下沸騰)之範圍內的多種烴。通常使本發明之方法之排出物自含有催化劑之反應器經過且通常藉由一般技術者已知之方法(包括相分離或蒸餾)來分離以產生具有任何所要最終沸點之產品。即使在本發明之方法中沸點已在某種程度上降低,在任何所要產品之最終沸點以上的溫度下沸騰之烴亦稱為未轉化產品。將大部分未轉化之烴再循環至反應區中,同時將較小百分比(例如5 wt-%)作為阻力流(drag stream)移除。在用以生產餾份之一實施例中,至少30 wt-%且較佳至少50 wt-%之排出物在371℃(700℉)以下沸騰。在用以生產噴射機燃料之一實施例中,至少30 wt-%且較佳至少50 wt-%之排出物在288℃(550℉)以下沸騰。
本文所揭示之方法及組合物可用於在此項技術中稱作單階段及兩階段流程之方法,其進行或不進行預先氫化處理。此等術語如名為Hydrocracking Science and Technology,J.Scherzer及A.J.Gruia,ISBN 0-8247-9760-4,Marcel Dekker Inc.,New York,1996之書籍中定義及說明。在兩階段之方法中,本發明之催化劑可用於第一或第二階段。該催化劑可在獨立反應器中在氫化處理催化劑之後作用或可將其與氫化處理催化劑或不同氫裂解催化劑載入相同反應器中。上游氫化處理催化劑可用於進料預處理步驟或用於氫化處理再循環之未轉化物質。氫化處理催化劑可用於達成氫化處理多核芳族(PNA)化合物以促進其隨後在氫裂解催化劑床中之轉化的特定目的。本發明之催化劑亦可與第二種不同之催化劑混合使用,諸如基於Y沸石或主要具有非晶形裂解組份之催化劑。
在本文所揭示之方法的一些實施例中,催化劑可與進料一起使用或以經過催化劑之進料為新進料或類似新進料之配置來使用。原油及因此本發明方法之進料的硫含量很大程度上視其來源而變化。如本文所用之新進料意指未經氫化處理或仍含有導致硫含量大於1000 wt-ppm之有機硫化合物或仍含有導致氮含量大於100 wt-ppm(0.01 wt-%)之有機氮化合物的進料。
在本文所揭示之方法的其他實施例中,催化劑與經氫化處理之進料一起使用。烴處理技術之一般技術者瞭解且可實施新進料之氫化處理以產生待饋入本文所揭示之方法的經氫化處理之進料。雖然進料之硫含量可在500與1000 wt-ppm之間,但在本文所揭示之方法之一實施例中,經氫化處理之進料的硫含量低於500 wt-ppm,且在另一實施例中為5至500 wt-ppm。在一實施例中,經氫化處理之進料的氮含量低於100 wt-ppm,且在另一實施例中為1至100 wt-ppm。
所有本文所提及之週期表元素之族均為名為CRC Handbook of Chemistry and Physics,ISBN 0-8493-0480-6,CRC Press,Boca Raton,Florida,U.S.A.,第80版,1999-2000之書籍封二中元素週期表上之IUPAC"New Notation"。所有本文所提及之沸點均為藉由ASTM D2887,藉由氣相層析法之石油餾份沸騰範圍分佈之標準測試方法(Standard Test Method for Boiling Range Distribution of Petroleum Fractions by Gas Chromatography)(該方法可自ASTM International獲得)所測定之沸點。
提供以下實例用於說明之目的且其不限制申請專利範圍中所定義之方法及組合物。
實例I
沸石1經改質之Y沸石以如下方式來製備。起始材料為可自UOP LLC購得之穩定銨Y沸石(Y-84)。起始材料具有0.2 wt-%之起始鈉含量(根據Na2 O計算),5.0至5.2之總二氧化矽與氧化鋁(SiO2 與Al2 O3 )之莫耳比率及24.56埃之單位晶胞大小。將Y-84沸石在482℃(900℉)至549℃(1020℉)之床溫下在100%蒸汽存在下煅燒1 hr以降低單位晶胞大小。所得經改質之Y沸石稱為沸石1且具有5.0至5.2之總二氧化矽與氧化鋁(SiO2 與Al2 O3 )之莫耳比率及24.44埃之單位晶胞大小。
沸石2除將Y-84沸石在677℃(1250℉)至857℃(1575℉)之床溫下在100%蒸汽存在下煅燒1 hr以降低單位晶胞大小外,以針對沸石1所述之方式來製備經改質之Y沸石。所得經改質之Y沸石稱為沸石2且具有5.0至5.2之總二氧化矽與氧化鋁(SiO2 與Al2 O3 )之莫耳比率及24.36埃之單位晶胞大小。
LZ-210沸石兩種市售經汽蒸及銨交換之LZ-210的樣品均可自UOP LLC獲得。一種樣品具有10.0至14.0之總二氧化矽與氧化鋁(SiO2 與Al2 O3 )之莫耳比率及24.39埃之單位晶胞大小,且另一樣品具有8.0至10.0之總二氧化矽與氧化鋁(SiO2 與Al2 O3 )之莫耳比率及24.42埃之單位晶胞大小。將具有6.0至7.0之總二氧化矽與氧化鋁(SiO2 與Al2 O3 )之莫耳比率的LZ-210之第三樣品汽蒸及銨交換以達成6.0至7.0之總二氧化矽與氧化鋁(SiO2 與Al2 O3 )之莫耳比率及24.49埃之單位晶胞大小。
實例II
藉由在研磨機中將沸石1(若存在)、沸石2(若存在)、經汽蒸及銨交換之LZ-210(若存在)、具有23.8之總二氧化矽與氧化鋁(SiO2 與Al2 O3 )之莫耳比率及29 wt-%之SF6 吸附能力的β沸石(若存在)、非晶形二氧化矽-氧化鋁(若存在)及經HNO3 膠溶之CatapalT M C水鋁礦氧化鋁(Catapal C氧化鋁可自Sasol North America,Inc.獲得)混合來製備10種催化劑(A-H及J-K)。此等組份在各最終催化劑中之量(以乾重計)列於表1中。將所得混合物擠壓成直徑為1.6 mm(1/16 in),長度在3.2 mm(1/8 in)與12.7 mm(1/2 in)之間的圓柱形粒子。將濕擠出物在104℃(220℉)下乾燥歷時最少4 hr,且接著在超過550℃(1022℉)之溫度下煅燒歷時最少90分鐘。接著將在最終催化劑中提供4 wt-%鎳(根據NiO計算)的足夠硝酸鎳及在最終催化劑中提供14 wt-%鎢(根據WO3 計算)的足夠偏鎢酸銨添加至經煅燒之擠出物中達成微濕。接著將擠出物乾燥至自由流動,且接著藉由在500℃(932℉)下煅燒歷時最少90分鐘來將其氧化。
實例III
藉由使由10 vol-% H2 S及剩餘為H2 組成之氣流經過初始溫度為149℃(300℉)且緩慢升至413℃(775℉)並保持在該溫度下6小時之催化劑床來將以上所述之10種催化劑之各者預硫化。
在模擬第一階段測試中,比較10種催化劑之氫裂解活性及選擇性(亦即產品產量)。特定言之,單獨測試10種催化劑對在15.6℃(60℉)下具有0.877之比重(30.05° API比重)、107℃(224℉)之起始沸點、195℃(382℉)之5 wt-%沸點、550℃(1021℉)之最終沸點及424℃(795℉)之50 wt-%沸點並且13 wt-%在228℃(550℉)以下沸騰及26 wt-%在371℃(700℉)以下沸騰之經氫化處理之輕阿拉伯真空柴油(VGO)進料的氫裂解。
藉由以1.5 hr 1 之LHSV、13786 kPa(g)(2000 psi(g))之總壓及在0℃(32℉)與101.3 kPa(a)(14.7 psi(a))下所量測之1684標準ltr/ltr(在15.6℃(60℉)與101.3 kPa(a)(14.7 psi(a))下所量測之10000 SCFB)之體積氫進料速率/單位進料體積使原料經過實驗室規格之反應器來測試各催化劑之模擬第一階段操作。將足夠的二硫化二第三丁基添加至進料中以提供2.1 wt-%硫且藉此模擬含硫化氫之氣氛,因為其存在於商業第一階段氫裂解反應器中。此外,將足夠的環己胺添加至進料中以提供780 wt-ppm氮且藉此模擬含氨之氣氛,因為其存在於商業第一階段氫裂解反應器中。
對於產生餾份之氫裂解測試而言,在100小時之過程中,根據需要調節溫度條件以保持65 wt-%之生成在371℃(700℉)以下沸騰之物質的淨轉化率。淨轉化率為在371℃(700℉)以下沸騰之排出物占進料之百分比減去在371℃(700℉)以下沸騰之進料之百分比。在100小時結束時,記錄保持65 wt-%淨轉化率所需之溫度,且計算各催化劑相對於商業參考之活性及選擇性。接著,對於產生噴射機燃料之氫裂解測試而言,在100小時之過程中,根據需要調節溫度條件以保持65 wt-%之生成在288℃(550℉)以下沸騰之物質的淨轉化率。淨轉化率為在288℃(550℉)以下沸騰之排出物占進料之百分比減去在288℃(550℉)以下沸騰之進料之百分比。在100小時結束時,記錄保持65 wt-%淨轉化率所需之溫度,且計算各催化劑相對於商業參考之活性及選擇性。此等資料概述於下表中。各催化劑之活性及產量資料輸入為催化劑之活性或產量之實際值減去用參考所獲之活性或產量之實際值的差。活性值之負值愈大,催化劑愈具活性。
NA=不適用
圖1為將與參考相比較催化劑A-E之127℃(260℉)至288℃(550℉)部分噴射機燃料產量優點相對於與參考相比較之活性優點作圖之圖表,且其根據達成65%之VGO轉化成噴射機燃料部分之淨轉化率所需之反應器溫度來表示。圖3為將與參考相比較催化劑A-E之149℃(300℉)至371℃(700℉)部分餾份產量優點相對於與參考相比較之活性優點作圖之圖表,且其根據達成65%之VGO轉化成餾份部分之淨轉化率所需之反應器溫度來表示。催化劑A-C顯示出與參考相比更佳之活性及更多之產量,而催化劑D-E顯示出與參考相比更佳之活性但更差之產量。
圖2為描繪與參考相比較催化劑F-H及J-K之噴射機燃料產量優點的圖表且以與圖1相同之方式來表示。圖4為描繪與參考相比較催化劑F-H及J-K之餾份產量優點的圖表且以與圖3相同之方式來表示。催化劑F顯示出與參考相比更佳之活性及更多之產量,而催化劑G顯示出與參考相比更多之產量但更低之活性,且催化劑H、J及K顯示出與參考相比更佳之活性但更差之產量。
圖1-4為對於數種氫裂解催化劑而言相對噴射機燃料及餾份產量對相對催化劑活性之曲線圖。

Claims (11)

  1. 一種用於氫裂解烴原料之方法,其包含在232℃至454℃之溫度及5171 kPa(g)至24132 kPa(g)之壓力下在氫存在下使該原料與包含氫化組份、β沸石及具有24.37至24.44埃之單位晶胞大小之Y沸石的催化劑接觸,該催化劑具有以乾重計4.5至7之Y沸石與β沸石之重量比率。
  2. 如請求項1之方法,其中該催化劑包含載體且含有以該β沸石、該Y沸石及該載體之組合重量計(以乾重計)少於35 wt-%之β沸石。
  3. 如請求項1或2之方法,其中該催化劑包含載體且含有以該β沸石、該Y沸石及該載體之組合重量計(以乾重計)少於7 wt-%正量之β沸石。
  4. 如請求項1或2之方法,其中該Y沸石具有從5.0至12.0之總二氧化矽與氧化鋁之莫耳比率。
  5. 如請求項1或2之方法,其中該Y沸石係藉由包含下列步驟之方法來製備:(a)部分銨交換鈉Y沸石;(b)在水蒸氣存在下煅燒自步驟(a)獲得之該沸石;(c)銨交換自步驟(b)獲得之該沸石或使自步驟(b)獲得之該沸石與水溶液形式之氟矽酸鹽接觸;及(d)在水蒸氣存在下煅燒自步驟(c)獲得之該沸石。
  6. 如請求項1或2之方法,其中該β沸石具有至少28 wt-%之SF6 吸附能力。
  7. 如請求項1或2之方法,其中該氫化組份係選自由下列各 物組成之群:IUPAC第6族組份、IUPAC第9族組份及IUPAC第10族組份及其氧化物及硫化物組成之群。
  8. 如請求項1或2之方法,其中接觸該烴進料產生平均沸點低於該烴進料之排出物使得至少30 wt-%之該排出物在288℃以下沸騰。
  9. 如請求項1或2之方法,其中接觸該烴進料產生平均沸點低於該烴進料之排出物使得至少30 wt-%之該排出物在371℃以下沸騰。
  10. 如請求項1或2之方法,其中該單位晶胞大小係24.40至24.43埃。
  11. 如請求項1或2之方法,其中該Y沸石與β沸石之重量比率(以乾重計)係為5至6。
TW095140885A 2005-11-04 2006-11-03 含β及Y沸石之氫裂解催化劑及使用其製造噴射機燃料及餾份之方法 TWI386483B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/267,742 US7585405B2 (en) 2005-11-04 2005-11-04 Hydrocracking catalyst containing beta and Y zeolites, and process for its use to make jet fuel or distillate

Publications (2)

Publication Number Publication Date
TW200736376A TW200736376A (en) 2007-10-01
TWI386483B true TWI386483B (zh) 2013-02-21

Family

ID=38002654

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095140885A TWI386483B (zh) 2005-11-04 2006-11-03 含β及Y沸石之氫裂解催化劑及使用其製造噴射機燃料及餾份之方法

Country Status (12)

Country Link
US (1) US7585405B2 (zh)
EP (1) EP1943325A4 (zh)
JP (1) JP2009515029A (zh)
KR (2) KR101127696B1 (zh)
CN (1) CN101305076B (zh)
AU (1) AU2006342819B2 (zh)
CA (1) CA2625606A1 (zh)
NO (1) NO20082495L (zh)
RU (1) RU2383584C2 (zh)
TW (1) TWI386483B (zh)
WO (1) WO2007126419A2 (zh)
ZA (1) ZA200803447B (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7510645B2 (en) * 2005-11-04 2009-03-31 Uop Llc Hydrocracking catalyst containing beta and Y zeolites, and process for its use to produce naphtha
WO2008085517A1 (en) * 2007-01-12 2008-07-17 Uop Llc Selective hydrocracking process using beta zeolite
SG181824A1 (en) 2010-01-21 2012-07-30 Shell Int Research Process for treating a hydrocarbon-containing feed
US8562817B2 (en) * 2010-01-21 2013-10-22 Shell Oil Company Hydrocarbon composition
EP2526167A2 (en) * 2010-01-21 2012-11-28 Shell Oil Company Hydrocarbon composition
SG181825A1 (en) * 2010-01-21 2012-07-30 Shell Int Research Process for treating a hydrocarbon-containing feed
EP2526165A2 (en) * 2010-01-21 2012-11-28 Shell Oil Company Hydrocarbon composition
FR2984760B1 (fr) 2011-12-22 2014-01-17 IFP Energies Nouvelles Catalyseur utilisable en hydroconversion comprenant au moins une zeolithe et des metaux des groupes viii et vib et preparation du catalyseur
EP3056272B1 (en) * 2013-11-26 2021-03-10 China Petroleum & Chemical Corporation Beta molecular sieve, preparation method therefor and hydrogenation catalyst containing same
US10287511B2 (en) 2015-06-09 2019-05-14 Hindustan Petroleum Corporation Ltd. Catalyst composition for fluid catalytic cracking, and use thereof
US10183286B2 (en) 2015-08-11 2019-01-22 Chevron U.S.A. Inc. Noble metal zeolite catalyst for second-stage hydrocracking to make middle distillate
US10040058B2 (en) 2015-08-11 2018-08-07 Chevron U.S.A. Inc. Middle distillate hydrocracking catalyst containing zeolite USY, and zeolite beta with low acidity and large domain size
US10046317B2 (en) 2015-08-11 2018-08-14 Chevron U.S.A. Inc. Middle distillate hydrocracking catalyst containing zeolite beta with low OD acidity and large domain size
FR3044677B1 (fr) 2015-12-08 2018-01-12 IFP Energies Nouvelles Procede d'hydrocraquage de charges hydrocarbonees utilisant un catalyseur comprenant une zeolithe et une alumine mesoporeuse amorphe
CN107008487B (zh) * 2017-05-08 2020-11-06 武汉凯迪工程技术研究总院有限公司 柴油和喷气燃料生产用加氢裂化催化剂及其制备方法
CN110404581A (zh) * 2018-04-28 2019-11-05 中国石油天然气股份有限公司 一种加氢裂化催化剂的制备方法、劣/重柴油加氢裂化的方法
RU2697711C1 (ru) * 2019-02-13 2019-08-19 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН) Способ приготовления катализатора и способ гидрокрекинга вакуумного гайзоля с использованием этого катализатора
RU2692795C1 (ru) * 2019-02-19 2019-06-27 Александр Адольфович Ламберов Катализатор гидрокрекинга и гидроочистки тяжелых остатков нефти, вязкой и высоковязкой нефти
FR3094985B1 (fr) * 2019-04-12 2021-04-02 Axens Procédé d’hydrotraitement d’un naphta
CA3158461A1 (en) * 2019-11-07 2021-05-14 Gevo, Inc. Selective formation of jet and diesel fuels from bio-based c3-c8 olefins via oligomerization with tungstated catalysts
US11154845B1 (en) 2020-07-28 2021-10-26 Saudi Arabian Oil Company Hydrocracking catalysts containing USY and beta zeolites for hydrocarbon oil and method for hydrocracking hydrocarbon oil with hydrocracking catalysts
CN111889133A (zh) * 2020-08-06 2020-11-06 中化泉州石化有限公司 一种硫化型加氢裂化催化剂的制备方法
FR3142195A1 (fr) 2022-11-21 2024-05-24 IFP Energies Nouvelles Procede de production de distillats moyens par co-processing de charge minerale avec une charge renouvelable comprenant un enchainement de catalyseur dont un catalyseur a base de zeolithe beta
FR3142196A1 (fr) 2022-11-21 2024-05-24 IFP Energies Nouvelles Procede de production de distillats moyens comprenant un enchainement de catalyseur dont un catalyseur a base de zeolithe beta ayant un rapport silice/alumine inferieur a 25

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5275720A (en) * 1990-11-30 1994-01-04 Union Oil Company Of California Gasoline hydrocracking catalyst and process

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4897178A (en) * 1983-05-02 1990-01-30 Uop Hydrocracking catalyst and hydrocracking process
US4486296A (en) 1983-10-13 1984-12-04 Mobil Oil Corporation Process for hydrocracking and dewaxing hydrocarbon oils
US4661239A (en) 1985-07-02 1987-04-28 Uop Inc. Middle distillate producing hydrocracking process
US4897170A (en) * 1986-04-07 1990-01-30 Borden, Inc. Manufacture of a Soderberg electrode incorporating a high carbon-contributing phenolic sacrificial binder
US5208197A (en) 1988-03-30 1993-05-04 Uop Octane gasoline catalyst
US5160033A (en) 1988-03-30 1992-11-03 Uop Octane gasoline catalyst and process using same in a hydrocracking process
US4925546A (en) 1989-09-12 1990-05-15 Amoco Corporation Hydrocracking process
US5279726A (en) 1990-05-22 1994-01-18 Union Oil Company Of California Catalyst containing zeolite beta and processes for its use
US5350501A (en) * 1990-05-22 1994-09-27 Union Oil Company Of California Hydrocracking catalyst and process
TW223029B (zh) 1991-08-16 1994-05-01 Shell Internat Res Schappej B V
TW252053B (zh) 1991-11-01 1995-07-21 Shell Internat Res Schappej Bv
US5853566A (en) 1995-11-28 1998-12-29 Shell Oil Company Zeolite-beta containing catalyst compositions and their use in hydrocarbon conversion processes for producing low boiling point materials
US6133186A (en) * 1997-03-06 2000-10-17 Shell Oil Company Process for the preparation of a catalyst composition
ES2260892T3 (es) 1998-06-25 2006-11-01 Institut Francais Du Petrole Catalizador de hidro craqueo que comprende una zeolita beta y un elemento del grupo vb.
CZ297773B6 (cs) * 1998-08-03 2007-03-28 Shell Internationale Research Maatschappij B.V. Zpusob prípravy katalyzátorové kompozice
CN1108356C (zh) 2000-10-26 2003-05-14 中国石油化工股份有限公司 一种高活性高中油性加氢裂化催化剂及其制备方法
US7048845B2 (en) 2001-11-07 2006-05-23 Uop Llc Middle distillate selective hydrocracking process
US7192900B2 (en) 2002-11-27 2007-03-20 Shell Oil Company Hydrocracking catalyst
KR20060023175A (ko) 2003-06-26 2006-03-13 할도르 토프쉐 에이/에스 탄화수소 전환 공정 및 촉매
RU2366505C2 (ru) 2004-03-03 2009-09-10 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Носитель катализатора и каталитическая композиция, способы их получения и применения
US7611689B2 (en) 2004-09-24 2009-11-03 Shell Oil Company Faujasite zeolite, its preparation and use in hydrocracking

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5275720A (en) * 1990-11-30 1994-01-04 Union Oil Company Of California Gasoline hydrocracking catalyst and process

Also Published As

Publication number Publication date
US7585405B2 (en) 2009-09-08
AU2006342819B2 (en) 2010-03-04
EP1943325A2 (en) 2008-07-16
WO2007126419A3 (en) 2008-06-19
JP2009515029A (ja) 2009-04-09
CN101305076A (zh) 2008-11-12
TW200736376A (en) 2007-10-01
US20070102322A1 (en) 2007-05-10
AU2006342819A1 (en) 2007-11-08
WO2007126419A2 (en) 2007-11-08
KR101127696B1 (ko) 2012-03-23
CN101305076B (zh) 2012-08-22
ZA200803447B (en) 2009-10-28
EP1943325A4 (en) 2012-07-25
KR20110008310A (ko) 2011-01-26
NO20082495L (no) 2008-06-03
RU2008122340A (ru) 2009-12-10
KR20080059443A (ko) 2008-06-27
CA2625606A1 (en) 2007-11-08
RU2383584C2 (ru) 2010-03-10

Similar Documents

Publication Publication Date Title
TWI386483B (zh) 含β及Y沸石之氫裂解催化劑及使用其製造噴射機燃料及餾份之方法
CA2627337C (en) Hydrocracking catalyst containing beta and y zeolites, and process for its use to produce naphtha
US20080011648A1 (en) Hydrocracking Catalyst Containing Beta and Y Zeolites, and Process for its use to make Distillate
US20080011649A1 (en) Hydrocracking Catalyst Containing Beta and Y Zeolites, and Process for its use to make Distillate
US20080011647A1 (en) Hydrocracking Catalyst Containing Beta and Y Zeolites, and Process for its use to make Distillate

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees